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Backaction effects in cavity-coupled quantum conductors
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We study the electronic transport through a pair of distant nanosystems (Sa and Sb) embedded in a single-
mode cavity. Each system is connected to source and drain particle reservoirs and the electron-photon coupling
is described by the Tavis-Cummings model. The generalized master equation approach provides the reduced
density operator of the double system in the dressed-states basis. It is shown that the photon-mediated coupling
between the two subsystems leaves a signature on their transient and steady-state currents. In particular, a suitable
bias applied on subsystem Sb induces a photon-assisted current in the other subsystem Sa which is otherwise in
the Coulomb blockade. We also predict that a transient current passing through one subsystem triggers a charge
transfer between the optically active levels of the second subsystem even if the latter is not connected to the
leads. As a result of backaction, the transient current through the open system develops Rabi oscillations (ROs)
whose period depends on the initial state of the closed system.
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I. INTRODUCTION

Promising applications of cavity quantum electrodynamics
(QED) to spintronics are essentially rooted in the entangled
dynamics of hybrid light-matter nanosystems. The presence
of long-range electromagnetic coupling between distant quan-
tum systems (ideally viewed as two qubits) has already been
confirmed in self-assembled double quantum dots [1,2] and
color centers embedded in photonic-crystal cavities [3]. In
the field of circuit-QED Fink et al. [4] reported that the
optical transmission spectrum of a superconducting qubits
array embedded in a microwave resonator can be explained
by relying on a Tavis-Cummings-Dicke Hamiltonian [5–7].

The Tavis-Cummings (TC) model provides the lumines-
cence spectra and lasing properties of N two-level systems
(TLS) interacting with a quantized radiation field [8]. Also,
it allows one to investigate the N-photon Rabi splitting for
two emitters having comparable coupling strengths [9]. As
these calculations are meant to describe the outcome of optical
measurements, the charge of each two-level subsystem is
assumed to be conserved.

More recently, experimental setups were extended to
cavity-coupled double quantum emitters connected to
source/drain particle reservoirs as key components of cavity-
QED optoelectronics [10,11]. Deng et al. [12] measured non-
vanishing steady-state current correlations associated to a pair
of distant graphene double QDs interacting with a microwave
nanoresonator. The reflection amplitude of the latter displays
a dip structure that was well fitted by the TC model and there-
fore proved the existence of nonlocal interaction through the
microwave signal. In another work the detection of electron-
phonon interactions relied on transport measurements for a
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double-quantum dot defined in a suspended cavity-coupled
InAs nanowire [13].

Let us recall here that electrostatically coupled quantum
wires and parallel quantum dots (QDs) display Coulomb drag
and charge sensing effects at nanoscale which were experi-
mentally observed [14–16] and extensively studied from the
theoretical point of view [17–20]. Of course, this capacitive
coupling becomes ineffective as the distance between the two
systems increases. It would also seem that in the absence
of optical or microwave probe signals the Tavis-Cummings
coupling cannot be turned on.

We hereby theoretically show that the photon exchange
between distant mesoscopic conductors embedded in a
microcavity can be activated by electronic transport. Let us
consider two parallel nanowires, each one connected to a pair
of source and drain particle reservoirs and embedded in a
microcavity (see the sketch in Fig. 1). The subsystems Sa and
Sb accommodate electrons with both spin orientations and
could be also quantum dots or carbon nanotubes. The electron
tunneling and the mutual Coulomb interaction between Sa

and Sb are negligible.
Clearly, electrons tunneling from a source reservoir may

relax before tunneling out to the drain reservoir, while the
emitted photons interact with both subsystems. Then, in anal-
ogy with classical electrodynamics, one can look for anten-
nalike coupling in which the current established in one sys-
tem generates an electromagnetic field (i.e., photons) which
changes the quantum state of the other system. We confirm
this idea by calculating the transient and steady-state currents
of the double-emitter cavity system for two transport settings
(see Sec. III).

On the theoretical side there are few works on trans-
port trough multiple quantum emitters. Schachenmayer et al.
[21,22] emphasized that the presence of the cavity enhances
the current through 1D chains embedded in a single-mode
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FIG. 1. Schematic view of two 1D nanowires Sa and Sb em-
bedded in a single-mode cavity and individually coupled to source
and drain leads. μis is the chemical potential of the lead i (i =
L, R) attached to subsystem s (s = a, b) and gs is the strength of
the electron-photon interaction. The cavity losses are described by
the parameter κ . The electron tunneling and the mutual Coulomb
interaction between Sa and Sb are negligible.

cavity. Long distance coupling of resonant exchange qubits in
the presence of the capacitive coupling to a transmission line
has been studied by Russ and Burkhardt [23]. However, to the
best of our knowledge, time-dependent transport calculations
for distant parallel quantum emitters coupled by photons are
not yet available.

The paper is organized as follows. The many-body Tavis-
Cummings model, the structure of its dressed states, and the
non-Markovian transport formalism are presented in Sec. II.
The numerical results are discussed in Sec. III. Conclusions
are left to Sec. IV.

II. FORMALISM

A. The Tavis-Cummings Hamiltonian of the double system

We shall now consider the Tavis-Cummings model for
our many-body systems. The Hamiltonian Hs of each sub-
system contains a noninteracting single-particle term and a
two-particle Coulomb interaction within each subsystem (here
σ =↑,↓ is the spin index and s = a, b):

Hs =
∑
i,σ

εisc
†
iσ ciσ + 1

2

∑
σ,σ ′

∑
i, j,k,l

v
(s)
i jkl c

†
iσ c†

jσ ′clσ ′ckσ . (1)

The creation/annihilation operators c†
iσ /ciσ are associated to

spin-dependent single-particle states ψ
(s)
iσ of each subsystem.

The eigenvalues εis are obtained by diagonalizing the single-
particle Hamiltonian of the noninteracting double system. The
wave functions ψ

(s)
iσ inherit the size and geometry of the 1D

nanowire. The matrix elements of the Coulomb interaction
v

(s)
i jkl are then calculated in terms of single-particle states ψ

(s)
iσ :

v
(s)
i jkl =

∑
α,β

ψ
(s)
iσ (α)ψ (s)

kσ
(α)u(α − β )ψ (s)

jσ ′ (β )ψ (s)
lσ ′ (β ), (2)

where α, β are sites describing the subsystem Ss, ψ
(s)
iσ is

the complex conjugate of the single-particle wave function
and u(α − β ) is the Coulomb potential. A small screening
constant is added in the Coulomb kernel in order to avoid
on-site singularities.

The interacting many-body states (MBSs) |ν〉 and the
associated energies Eν of the double system are defined as:

(Ha + Hb)|ν〉 = Eν |ν〉. (3)

Embedding this parallel structure in a single-mode cavity of
frequency ω results in a hybrid system described by:

HS = Ha + Hb + h̄ωâ†â +
∑
s=a,b

Vs := H (0)
S + Vel−ph, (4)

where Vs stands for the optical coupling between electrons in
subsystem s and the cavity photons:

Vs =
∑

i, j∈Ss

∑
σ

h̄g(s)
i j c†

iσ c jσ (â† + â). (5)

Note that the Hamiltonian HS in Eq. (4) is more general than
the Tavis-Cummings Hamiltonian encountered in quantum
optics, as it acts on a many-body configuration space which
includes the empty states of each subsystem and the spin
degree of freedom. The optical selection rules are embodied
in the constants g(s)

i j , and in particular the spin σ is conserved.
a† denotes the photon creation operator and h̄ωâ†â|N〉 =
Nh̄ω|N〉 where |N〉 is the N-photon Fock state. The coupling
constants are calculated as

g(s)
i j = e

m0

√
h̄

2εωV

〈
ψ

(s)
iσ

∣∣e · p
∣∣ψ (s)

jσ

〉
, (6)

where p is the momentum operator, e is the polarization
vector, ε is the dielectric constant, and V is the volume of
the cavity. The matrix elements g(s)

i j in Eq. (6) are calculated
numerically by discretizing the momentum operator and using
its action on the site-dependent single-particle wave functions.

In the rotating wave approximation Eq. (5) counts only
terms for which ε js < εis and Vs reduces to the well known
Jaynes-Cummings (JC) optical coupling. We shall use the

simplified notation g(s)
12 = g(s)

21 := gs. Moreover, for identical
subsystems one has ga = gb = g0.

B. Energy spectrum and dressed states

In order to capture the main physics of the open hybrid
system we shall adopt here a simple lattice model. A more
accurate description of the cavity-coupled system requires a
continuous model in spatial coordinates which was imple-
mented in previous work [24–26].

Let ε1s,2s be the lowest spin-degenerate single-particle
energies of subsystem s, ordered such that ε1s < ε2s (i.e.,
i = 1, 2). In the absence of both Coulomb interaction and
electron-photon coupling the many-body states of the double
system are written in the occupation number basis associated
to the single-particle states ψ

(s)
iσ . The occupation of such a

state is specified by the spin σis. For example the state |↑1a↓2b〉
contains one electron on each subsystem, occupying the levels
ε1a and ε2b and having the indicated spin orientations.

We start by diagonalizing the interacting many-body
Hamiltonian Ha + Hb of the double system on a reduced Fock
space comprising all 256 noninteracting many-body config-
urations containing up to four electrons which are allowed
to occupy the single-particle levels ε1s,2s of each subsystem
Ss. For suitable values of the bias voltage applied on each
nanowire the resulting interacting many-body states |ν〉 pro-
vide a reliable basis for transport calculations. This choice re-
duces considerably the numerical cost of the time-dependent
transport calculations but also captures the optical processes
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involving only pairs of spin-degenerate single-particle lowest-
energy states of each subsystem. The exact diagonalization
method is not perturbative and therefore a suitable ‘small’
parameter does not present itself. Nonetheless, error estimates
for interacting quantum dots have been calculated (see, e.g.,
the work of Kvaal [27], and the paper by Jeszenszki et al.
on 1D quantum gases with contact interactions [28]). For the
parameters selected in our calculations the relevant interacting
many-body states are numerically stable when computed by
diagonalizing the Hamiltonian on several truncated subspaces.
Moreover, since the electron-photon coupling strength g0 �
ω the accuracy of the dressed states is even higher. The
convergence of the exact diagonalization method for circuit
quantum electrodynamics was thoroughly investigated in a
previous publication [29].

Since there is no tunneling between Sa and Sb the electronic
occupations n(ν)

s of each subsystem s for a given MB configu-
ration |ν〉 are good quantum numbers:

n(ν)
s :=

∑
i∈Ss,σ

〈ν|c†
iσ ciσ |ν〉 =

∑
i

n(ν)
is . (7)

Then the eigenstates |ν, N〉 of the disjointed Hamiltonian H (0)
S

[see Eq. (4)] can be organized in orthogonal subspaces labeled
by particle and photon numbers (na, nb; N ). For further use
let us briefly describe these subspaces. The N-photon ‘empty’
states (i.e., without electrons) of the subspace (0, 0; N ) are
denoted by |0, N〉. Next, one has four single-electron states
|σis, N〉 for each subsystem, leading to the subspaces (1, 0; N )
and (0, 1; N ). The subspace (1, 1; N ) comprises 16 two-
particle states which, when mixed by the electron-photon
coupling generate the Tavis-Cummings dressed states (see
below). Note that because the Coulomb interaction between
the two subsystems is neglected the configurations belonging
to this subspace can be simply written as |σiaσ jb, N〉.

The internal Coulomb interaction effectively shows up in
the subspaces (2, 0; N ) and (0, 2; N ). The degenerate two-
particle ground states are |G(s), N〉 := |↑1s ↓1s, N〉, while the
antiparallel and parallel triplet configurations are denoted by
|T (s)

0 , N〉, |T (s)
1 , N〉. Finally, |S(s), N〉 stands for the singlet

configurations. More complicated configurations can be con-
structed in a similar way.

Let E (0)
ν,N = Eν + Nh̄ω be the energy of the ‘free’ state

defined by H (0)
S |ν, N〉 = E (0)

ν,N |ν, N〉. The fully interacting
electron-photon Hamiltonian HS is then diagonalized w.r.t. the
basis {|ν, N〉} of the disjointed systems. Its eigenfunctions and
eigenvalues are denoted by |ϕp〉 and Ep such that

HS|ϕp〉 = Ep|ϕp〉. (8)

Here p is a set of relevant quantum numbers (see below). In
the transport calculations the number of photons is truncated
to Nph, that is we allow at most Nph + 1 Fock states to
assist the transport. The electron-photon coupling mixes the
‘free’ states |ν, N〉 but one finds that, besides the electronic
occupations ns on each subsystem, the excitation number x =∑

s n2s + N is also conserved. Here n2s is the occupation of
the excited single-particle level ε2s of Ss.

Up to spin-dependent quantum numbers, the fully interact-
ing states are also organized in several subspaces described
by the excitation number x and partial occupations na, nb.

Obviously the ‘empty’ states are stable against the electron-
photon coupling and one has |ϕN,0〉 := |0, N〉. For the single-
particle sector (na + nb = 1) we get spin degenerate (optically
active) dressed states |ϕ±

N,σs
〉 for each two-level system and

some dark states:

|ϕ±
N,σs

〉 = 1√
2

(|σ1s, N + 1〉 ± |σ2s, N〉), (9)

|ϕ0,σ1s〉 = |σ1s, 0〉, |ϕNph,σ2s〉 = |σ2s, Nph〉. (10)

The excited state |ϕNph,σ2s〉 given by Eq. (10) cannot emit
another photon because of truncation w.r.t. the Fock states.
The energies of the dressed states |ϕ±

N,σs
〉 at resonance, that is

when ε2s − ε1s = h̄ω (N � 0), are:

E±
N,σs

= ε2s + Nh̄ω ± h̄�N

2
, (11)

where �N = 2g0
√

N + 1 is the well known N-photon Rabi
frequency of the two-level JC model. The electron-photon
interaction also affects the two-particle sector (na + nb = 2,
na = nb = 1). Let us introduce first the ground (G), doubly-
excited (X ), triplet (T ), and singlet (S) spin-dependent Dicke
states:

|Gσσ ′, N〉 = |σ1aσ
′
1b, N〉, (12)

|Xσσ ′ , N〉 = |σ2aσ
′
2b, N〉, (13)

|Tσσ ′ , N〉 = 1√
2

(|σ2aσ
′
1b, N〉 + |σ1aσ

′
2b, N〉), (14)

|Sσσ ′, N〉 = 1√
2

(|σ2aσ
′
1b, N〉 − |σ1aσ

′
2b, N〉). (15)

For identical emitters it can be shown that at resonance the
two-particle dressed states have the following structure (for
the simplicity of writing we omitted the spin indices of the
two-particle configurations):

∣∣ϕ(1)
N,σσ ′

〉 =
√

N

2N − 1
|X, N − 2〉 −

√
N − 1

2N − 1
|G, N〉,

∣∣ϕ(2,3)
N,σσ ′

〉 =
√

N

4N − 2
|G, N〉 ± 1√

2
|T, N − 1〉

(16)

+
√

N − 1

4N − 2
|X, N − 2〉,

∣∣ϕ(4)
N,σσ ′

〉 = |S, N − 1〉.
The above expressions generalize the spinless case discussed
by Quesada [9]. Note these expressions hold as long as the
Coulomb interaction between the two subsystems is negligi-
ble. One infers that the states |ϕ(α)

N,σσ ′ 〉 with α = 2, 3, 4 exist

only for N � 1 while |ϕ(1)
N,σσ ′ 〉 is not defined for N = 1 and

|ϕ(1)
0,σσ ′ 〉 = |Gσσ ′, 0〉. For a nonvanishing excitation number

N one gets a subspace of Tavis-Cummings dressed states
{|ϕ(α)

N,σσ ′ 〉}. If the cavity mode is slightly detuned from reso-

nance the eigenvalues E (α)
N,σσ ′ are still fourfold degenerate w.r.t.

the spin indices and the coefficients of the ‘free’ states can
only be obtained by numerical diagonalization. The structure
of the fully interacting states is however not affected (i.e., the
electron-photon coupling mixes the same ‘free’ states).
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As for the corresponding energies one finds that at reso-
nance:

E (1)
N,σσ ′ = E (4)

N,σσ ′ = ε1a + ε1b + Nh̄ω (17)

E (2,3)
N,σσ ′ = ε1a + ε1b ± h̄g0

√
4N − 2 + Nh̄ω. (18)

From Eqs. (17) and (18) we infer that within the Tavis-
Cummings N-excitation subspace the dynamics is controlled
by two Rabi frequencies �̃N = 2g0

√
4N − 2 and �̃N/2 asso-

ciated to the two spectral gaps E (2)
N,σσ ′ − E (3)

N,σσ ′ and E (1)
N,σσ ′ −

E (2)
N,σσ ′ . In fact by integrating numerically the von Neumann

equation of the closed hybrid system described by HS [see
Eq. (4)] one finds that the populations of the optically active
‘free states’ and the mean photon number oscillate with
periods associated to the above frequencies.

C. Generalized master equation method

We set our transport problem in the partitioning approach
[30] by assuming that at some time instants tLs and tRs the
subsystem Ss is smoothly coupled to left (L) and right (R)
particle reservoirs having chemical potentials μLs, μRs (see
the sketch in Fig. 1). The reservoirs are modeled as semi-
infinite tight-binding chains supplying electrons with both
spin orientations. The Hamiltonian of the open system is
written as

H (t ) = HS + HL + HT (t ), (19)

where HL is associated to the four leads and HT is the lead-
sample tunneling term containing time-dependent smooth
switching functions χl (here l = La, Ra, Lb, Rb):

HL =
∑

l

∑
σ

∫
dk εkσ l c

†
kσ l ckσ l (20)

HT (t ) =
∑
s,l

∑
i∈Ss,σ

∫
dkχ l (t )

(
T (ls)

ki c†
kσ l ciσ + H.c.

)
, (21)

where c†
kσ l is the creation operator on lead and k is the

electronic momentum. For simplicity we impose spin con-
servation in the tunneling region such that the coupling pa-
rameter T (ls)

ki is spin independent. In the present model we
take into account the dependence of the tunneling coefficient
on the single-particle wave functions [31], that is T (ls)

ki =
Vl,sφ

l∗
k (0l )ψ

(s)
iσ (nl ) where 0l is the site of the lead l which

couples to the contact site nl of the corresponding subsystem.
Vl,s is a constant input parameter. The four-lead geometry
shown in Fig. 1 corresponds to nonvanishing parameters
VLs,s := VLs and VRs,s := VRs. We tune Vls such that the values
of the tunneling rates �

(Ls)
ki = |T (ls)

ki |2 are around few μeV.
The spectrum of the semi-infinite leads is εkσ l = 2tL cos k,
where tL denotes the common hopping energy on the leads.

Using the Nakajima-Zwanzig projection technique one
obtains an equation for the reduced density operator (RDO) of
the hybrid system ρ(t ) = TrL{W }, where W is the full density
operator of the coupled system and TrL is the trace over the

leads’ degrees of freedom:

ρ̇(t ) = − i

h̄
[HS, ρ(t )]

− 1

h̄2 TrL

{[
HT(t ),

∫ t

t0

dsUt−s[HT(s), ρ(s)ρL]U †
t−s

]}

− κ

2
(a†aρ(t ) + ρ(t )a†a − 2aρ(t )a†). (22)

In Eq. (22) Ut = e−it (HS+HL )/h̄ is the unitary evolution of
the disconnected systems and ρL is the equilibrium density
operator of the leads. The third line defines a Lindblad-type
operator which takes into account cavity losses.

Note that in this basis the unitary evolution Ut is easily
handled as it becomes a diagonal matrix. The matrix form
of GME leads us to consider transitions between pairs of
states {ϕp, ϕp′ } [32]. As an example, the generalized transition
matrix element:

A(l )
pp′ (k) =

∑
s

∑
i∈Ss,σ

T (ls)
ki 〈ϕp|c†

iσ |ϕp′ 〉 fl (εkσ l ), (23)

captures the tunneling processes of electrons from the lth lead
to all single-particle levels i of the parallel structure. The
tunneling selection rules can be obtained by considering the
nonvanishing matrix elements of the creation operator w.r.t.
the basis {ϕp}. In the steady-state regime one expects to re-
cover the Born-Markov approximation such that the tunneling
is controlled by Fermi-Dirac weights fl (Ep − Ep′ ). This points
out that the energy Ep − Ep′ required to add an extra electron
to some initial configuration |ϕp′ 〉 of the parallel structure must
be below the chemical potential of the lth lead in order to
allow the tunneling process leading to the final state |ϕp〉.

As an example, the simplest transition between the
single-particle ground state |ϕ0,σ1s〉 to the dark two-particle
ground state |Gs〉 = |↑1s ↓1s〉 requires the energy μGs =
EGs − E0,σ1s = ε1s + U , where U is a few meV shift due to
the internal Coulomb interaction. If μLs,Rs < μGs this tunnel-
ing process is suppressed and the double occupancy of the
subsystem s is excluded.

The GME is solved numerically as an integrodifferential
system of coupled equations for the matrix elements of ρ

w.r.t the basis of dressed states {|ϕp〉}. Once the RDO is
calculated the mean value of the total charge operator QS =∑

s,i,σ c†
iσ ciσ is calculated as 〈QS (t )〉 = TrF {QSρ(t )}, the trace

being performed on the Fock space F made by the eigenstates
|ϕp〉 of the hybrid system. The left and right transient currents
JLs, JRs are identified from the continuity equation:

d

dt
〈QS〉 = TrF {QSρ̇(t )} =

∑
s

(JLs(t ) − JRs(t )). (24)

By using the cyclicity of the trace and fact that QS commutes
with the bosonic operators one easily finds that loss term in the
GME does not contribute directly to the currents. Nonetheless,
it affects the matrix elements of the RDO which are fully
contained in the dissipative term due to the leads. The photon
number is given by:

N (t ) = TrF {ρ(t )â†â}. (25)

The average charge occupation of the single-particle levels
εis is given by qis(t ) = e

∑
σ TrF {ρ(t )c†

iσ ciσ } (here e denotes
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the electron charge). It is also useful to introduce the to-
tal populations of the Jaynes-Cummings (na + nb = 1) and
Tavis-Cummings (na = nb = 1) N-photon manifolds:

P±
JC,N (t ) =

∑
s,σ

〈
ϕ±

N,σs

∣∣ρ(t )
∣∣ϕ±

N,σs

〉
, (26)

P(α)
TC,N (t ) =

∑
s,σ

〈
ϕ

(α)
N,σs

∣∣ρ(t )
∣∣ϕ(α)

N,σs

〉
. (27)

The total populations of JC and TC states are then easy to
calculate (we omit the time dependence for the simplicity of
writing):

PJC,N =
∑
λ=±

P(λ)
JC,N , PTC,N =

∑
α

P(α)
TC,N . (28)

In the present work we use a generalized master equation
approach which provides the dynamics of the many-body
configurations in the presence of sequential tunneling pro-
cesses. Other methods allow the calculations of full counting
statistics (FCS) for interacting systems [33,34]. In particular,
in the presence of driving voltages the stochastic path-integral
approach of Altland et al. [35,36] predicts that massive fluc-
tuations will exceed the average values.

III. NUMERICAL RESULTS AND DISCUSSION

Our parallel structure comprises two identical 1D
nanowires of 50 nm each, described as a lattice chain of Nx =
250 sites. The lowest two single-particle energies are ε1s =
41.25 meV and ε2s = 41.95 meV. The numerical calculations
were performed by taking into account up to two photons in
the cavity and the thermal energy kBT = 50 mK. However, at
the end of this section we provide and discuss results obtained
when the number of Fock states included in the calculations
increases. Moreover, we neglected the cavity losses as for
κ � g0 we obtained similar results. The hopping energy on
the leads tL = 1 meV.

The interplay of sequential tunneling and photon
emission/absorption processes leads to a complicated dynam-
ics of the hybrid system. However one expects that for weak
coupling to the leads some features of the unitary dynamics
Ut = e−itHS/h̄ of the closed system could still be present in the
transport properties. In particular, the time-dependent charge
occupations on each subsystems will be shown to exhibit
periodic JC or TC Rabi oscillations.

We set the chemical potentials of the source leads μLa and
μLb above the single-particle levels εis but well below the
energies of the interacting two-particle configurations of the
type (na = 2, nb = 0) or (na = 0, nb = 2). Then the internal
Coulomb interaction prevents the population of states with
more than one electron on each system. These states can be
safely disregarded in the time-dependent transport calcula-
tions and the GME is solved within a truncated subspace made
of 25 electronic MBSs for the double system and the Fock
states containing up to two photons. In this setup electrons
tunnel through the system only via configurations with one
electron and the relevant optical transitions only involve the
lowest single-particle levels ε1s and ε2s.

A. Removal of the Coulomb blockade

The first transport setup we considered reveals the switch-
ing from the Jaynes-Cummings dynamics of a single subsys-
tem to the Tavis-Cummings dynamics of the photon-coupled
double system. The chemical potential μRa is chosen such that
the single-particle level ε2a lies well within the bias window
μLa − μRa and the lowest one ε1a is below μRa [see the inset
in Fig. 2(a)]. The fact that each subsystem accommodates
only up to one electron is also suggested by indicating the
energy of the ground two-particle states 2ε1s + U , where
U denotes the upward shift due to the internal Coulomb
interaction. The chemical potential μRb is set such that both
single-particle levels of Sb are within the bias window. We use
equal couplings to the leads, VLs = VRs.

We calculated the current passing through the upper
nanowire (Sa) while keeping the lower system Sb disconnected
from leads. The initial state is |00, 0〉, that is each nanowire is
empty and there are no photons in the cavity. In this case the
only optically active states belong to the JC subspace |ϕ±

N,σa
〉

since na = 1 and nb = 0. Next, we repeat the calculations
for the same initial state except that now both systems are
simultaneously coupled to the leads in order to populate two-
electron Tavis-Cummings dressed states.

Figure 2(a) presents the transient currents corresponding
to the JC and TC transport configurations. In the absence of
the second subsystem the steady-state current vanishes due
to the Coulomb blockade and the lowest level ε1a is nearly
filled. This can be seen in the average electronic occupation
of the ground (q1a) and excited (q2a) single-particle energy
levels in Fig. 2(b). The charge occupations display few Rabi
oscillations on their way to the steady state. Similar oscilla-
tions of the transient current were reported for a continuous
model [37]. Here we find that in the JC regime the oscillation
period is T0 = 39 ps, which corresponds to the Rabi frequency
�0. The average photon number also vanishes [see Fig. 2(c)]
because the steady-state configuration is an equal weight
combination of ground states |Gσσ ′, 0〉 (not shown).

In Fig. 2(a) we also show the transient currents JLa and JLb

in the absence of the electron-photon coupling (see the blue
and red dashed lines). As expected, the current through the
system Sa vanishes due to the Coulomb blockade and no Rabi
oscillations are noticed. In contrast, since the bias window on
Sb allows tunneling processes even in the steady-state and the
photon exchange with Sa is no longer present, JLb reaches a
slightly larger value in the stationary regime.

Note that for excitonic systems like self-assembled QDs
the corresponding ground state is the fully occupied valence
band which can only be populated via electron relaxation
from the conduction band followed by photon emission. In
our system both ‘conduction’ (ε2s) and ‘valence’ (ε1s) levels
can be fed from the source contacts. The direct tunneling to
the lower single-particle states considerably hampers photon
emission so we can restrict our numerical calculations to a few
Fock states only.

In the TC setting the above picture changes considerably.
Figure 2(a) shows that the current JLa does not vanish anymore
in the steady state, which means that the tunnelings from the
excited level ε2a to the right contact are now allowed. This
removal of the Coulomb blockade on subsystem Sa proves the
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FIG. 2. (a) The current JLa (black solid line) vanishes in the
steady state if the lower subsystem is disconnected. A current passing
JLb on the lower subsystem Sb (blue solid line) removes the Coulomb
blockade as suggested in the inset and a nonvanishing steady-state
value of JLa is noticed (red solid line). The dashed lines represent
the transient currents in the absence of the electron-photon coupling.
Inset: A sketch of the low-energy levels of each subsystem and
of the relevant processes in the removal of the Coulomb block-
ade: photon emission/absorption—black solid wavy line, electron
relaxation/excitation—vertical dashed blue line, and tunneling to the
leads—dashed red line. (b) The charge occupations on the optically
active levels of Sa for the Jaynes-Cummings (dashed line) and
Tavis-Cummings (solid line) transport configurations. Inset: q2a in
the transient regime. (c) The mean photon number for JC and TC
regimes. Other parameters: μLa = μLb = 45 meV, μRa = 41.5 meV,
μRb = 35 meV. The electron-photon coupling strength g0 = 53 μeV,
κ = 0.

correlations due to the photon exchange between the two sys-
tems. The mechanism leading to the removal of the Coulomb
blockade is also suggested in the inset of Fig. 2(a): (i) With
two levels within its bias window, subsystem Sb generates
photons even in the steady-state [see the corresponding mean
photon number in Fig. 2(c)]; (ii) a photon emitted by Sb

excites electrons from the lowest level of Sa to the higher level

which in turn tunnels to the right lead and contributes to the
transport.

This scenario is confirmed by Fig. 2(b) from which one
checks that the occupation q2a is now around 0.25 while the
lowest level is not fully occupied. We also notice that in
the TC regime the Rabi oscillations have a different period
[see the inset of Fig. 2(b)]. This is expected because the JC
and TC subspaces have different Rabi frequencies for the
associated dynamics. We shall discuss this fact in the next
subsection.

The steady-state current JLb through the lower subsystem
is larger than JLa due to the fact that both levels εib are within
the bias window. Let us note that the position of the two
levels w.r.t. bias window is crucial for the removal of the
Coulomb blockade. We have checked that by decreasing the
bias window on Sb (i.e., for μRb = 41.5 meV) both systems
are simultaneously blocked in the steady state as their lowest
levels are fully charged and below the bias window.

B. All-electrical ‘reading’ of a closed system

The setup presented in the previous subsection captures a
steady-state effect of the photonic coupling of the two elec-
tronic systems. To illustrate transient effects of the photon-
mediated interaction between the two subsystems let us con-
sider a transport setup in which the lower nanowire Sb is
again disconnected from leads but can still be correlated to the
upper wire. We assume that subsystem Sb is prepared in some
initial state |νb〉 before passing a current through the nearby
subsystem Sa at instant t0 = 0. If the two systems exchange
photons (i.e., when nb �= 0 and the resonant condition holds
both for Sa and Sb) the transport through the open system
Sa should depend on the dynamics in the closed system Sb.
The chemical potential of the leads attached to Sa are set such
that both single-particle levels are within the bias window and
photons are generated even in the steady-state regime.

In Fig. 3 we show the transient currents JRa for three initial
configurations |νb〉 of the closed system specified by the spin-
dependent occupation numbers of the single-particle states
in Sb, i.e., |0〉, |↑1b〉, and |↑2b〉. Although for simplicity we
considered only a spin up electron occupying the subsystem
Sb a mixture of both spin orientations could be initialized as
well without changing the results. Each figure contains results
for two values of the electron-photon coupling strength, g0 =
13.25 μeV and g0 = 26.5 μeV. Note that the Rabi period
increases as g0 decreases. Also, to avoid a fast damping of
the Rabi oscillations we reduced the coupling to the leads.

One notices at once that the output transient current de-
velops oscillations whose period depends on the initial state
of subsystem Sb. In fact, the three periods in Fig. 3 are
approximatively given by the Jaynes-Cummings and Tavis-
Cummings Rabi frequencies (see Sec. II B) as follows: T0 =
2π/�0, T1 = 4π/�̃1 = √

2T0, and T2 = 4π/�̃2 = √
2/3T0.

This effect can be viewed as a backaction of the ‘measured’
subsystem Sb on the ‘driving’ subsystem Sa.

To explain this behavior we recall that the charge occu-
pations qia (which contribute to the current through Sa) are
optically correlated to the occupations of the closed system
qib. Then we compared the Rabi oscillations of qia and qib

to the time-dependent currents. When the closed system Sb
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FIG. 3. The transient Rabi oscillations of the output current JRa

corresponding to different initial states of the closed system. (a) |0〉,
(b) |↑1b〉, and (c) |↑2b〉. The vertical dashed lines mark the Rabi
oscillation period. The three initial configurations are also shown
in the inset. Other parameters: μLa = μLb = 45 meV, μRa = μRb =
35 meV, κ = 0.

is not optically active (i.e., if it is either empty or set in the
off-resonant regime w.r.t. the cavity mode) we have already
seen that the occupations of the upper system Sa display tran-
sient Rabi oscillations with period T0 (see Fig. 2 in Sec. III A).

If Sb is initialized in the state |↑1b〉 the photons emitted by
Sa, where the electrons enter via sequential tunneling, acti-
vate the correlations between the two subsystems. These are
confirmed by Figs. 4(a) and 4(b) which present out-of-phase

FIG. 4. The transient Rabi oscillations of the charge occupations
qis for different initial states of the closed system Sb. (a) qib for the
initial state |↑1b〉. (b) qia for the initial state |↑1b〉. The out-of-phase
oscillations are due to correlated processes of emission (absorption)
of one photon by Sa and absorption (emission) by the electron on
the lowest level in Sb. (c) qib for the initial state |↑2b〉. (d) The mean
photon number N for the three initial states: black—|0〉, red—|↑1b〉,
blue—|↑2b〉. Other parameters: μLa = 45 meV, μRa = 35 meV, g0 =
13.25 μeV, κ = 0.

FIG. 5. The populations of the Tavis-Cummings dressed states
with N = 0, 1, 2, 3 excitations for two initial states of the closed
system Sb. (a) |↑1b〉, (b) |↑2b〉. In Fig. 5(b) we add (see the dashed
lines for N = 1, 2, 3 and the solid line for N = 4) the populations
obtained by suitably increasing the number of photonic Fock states
taken into account in the numerical simulations. The parameters are
the same as in Fig. 4.

oscillations of the occupations qia and qib. The oscillations in
the charge occupations coincide with the ones in the output
current from Sa. Finally, if subsystem Sb is prepared in the
excited state |↑2b〉 the charge occupations follow the dynamics
of the N = 2 TC subspace so the oscillation period of qib [see
Fig. 4(c)] roughly decreases by a factor of

√
3 when compared

to the N = 1 case. As expected, the charge oscillations of
Sa are quickly dumped by the tunneling processes, while the
oscillations in qib are clearly visible even at longer times.

The mean photon number is also shown in Fig. 4(d) for the
three initial states of the closed system. The oscillation periods
corresponding to the N = 1 TC subspace is T0/

√
2, half the

period of the charge occupations. On the other hand for N = 2
the mean photon number oscillates with the same period as
qib. The different periods for qis and N is essentially due to
the fact that the N = 1 manifold contains only three dressed
states [see Eq. (16)]. In this case the unitary dynamics of the
closed system in the ‘free’ basis shows that the population
of the ground-state configurations Gσσ ′,1 (which gives the
only contribution to the mean photon number) follows the
dynamics associated to the larger gap E (2)

σσ ′ − E (3)
σσ ′ . In contrast,

the charge occupations obey a slower dynamics given by the
smaller gap E (3)

σσ ′ − E (1)
σσ ′ such that the oscillation period is

twice the one of the photon number.
Since each oscillation period of JRa is associated to one

initial state of Sb the analysis of the transient current provides
an all-electrical probing of the closed subsystem. Let us note
that the steady-state values of the currents shown in Figs. 3(a)–
3(c) do not offer any hint on the initial state of Sb or on the
N-photon subspaces involved in transport.

A valuable insight on the system dynamics is provided
by the time-dependent populations PTC,N associated to N-
excitation Tavis-Cummings dressed states [see Eq. (28)]. If
we switch the coupling to the leads with Sb in its single-
particle ground state the transient regime [see Fig. 5(a)] is
mostly described by single-excitation dressed states whose
total population peaks up to 0.73 at short times and then
slowly decreases towards the steady-state value. Higher ex-
cited states with N = 2 slowly emerge in the system dy-
namics as the generation of more than one photon becomes
possible. One also notices that the total population of the
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spin-degenerate ground states |Gσσ ′, 0〉 saturates quite fast
at 0.2 and the contribution of the N = 3 configurations is
negligible. One can therefore argue that the Rabi oscillation
period of the transient current must correspond to the TC
frequency �̃1.

If Sb is initially in the state |↑2b〉 the two-excitation
configurations dominate the transient regime [see Fig. 5(b)],
which again support the finding of the Rabi oscillation
period given by �̃2. The single-excitation states, although not
negligible, leave no clear fingerprint on the charge dynamics.
The total population associated to the dressed states in the
Jaynes-Cummings sector does not exceed 0.06 and therefore
were not shown.

From Figs. 5(a) and 5(b) we also notice that the double-
emitter system is described by a mixture of Tavis-Cummings
dressed states living in subspaces with different excitation
numbers N . This feature is never encountered in the absence
of the leads, because the electron-photon interaction is block-
diagonal w.r.t. the excitation number N . We find out that the
coexistence of states with different excitation number is due
to the interplay of the photon emission and tunneling in and
out processes. Let us consider two possible ‘paths’ leading to
a current in the upper system Sa. For simplicity we discuss
elementary tunneling and optical processes involving the free
states (we selected for simplicity a single spin orientation σ

but more complicated combinations are also possible):

A : |σ2aσ1b, 0〉 → |σ1aσ1b, 1〉 → |σ1b, 1〉 → |σ2aσ1b, 1〉,
B : |σ2aσ2b, 0〉 → |σ2aσ1b, 1〉 → |σ1b, 1〉 → |σ1aσ1b, 1〉.

On path A an electron tunnels first on the upper level of
subsystem Sa while Sb is on its ground state such that the
hybrid system is in the state |σ2aσ1b, 0〉. Then a photon is
emitted by Sa via electron relaxation on ε1a. Next, the same
electron tunnels to the right lead and the open system is
charged by another electron which now occupies again the
upper level ε2a. By inspecting Eqs. (12)–(15) we notice that
the states |σ2aσ1b, 0〉 and |σ1aσ1b, 1〉 are the building block
of the N = 1 dressed states |ϕ(α)

1,σσ 〉 while the ‘final’ state

|σ2aσ1b, 1〉 contributes to N = 2 states |ϕ(α)
2,σσ 〉. Clearly, the

path A is more likely when Sb is set to the ground state |↑1b〉.
In turn, the 2nd path B is more likely when the closed

subsystem Sb is in the excited state |↑2b〉. In this case a
tunneling process on the excited level of Sa is followed by
a photon emission in the closed subsystem Sb. Then as before
a double tunneling involving both leads brings the system to
|σ1aσ1b, 1〉.

In Fig. 5(b) we also show the populations of the Tavis-
Cummings configurations calculated with a larger number of
Fock states (i.e., the number of Fock states taken into account
when solving the GME increases to Nph = 5). One notices that
new TC configurations with N = 4 excitations are slowly and
rather poorly populated while the configurations with N =
1, 2, 3 decrease slightly [see the dashed lines in Fig. 5(b)]. The
populations PTC,N=5 and PTC,N=6 turn out to be very small and
were not shown. Note also that in the time range where one
can read the initial state of the closed subsystem Sb from the
Rabi oscillations of the transient current (i.e., for t < 1 ns) the
addition of more photonic states does not lead to a noticeable
change of PTC,N for N = 0, 3.

The correspondence between the transient ROs and the
initial state of the closed system was recovered for other
values of the electron-photon coupling strength g0; this is
expected as the ratio between the period of the ROs does not
depend on g0. We also find that at fixed value of g0 the number
of clear ROs decreases at stronger coupling to the leads when
the tunneling time becomes smaller than the Rabi periods. As
for the effects of cavity losses, the above results are expected
to hold as long as κ is much smaller than the electron-photon
coupling strength. In particular, the period of the transient
Rabi oscillations does not depend on κ .

Let us comment a bit more on the Coulomb interaction
effects. If the chemical potentials μLs are pushed upwards
more complicated transitions between many-body configura-
tions come into play. For example, the excited triplet or singlet
states can relax to the two-particle ground state by photon
emission at suitable frequency of the cavity. Then one expects
corresponding Rabi oscillations in the transient currents and
similar results. On the other hand, by adjusting the frequency
to these new transitions one detunes the previous transitions
between the single-particle levels. We also stress that in our
calculations the initial state of the hybrid system corresponds
to the vacuum field so the mechanism behind the revival
of the population inversion is not activated. Moreover, here
we are dealing with an open system and even if the initial
photon configuration would be a superposition of different
Fock states, the dissipation due to the sequential electron
tunneling prevents the revival phenomenon.

In a recent experiment [38] the photons emitted by a
voltage-biased double QD embedded in a microcavity are
used to ‘read’ the charge state of a second unbiased double
QD placed at the other side of the cavity. The ‘reading’
operation is performed by measuring the optical output power
or the emission of the biased dot. In this context, our theo-
retical calculations predict the possible electrical readout of
a ‘target’ subsystem by the transient current of the ‘probe’
subsystem.

IV. CONCLUSIONS

The transient and steady-state transport properties of par-
allel quantum conductors embedded in a photon cavity have
been calculated from the generalized master equation. The
system is described by a Tavis-Cummings model suitably
extended for interacting and open systems. We propose two
settings which exhibit clear effects of the coupling between
the two conductors via cavity photons. A steady-state ef-
fect consists of the removal of a Coulomb blockade from
one subsystem when a current passes through the second
subsystem. This coincides with the switching between the
Jaynes-Cummings dynamics of a single subsystem to the
cavity-mediated Tavis-Cummings dynamics of the double
system.

In a second setup we show that the photon-induced cor-
relations provides information on the initial state of a closed
subsystem by looking at the transient current which passes
through a neighbor open subsystem. More precisely, the pe-
riod of the Rabi oscillations of the ‘probing’ current depends
of the initial state of the ‘probed’ system. Note that the ‘read-
ing’ of the closed system via photon-mediated interactions
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is far from being similar to the charge sensing based on
mutual Coulomb interaction. The backaction effect reported
here requires that the levels of the closed system are opti-
cally active, their gap roughly matching the frequency of the
cavity mode. The interplay of photon emission/absorption
processes and in/out sequential tunneling allows the simul-
taneous population of dressed states with different excitation
number.
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