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Applications of the multipole decomposition method for investigations of directional light scattering by a
single nanoparticle and nanoparticle structures located in a finite spatial region are discussed. It is shown that,
even in the case of relatively large scatterers, the multipole decomposition obtained in the long-wavelength
approximation (LWA) may provide much better convergence than the multipole decomposition with the exact
multipoles obtained from the spherical harmonics expansion. For an explanation of this seeming paradox, we
derive in real space the exact multipole decomposition based on the spherical harmonics, presenting exact
expressions for multipoles up to the electric 16-pole. Results obtained with the exact and approximate multipole
expressions are discussed and compared. It is shown that for shape-anisotropic finite-size scatterers with different
geometrical dimensions (like plates, rods, disks, rings, etc.), the required number of approximate multipoles
providing accurate results may be much smaller than the required number of exact multipoles. For applicability
of the LWA multipole decomposition, the only important parameter is the small ratio of the scatter size
(its projection) in the scattering direction to the light wavelength. If this condition is fulfilled, the multipole
decomposition with a small number of LWA multipoles is simpler than that based on the exact multipoles.
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I. INTRODUCTION

The multipole analysis of electromagnetic fields radiated
(or scattered) by an object with confined charges and currents
provides important information about the spatial distribution
of the radiated (or scattered) waves and about interaction of
external radiation with this object. The main advantage of
this approach lies in the replacement of complex field dis-
tributions by the superposition of fields generated by point
sources, called multipole moments, corresponding to the ob-
ject’s charge and current distributions [1].

The number and type of multipole moments which ef-
fectively describe the generated fields are determined by the
size and shape of the regions containing electric charges and
currents. It is well known that if the wavelength of generated
fields is much larger than the object size, only the lowest-
order multipoles (such as dipoles or quadrupoles) provide
contributions to the generated fields. In this case the multipole
moments are determined to be the first low-order coefficients
of Taylor expansion for the retarded potentials of the electro-
magnetic field generated by oscillating electric charges and
currents [1,2]. Frequently, these multipoles (obtained in the
long-wavelength approximation) are used as ordinary multi-
pole moments [3,4] for investigations of electromagnetic scat-
tering by nanoparticles and finite-size nanostructures [5–8].
With the growing scatterer sizes, the number of multipole
terms, which must be taken into account for correct ap-
proximation of the scattered field, increases rapidly. These
multipole terms may include ordinary multipole moments
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and the so-called mean-square radii [4,9–11] or high-order
toroidal moments [12].

Another alternative multipole approach to electromagnetic
scattering by finite-size objects is based on the multipole
expansion of the scattered field using spherical harmonics
[1]. In this case the multipole moments are the coefficients
of corresponding expansion which can be calculated from
the distribution of generated electric field on any spherical
surface enclosing the finite-size scattering object [13]. By
expressing the generated field on the spherical surface through
the source currents and charges, the connection of multipole
moments with the current and charge distributions can be
obtained [1,13]. In this approach, there are no limitations
on the source sizes and radiated wavelengths, as has been
shown in the Mie theory for spherical particles [14]. A
comprehensive discussion of the topics related to different
multipole decompositions for applications in nanophotonics
can be found in a recent review [15]. On the basis of previous
publications [16,17], where new exact analytical expressions
for the multipole moments of a localized electric current
density distribution were derived, direct correspondence of
different multipole decompositions was demonstrated. More-
over, it has been shown that the multipole moments derived
in the long-wavelength approximation (LWA) [12] can be
directly obtained from the exact multipoles using a simple
limiting transition to large wavelengths [16].

Due to the relative simplicity of the derived exact expres-
sions for multipole moments [15], one can expect that they
will outweigh and potentially completely replace the LWA
multipole moments in the analysis of light-scattering prob-
lems. However, as will be shown in this paper, the application
of LWA multipoles, obtained from the Taylor expansion of
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the retarded potentials, may be more advantageous and simple
for investigations of directional scattering, even for large
shape-anisotropic objects. The LWA multipoles can be useful
for multipole decomposition of the extinction cross sections
calculated from the optical theorem [18] because in this case
only the information about forward scattering is required. In
Sec. II, direct derivations of the exact multipole moments in
real space are performed. In Sec. III, we analyze applications
of the exact and LWA multipole moments for investigations
of directional light scattering. Examples demonstrating the
advantages of the LWA multipole applications are presented
in Sec. IV. A summary of the main results is given in
Sec. V.

II. MULTIPOLE DECOMPOSITIONS

In the framework of Green’s tensor formalism, scatter-
ing of a monochromatic electric field with time dependence
exp(−iωt ) (where ω is the field angular frequency) outside
the finite-size scatterer is determined by [19,20]

E(r) = ω2μ0

∫
Vs

Ĝ(r, r′)P(r′)dr′, (1)

or

E(r) = iωμ0

∫
Vs

Ĝ(r, r′) j(r′)dr′, (2)

where j(r′) and P(r′) are the induced electric current den-
sity and electric polarization, respectively, so that j(r′) =
−iωP(r′), r is the radius vector of the observation point,
Vs is the scatterer volume, and μ0 is the vacuum magnetic
permeability. We assume that the origin of the Cartesian
coordinate system is located in the region occupied by the
scatterer. In the far-wave approximation, where |r| = r �
1/kd , r � |r′| = r′ (for any r′ from the volume Vs), and kd

is the wave number in the surrounding medium, the Green’s
tensor of the homogeneous infinite medium with the dielectric
constant εd is given by [21]

ĜFF
0 (r, r′) = eikd r

4πr
(Û − nn)e−ikd (n·r′ ), (3)

where nn is the tensor product of the unit vector n = r/r of
the observation point defining the scattering direction and Û is
the 3 × 3 unit tensor. The relation between r′ and 1/kd can be
arbitrary, including the case of kd r′ > 1; that is, there are no
limitations on the biggest scatterer dimension D (however, for
the observation point the condition r � D should be fulfilled).
Thus, the radiated (scattered) electric field in the direction n
is [1]

En(r) = iωμ0
eikd r

4πr
(Û − nn)

∫
Vs

e−ikd (n·r′ ) j(r′)dr′. (4)

Using Eq. (4), multipole decompositions of scattered waves
can be obtained by several approaches, but they are always
related to the exponential factor exp[−ikd (n · r′)]: (i) it is
possible to expand this exponential factor in a Taylor series
around a point with the radius vector r0 located in the volume
Vs [1]; (ii) it is possible to write the electric current density as

j(r′) =
∫

Vs

j(r)δ(r′ − r)dr

and then to expand delta function δ(r′ − r) in a Taylor se-
ries around a point r0 [18,21], smf (iii) it is possible to
expand the exponential factor exp[−ikd (n · r′)] in spherical
harmonics [1]. The first two approaches are equivalent to
each other and provide multipoles in the LWA [16]. Since the
Taylor expansion of the exponential factor is convergent for
any finite value of its argument, it can be applied for multipole
decomposition of the scattered field by finite-size scatterers
with arbitrary dimensions [12].

The third approach is applied in this paper for the deriva-
tion of exact spherical multipoles using the following nota-
tions: the signs × and · denote vector and scalar products;
the tensor product of vectors a, b, and c is written abc and
represents a third-rank tensor.

A. Long-wavelength approximation

For further discussions we recall that if kd r′ � 1 for any r′
from the volume Vs, the Taylor expansion of the exponential
factor under the integral in Eq. (4) can be limited by several
low-order terms, and the well-known LWA multipole decom-
position of En can be obtained [5,18],

En(r) � k2
0eikd r

4πε0r

{[
n ×

[(
p + ikd

vd
T

)
× n

]]
+ 1

vd
[m × n]

+ ikd

6
[n × [n × Q̂n]] + ikd

2vd
[n × (M̂n)]

+ k2
d

6
[n × [n × Ô(nn)]]

}
, (5)

where k0 = ω
√

μ0ε0 is the wave number in vacuum, ε0 is
the vacuum permittivity, vd is the speed of light in the
surrounding medium with εd , and the Cartesian multipoles
(the electric dipole p, toroidal dipole T, magnetic dipole m,
electric quadrupole tensor Q̂, magnetic quadrupole tensor M̂,
and electric octupole tensor Ô) are presented in the long-
wavelength approximation. These multipole tensors are used
in the traceless and symmetrical (irreducible) representations.
Analytical expressions determining the multipole moments
of different orders can be found in [12,18]. Note that the
definition of the traceless electric quadrupole moment from
Ref. [18] differs from the quadrupole moment considered in
Ref. [12] by a factor of 3. For transition from Eq. (4) to (5),
we used the identity

(Û − nn)b = [n × [b × n]],

where b is an arbitrary vector. The origin of the Cartesian
coordinate system is chosen at the multipole location point.

B. The exact spherical multipole decomposition

In addition to previous publications [16,17], exact spherical
multipole decomposition can be obtained directly from Eq. (4)
in the Cartesian basis using plane wave representation in
spherical harmonics [1],

e−ikd (n·r′ ) = 4π

∞∑
l=0

l∑
m=−l

(−i)l jl (kd r′)Y ∗
lm(θ, ϕ)Ylm(θ ′, ϕ′),

(6)
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where jl (kd r′) is the lth order spherical Bessel function,
Ylm(θ, ϕ) is the scalar spherical harmonics, θ and ϕ (θ ′ and ϕ′)
are the polar and azimuthal angles of n (r′) in the spherical
coordinate system, and the asterisk (*) denotes the complex
conjugation. Inserting Eq. (6) into (4), one can write

En(r) = iωμ0
eikd r

4πr
(Û − nn)

×
∑
l,m

4π (−i)lY ∗
lm(θ, ϕ)

∫
Vs

jl (kd r′)Ylm(θ ′, ϕ′)j(r′)dr′

= iωμ0
eikd r

4πr
(Û − nn)

×
∞∑

l=0

(−i)l (2l + 1)
∫

Vs

jl (kd r′)Pl (cos γ )j(r′)dr′

= iωμ0
eikd r

4πr
(Û − nn)

∞∑
l=0

Sl , (7)

where Pl is the l-order Legendre polynomial. Above, the
additional theorem for spherical harmonics was used [1]:

Pl (cos γ ) = 4π

2l + 1

l∑
m=−l

Y ∗
lm(θ ′, ϕ′)Ylm(θ, ϕ), (8)

where γ is the angle between two unit vectors
n = r/r = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) and n′ =
r′/r′ = (sin θ ′ cos ϕ′, sin θ ′ sin ϕ′, cos θ ′), so that cos γ =
(n · n′) = cos θ cos θ ′ + sin θ sin θ ′ cos(ϕ − ϕ′). The required
information about the Legendre polynomials can be found
elsewhere [22].

We consider several low-order terms of Sl in the sum of
Eq. (7). For l = 0, P0(cos γ ) = 1, we have

S0 =
∫

Vs

j0(kd r′)j(r′)dr′. (9)

For l = 1, P1(cos γ ) = (n · r′/r′), we get

S1 = −3ikd

∫
Vs

j1(kd r′)
kd r′ (n · r′)j(r′)dr′

= 3

2
ikd

∫
Vs

j1(kd r′)
kd r′ [n × [r′ × j]]dr′

− ikd

2

∫
Vs

j1(kd r′)
kd r′ [3(r′j + jr′) − 2(r′ · j)Û ]ndr′

− ikd

∫
Vs

j1(kd r′)
kd r′ (r′ · j)ndr′. (10)

Above, the following transformation was used:

(n · r′)j = (jr′)n = −1

2
[n × [r′ × j]]

+ 1

6
[3(r′j + jr′) − 2(r′ · j)Û ]n

+ 1

3
(r′ · j)n. (11)

For l = 2, P2(cos γ ) = (3[n · r′/r′]2 − 1)/2, we obtain

S2 = −5

2
k2

d

∫
Vs

j2(kd r′)
k2

d r′2 [3(n · r′)2 − r′2]j(r′)dr′

= −5

2
k2

d

∫
Vs

j2(kd r′)
k2

d r′2 (jr′r′ + r′jr′ + r′r′j − Â)(nn)dr′

+ 5

2
k2

d

∫
Vs

j2(kd r′)
k2

d r′2 [n × (
[r′ × j]r′ + r′[r′ × j]

)
n]dr′

+ 1

2
k2

d

∫
Vs

j2(kd r′)
k2

d r′2 [3(r′ · j)r′ − r′2j]dr′

− 5

2
k2

d n
∫

Vs

j2(kd r′)
k2

d r′2 [[r′(r′ · j) − r′2j] · n]dr′

− 5k2
d n

∫
Vs

j2(kd r′)
k2

d r′2 (n · V)dr′, (12)

where

Aβγ τ = δβγVτ + δβτVγ + δγ τVβ, (13)

β = x, y, z, γ = x, y, z, τ = x, y, z, and δβγ is the Kronecker
delta,

V = 1

5
[2(r′ · j)r′ + r′2j]. (14)

Above, the following tensor identity was used:

(n · r′)2j = (jr′r′)(nn), (15)

and then procedures of symmetrization and detracing to the
tensor jr′r′ were applied (details can be found in supplemen-
tary materials in Ref. [12]).

For l = 3, P3(cos γ ) = (5[n · r′/r′]3 − 3[n · r′/r′])/2, we
have

S3 = 7

2
ik3

d

∫
Vs

j3(kd r′)
k3

d r′3 [5(n · r′)3 − 3(n · r′)r′2]j(r′)dr′

= 105

24
ik3

d

∫
Vs

j3(kd r′)
k3

d r′3 (jr′r′r′ + r′jr′r′

+ r′r′jr′ + r′r′r′j − B̂)(nnn)dr′

− 105

6 × 4
ik3

d

∫
Vs

j3(kd r′)
k3

d r′3 [n × ([r′ × j]r′r′

+ r′[r′ × j]r′ + r′r′[r′ × j] − Â′)nn]dr′

+ ik3
d

∫
Vs

j3(kd r′)
k3

d r′3 [r′2(jr′ + r′j) − 5(j · r′)r′r′

+ (j · r′)r′2Û ]ndr′

+ 15

8
ik3

d

∫
Vs

j3(kd r′)
k3

d r′3 (Ĉ : nn)ndr′

− 35

4
ik3

d

∫
Vs

j3(kd r′)
k3

d r′3

{
n · [(r′ · j)r′r′

− 1

2
r′2(r′j + jr′)]n

}
ndr′, (16)

where

A′
βγ τ = δβγV ′

τ + δβτV ′
γ + δγ τV ′

β, (17)
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β = x, y, z, γ = x, y, z, τ = x, y, z, and δβγ is the Kronecker
delta.

V′ = 1

5
r′2[r′ × j], (18)

Bαβγ τ = 1

7
(δαβCγ τ + δαγCβτ + δατCβγ

+ δβτCαγ + δβγCατ + δγ τCβα ) (19)

+ 4

15
(j · r′)r′2(δαβδγ τ + δαγ δβτ + δατ δβγ ),

and

Ĉ = 2(j · r′)r′r′ + r′2(jr′ + r′j) − 4

3
(j · r′)r′2Û .

In order to get Eq. (16), we used the following tensor identity:

(n · r′)3j = (jr′r′r′)(nnn) (20)

and then again applied the procedures of symmetrization and
detracing to the tensor jr′r′r′ [12].

Introducing multipole moments similar to [16]

p0 = i

ω

∫
Vs

j0(kd r′)j(r′)dr′, (21)

m1 = 3

2

∫
Vs

j1(kd r′)
kd r′ [r′ × j]dr′, (22)

Q̂1 = 3i

ω

∫
Vs

j1(kd r′)
kd r′ [3(r′j + jr′) − 2(r′ · j)Û ]dr′, (23)

M̂2 = 5
∫

Vs

j2(kd r′)
(kd r′)2

([r′ × j]r′ + r′[r′ × j])dr′, (24)

T2 = ik2
d

ω2

∫
Vs

j2(kd r′)
(kd r′)2

[3(r′ · j)r′ − r′2j]dr′, (25)

Ô(e)
2 = 15i

ω

∫
Vs

j2(kd r′)
(kd r′)2

(jr′r′ + r′jr′ + r′r′j − Â)dr′, (26)

Q̂3 = 6ik2
d

ω

∫
Vs

j3(kd r′)
k3

d r′3 [5(j · r′)r′r′ − r′2(jr′ + r′j)

− (j · r′)r′2Û ]dr′, (27)

Ô(m)
3 = 105

4

∫
Vs

j3(kd r′)
k3

d r′3 ([r′ × j]r′r′ + r′[r′ × j]r′

+ r′r′[r′ × j] − Â′)dr′, (28)

Ŝ(e)
3 = 105i

ω

∫
Vs

j3(kd r′)
k3

d r′3 (jr′r′r′ + r′jr′r′

+ r′r′jr′ + r′r′r′j − B̂)dr′, (29)

the above Sl terms can be rewritten as

S0 = −iωp0, (30)

S1 = ikd [n × m1] − ωkd

6
(Q̂1n) − ikd L1n, (31)

S2 = iωk2
d

6
(Ô(e)

2 nn) + k2
d

2
[n × (M̂2n)] − iωT2

+ 3iω(T2 · n)n, (32)

S3 = − ik3
d

6
[n × (Ô(m)

3 nn)] − ωkd

6
(Q̂3n)

+ ωk3
d

24
(Ŝ(e)

3 nnn) + 5ik3
d

4
(n · (L̂3n))n, (33)

where the scalar term with

L1 =
∫

Vs

j1(kd r′)
kd r′ (r′ · j)dr′

and the tensor term with

L̂3 =
∫

Vs

j3(kd r′)
k3

d r′3 [5r′2(jr′+r′j)−4(j · r′)r′r′−2(j · r′)r′2Û ]dr′

correspond to nonradiating contributions.
For the scattered electric field from Eq. (7), we obtain

En(r) = iωμ0
eikd r

4πr
(Û − nn)(S0 + S1 + S2 + S3 + · · · )

� k2
0

eikd r

ε04πr

(
[n × [(p0 + T2) × n]] + 1

vd
[m1 × n]

+ ikd

6
[n × [n × (Q̂1 + Q̂3)n] + ikd

2vd
[n × M̂2n]

+ k2
d

6
[n × [n × Ô(e)

2 nn]] + k2
d

6vd
[n × Ô(m)

3 nn]

− ik3
d

24
[n × [n × Ŝ(e)

3 nnn]]
)

. (34)

The total scattered power, defined as

Psca = 1

2

√
ε0εd

μ0

∫
�

|En(r)|2r2d�, (35)

where � is the total solid angle around the scatterer, can be
written as

Psca � k4
0

12πε2
0vdμ0

|p0 + T2|2 + k4
0εd

12πε0vd
|m|2

+ k6
0εd

1440πε2
0vdμ0

∑
αβ

|Q1 αβ + Q3 αβ |2

+ k6
0ε

2
d

160πε0vd

∑
αβ

|M2 αβ |2

+ k8
0ε

2
d

3780πε2
0vdμ0

∑
αβγ

|O(e)
2 αβγ |2

+ k8
0ε

3
d

3780πε0vd

∑
αβγ

|O(m)
3 αβγ |2

+ k10
0 ε3

d

145152πε2
0vdμ0

∑
αβγ τ

|S(e)
3 αβγ τ |2. (36)

In the above expression, p0 + T2 is the exact electric dipole
moment, m1 is the exact magnetic dipole moment, Q̂1 + Q̂3 is
the exact electric quadrupole tensor, M̂2 is the exact magnetic
quadrupole tensor, and Ô(m)

3 is the exact magnetic octupole
tensor in the spherical multipole decomposition. The same
expressions for low-order exact multipoles were obtained in
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Refs. [16,17] using another approach. Additional contribu-
tions to the electric octupole term Ô(e)

2 and the electric 16-pole
term Ŝ(e)

3 can be found considering the next terms of Sl from
Eq. (7).

It was shown in Ref. [16] that the LWA multipole moments
can be obtained from the exact multipole moments using
a small argument approximation of the Bessel functions in
expressions (21)–(29).

III. DIRECTIONAL SCATTERING

One can expect that with the derived exact multipole
moments more accurate results for light scattering compared
to the LWA approach can always be obtained [16], especially
if the scatterer size is large compared to the wavelength.
For example, the electric field of the scattered wave along
an arbitrary vector n (directional scattering) calculated using
Eq. (34) with several first-multipole contributions could be
more accurate than that obtained using LWA equation (5)
with the same number of multipoles. However, in general
this statement is not true. As mentioned above, the Taylor
expansion with LWA multipoles is convergent and can be
applied, similar to the spherical harmonic series, for multipole
decomposition of the scattered field by any finite-size object.
Moreover, we show below that in several important cases,
the LWA multipole moments produce more accurate results
than that obtained with the exact multipole moments of the
same order. An important example is the directional scattering
of light by shape-anisotropic objects with different geomet-
rical dimensions like finite-size plates, disks, rings, rods,
etc.

First, we turn to the discussion of exponential factor
exp[−ikd (n · r′)] in Eq. (4). For a fixed direction of scattering
n, the exponential factor can be rewritten as exp(−ikd r′

‖),
where r′

‖ = r′ cos γ is the projection of vector r′ on n. Thus,
in contrast to the conditions kd r′ � 1 (where all r′ are from
Vs) and D � λ (where D is the biggest dimension of the
scatterer), we get a weaker condition for the application of
LWA equation (5),

kd r′
‖ = kd r′ cos γ � 1 ∀ r′ ∈ Vs, (37)

where the maximum r′
‖ is equal to the projection D‖ of

the biggest scatterer dimension on n. This means that for
directional scattering LWA can be applied when

D‖ � λ. (38)

However, in practical cases it is possible that the size parame-
ters

kd D‖ � 1 � kd D (39)

for particles with anisotropic shapes, characterized by large
size differences in different space directions.

Let us assume that condition (39) is satisfied for directional
scattering along n. Then, exp[−ikd (n · r′)] ≈ 1 in Eq. (4), and
the scattered electric field is determined by

En(r) � k2
0eikd r

4πε0r
[n × [p × n]], (40)

where

p = i

ω

∫
Vs

j(r′)dr′ (41)

is the LWA (ordinary) electric dipole moment. It is im-
portant that Eq. (40) cannot be derived from the general
expression (34) with the exact multipole moments since the
size parameter kd D � 1 is not small, so that the small ar-
gument expansion of the Bessel functions in Eqs. (21)–(29)
cannot be formally applied. In this case, one has to use
Eq. (34) with all exact multipole moments.

For kd D‖ � 1 and kd D‖ ∼ cos γ � 1 resulting in the ap-
proximation of the Legendre polynomials Pl (cos γ ) � Pl (0),
the exact expression for the electric field, Eq. (7), can be
approximated by

En(r) � iωμ0
eikd r

4πr
(Û − nn)

×
∞∑

l=0

(−i)l (2l + 1)Pl (0)
∫

Vs

jl (kd r′)j(r′)dr′, (42)

where p following from Eq. (40) is given by

p = i

ω

∞∑
l=0

(−i)l (2l + 1)Pl (0)
∫

Vs

jl (kd r′)j(r′)dr′. (43)

Comparing Eqs. (41) and (43), we get the identity

∞∑
l=0

(−i)l (2l + 1) jl (kd r′)Pl (0) ≡ 1, (44)

where Pl (0) = 0 for odd l and Pl (0) �= 0 for even l , for exam-
ple, P0(0) = 1, P2(0) = −1/2, P4(0) = 3/8, P6(0) = −5/16,
P8(0) = 35/128, P10(0) = −63/256, . . . Importantly, the
identity (44) is independent of the parameter kd r′. This means
that an infinite number of terms with even l = 0, 2, 4, 6, 8, . . .

has to be taken into account in the sum in order to get the
exact value of 1. Only in the case when kd r′ = 0 are all
spherical Bessel functions with l > 0 equal to zero, except
j0(0) = 1; therefore, only the term with l = 0 survives in
(44). If kd r′ �= 0, Eq. (44) can be approximated by a finite N
number of terms:

CN (kd r′) =
N∑

l=0

(−i)l (2l + 1) jl (kd r′)Pl (0) ≈ 1, (45)

where N depends on the magnitude of kd r′ and the required
approximation accuracy. For a fixed value of kd r′, subsequent
terms starting from a relatively large l (depending on the
kd r′ value) provide very small corrections because of neg-
ligibly small values of the corresponding spherical Bessel
functions (see Fig. 1). For example, if kd r′ = 5, we get from
Eq. (45)

C0(5) = −0.1918, C2(5) = 0.1450, C4(5) = 0.7762,

C6(5) = 0.9711, C8(5) = 0.9978, C10(5) = 0.9999.

We see that in this case at least six terms (up to l = 10)
are required to provide a good approximation for Eq. (44).
Note that, if instead of r′, the biggest scatterer size D is
used in Eq. (45), it allows one to estimate the maximum
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FIG. 1. Spherical Bessel functions.

number and order of exact multipoles for accurate calculations
of the scattered electric field in a certain direction and the
total scattering cross section. Note that the contributions of
exact multipole moments with l � kd D in the exact multipole
decompositions are negligibly small. There exists a simple
approximation of the spherical Bessel functions jl (x) in the
region of small arguments x → 0 [23]:

jl (x → 0) ∼ xl

1 × 3 × 5 × · · · × (2l + 1)
. (46)

This approximation can also be used for estimates of spherical
Bessel functions if the condition x � l is fulfilled.

It is not possible to make a direct transition between
expressions of the exact multipole moments (21)–(29) and the
LWA multipole moments in the case of directional scattering
when kd D‖ � 1 � kd D. In this case, the scattered electric
field (40) is determined by only the LWA electric dipole
term (41), whereas many exact multipole contributions will
be required to get the same accuracy (43). The effective
number of the required exact multipole moments depends on
the biggest scatterer size D and increases with the increasing
kd D, approaching infinity when kd D → ∞. This means that
if D is equal to infinity, for example, in the case of an infinite
cylindrical rod, the presented exact multipole decomposition
is not applicable. This also follows from the fact that for
infinite rods the condition r � D for the observation point
cannot be satisfied.

The electric dipole approximation (40) can be used for
calculations of the scattered power in a finite solid angle ��,

P(��) = 1

2

√
ε0εd

μ0

∫
��

|En|2r2d�

≈ k4
0

32π2ε2
0

√
ε0εd

μ0

∫
��

(|p|2 − |n · p|2)d�,

(47)

if for any n from �� the maximal scatterer size projection
Dn

‖ on the direction n satisfies the conditions Dn
‖ � λ. Note

that contributions of the exact multipole moments with odd
numbers l will be significantly suppressed.

FIG. 2. Physical model including two electric dipoles with mo-
ments p1 and p2 located in air.

In the following section we provide a few examples related
to some “paradoxes” with applications of exact multipoles.

IV. DEMONSTRATIVE EXAMPLES

Let us consider a simple system of two oscillating electric
point dipoles located in air at r1 = (−d1, 0, 0) and r2 =
(d2, 0, 0), as shown in Fig. 2. Total polarization P (or the
electric current density j) of this system can be written as

P(r) = i

ω
j(r) = p1δ(r − r1) + p2δ(r − r2). (48)

Here we assume that dipoles oscillate with the same
frequency ω. Inserting the current density from Eq. (48) into
Eq. (4) and taking into account that the unit vector ẑ is
perpendicular to r1 and r2, the electric field radiated along
the z axis is

Eẑ(z) = k2
0eikd r

4πε0z
(Û − ẑẑ)p ≡ k2

0eikd r

4πε0z
p⊥, (49)

where p = p1 + p2 is the total LWA electric dipole moment
and p⊥ = p1⊥ + p2⊥ is its projection on the xy plane. Equa-
tion (49) is exact and does not depend on the distance between
the dipoles.

If in this system we consider the electric field E′
ẑ(z) gener-

ated by the exact electric dipole moment p0 + T2, we obtain

E′
ẑ(z) = k2

0eikd r

4πε0z
(Û − ẑẑ)(p0 + T2). (50)

Using Eqs. (21) and (25), we have

p0 = j0(k0d1)p1 + j0(k0d2)p2, (51)

T2 = k2
0

2

{
j2(k0d1)

(k0d1)2
[3(r1 · p1)r1 − d2

1 p1]

+ j2(k0d2)

(k0d2)2
[3(r2 · p2)r2 − d2

2 p2]

}
, (52)

resulting in the radiated electric field

E′
ẑ(z) = k2

0eikd r

4πε0z
{ j0(k0d1)p1⊥ + j0(k0d2)p2⊥

+ j2(k0d1)

2
[3(x̂ · p1)x̂ − p1⊥]

+ j2(k0d2)

2
[3(x̂ · p2)x̂ − p2⊥]}, (53)

where x̂ is the unit vector along the x axis. One can see that
E′

ẑ(z) depends on the dipole positions and that E′
ẑ(z) �= Eẑ(z).
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Recall that Eẑ(z) is the exact solution (49) and is independent
of the distance between the dipoles. Thus, for accurate calcu-
lation of the radiated electric field using exact multipoles one
has to take into account contributions of high-order multipole
moments. LWA is much simpler and, with the single-dipole
term, leads to the exact result. The last statement is true for
any number of point dipoles arbitrarily located on a plane
for radiation generated in the perpendicular (forward and
backward) direction.

Another example is related to light scattering by a
dielectric ring structure with parameters shown in Fig. 3(a).
The dielectric constant of the ring structure is εp = 16, and the
dielectric constant of the surrounding medium εd = 1. Using
discrete dipole approximation (DDA) [24], we numerically
calculate the distribution of the induced polarization P(r)
inside the ring, then, using Eq. (1), the scattered electric field
without any multipole decomposition, and, finally, angular
distribution of the total scattered power Ps(ϕ, θ ) in the far
field:

Ps(ϕ, θ ) = 1

2

√
ε0

μ0
[|Es

ϕ (r, ϕ, θ )|2 + |Es
θ (r, ϕ, θ )|2]r2, (54)

where (r, ϕ, θ ) are coordinates of the observation point in the
spherical coordinate system: r is the radial coordinate, ϕ and
θ are the azimuthal and polar angles, respectively; and Es

ϕ

and Es
θ are angular components of the scattered electric field.

A detail description and discussions of the DDA numerical
method and its applicability for electromagnetic scattering
problems are presented in Ref. [24]. Note that the DDA is
equivalent to other calculation methods, such as the volume
integral equation method and the digitized Green’s function
method [25,26].

We calculate the scattered electric field first without mul-
tipole decomposition directly from Eq. (4) and then using
two multipole decompositions with the same number of mul-
tipole terms using LWA equation (5) and exact multipole
equation (34). We also calculate angular distributions Ps(ϕ, θ )
for ϕ = 0 and θ ∈ [0, π ] (θ ∈ [0, 180o]) with and without
multipole decomposition approaches. In multipole decompo-
sitions we take into account contributions of the LWA mul-
tipoles p [electric dipole (ED)], m [magnetic dipole (MD)],
T [torodal dipole (TD)] , Q̂ [electric quadrupole (EQ)], M̂
[magnetic quadrupole (MQ)], and Ô [electric octupole (EOC)]
[18] and with the same number of exact spherical multipoles
p0, m1, T2, Q̂1, M̂2, Ô2. Calculated results are presented in
Figs. 3(b) and 3(c) for two sets of the size parameters kD
and kD|| (where k is the wave number in air). Note that the
θ = 0 and θ = π cases correspond to forward and backward
scattering. Comparing the red and green curves with the
blue curve with triangles in Fig. 3(b), one can see that for
0 � θ � 25o and 155o � θ � 180o the LWA multipole de-
composition provides very good agreement with total numer-
ical calculations (without multipole decomposition), whereas
the approach with the exact multipoles provides poor results
at these angles. For agreement with the total numerical result
[the curve with blue triangles in Fig. 3(b)], calculations with
exact multipoles need to involve higher-order terms up to
l � 10. As expected, for 25o < θ < 155o, corresponding to
side scattering, the exact multipole approach gives better
agreement with the total numerical calculations compared to
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FIG. 3. (a) Scattering object: a dielectric ring located in air is
irradiated by a plane light wave propagating along the z axis with lin-
ear polarization along the x axis. The geometrical parameters of the
ring are external radius Rext = 350 nm, internal radius Rin = 250 nm,
and ring thickness H = 40 nm. (b) and (c) Angular distribution of
the scattered power Ps(ϕ, θ ) for ϕ = 0 and θ ∈ [0, π ] calculated
using the numerical method without multipole decomposition (the
curve with blue triangles) and with multipole decompositions: the
red curve corresponds to LWA with the indicated multipoles; the
green curve is calculated using the indicated exact multipoles, and
the blue ED curve corresponds to the LWA electric dipole contri-
bution. kD and kD|| are the size parameters defined in the main
text.
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LWA. In Figs. 3(b) and 3(c), one can also see that the forward
(θ = 0) and backward (θ = π ) scattering is determined by
only the LWA electric dipole contribution given by ED curves.
As expected, with growing wavelength [Fig. 3(c)], differences
between LWA and exact multipole approaches are reduced.
However, still, the LWA multipoles provide a better approxi-
mation for forward and backward scattering [the red and green
curves in Fig. 3(c)].

The final example is related to light scattering by a di-
electric finite-length rod with diameter and length deter-
mined in Fig. 4(a). We again consider angular distributions
of the scattered power Ps(ϕ, θ ) for ϕ = 0 and θ ∈ [0, π ]
(θ ∈ [0, 180o]) with and without multipole decomposition
approaches. In Figs. 4(b) and 4(c) the size parameters satisfy
the conditions kD|| � 1 < kD. Angular distributions of the
scattered power calculated without multipole decomposition
is presented by the curves with blue triangles in Figs. 4(b)
and 4(c). A comparison of these curves with that calculated
using multipole decompositions with different numbers of
multipole terms allows us to demonstrate the accuracy of
the applied multipole decompositions. One can see that the
forward scattering (θ = 0) and backward scattering (θ = π )
are determined by the only ED contribution in the LWA case
[the dashed black curve in Fig. 4(b)]. In contrast, the exact
multipole decomposition provides an accurate approximation
for forward and backward scattering by taking into account
contributions of multipoles up to the electric octupole O2 and
magnetic quadrupole M2 [the red curve in Fig. 4(c)]. For
arbitrary θ both multipole decompositions provide accurate
approximations when the multipole moments up to the electric
octupole and magnetic quadrupole are used in Figs. 4(b) and
4(c). Our simulations show that the above analysis is also
valid for rods with larger diameters corresponding to the size
parameter kD|| � 0.5.

The presented examples demonstrate that calculations with
a limited number of exact multipoles do not automatically pro-
vide better results than LWA. There exist scattering directions
where LWA provides more accurate results.

V. CONCLUSION

Starting from a general expression for radiated (scattered)
electric field obtained from Maxwell equations, the electric
field multipole decomposition with exact multipole moments
was derived in real space using the Cartesian coordinate rep-
resentation. The obtained expressions are in agreement with
previous publications [16,17], where derivations were made
in momentum space. The developed approach was used to
compare applications of the long-wavelength approximation
and exact multipole moments for modeling directional light
scattering by a shape-anisotropic finite-size scatterer with
different geometrical dimensions. It was demonstrated that
in certain cases the LWA approach requires fewer multipoles
for modeling directional scattering. It was shown that the
physical reason why the LWA approach works better than the
exact spherical multipole decomposition is the presence of a
small parameter providing better convergence of the Taylor
expansion determining LWA multipoles. This parameter is
the ratio between the biggest scatterer size projection in the
light scattering direction and the light wavelength. If this

200-200

-100

200

0

z 
(n

m
)

100

x (nm)

200

0

y (nm)

0
-200-200

k

E

0 0.5 1 1.5 2 2.5 3

 (rad)

0

100

200

300

400

500

600

700

800

900

IN
T

 (
ar

. u
n.

)
kD 4.38; kD

||
0.22

Total
ED
ED+MD+EQ
ED+MD+EQ+TD+MQ+EOC

0 0.5 1 1.5 2 2.5 3

 (rad)

0

100

200

300

400

500

600

700

800

900

IN
T

 (
ar

. u
n.

)

kD 4.38; kD
||

0.22

Total
p

0

p
0
+m

1
+Q

1

p
0
+m

1
+Q

1
+T

2

p
0
+m

1
+Q

1
+T

2
+M

2
+O

2

(a)

(b)

(c)

FIG. 4. (a) Scattering object: a dielectric rod located in air is
irradiated by a plane light wave propagating along the z axis with
linear polarization along the x axis. The geometrical parameters of
the rod are a length of 400 nm and a diameter of 20 nm. (b) and
(c) Angular distribution of the scattered power Ps(ϕ, θ ) for ϕ = 0
and θ ∈ [0, π ] calculated using the numerical method without mul-
tipole decomposition (the curves with blue triangles). (b) Results of
LWA multipole decomposition with different numbers of multipole
terms and (c) calculations with different numbers of exact multipoles.
kD and kD|| are the size parameters.
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ratio is small (�1) only low-order LWA multipoles determine
the scattered field even in the case when the real scatterer
sizes are larger than the light wavelength. However, the num-
ber of exact multipoles required for accurate approximation
of the same directional scattered field can be significantly
higher. Detailed explanations of this seeming paradox were
given.
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