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Thermodynamic aspects of nanoscale friction
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Developing the nonequilibrium thermodynamics of friction is required for systematic design of low-friction
surfaces for a broad range of technological applications. Intuitively, the thermodynamic work done by a material
sliding along a surface is expected to be partially dissipated as heat and partially transformed into the change
of the internal energy of the system. However, general nonequilibrium thermodynamic principles governing
this separation are presently unknown. We develop a theoretical framework based on the transition state theory
combined with the conventional Prandtl-Tomlinson model, allowing to set explicit expressions for evaluating the
heat dissipation and internal energy change produced during the frictional stick-slip motion of a tip of a typical
friction force microscope. We use the formalism to quantify the heat dissipation for a range of parameters relevant

to materials in practical applications of nanoscale friction.
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I. INTRODUCTION

The phenomenon of mechanical friction between two
materials is a paradigmatic example of out-of-equilibrium
behavior manifested by energy dissipation, memory effects,
and hysteresis. At the mesoscopic level of nanoscale friction,
thermal and structural fluctuations play a dominant role and
typically lead to broad spectra of characteristic timescales of
the underlying relaxation processes. Although the nonequi-
librium thermodynamics has been considered for describing
the friction and wear processes occurring at macroscopic
scales [1,2], it remains unexplored for the fluctuation-driven
nanoscale friction. Its development would be a stepping-stone
towards the improved optimization of friction losses in nan-
otribological applications [3] and is the main subject of the
present study.

An example is the thermally activated stick-slip motion
observed during dry friction characterized by the slow pro-
cess of the mutual “stick” of two material surfaces and the
fast “slip” process associated with the transient reorganiza-
tion of their relative surface atomic configurations [3]. The
stick-slip mechanism of friction has been studied by friction
force microscopy (FFM), which allowed its dependence on
temperature to be quantified. This led to the discovery of
thermolubricity at high temperatures [4—7], understanding the
effect of humidity and oxidation in metals [8], or revealing
positive [4,5,9—16] or negative [4,5] logarithmic velocity de-
pendence of friction in a selected temperature range. A ther-
modynamic description of the nanoscale stick-slip motion has
been considered recently by using the Langevin dynamics-
based description of friction [17,18]. The principle inherently
relies on the fact that information about the heat and work
is naturally contained in the fluctuating trajectory followed
by the FFM tip during its sliding motion along the material
surface and could be extracted from it through an appropriate
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thermodynamically consistent mathematical framework ap-
plicable to fluctuating systems. Such a general mathematical
framework, which allows us to systematically quantify the
irreversible processes occurring in nanoscale systems driven
by thermal fluctuations, has been developed recently and is
referred to as modern stochastic thermodynamics [19-21].

In this article we build on the earlier work [17,18] from
the perspective of the stochastic thermodynamics and de-
rive explicit expressions for entropy, which directly allow
us to evaluate the heat produced in the system and the heat
transferred into the environment during the stick-slip friction
process. We show that these expressions are consistent with
the first law of thermodynamics, relating the thermodynamic
work and internal system energy. Our analysis is based on
the one-dimensional Prandtl-Tomlinson model as the simplest
model of a single asperity friction and includes thermal ac-
tivation through the Kramers transition state theory [3,22—
24]. This leads to the description of the thermally activated
friction process via a system of coupled ordinary differential
equations for state (asperity) probabilities, which allows us
to apply the concepts of the stochastic thermodynamics to
evaluate the individual thermodynamic variables. The for-
malism is then applied to quantify the heat produced during
friction processes at different temperatures, sliding velocities,
and energy potentials.

II. MODEL

We first overview the formalism and introduce the termi-
nology essential for the development of the thermodynamic
formalism in subsequent sections. The one-dimensional
Prandtl-Tomlinson model describes a tip sliding in one direc-
tion on a static substrate, as illustrated in Fig. 1. The model is
defined by the following potential-energy function:

(271 > C )
ulx,t) = —Eycos | —x(t) ) + E[x(t) — V] (D)
a
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Cantilever

FIG. 1. A sketch of the principle of the one-dimensional Prandtl-
Tomlinson model of a FMM experiment. Typical values of the
parameters are Ey ~ 0.1-1eV,V =1 nm/sto 1 m/s, C = 0.1 to 50
N/m, and @ = 0.3 nm [25].

The variable x = x(¢) describes the position of a tip at the
time 7. The first term in Eq. (1) corresponds to the energy of
substrate-tip interaction, where Ej is the interaction strength
and a is the spacing between the surface atoms. The second
term corresponds to the elastic energy of the cantilever drag-
ging the tip at a constant velocity V, where C is the elastic
energy constant in the x direction. The total force acting on the
tip at the position x is fio (x,#) = —9u/dx = f(x) + f(x, 1),
where

fi(x) = —Z—nEO sin (2—nx>, (2a)
a a
fx,t) = —C(x —Vt). (2b)

Equation (2a) defines the force due to the substrate-tip
interaction and Eq. (2b) describes the elastic force exerted on
the tip by the cantilever.

Stable states m of the system are defined as the tip positions
X(t) for which the total restoring force is zero, i.e., fior = 0,
and correspond to the local energy minima in Eq. (1), defining
the state energies denoted as u,,(t) = u(x,,, t). These states
identify the positions accommodating the tip in the absence
of external driving and thermal fluctuations. Global energy
minimization of Eq. (1) at a given time ¢ allows us to identify
all available states m = 1, ..., M. The total number of states
M may vary in time, depending on the values of Ey, a, and C.

Thermally activated dynamics. For the purpose of this
study, we adopt the rate theory framework typically used in
the description of the overdamped dynamics of the stick-
slip motion [26], where thermal activation is viewed as a
Markovian random hopping process over energy barriers sep-
arating the different states m. The rates of thermally activated
transitions between the states are dependent on the energy
barriers separating them. If Au,,, denotes the energy barrier
separating two neighboring states m and n, the rate of the
transition from n to m follows the Arrhenius law:

Auﬂli’l (t) )

kT 3

wmn(1) = fo exp (—
where fj is the attempt frequency setting the characteristic
timescale of the thermal relaxation processes, T is the temper-
ature, and kg is the Boltzmann constant. The time evolution of
the system is then studied by evaluating the probabilities of
states m at a different time ¢ by solving the so-called master

(1
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FIG. 2. Time-dependent energy in the Prandtl-Tomlinson model
obtained from Eq. (1) for y = Ey(27)?/Ca* = 16.7, at three dif-
ferent times #; (I), , (II), 3 (III), such that #; < #, < t3. The times
between (I) and (II) correspond to the system being in the stick state,
and at some point between (II) and (III) the slip occurs. The red
circle corresponds to the position of the tip, and the green square
corresponds to the position of the cantilever at a given instant in time.

equation:

% = Z[wmn(t)pn(t) - a)nm(t)pm([)]- (4)
n

In this work we consider only the transitions occurring
between the immediately neighboring states (asperities), i.e.,
the transitions from n to m where m = n — 1 orn + 1. The rate
of these transitions, w,,,, is determined by the energy barrier
Aty = upy® — uy,, where u;2* corresponds to the energy
maximum located between the states m and n. The transition
rates w,,, are zero for more distant states. This assumption
is justifiable for overdamped systems when the transitions
between distant states are expected to be rare. However,
the formalism is fundamentally not restricted to the nearest-
neighbor state transitions, and longer-range transitions can
naturally be included in Eqgs. (3) and (4) as well. Given that
the focus of the present study is on the development of an
appropriate thermodynamic formalism to describe thermally
activated friction processes, we postpone the question of the
effect of such longer-range transitions to future work.

Algorithm. To set up Egs. (3) and (4) it is necessary to
determine all stable states m and energy barriers Au,, by
identifying all energy minima and maxima available at any
given time ¢. Inspecting Eq. (1) shows that more than one
energy minimum exists in the stick-slip motion parameter
range when y = Ey(2m)?/Ca* > 1. Moreover, due to the
explicit time dependence in the second term in Eq. (1) the
energy minima and maxima continually evolve in time during
the progression of the sliding motion, as illustrated in Fig. 2,
may disappear and reappear, and their total number is not con-
served. To capture the variable nature of the energy landscape
we developed the following approach: Assuming the time
duration of a hypothetical FFM experiment extends from 0
to tmax, We first divide this interval into time instants #;, where
k=0,...,Nsuchthattg =0, ty = tmax, and 1y — tx_; = At
with At being a small time step. We then set a global time
counter to fy and evaluate and store all states x,,(fy) obtained
by extensively minimizing Eq. (1) for ¢ = #. This procedure is
repeated for every subsequent time #;, < ty, and the identified
states x,,(f;) are stored as arrays labeled by the time index
variable k. Thus, this procedure allows us to precompute a
time-ordered array of states spanning the entire time interval
from O to fp,x, from which all the states corresponding to
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FIG. 3. The position of the tip (left) and lateral force (right) as
a function of time at 0 and 300 K. The position of the cantilever is
highlighted by a gray dashed line in the left figure. These trajectories
were produced by a kinetic Monte Carlo algorithm consistent with
Egs. (3) and (4).

a given time instant can be directly accessed through the
index k.

Deterministic solution. Once all the states have been pre-
computed, Eq. (4) can be set up by applying a mask setting
all transition rates corresponding to transitions between the
states available at a given time #; to w,,, and to zero otherwise.
The mask and the values of w,,, are updated at every time
step k, and the solution of the system of ordinary differen-
tial equations in Eq. (4) starting from the initial condition
pm(to = 0) is obtained by numerical integration using the
LSODA /Runge-Kutta algorithm [27].

Stochastic solution. Rather than evaluating the probability
distribution, Eq. (4) can be solved by generating individual
randomized trajectories of state variables by using kinetic
Monte Carlo methods. Here we set up the so-called fixed time-
step kinetic Monte Carlo method [28], which only requires
the knowledge of the possible transition paths and the energy
barriers quantifying the associated transition rates through
Eq. (3), as they were determined above. The actual thermally
fluctuating trajectories followed by the FFM tip consistent
with Egs. (3) and (4) can then be evaluated directly.

Deterministic and stochastic solutions will be compared
below assuming the following realistic parameter values:
Ey=0.3¢eV,a=0.25nm, fy = 19.5 kHz as determined ex-
perimentally [10], and kg = 8.617 x 1073 eV/K. The default
velocity V = 10 nm/s, substrate corrugation Ey = 0.3 eV,
and temperature 7 = 300 K were varied in the parameter
sweep in the intervals 0.1-100 nm/s, 0.2-0.8 eV, and 200—
500 K, respectively, which corresponds to dimensionless y =
Eo(27)?/Ca*> = 11.2-45. All calculations below assume the
initial condition x = 0 atz = 0.

III. FRICTION FORCE

Figure 3 shows the simulated instantaneous trajectories of
the tip position x,,(¢) and the force f,,(#) computed by using
the kinetic Monte Carlo method. The solid lines in Fig. 3
relate to a zero-temperature case when thermal fluctuations
are absent and the sliding motion is fully deterministic, as
expected. At nonzero temperature, when thermal fluctuations
play a role, the state transitions gain nonzero probability even
for finite energy barriers. Then, statistically, the stick-slip tran-
sitions occur earlier in comparison with the zero-temperature

case, which leads to the shift of the tip trajectory to the shorter
timescale range, as shown in Fig. 3(a), and to the reduction
of the magnitude of the lateral force, i.e., reduced friction, as
shown in Fig. 3(b).

The mean tip position and the mean lateral friction force
can be obtained by averaging over a large number of ran-
domized trajectories or as expectation values over the state
probabilities p,,(¢) obtained by solving Eq. (4):

X(0) =Y pu®)xa(), (5)

and

F@6)==Y pu@)fu(®), 6)

where, according to Eq. (2b), f,,(t) = f(xu,t) is the force
exerted by the substrate on the tip, as reflected by the minus
sign, if the system is in the state x,,(¢). The friction force can
ultimately be defined as an average of F over the measurement
time foax:

F =

Tmax
/ F(t)dt, (7
Imax Jo
as is conventional [3].

Figure 4 compares the trajectory averaging and the direct
solution based on Eq. (6) assuming slow and fast dragging
speeds V. Namely, Figs. 4(b), 4(B) and 4(c), 4(C) show,
respectively, averages over 10 and 100 of such stochastic
trajectories and confirm that sufficient averaging recovers
the solutions consistent with Egs. (4) and (6). In addition,
Fig. 4 confirms the observations from previous studies [14]
that the magnitude of the mean friction force increases with
increasing V.

IV. THERMODYNAMIC CONSIDERATIONS

Figures 3 and 4 show that the system initially follows a
transient behavior observed in the early stages of the friction
process, which gradually settles into a repetitive steady state.
Any consistent nonequilibrium thermodynamic framework
needs to allow us to quantify the thermodynamic work and
heat produced during both the transient and steady-state stages
of the friction process.

A. First law of thermodynamics

Fundamentally, from the point of view of statistical me-
chanics, the master equation (4) inherently implies the as-
sumption of a small fluctuating system connected to an infinite
heat bath of temperature 7" allowing for the heat transfer,
consistent in equilibrium with the standard Boltzmann dis-
tribution. To develop the thermodynamic description of the
friction process, Eq. (4) needs to be combined with the first
law of thermodynamics:

v _sw s ®
dt 8t 8t
which relates the change of the internal energy of the system
(U), thermodynamic work (W), and the heat exchanged with
the heat bath (Q).
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FIG. 4. Average force [Eq. (2b)] at 300 K produced over a
variable number of the individually generated stochastic trajectories
for velocities 1 nm/s (left) and 100 nm/s (right). Blue continuous
line shows expectation value of the force, computed as per Eq. (6)
Red dashed line shows (A), (a) Force evaluated over a single
trajectory, (B), (b) averaged over 10 independent trajectories of a
typical FFM experiment, and (C), (c) averaged over 100 independent
trajectories and closely resembling the solution obtain from Eq. (6)
(blue continuous line). All trajectories were produced by a kinetic
Monte Carlo algorithm consistent with Egs. (3) and (4). Dotted gray
line is the time-average force (friction) of the red dashed trajectories.

The internal energy of the system can be defined similarly
to Egs. (5) and (6) as the mean value of state energies u,,(t):

Ut) =Y pu(un(t). ©)
Differentiating this expression with respect to time gives
dum dpm
=) Pm—— m- 10
Z ; L (10)

In the first sum, the time derivative can be expressed by using

the chain rule as du,,/dt = (du,,/dx)dx/dt + du,,/dt. The
first partial derivative is zero because the stable states x,,
correspond to energy minima. The second partial derivative
can be expressed in view of Egs. (1) and (2b) as du,,/dt =
—C(x,, — V1)V = f,u(t)V, which upon inserting in the first
term in Eq. (10), averaging by using Eq. (6), and arranging

leads to
> on
— pﬂ'l d[

Equation (11) postulates the mean thermodynamic work per
unit time consistently with the standard notions that the

W

V_W an

incremental mechanical work is the product of velocity and
force. It relates the work to the various parameters and time-
dependent state probabilities entering in Egs. (3) and (4) and
allows its quantification during both the transient and steady-
state stages of the friction process.

The interpretation of Eq. (11) as mean work is in fact quite
intuitive, given that the term on the left-hand side is nothing
but the expectation value of the power input delivered from the
cantilever. However, justifying its thermodynamic meaning as
work requires confirming the energy conservation in Eq. (8).
Then, given that the first term in Eq. (10) is suggested to act as
thermodynamic work, it is necessary to show that the second
term in Eq. (10) can be interpreted as the heat flow between
the system and its surroundings.

The second sum in Eq. (10) can be expressed through
Eq. (4) inserted in place of the time derivative of probability.
Using the relation u,, — u, = kgT In(wyy/wm,), Which fol-
lows directly from Eq. (3), and arranging gives

Z d:ZD[m = kT Z (@WpnPn —

m n>m nm

(12)

As we show below, this expression can indeed be related to the
entropy flow between the system and the environment, i.e., to
the heat transferred to the environment.

B. Entropy production: Heat generation

Nonequilibrium entropy S(¢) is defined by the standard
Gibbs formula [21]

S=—kg ) pu(®)Inpy(t), (13)

where p,,(t) are the state probabilities. The time derivative of
S is

p
wnmpm) In _n
p

m

ds

— =ks Z (@nmnPn — (14)
which results from using Eq. (4) during the differentiation
of Eq. (13) and subsequent algebraic manipulations. It is
conventional in nonequilibrium thermodynamics to split the

total entropy change into the so-called entropy production
8;S/dt and entropy flow 6,.S/dt [29]:

dS 5,8 SeS
dr & &t

The special notation using the § symbol is to emphasize that
the entropy production and flow are not state variables and
depend on the path connecting the starting and the end states
associated with the system evolution, while the total entropy
change is a state variable and is path independent.

Entropy production. Entropy production quantifies the ex-
tent of irreversible processes occurring within the system. The
second law of thermodynamics states that §;S/5t > 0, where
the equality holds only for reversible (equilibrium) processes.
The expression for entropy production for systems described
by master equations has been postulated earlier [30]:

§;S
g =kp Z (WmnPn — ©Opmpm) In

w,
n>m m®Wnm

(15)
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It is straightforward to see that this expression satisfies the
second law of thermodynamics, since the signs of the term
within the parentheses and the logarithm always balance out,
leading to a positive product of both terms in the sum.

Entropy flow. To obtain the expression for the entropy flow
we use Eq. (15) and subtract Eq. (16) from Eq. (14), which
after arranging gives

Y Wpn
=k mnPn — WnmPm In —.
s =k Y (@mnpn = i) o a7

n>m

This result reproduces the expression obtained independently
in Eq. (12) except for the missing temperature prefactor. For
closed systems considered here, able to exchange only heat
with the environment, the entropy flow can be related to heat
through the Carnot-Clausius theorem stating that [31]

8.5 1680
5t T ot
where §Q is the heat exchanged between the system and the
environment. This recovers the missing 7' factor in Eq. (12)

and adds to it the meaning of the heat flow between the system
and the surroundings, i.e.,

Z%usz

which completes the definition of the first law of thermo-
dynamics stated in Eq. (8) and allows us to interpret the
thermodynamic work and heat.

Generally speaking, entropy flow given by Egs. (17) and
(18) is the entropy contribution supplied to the system by
the heat bath. It can be positive or negative depending on
the interaction of the system with its surroundings. The sign
convention used here is positive when the flow is from the
system into the surroundings. It is also useful, following
Eq. (18), to define the expression:

50, _ 38

ot ot

which relates the entropy production to the heat produced by
the system itself during the irreversible internal processes.

(18)

5.5 80
st &t

19)

; (20)

V. RESULTS AND DISCUSSION

We now apply the developed thermodynamic formalism
to study various thermodynamics aspects of the nanoscale
friction based on specific systems.

Figures 5(a) and 5(b) show the mean position of the tip
and the lateral force, respectively, assuming temperature 7' =
300 K and dragging velocity V = 10 nm/s. The transient
behavior in the early stages of the time evolution turns into the
steady state where the stick and slip stages alternate periodi-
cally. Figure 5(c) shows the corresponding time evolution of
the incremental thermodynamic work and heat flow between
the system and heat bath. As suggested by the dotted and solid
lines, the sum of the work and heat equals the internal energy
change during both the transient and steady-state stages of
the sliding motion, as expected based the first thermodynamic
law (8). Figure 5(d) illustrates that the entropy production is
always non-negative, as expected based on the second law
of thermodynamics. The contributions to the change of the
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FIG. 5. Expectation values of (a) position of the tip, (b) lateral
force of the substrate, (c) heat exchanged with the surroundings,
energy change, work, and (d) entropy production, entropy flow,
and entropy change of the tip, at 300 K and V = 10 nm/s. In the
stick stages, (a) the position remains almost constant, (b) the force
increases in magnitude, (c) work increases, small amounts of heat
is dissipated, and (d) the entropy of the system increases. In the
slip stages, (a) the position increases by about one lattice spacing,
(b) the force relaxes, (c) work is reduced, heat dissipation peaks, and
(d) the entropy of the system decreases to a minimum, and entropy
production and entropy flow peak. The total entropy change has been
magnified by a factor of 10 for better visualization.

entropy terms in Eq. (15) are zero during the initial transient
period and increase rapidly during slip events dominated by
irreversible processes. Although the total entropy change is
rather small on the scale of the entropy production and entropy
flow, it remains nonzero during the steady-state stage of the
friction process.

125431-5



P. C. TORCHE, T. POLCAR, AND O. HOVORKA

PHYSICAL REVIEW B 100, 125431 (2019)

0.8
21 (C) ..............
074 et T/ ettt
1.8
0.6 15 o mmmmmmmTTTT
E 05 —12
) oo
i 04 w06
0.3 0.3
02 0.0 y=112 =--- y=337
’ y=225 + y=45.0
10° 10t 102
V [nm/s]
(d) o
el
103 Kas
— — o7
Wt
£ 2 e
> >~ 52
) Q 102 e
— —_ 32
e
1 & 1 & ";‘,/
(@} O nl”
100
107t 10° 10t 102 100 10t 102
V [nm/s] V [nm/s]

FIG. 6. F-V and Q,-V relations. The friction-velocity relation
is logarithmic whereas the heat-velocity behavior is linear. F and
0, are calculated for temperatures 200-500 K, substrate corrugation
Ey =~ 0.2-0.8 eV (y between 11.2 and 45) and velocities 0.1nm/s <
V' < Viax [32]. The rest of model parameters are fixed at the default
values.

Figure 6(a) shows the mean friction force calculated by us-
ing Eq. (7) as a function of the magnitude of the dragging ve-
locity for different temperatures. The friction force increases
with increasing velocity and decreasing temperature due to
the reduction of the effect of thermal fluctuations. Similarly,
as shown in Fig. 6(c), the friction force is increasing with
increasing substrate corrugation due to the relative enhance-
ment of the substrate-tip interaction. Figures 6(b) and 6(d)
show similar dependence for the average heat produced in the
system, which is computed as Q, = (l/At)ftH’At 8,0/8tdt,
where the time interval (¢,7 4+ At) is chosen to include a
sufficient number of stick-slip events for averaging. Thus, the
average heat produced during the stick-slip events increases
with velocity and with substrate corrugation and decreases
with increasing temperature. In addition, while the velocity
dependence of the friction force follows a logarithmic trend,
the variation of the heat appears to be linear over many
decades of the dragging velocity.

Figure 7(a) shows the internal energy change AU com-
puted as a difference between the average work per stick-slip

event, W = (1/At) leAt 8W/Stdt, and the produced heat Q.
Although small for small velocities, AU is nonzero over
the entire velocity range. Thus, the work performed on the
system during the stick-slip event contributes both to the
internal energy change and heat, and the thermodynamic
formalism developed in previous sections is required for eval-
uating unambiguously their relative contributions. Similarly,
in Fig. 7(b) the average entropy change per stick-slip event
AS, determined as the difference between Q,/T and Q/T, is
nonzero and consequently the heat produced and transferred
during the stick-slip event is not the same.
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FIG. 7. (a) Average internal energy change, (b) average entropy
change during stick-slip events, calculated for temperatures 200—
500 K, and velocities 0.1 nm/s < V < Vi [32]. The rest of model
parameters are fixed at the default values.

The situation is simpler for a specific type of a cyclic
process driven by periodically reversing velocity direction of
the tip, when the friction losses can be determined directly
from the area of the friction force loops. This can be shown
by integrating Eqs. (8) and (15) after a sufficient number of
cyclic reversals of the velocity direction, when the system is
expected to recover the same state after a velocity cycle and
the cumulative changes of the state variables become zero,
ie., AUlcycle = 0 and AS|cycie = 0, which leads to relations
W|cycle = Q|cycle and Q|cycle = Qp|cycle-

Finally, we comment on the range of validity of the master-
equation formalism employed in this work. In the limit of high
energy barriers and overdamped dynamics, this approach is
equivalent to Langevin dynamics, as has been shown earlier
by a direct comparison between the solutions of the corre-
sponding Fokker-Planck and master equations [33,34]. This
work also demonstrated that the attempt frequency fy, such
as in Eq. (3), can be related to the effective mass, damping
constant, and sliding velocity of the cantilever [35]. The
approach becomes problematic for fast dragging velocities
when thermal fluctuations become irrelevant, which leads to
deterministic dynamics. The sliding velocity threshold for
this to occur can be estimated as discussed in Ref. [32],
confirming that the velocity range considered in Fig. 7 is
within this threshold and is easily achievable by standard
AFM equipment.
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VI. CONCLUSION

The developed formalism based on the Prandtl-Tomlinson
model and the transition state theory incorporating the effects
of thermal fluctuations allows us to evaluate in full consis-
tency the various relevant thermodynamic variables, including
the internal energy, work, and heat produced or transferred
to the environment during the nanoscale friction process. We
show that, unless the friction losses are determined from the
area of the friction force loops determined by cyclic FFM
experiments using periodically reversed dragging velocity
direction, explicit thermodynamic formulation is necessary
for determining the friction losses during stick-slip events,
even in the steady state.

The developed approach can be used for optimizing the
friction losses during arbitrary friction process, by deter-
mining the system parameters leading to specified levels of
the produced heat. The approach can potentially be further

generalized to increase the level of complexity, such as for
Frenkel-Kontrova—type models, or models based on solving
the Langevin dynamics [17,18], which require evaluating
the underlying Fokker-Planck equation. It is also naturally
possible to extend the model to study two-dimensional sys-
tems, if the underlying energy barriers and thermally activated
transition paths can be identified by practical means. Also,
different shapes of substrate potentials, such as determined
directly by ab initio methods, can be incorporated into the
analysis. Thus, the present approach opens new directions for
exploring the thermodynamics behavior in a broad range of
practically relevant materials.
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