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Adiabatic almost-topological pumping of fractional charges in noninteracting quantum dots
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We use exact techniques to demonstrate theoretically the pumping of fractional charges in a single-level
noninteracting quantum dot, when the dot-reservoir coupling is adiabatically driven from weak to strong
coupling. The pumped charge averaged over many cycles is quantized at a fraction of an electron per cycle,
determined by the ratio of Lamb shift to level broadening; this ratio is imposed by the reservoir band structure.
For uniform density of states, half an electron is pumped per cycle. We call this adiabatic almost-topological
pumping, because the pumping’s Berry curvature is sharply peaked in the parameter space. Hence, so long as
the pumping contour does not touch the peak, the pumped charge depends only on how many times the contour
winds around the peak (up to exponentially small corrections). However, the topology does not protect against
nonadiabatic corrections, which grow linearly with pump speed. In one limit, the peak becomes a delta function,
so the adiabatic pumping of fractional charges becomes entirely topological. Our results show that quantization
of the adiabatic pumped charge at a fraction of an electron does not require fractional particles or other exotic
physics.
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I. INTRODUCTION

Since the seminal work of Thouless on quantum pumping
[1], there have been many pumping and turnstile protocols
discussed in nanoscale systems [2–12] and cold atom exper-
iments [13,14]. In recent years, there has been great inter-
est in exotic systems which exhibit topological pumping of
fractional charges, meaning that any two driving contours
with the same topology will drive the same fractional charge.
Such fractional charge pumping has been found in models
of Coulomb-blockaded quantum dots [15,16], topological
insulators [17–20], systems with fractional quantum Hall
physics [19,21], fermionic gases with short-range interactions
[22], fractional levitons [23], and the Bose-Hubbard model
[24]. These models have either strong interaction effects or
nontrivial topological properties (nonzero Chern numbers, or
similar). This makes us ask if either are necessary; can a non-
interacting topologically trivial system also exhibit fractional
pumping of a topological nature?

We consider a noninteracting single-level quantum dot at
low temperatures. Using the fact that it is an exactly soluble
model, we consider adiabatic pumping in this model with-
out approximation (particularly without assuming weak dot-
reservoir coupling). Our results show the adiabatic pumping
of a fraction of an electron in an almost topological manner.
That is to say, any pumping contour with the same topology
[see Fig. 1(b)] will pump the same fractional charge (up to ex-
ponentially small corrections), if the pumping is slow enough
to be adiabatic. However, the topology does not protect against
nonadiabatic corrections which go like one over the pumping
period. This is much less robust than many of the topological
pumps mentioned above, in which the topology also means
that the nonadiabatic corrections decay exponentially with
increasing pumping period.

The fractional pumping that we present here occurs when
the dot-reservoir couplings, KL and KR, are adiabatically
driven from weak to strong coupling and back around the
pumping cycle, with the dot level fixed at energy εd . We take
εd to be above the reservoirs’ electrochemical potential, μ.
Here “strong” coupling means that it induces a level broaden-
ing larger than (εd − μ), so the dot level becomes a resonance
that spreads across the electrochemical potential. The pumped
charge is given by the integral over the Berry curvature inside
the contour, which is sharply peaked and decays exponentially
away from the peak. Formally, the adiabatic pumping would
be topological if this peak was a Dirac δ function. Here the
peak has a finite extent, so we refer to the pumping as almost
topological, because it depends only on how many times the
contour winds around the peak—up to exponentially small
corrections—for any pumping contour that does not impinge
on the peak. Half an electron is pumped per cycle, if the reser-
voirs have a uniform density of states (and so impose no Lamb
shift of the quantum dot). However, in general, the fraction of
an electron pumped per cycle (between zero and one) is given
by the ratio of the Lamb shift imposed by the reservoirs to
the level broadening. This ratio is entirely determined by the
reservoirs’ density of states, which is imposed by their band
structure.

Earlier works on pumping of dot-reservoir coupling —with
direct driving of the dot-level [25], a Lamb shift induced
by the reservoir band structure [25,26], Coulomb blockade
effects [27,28], or nonadiabatic driving [29]—did not investi-
gate large level broadening, and so did not find the quantized
pumping of fractional charges.

Note that we consider the average charge per cycle. There
are no fractionally charged quasiparticles in our noninteract-
ing system, so we expect that there is a certain probability
that n electrons are pumped (for integer n = 0,±1,±2, . . . )
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FIG. 1. (a) A quantum dot with tunnel couplings KL(t ) and KR(t )
to the reservoirs, controlled by gates voltages, VL(t ) and VR(t ). These
are slowly varied around the cycle in (b), with gate M ensuring the
dot level is fixed at energy εd . Any contour enclosing the Berry
curvature peak in (b) without touching it (e.g., contours 1 and 2)
pumps the same fraction of an electron per cycle, up to exponentially
small corrections. The couplings induce level broadening and a Lamb
shift on the dot. Since KL(t ) and KR(t ) depend exponentially on
VL,R(t ), contour 1 in (b) maps to contour 1 in (c).

in any given cycle. Yet these probabilities are such that the
average over many cycles will reveal itself as a fraction per
cycle. Hence the observation of a topological fractional aver-
age charge per cycle in adiabatic pumping does not require
the existence of fractionally charged quasiparticles, or other
exotic physics. It is not yet clear to us if there is a connection
to the fractional charges recently discussed in Ref. [30].

A. Organisation of this work

Section II introduces our model Hamiltonian, and
Sec. III A outlines our main result about adiabatic almost-
topological pumping of fractional charges. Section IV shows
this is half an electron per cycle for readers familiar with
scattering theory (others can skip this section). Section V
explains that the pumping is not simply related to as changes
in the dot occupation. Sections VI and VII use the Keldysh
formalism to get our main result, Eq. (40). Section VIII
discusses the nonadiabatic corrections. Section IX gives our
conclusions.

II. MODEL HAMILTONIAN

We consider a noninteracting single-level quantum dot
connected to two electron reservoirs with time-dependent
couplings, described by the Hamiltonian

H = εd d†d +
∑
i,k

[εkc†
ikcik + γi(t )(d†cik + c†

ikd )], (1)

often called the Fano-Anderson model [31,32]. Here, d† and
d are creation and annihilation operator of the dot state,
which has energy εd , while c†

ik and cik are those for the state
with wave number k and energy εk in the reservoir i = L, R.
The tunnel-coupling between the system and the mode k
in reservoir i is γi(t ), which is taken to vary slowly with
time. This model neglects electron-electron interactions on the
dot; the simplest experimental implementation is discussed in
Sec. III D. The fact this model is quadratic in the creation and
annihilation operators means that it is exactly soluble. As a
result, we will get its adiabatic pumping properties without
making any approximations (in particular, we will not need to
assume weak dot-reservoir coupling).

We take the reservoirs to have a continuum of states, and
assume they both have the same density of states ρ(ω). In
general, this density of states may have energy (ω) depen-
dence, band gaps, etc. The system’s coupling to each reservoir
is described in terms of the time-dependent function

�i(ω, t ) = Ki(t ) ρ(ω), (2)

where the coupling parameter Ki(t ) = |γi(t )|2. A second cru-
cial quantity for the physics of this model is

�i(ω, t ) = Ki(t ) P
∫

dε
ρ(ε)

ω − ε
, (3)

where the integral is the principal value. For compactness of
what follows, we also define

�(ω, t ) = �L(ω, t ) + �R(ω, t ), (4)

�(ω, t ) = �L(ω, t ) + �R(ω, t ). (5)

We refer to �i(ω, t ) as level broadening, and to �i(ω, t ) as
a Lamb shift. This is a slight abuse of terminology, but it
is justified by the dot’s local density of states [31,32] being
�(ω)/[(ω − εd − �(ω))2 + �2(ω)]. So if � and � are ω-
independent, then they are the level broadening and Lamb
shift, respectively. We simply keep this terminology for cases
where � and � have an ω dependence.

In what follows, our results will be simplest if Ki is written
in terms of the dimensionless coupling Xi, which measures the
level broadening in units of the distance of the dot level from
the electrochemical potential;

Xi = ρ(μ) Ki

2(εd − μ)
for i = L, R, (6)

where ρ(μ) is the density of states at the electrochemical
potential, and the factor of two makes formulas compact.

We drive the gate voltages Vi, not the couplings Ki, so we
need a relation between them. Typically, the dot is coupled to
reservoir i through tunnel barriers of height Ei and width Li,
so Ki ∼ exp[−κi] with κi = √

2mEi(Vi) Li(Vi)/h̄. For large Li

and Ei, even small changes in Vi will make large percentage
changes in Xi, so we can expand up to linear order in Vi about
Xi = 1. Since electrons are negatively charged, this gives

Xi = exp[αiVi] (7)

with αi = −(dκ/dVi ) > 0, where Vi = 0 is chosen to coincide
with Xi = 1. We mainly work with Eq. (7), but the almost
topological fractional pumping also holds for Xi = exp[ fi(Vi)]
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for any fi(Vi ) which is very positive for Vi → ∞, and is
very negative for Vi → −∞ (see the end of Sec. VII A). This
covers many physical systems.

III. ADIABATIC ALMOST-TOPOLOGICAL PUMPING
OF A FRACTION OF AN ELECTRON PER CYCLE

Let us now briefly overview our main results, with the
detailed calculations postponed to Sec. VII. Firstly, for a dot
coupled to reservoirs without band structure, there is a topo-
logical pumping at half an electron per cycle. Secondly, one
can choose the reservoir band structure to ensure the pumped
charge is topologically quantized at an arbitrary fraction of an
electron per cycle.

A. Half an electron per cycle

Here we consider a situation where the reservoir density
of states is energy independent (ω-independent), which is
know as the wide-band limit, and so ρ(ω) = ρ. Then the
reservoir induces a level broadening of the quantum dot’s
energy level, but induces no Lamb shift; �(ω; K ) = 0 in
Eq. (5). Our calculations (using scattering theory in Sec. IV
or Keldysh theory in Sec. VI) show that this control of the
level broadening allows the pumping of half an electron per
cycle in the low-temperature limit.

The dot level is taken to be above the reservoir’s electro-
chemical potential, (εd − μ) > 0, and the pumping cycle is
taken to be cycle 1 in Figs. 1(b) and 1(c), with neither εd nor μ

change during the pumping cycle. The basic physical process,
sketched in Fig. 2 is the following. (1) Loading [segment 1a
in Fig. 1(c)]. The dot starts weakly coupled to the reservoirs
(VL and VR very negative) so the dot’s level broadening is
much less than (εd − μ), as a result the dot’s occupation
is negligible. The coupling to reservoir L is increased (VL

increased), so that the reservoir wave functions spread into the
dot [as in Fig. 2(a)], as the dot state hybridizes with reservoir
states. The dot thus absorbs a charge of �Qload. Once the
level broadening is much more than (εd − μ), one reaches the
limit where half the broadened level is below the reservoir’s
Fermi energy. In this limit, there is half an electron in the dot,
�Qload → 1

2 ; in other words a 50% chance of finding the dot
level occupied.

(2) Moving [segment 1b in Fig. 1(c)]. The coupling to
reservoir L is slowly reduced to zero, while that to reservoir R
is slowly increased to its maximum value (VL reduced and VR

increased), in such a way that the sum of the two couplings
remains constant. Thus the wave functions of reservoir R
spread more into the dot, while those of reservoir L spread
less into the dot. The occupation of the dot remains the same,
but the dot state’s hybridization moves from reservoir L to
reservoir R.

(3) Unloading [segment 1c in Fig. 1(c)]. The coupling to R
is reduced (VR reduced) so the level broadening again becomes
much less than (εd − μ). As a result, the dot level empties into
reservoir R, as the reservoir wave functions spread into the dot
become negligible, and one returns the dot to its initial state.

This cycle transfers a charge of �Q from reservoir L to
reservoir R, with �Q �= �Qload. When the coupling is large

FIG. 2. Cartoon of the three steps corresponding to 1a, 1b, and
1c, described in Sec. III A, for a system without a Lamb shift (λ =
0). The central region represents the quantum dot, separated from
the reservoirs by barriers, whose height we can vary to change the
tunnel coupling between the dot and reservoirs. Although the dot is a
single site, it helps our intuition to show the dot’s hybridization with
reservoir L (R) as a decaying wave function penetrating the dot from
the left (right). Pink represents the average occupation of the state
increasing with time, while blue represents it decreasing. The arrows
indicate the average charge flow; the arrows in (b) indicate the charge
�Qload is split in two, with �Q′ = �Qload − �Q going back into L,
being replaced by a charge �Q′ from R, see Sec. V.

enough that the level broadening in step 1b is much more than
(εd − μ), then �Q → �Qload → 1/2.

B. Seeing the topology

The adiabatic charge pumped per cycle can be said to be
topological when it is the same for all adiabatic pumping
cycles of the gate voltages that have the same topology. We
will show this is the case for the cycle of VL and VR out-
lined above under certain conditions, and up to exponentially
small corrections; so we call it “adiabatic almost-topological”
pumping.

To see what this means, one must write the charge pumped
into R as the surface integral,

�QR = e
∫

I (C)
dVLdVR �R[VL,VR], (8)

where I (C) is the surface in the VL-VR plane enclosed by the
pumping cycle C.
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FIG. 3. Plots of the Berry curvature, �R(VL,VR ), for the dot-
reservoir coupling in Eq. (7). This is given by Eq. (17) for λ = 0
and by Eq. (40) for arbitrary λ. It is always a sharp peak, but the
volume under the peak is highly λ-dependent, and given by Eq. (11).
Contour 1 from Fig. 1(b) is also shown.

Then one calculates �R[VL,VR], which is known as the
Berry curvature, for the pumping. If one finds that this Berry
curvature is a Dirac δ function, then the pumping is entirely
topological; the adiabatically pumped charge only depends on
how many times the pumping contour winds around the δ

function. Here, our central result, Eq. (40), is that the Berry
curvature is not a δ function, but it is strongly peaked with
an exponential decay away from the peak, see Fig. 3. Then
we call the pumping almost topological, because it depends
only on the contour’s topology (how many times it winds
around the peak) if the contour stays away from the peak,
and if we neglect the exponentially small corrections coming
from the tail of the peak. Thus contours 1 and 2 in Fig. 1(b)
pump the same charge (up to exponentially small corrections)

because they both have the same topology—each winds once
around the peak.

Figure 3(b) shows the peak for reservoirs with uniform
density of states. The integral over this peak is 1/2, so the
contours in Fig. 3(b) will thus pump the charge

�Qquantized = e/2. (9)

In the limit of thick tunnel barriers, L → ∞, one sees
that αi in Eq. (7) also goes to infinity. Then the Berry cur-
vature peak becomes a Dirac δ function in the VL-VR plane.
This means that the adiabatic pumping will becomes entirely
topological. However, for L → ∞, the tunnel coupling is
exponentially small, so we require exponentially small tem-
peratures, so εD − μ can be as small as the couplings, to
ensure we can make XL and XR of order one, so the pumping
contour can enclose the δ-function peak.

C. Different fractions of an electron per cycle

Let us now consider reservoirs with a nonuniform density
of states, so ρ(ω) depends on ω. In this case, the Lamb shift in
Eq. (5) is nonzero; this means that the dot-reservoir coupling
does not only broaden the dot level into a resonance, it also
causes the center of that resonance to be shifted in energy.
Section VII will use Keldysh theory to show that the adiabatic
almost-topological pumping is quantized at a fraction of an
electron (between 0 and 1), which is given by the ratio of
the Lamb shift to the level broadening. We define λ as the
following dimensionless measure of this ratio at ω = μ:

λ = 2�(μ, t )
/
�(μ, t ), (10)

where the factor of 2 is to make our results compact. We will
show that the almost topological charge that is pumped by the
cycle described in Sec. III A above is

�Qquantized = e

π

[
π

2
− arctan(λ) − λ

1 + λ2

]
. (11)

Hence, for this pumping cycle, �Qquantized is a monotonically
decaying function of λ, and it take values between e and 0.
More precisely, �Qquantized equals [1 − 2/(3πλ2)]e for λ �
−1, equals e/2 at λ = 0, and equals 2e/(3πλ2) for λ 	 1.

It is surprising that the exact result for pumping at low
temperatures only depends on the ratio of the Lamb shift
at the electrochemical potential to the level broadening at
the electrochemical potential, when many other observables
depend on these quantities integrated over all energies [see,
e.g., n(K ) is Sec. V]. It is not easy to explain how this quantity
emerges in the exact calculation, but we believe it is because
we are at very low temperature and zero bias, so all charge
flow between reservoirs occurs at energies at (or extremely
close to) the electrochemical potential. Hence the pumped
charge also only depends on the physics of the Lamb shift
and level broadening at the electrochemical potential.

Crucially, λ is entirely determined by the reservoir band
structure since Eqs. (4), (5), and (10) mean that

λ = 2

ρ(μ)
P
∫

dε
ρ(ε)

μ − ε
, (12)

so it is independent of KL, KR and t . Hence, any given
reservoir band structure will have a given λ, and hence a
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given quantized fraction of an electron pumped per cycle. By
choosing a suitable reservoir band structure, one can choose
that fraction.

D. Requirements for experimental observation

There are four requirements for observing this quantized
pumping of a fraction of an electron per cycle.

The first requirement is a quantum dot that mimics the
Hamiltonian in Eq. (1) which neglects electron-electron inter-
actions on the dot. The simplest experimental implementation
of Eq. (1) is an interacting quantum dot (described by an
Anderson impurity Hamiltonian) in a large enough magnetic
field that the dot’s spin state with higher energy is always
empty, which makes the on-dot interaction term negligible.

The second requirement is that kBT is much smaller than
(εd − μ), larger temperatures will destroy the quantization. At
the same time (εd − μ) should be small enough that we can
make the dot-reservoir coupling K 	 (εd − μ)/ρ(μ). Thus
we require that kBT � Kmaxρ(μ), which means the required
value of T depends on how strongly the dot can be coupled to
the reservoirs.

The third requirement is related to the fact that the charge
pumping is probabilistic, with only the average charge being
quantized. This probabilistic nature of the pumping is typical
whenever there is part of the pumping cycle in which the dot is
coupled to both reservoirs at the same time (segment 1b of the
cycle). Thus in any given cycle n = 0,±1,±2, . . . electrons
might flow. Central limit theorem tells us that averaging over
many cycles will give an answer that will converge to the
quantized fraction that we predict.

The fourth requirement is due to our assumption that εd is
time-independent during the pumping cycle. Unfortunately, in
practice, the electrostatic gates that vary KL and KR, will also
have a capacitive coupling to the dot level, causing εd to vary.
Gate M in Fig. 1(a) will minimize this capacitive coupling, by
partially screening the dot from gates L and R. Any remaining
capacitive coupling to gates L and R will act much like the
Lamb shift. However, this coupling goes linearly in VL and
VR, while the level broadening and Lamb shift (if present)
go exponentially, as above Eq. (7). Hence any effect of the
capacitive coupling on εd will become negligible compared to
the broadening at large αiVi.

IV. SCATTERING THEORY

The central calculation in this work uses the Keldysh
technique, however as a warm up exercise, we can use the
scattering theory of quantum pumping [6] for the special case
where the reservoirs have uniform density of states. Readers
interested in the Keldysh calculation of the general case can
skip this section.

The scattering matrix of a single-level dot (see, e.g.,
Refs. [33,34]) at energy μ is(

SLL SRL

SLR SRR

)
= I − i

μ − εd + i 1
2�

(
�L

√
�L�R√

�L�R �R

)
,

(13)

where I is a 2-by-2 unit matrix. The scattering theory [6] for
pumping of KL and KR around the contour C, gives the charge

pumped per cycle into reservoir R as the integral over the
surface enclosed by C,

�QR = e
∫

C
dKLdKR �R(K ), (14)

where the Berry curvature �R(K ) for our system is

�R(K ) = 1

π
Im

[
∂S∗

RL

∂KL

∂SRL

∂KR
+ ∂S∗

RR

∂KL

∂SRR

∂KR

]
. (15)

Substituting in Eq. (13) and using Eq. (6), one find that the
zero-temperature result for pumped charge per cycle (in units
of e) is given by the dimensionless integral

�QR

e
= 2

π

∫
I (C′ )

dXLdXR
X

[1 + X 2]2
, (16)

where X = XL + XR. The surface of integration I (C′) is that
enclosed by the contour C in Eq. (14) rescaled using Eq. (6).
One can show [6] that �QL = −�QR.

Now we cast this result in terms of the gate voltages that
control the couplings. Using Eq. (7), �QR is given by Eq. (8)
with the Berry curvature

�R[VL,VR]

e
= 2αLαR

π

eαLVL eαRVR (eαLVL + eαRVR )

[1 + (eαLVL + eαRVR )2]2
. (17)

This is shown in Fig. 3(b). The crucial feature is that this is
highly peaked at small |αiVi| and decays exponentially with
increasing |αiVi| (for both i = L and i = R). Hence it fulfils
the conditions for adiabatic almost-topological pumping dis-
cussed in Sec. III B.

To find the charge pumped by a contour that encloses
the above peak once, we take contour 1 in Fig. 1(b), whose
segment 1b is chosen such that exp[αLVL] + exp[αRVR] is
constant. We then go back to Eq. (16), for which this contour
maps via Eq. (7) to the triangular contour shown in Fig. 1(c).
The contour C′ is the triangle defined by (XL, XR ) going
from (0, 0) → (Xmax, 0) → (0, Xmax) → (0.0), where Xmax =
ρKmax/[2(εd − μ)]. We write∫

I (C′ )
dXLdXR (· · · ) = 1

2

∫ Xmax

0
dX

∫ X

−X
dY (· · · ), (18)

where Y = XL − XR. Then

�QR

e
= 1

π

[
arctan[Xmax] − Xmax

1 + X 2
max

]
(19)

for the above triangular contour. This goes to 1/2 for large
Xmax, which corresponds to encircling the peak in Eq. (17).
Hence, for uniform reservoir density of states, the pumping is
quantized at half an electron per cycle.

We do not know of a scattering theory for nonuniform
reservoir density of states, so we use the Keldysh formalism
to treat such cases in Secs. VI and VII.

V. COMPARISON WITH DOT OCCUPATION

One might naively guess that the pump is simply due to
filling the dot state from L in the “loading” part of the cycle,
and then emptying it into R in the “unloading” part of the
cycle. Then the charge transferred from L to R would equal
the charge loaded into the dot, �Qload. We show here that this
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is not the case; there is no simple relation between the pumped
charge and �Qload.

We are pumping adiabatically slowly, so electrons are
continuously tunneling in and out of the dot from L and R (and
tunneling though the dot from L to R) during the “moving”
part of the cycle. They have too little energy to remain in
the dot, but the uncertainty principle means they can be there
for a time of order h̄/(εd − μ). So there is no reason to
assume the pumped charge is related to the dot occupation.
Indeed, the occupation of the dot at low temperatures, see,
e.g., Refs. [35,36], is

n(K ) =
∫ μ

−∞

dω

2π

�(ω; K )

[ω − εd − �(ω; K )]2 + [
1
2�(ω; K )

]2 .

For a uniform density of states �(ω) = 0, the integrand is a
Lorentzian, and so n(K ) = arctan [X ]/π . Then

�Qload = e[n(Kmax) − n(0)] = e arctan [Xmax]

π
. (20)

From Eq. (19), we see the pumped charge is smaller than
�Qload by a factor of �Q′ = eXmax/[π (1 + X 2

max)], which
vanishes when Xmax → ∞. This means that the “moving” part
of the pumping cycle in Sec. III A involves a small flow, �Q′,
from the R to L through the dot [the dashed arrows in the
Fig. 2(b)].

For nonuniform density of states, �Qload depends on the
ω dependence of �(ω; K ) and �(ω; K ) for all ω � μ. In
contrast, the pumped charge in Eq. (11) depends only on their
values at ω = μ. Thus in general �Q and �Qload will not be
related in any way, although both will be between 0 and e.
Either can be larger, so �Q′ can be of either sign. Indeed, two
different setups can have the same �Q and different �Qload

or vice versa.

VI. KELDYSH FORMALISM

The dot’s occupation and current into reservoir i at time t
are [37–41]

n(t ) = 〈
d†(t )d (t )

〉 = −iG<(t, t ), (21)

Ji(t ) = − e
d

dt

∑
k

〈c†
ik (t )cik (t )〉

= e
∫

dt1[GR(t, t1)�<
i (t1, t ) + G<(t, t1)�A

i (t1, t )

− �R
i (t, t1)G<(t1, t ) − �<

i (t, t1)GA(t1, t )]. (22)

respectively, in terms of the Keldysh Green’s functions in
Appendix A. We will derive the pumped charge for a large
driving contour C, by summing the contributions from all
infinitesimal circular contours inside it {Cn} (see Fig. 4), as
was done in scattering theory by Ref. [6].

The infinitesimal contour Cn satisfies

K(t ) ≡
(

KL(t )
KR(t )

)
= Kn,0 + δK

(
cos[�t]
sin[�t]

)
, (23)

where � is a pumping frequency, δK is an infinitesimally
small amplitude of driving around the time-independent point
Kn,0. Under this infinitesimal driving, the time-dependent

FIG. 4. A sketch of the subdivision of contour C into infinites-
imal circular contours {Cn}, with the diameter of each infinitesimal
contour chosen to ensure C is filled densely.

charge current into reservoir i is

Ji(t ) =GL
i (�; Kn,0) δK cos(�t ) + GR

i (�; Kn,0) δK sin(�t ).

(24)

where GL
i (�; Kn,0) is the Fourier transform of the dynamic

conductance for the infinitesimal contour Cn;

G j
i (t, t1; Kn,0) = δJi(t )

δKj (t1)

∣∣∣∣
δK=0

. (25)

This is given in terms of Keldysh Green’s functions in
Appendix A, and it only depends on the time differences
(t − t1) because it is evaluated for δK = 0. We assume the
condition for adiabatic driving;

� � τ−1, (26)

where τ is the typical time for electrons in the dot to re-
lax. Then it is sufficient to take the dynamic conductance
at leading order in the pumping frequency �; G i′

i (�; K ) =
Ai′

i (K ) � + O[�2]. Substituting this into Eq. (24),
and integrating �t from 0 to 2π , we find the charge
pumped per cycle on the infinitesimal contour Cn is δQi,n =∫

Cn
[AL

i (K )dKL + AR
i (K )dKR].

Summing all infinitesimal contours inside the large contour
C, gives charge pumped per cycle around C as

�Qi =
∮

C
dK · Ai(K ), (27)

where we define the Berry connection as the vector Ai(K ) =
(AL

i (K ) , AR
i (K )). Rewriting this in terms of a surface integral

using Stokes theorem, we get

�Qi =
∫

I (C)
dS · �i(K ), (28)

where �i(K ) = ∇K × Ai(K ) is the Berry curvature. This inte-
gral is over the surface I (C) which is enclosed by the pumping
contour C. As this surface is the Kx-Ky plane, only the compo-
nent of �i(K ) perpendicular to this plane contributes; we call
this component

�i(K ) = d

dKL

[
AR

i (K )
] − d

dKR

[
AL

i (K )
]
. (29)

we will calculate this for our model in the next section.
We end this derivation with an adiabaticity condition for

the large contour C. Given Eq. (26) for the infinitesimal
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circular contours, adiabaticity on C requires

|dK/dt | � �Ktypical
/
τ, (30)

where �Ktypical is the typical scale of the contour (see Fig. 4),
and τ is the relaxation time of the dot state. The magnitude of
1/τ is discussed in Sec. VIII.

VII. RESULTS FOR OUR MODEL

For the Hamiltonian in Eq. (1), we find that the Berry
connection in Eq. (27) contains two terms

Ai(K ) = Abroad
i (K ) + Ashift

i (K ) (31)

because Ai(K ) involves a derivative with respect to K, and
that derivative can act on the level broadening (giving Abroad)
or the Lamb shift (giving Ashift). If there is no Lamb shift then
Ashift

i (K ) = 0, while if the Lamb shift is much greater than the
level broadening, then Eq. (31) is dominated by Ashift

i (K ). The
Keldysh calculations outlined in Appendix give[

Abroad
i (K )

]
j =

∫
dω

2π

[(
B2 − 1

4A
2
)

f �i

− 1
2AB f �i − δi, jB′ f

] ∂�

∂Kj
, (32)

[
Ashift

i (K )
]

j
=

∫
dω

2π

[
2BA f �i + 1

4A
2( f ′�i − f �′

i )

+ B2( f �i )
′ − δi, j (A f )′

] ∂�

∂Kj
, (33)

where i and j are L or R, and f = [1 + e(ω−μ)/T ]−1 is the
Fermi function. The primed denotes the partial derivative with
respect to ω. The quantities �i and �i are given in Eqs. (2)–
(5), while A = 2Im[GA(ω)] and B = Re[GA(ω)], with GA(ω)
given in Eq. (A6).

Turning to the Berry curvature in Eq. (29), we see that it
contains two derivatives (with respect to Kj), because [Ai(K )] j

contained one. Hence �i(K ) contains three terms; a “broad-
broad” term due to both derivatives acting on the broadening,
a “shift-shift” term due to both derivatives acting the Lamb
shift, and a “shift-broad” term with one derivative on each of
them. The “shift-shift” term turns out to be zero, showing that
the Lamb shift alone is not enough to do pumping. Intuitively,
this can be understood as the Lamb shift only moving the dot
level, which is not enough to do pumping. Hence

�R(K ) = �broad-broad
R (K ) + �shift-broad

R (K ), (34)

and �L(K ) = −�R(K ), with

�broad-broad
R (K ) =

∫
dω

4π
f ′AB �2(ω, K )

K2
, (35)

�shift-broad
R (K ) =

∫
dω

4π
f ′A2 �(ω, K )�(ω, K )

K2
, (36)

where we have used the fact that � and � are proportional to
K = KL + KR. A bit more algebra gives

�R(K )

= e

2

∫
dω

2π

(ω − εd ) ρ2(ω) �(ω; K ) (∂ f /∂ω)[
[ω − εd − �(ω; K )]2 + [

1
2�(ω; K )

]2]2 . (37)

This depends on the sum of the couplings, K = (KL + KR),
but not the difference (KL − KR).

A. Low-temperature pumping

In the limit of small temperature, we can make the approx-
imation (∂ f /∂ω) = −δ(ω − μ) in Eq. (37). To justify this
approximation, one needs the other terms in the integrand of
Eq. (37) to vary little over the window of ω given by μ ± kBT .
Then, the Berry curvature is

�R(K ) = e

4π

(εd − μ) ρ2(μ) �(μ; K )[
[μ − εd − �(μ; K )]2 + [

1
2�(μ; K )

]2]2 .

(38)

Writing this in terms of λ in Eq. (10), the low-temperature
result for pumped charge per cycle (in units of e) is given by
the dimensionless integral

�QR

e
= 2

π

∫
I (C′ )

dXLdXR
X

[(1 + λX )2 + X 2]2
, (39)

where Xi is defined in Eq. (6) with ρ being ρ(μ), and X =
XL + XR. The surface of integration I (C′) is that enclosed by
the contour C in Eq. (14) rescaled using Eq. (6).

As explained in Sec. II, we control gate voltages Vi, in
experiments. By substituting Eq. (7) into Eq. (39), we find
the Berry curvature in the (VL,VR) plane

�R(VL,VR)

e
= 2

π

αLαR X eαLVL eαRVR

[(1 + λX )2 + X 2]2

∣∣∣∣
X=eαLVL

+eαRVR

, (40)

shown in Fig. 3. This is our central result, because the
fractional and topological nature of the adiabatic pumping
both follow from it, as we now show.

Equation (40) has a peak at small |αiVi| and decays ex-
ponentially as |Vi| grows. Hence, any pumping contour that
encloses the peak without encroaching on it will give the
same pumped charge per cycle (up to exponentially small
corrections), ensuring quantized pumping.

To calculate the charge pumped by such a cycle, we return
to Eq. (39) and consider a triangular contour C′ explained
above Eq. (18). Equation (7) means that for large Xmax this
triangular contour corresponds to contour 1 in Fig. 1(b), that
encloses the peak in �R(VL,VR). We transform to X and Y as
in Eq. (18), then

�QR

e
= 1

π

[
π

2
− arctan

(
1 + λXmax

Xmax

)

− Xmax(1 + λXmax)

1 + X 2
max + λXmax(2 + λXmax)

]
, (41)

see Fig. 5. It reduces to Eq. (19) for λ = 0, since arctan(x) +
arctan(1/x) = sgn[x]π/2. We take Xmax → ∞ to get the
pumping for a contour that corresponds to one enclosing the
peak of Eq. (40); this gives Eq. (11).

This analysis has given us our main results; the adiabatic
pumping is almost topological, and pumps a fraction of an
electron (between 0 and 1) given by the value of λ, which is
determined purely by the reservoir’s band structure.
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FIG. 5. The solid curves are the charge pumped per cycle on the
triangular pumping cycle, given by Eq. (41). From top to bottom we
have λ = −3, −0.5, 0, 0.5, and 1, 3. The horizontal dashed lines
show the large Xmax limit given by Eq. (11).

To generalize to a voltage dependence of the form below
Eq. (7), we substitute it into Eq. (39). Then Eq. (40) changes,
but it remains strongly peaked with exponentially small tails.
This ensures that there is still adiabatic almost-topological
pumping. Further more, the faction pumped per cycle is the
same for any voltage dependence, since it was calculated
directly from Eq. (39).

VIII. ADIABATICITY AND BAND GAPS

Up to now this work has only discussed pumping in the
adiabatic limit. However, from the argument in Sec. VI,
it is clear that a large but finite pumping period Tperiod ∼
�Ktypical/(dK/dt ) 	 τ , will induce a nonadiabatic correction
of order (τ/Tperiod ). This nonadiabatic correction is much
larger than that in many proposals for topological pumping, in
which the topology makes the nonadiabatic corrections expo-
nentially small at large Tperiod. Thus to observe the topological
pumping in our system it is crucial to estimate τ , and then
choose the pumping to be slow enough (large Tperiod) to make
corrections of order (τ/Tperiod ) negligible.

It is simple to estimate τ when the reservoirs have uniform
density of states, since there the dot state decays at the rate
given by the level broadening in Sec. II; 1/τ = � = (KL +
KR)ρ. For systems with nonuniform density of states, we can
place a lower bound on 1/τ by saying that 1/τ � Kρmin,
where ρmin is the minimal value of the density of states.

However, this poses a problem for reservoirs with band
gaps, as the density of states vanishes in the band gap, so the
above lower-bound does not allow us to say when the pumping
is slow enough to be considered adiabatic. To investigate
this further we consider the case where the electrochemical
potential is near a band edge in the reservoir, so the reservoir’s
density of states is

ρ(ω) =
{

ρ0 (ω/ωc)s e−ω/ωc ω > 0

0 ω < 0
, (42)

where, without loss of generality, we measure energy ω from
the band edge. Then the level broadening is �i = Kiρ(ω), and
the Lamb shift is (see, e.g., Refs. [36,42]),

λ = −2 �(1 + s) Re[(−1)s �(−s,−μ/ωc)]. (43)

FIG. 6. The parameter λ for a reservoir density of states given by
Eq. (42) as a function of μ/ωc, for s = −0.5, −0.3, 0, 0.5, 1, and
2 (from top to bottom). One can access almost any λ by a suitable
choice of s and μ/ωc.

Figure 6 plots this and shows that a suitable choice of s and
μ/ωc will give almost any desired value of λ.

It has long been known that this model exhibits an infinite-
lifetime bound state [43–47], see Refs. [48,49] for reviews.
Electron dynamics in various time-dependent versions of this
model have been studied; particularly the decay of an initially
prepared dot state [42,50–54], the response to switching on a
bias [55,56], or the response to periodic driving [57,58]. For
s > 0, this bound state appears when the coupling exceeds a
critical value [35,36,42,50–57,59] Kc = ε/�[s]. This state has
τ = ∞, so pumping never satisfies the adiabaticity condition
in Eq. (30) when K > Kc. Intriguingly, the Berry curvature in
Eq. (37) does not contain Kc; it is a smooth function across this
line of critical coupling K = (KL + KR) = Kc. However, the
Berry curvature in Eq. (37) ceases to have a physical meaning
when one crosses the line of critical coupling, because nona-
diabatic contributions dominate beyond this line (K > Kc), no
matter how slow the pumping is.

For K < Kc, it is difficult to determine the dot’s decay rate,
1/τ , because it contains terms with an oscillatory power-law
decay, for which there is no unique way to define 1/τ . Fig. 7

FIG. 7. Estimate of the dot relaxation rate versus coupling K , for
reservoirs with a band gap; Eq. (42) with s = 1/2 and ωc = 10εd .
The points estimate the rate via Eq. (44). The solid curve estimates it
from the exponential part of the decay, neglecting the oscillatory or
power-law components. At small K , the decay is almost exponential,
and the two protocols coincide. However, as K → Kc, the power
law completely dominates, and the solid curve fails to capture the
slowing of the decay. The infinite-lifetime bound state emerges at
Kc; so 1/tr = 0 for K � Kc. Note the error bars are not error bars in
the usual sense, see Sec. VIII.
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is an attempt to give a feeling for how 1/τ depends on the
coupling. The red data points are the inverse time for the dot
occupation to decay to threshold (using the method reviewed
in Refs. [35,36]) that we set at 2% of its initial value, i.e., we
plot the 1/tr that satisfies

|n(tr ) − n0|
|n∞ − n0| = 2%. (44)

The solid curve is the time taken to reach this threshold, if one
approximates the decay to an exponential at the rate given by
the imaginary part of the resonance’s energy (i.e., neglecting
all power-law or oscillatory components in the decay). This
approximation captures much of the true decay, but misses
the sharp drop in 1/tr as K → Kc. This sharp drop shown by
the data points indicates that the timescale to decay diverges
as K approaches Kc. Hence it is increasingly difficult to pump
slowly enough to be adiabatic as K gets closer to Kc.

The “error bars” on the data in Fig. 7 are not numerical
uncertainties in tr (such uncertainties are about the size of
the red dots). They indicate the period of the oscillations in
the decay, which is maximal for K � Kc/2. A small change
in the system parameters (e.g., a change of ωc or μ) would
shift the phase of the oscillations, thereby shifting where the
oscillating decay crosses the threshold to a different place
on the vertical “error bar.” Hence, we can expect a change
in system parameters to induce a large change in 1/tr when
K � Kc/2, while the change will be modest for K � Kc and
K ∼ Kc.

IX. CONCLUSIONS

We show that a system without exotic physics (a nonin-
teracting single-level quantum dot at low temperature) can
exhibit an adiabatic almost-topological pumping of a fraction
of an electron per cycle, when averaged over many cycles.
We call it “almost” topological because the pumped charge
depending only on the number of times the contour winds
around the peak in the Berry curvature, shown in Fig. 3, under
the conditions that (i) the contour does not touch the peak
and (ii) we neglect the exponentially small corrections coming
from the tail of the peak. Section III B mentions a specific
limit in which the adiabatic pumping is entirely topological.
The fraction pumped (between zero and one electron) is deter-
mined by the ratio of the Lamb shift to the level broadening.
This ratio is imposed by the reservoir band structure, which
can be chosen to give the desired fraction. A uniform reservoir
density of states gives the quantized pumping of half an
electron per cycle. We emphasize that it is the average charge
pumped per cycle that is (almost) topological and fractional.
Each cycle has a finite probability that n electrons are pumped
for n = 0,±1,±2, . . . ; the quantized fraction is only revealed
by averaging over many cycles.

Hence, if one wants to prove the existence of fractionally
charged particles in some system, one would need more
evidence than just adiabatic pumping of fractional average
charge. This evidence could be that nonadiabatic corrections
decay exponentially when the period of the pumping cycle is
made large, since these corrections only decay like one over
this period in our model.
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APPENDIX: KELDYSH GREEN’S FUNCTIONS

The quantum dot’s Green’s functions are defined as
[37–39]

GA(t1, t2) = i�(t2 − t1)〈[d (t1), d†(t2)]+〉, (A1)

GR(t1, t2) = −i�(t1 − t2)〈[d (t1), d†(t2)]+〉, (A2)

G<(t1, t2) = i〈d†(t2)d (t1)〉, (A3)

where �(t ) is a Heaviside function and [·, ·]+ is an anticom-
mutator. Their algebraic form is given by Dyson’s equations

Gκ (t1, t2) = gκ (t1, t2)

+
∫

dt3dt4 gκ (t1, t3)�κ (t3, t4)Gκ (t4, t2),

for κ = R, A, and

G<(t1, t2) =
∫

dt3dt4 GR(t1, t3)�<(t3, t4)GA(t4, t2).

Here, gA/R(t1, t2) are Green’s function of electron of the
isolated quantum dot, and �κ (t1, t2) are the one-particle-
irreducible self-energy for κ = A, R,<,

�κ
i (t1, t2) =

∑
k

γi(t1)gκ
ik (t1, t2)γi(t2), (A4)

with �κ = �κ
L + �κ

R. Here gκ
ik (t1, t2) is a Green’s function of

electrons in the isolated electron reservoirs,

gA
ik (t1, t2) = i�(t2 − t1)〈[cik (t1), c†

ik (t2)]+〉γi=0,

gR
ik (t1, t2) = − i�(t1 − t2)〈[cik (t1), c†

ik (t2)]+〉γi=0,

gR
ik (t1, t2) = i〈c†

ik (t2)cik (t1)〉γi=0. (A5)

The dynamic conductance in Eq. (25) is

G j
i (t, t1) = e

2

{
GR

∣∣�R
j GR�<

i + GR�R
j

∣∣GR�<
i

− �<
i GA

∣∣�A
j GA + �<

i GA�A
j

∣∣GA

+ GR
∣∣�R

j G<�A
i + GR�R

j

∣∣G<�A
i + GR

∣∣�<
j GA�A

i

+ GR�<
j

∣∣GA�A
i + G<

∣∣�A
j GA�A

i + G<�A
j

∣∣GA�A
i

− �R
i GR

∣∣�R
j G<− �R

i GR�R
j

∣∣G< − �R
i GR

∣∣�<
j GA

− �R
i GR�<

j

∣∣GA− �R
i G<

∣∣�A
j GA − �R

i G<�A
j

∣∣GA

+ δi, j (G
R
∣∣�<

i + G<
∣∣�A

i − �R
i

∣∣G< − �<
i

∣∣GA)
}
,

where we define AB|CD = [AB](t, t1)[CD](t1, t ) with
[AB](t1, t2) = ∫

dt3 A(t1, t3)B(t3, t2). One can Fourier
transform GA/R(t1, t2) to get

GA(ω) = [GR(ω)]∗ = (
ω − εd − �(ω) + i 1

2�
)−1

. (A6)
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