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Design of graphene waveguides: Effect of edge orientation and waveguide configuration
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Electron transport in a graphene quantum well can be analogous to photon transmission in an optical fiber.
In this work, we present a detailed theoretical analysis to study the transport characteristics of graphene
waveguides under the influence of different edge orientations. The non-equilibrium Green’s function approach
in combination with the tight-binding Hamiltonian has been utilized to investigate the conductance properties of
straight armchair and zigzag oriented graphene waveguides. Conductance plateaus at integer steps of 4e2/h have
been observed in both orientations while the zigzag oriented waveguides present a wider first quantized plateau
compared to that in the armchair oriented ones. Using various geometric and physical parameters, including
side-barrier and waveguide width, and the metallic properties of terminals, we investigate the conductance profile
of waveguides. In addition to the observation of valley symmetry in both edge orientations, this article explores
the critical influence of drain contacts on waveguide conductance. Furthermore, we extended our transport study
to three different highly bent waveguide configurations, such as U-shape, L-shape, and split-shape waveguides,
in order to explore their applications in graphene-based ballistic integrated circuit devices. In the end, we also
calculated the conductance of larger graphene waveguides using the scalable tight-binding model, in order to
compare the results obtained from the original model.
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I. INTRODUCTION

Ballistic transport and coherent conductance quantization
are the key elements for engineering sophisticated nanoelec-
tronic devices in new classes of materials [1–7]. Physically
tailored graphene channels with widths less than 50 nm, often
noted as graphene nanoribbons (GNRs), provide an opportu-
nity to manipulate the electrical properties of the intrinsically
gapless crystal [8–11]. Electronic properties and stability of
GNRs have been investigated for realistic applications such
as transistors, filters, and polarizers [12–16]. The two well-
known edge configurations, i.e., armchair and zigzag, result
in two distinct forms of GNRs (commonly abbreviated by
AGNRs and ZGNRs) [17,18]. Transport properties in these
two structures are different in many aspects, such as the
spacing between conductance plateaus. Although ideal GNRs
should possess the quantization of conductance, unavoidable
disorders on the edges have become dominant sources of
incoherent scattering, making the quantization of conduc-
tance hardly visible in plasma-etched GNRs [19–23]. To date,
only a few investigations into conductance quantization in
GNRs fabricated using shadow mask oxygen plasma etching
exist [24,25]. Further improvement is now incorporated into
the design of graphene point contacts and GNRs by using
hexagonal boron nitride, hBN, as bottom and top dielectrics to
reduce substrate disorders [26–28]. However, the pronounced
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quantization of conductance (mostly appearing as kinks) is not
easily accessible due to the hypersensitivity of the system to
edge disorders [29,30]. On the other hand, charge carriers in
graphene revealed phenomena such as refraction, reflection,
and Fabry-Pérot interference that can be analogous to electro-
magnetic phenomena [31–33]. It has also recently been shown
that the long phase coherence length in graphene embedded in
van der Waals heterostructures provides unique opportunities
to observe electron interference and other peculiar electron
transmission states such as the snake states [34–36]. The
opticslike phenomena of electrons in graphene enables the
design of all graphene electronic devices resembling an op-
tical fiber, which effectively works as an electron waveguide
[37–39]. When a uniform potential well is imposed across a
graphene flake, the induced 1D quantum confinement in 2D
electron gas results in straight graphene waveguides which
have been explored both theoretically and experimentally
with middle-scale (submicron size) and large-scale (micron
size) geometries [40–45]. In line with the aforementioned
theoretical studies, we have previously demonstrated that the
quantization of conductance can be achieved in straight and
bent armchair graphene waveguides by using nonequilibrium
Green’s function (NEGF) calculation and proper design of
contacts [46–48]. Recent work in the field studies also sug-
gests that the connection between the external electrodes and
the ribbon scattering area plays an important role in the con-
ductance of GNRs [49,50]. Since AGNRs and ZGNRs have
very different transport properties, we aim to address the fol-
lowing question: what are the differences in transport between
armchair-oriented and zigzag-oriented graphene waveguides
(abbreviated as AO-GWs and ZO-GWs, respectively) with
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FIG. 1. Schematic diagrams of graphene waveguides. (a) Arm-
chair oriented waveguide (AO-GW). (b) Zigzag oriented waveguide
(ZO-GW). SB indicates the side barrier. (c) The cross section of
ZO-GW showing the smooth variation of the on-site potential energy.
The scale of on-site potential at each atomic site is indicated by
different color. The potential profile (U ) across the x axis is shown
underneath, which ranged from UW G on the bottom of the waveguide
to USB on the side barriers. (d) An example of NA-GNR with NA = 9
together with a small scattering area with Nch = 3 to show the
different tight-binding approximations with 1st, 2nd, and 3rd nearest
neighbors.

similar sizes? Our study includes two main parts. First, we
present a theoretical comparison between transport in straight
AO-GWs and ZO-GWs. Secondly, we investigate the trans-
mission characteristics of graphene waveguides with different
geometries (L shape, U shape, and split shape), which had
been previously studied in tailored graphene systems [51,52].
We organize this article in the following way: the geometry
of AO-GW and ZO-GW and the details of our model are
presented in Sec. II. Conductance and local density of state
are compared for straight AO-GW and ZO-GW in the first part
of Sec. III, where the corresponding quasi-one-dimensional
band structures for slices of waveguides are calculated for
reference. Furthermore, the effect of geometrical parameters
such as the widths of side barriers, waveguide (potential well),
and terminals were investigated. Similar transport studies
were also carried out for L-shape, U-shape, and split-shape
graphene waveguides. The results are presented in the second
part of Sec. III. In addition, the scalable tight-binding method
has been utilized to examine the quantization of conductance
for larger graphene waveguides in the last part of Sec. III. Fi-
nally, we will provide conclusive remarks about all waveguide
configurations in Sec. IV.

II. DEVICE DESCRIPTION AND METHODOLOGY

Figure 1 illustrates the geometry of our devices. Middle-
size strips of graphene with width W and length L are con-
sidered as the scattering area, where the armchair and zigzag
edges are distributed along the horizontal (x-axis) and vertical
(y-axis) directions, respectively. We introduce an external
rectangular gate to induce a spatially varied atomic on-site
energy in the graphene strip, which divides the scattering
area into a centrally located region of waveguide and two

side barriers. In this way, two distinct edge orientations for
graphene waveguide (AO-GW and ZO-GW) can be created as
shown in Figs. 1(a) and 1(b), respectively. WG (WSB) represents
the width of waveguide (side barrier) with fixed on-site energy
UW G (USB), in which we have considered the full width at
half maximum (FWHM) accounting for the smoothed on-site
energy as shown in Fig. 1(c). Note that the potential energy
on the atomic sites is indicated by color in Figs. 1(a) and
1(b), and can be referred to the color bar shown in Fig. 1(c).
Each graphene waveguide contains two fundamental parts: the
scattering area and leads (the areas that stick out from the
scattering area). We use the notation NA-AGNR to label the
central scattering area. NA stands for the number of dimer lines
and is defined as NA = 1 + �W/(0.5

√
3acc)�, in which W is

the width of AGNR and acc = 0.142 nm is the carbon-carbon
bond length. The length of the scattering area (L) is related
with the chain number (Nch) via Nch = �L/(3acc)� (note that
each chain contains 2NA atoms). Parameters NA and Nch are
two essential inputs to build the scattering area.

The second part of the device is contacts (source and drain)
which are also made of carbon and are in fact finite-width
GNRs attached to the scattering area, as illustrated by the
extended GNRs sticking out of the rectangular region of
W × L in Figs. 1(a) and 1(b). The width of source (drain) in
both orientations is labeled by WS (WD) and is also related
with the number of dimer lines in source (drain) by NeS (NeD),
where the first index (e = a, z) stands for the edge orienta-
tion. The orientation of scattering area is kept unchanged,
whereas the position of the leads and the edge orientation
of the waveguide are different for ZO-GW and AO-GW [see
Figs. 1(a) and 1(b)]. It can be assumed that wider leads (as
compared to WG) provide denser subbands and consequently
higher density of state for carriers to get in and out of the
waveguide. On the other hand, wider leads may also provide
extra paths for carriers to go through the side barriers instead
of the waveguide and thus the interference may demolish the
coherent transmission from source to drain [48,53]. Thus, in
most configurations discussed in this report, WS, D is equal to
WG unless otherwise stated.

Moreover, our previous studies have shown that a metal-
lic AGNR is a better choice to make an ideal contact to
armchair oriented graphene waveguide [48,53] . Indeed, the
zero-energy modes in metallic AGNRs permit the low energy
electrons from the source to be injected into the waveguide
region. The advantage of using metallic GNRs as leads reflects
itself as an early onset of the first conductance plateau around
the Dirac point. Thus we may modify NaS, aD by 1 or 2 to
yield a number of dimer lines of NaS, aD = 3m + 2 (m is an
integer), which is the condition for building metallic AGNRs.
On the other hand, ideal ZGNR leads (with an even number
of atoms in the unit cell) connecting to ZO-GWs do not need
any modification, because they naturally have zero-energy
modes. Source leads have the same on-site energy as in the
guiding region while the drain leads are grounded (zero on-
site energy) in all examples. The tight-binding Hamiltonian of
a graphene device can be expressed as

H =
∑

i

μic
†
i ci +

∑

i, j

ti, j (c
†
i c j ), (1)
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TABLE I. Hopping energies and overlap integral values for the
1st (1st row) and the 3rd (2nd row) nearest neighbor tight-binding
approximations [54,55].

Approx. ε0 (eV) t0 (eV) t1 (eV) t2 (eV) s0 (eV) s1 (eV) s2 (eV)

1st 0 −2.74 0 0 0 0 0
3rd −0.36 −2.78 −0.12 −0.068 0.106 0.001 0.003

where c†
i (ci ) is the creation (annihilation) operator and μi

indicates the on-site energy at the ith atomic site. The on-site
energy can be tuned through the external gate potentials and
is described by U as depicted in Fig. 1(c). Hopping between
the nearest neighbors (e.g., i and j sites) is the origin of the
second term where ti, j denotes a fixed energy value based on
tight-binding approximations, as in Table I [54,55]. A small
size scattering area with Nch = 3 is shown in Fig. 1(d) in
which the 1st, 2nd, and 3rd order tight-binding approximations
are indicated by green, blue, and red circles, respectively.
Following the Landauer-Büttiker formalism, conductance of
a two-terminal device in low temperature and low bias can
be expressed as G = G0T , where G0 = 2e2/h represents the
quanta of conductance and T is the transmission coefficient.
Spin degree of freedom is included by the factor 2 in G0, while
e and h are the electron charge and Planck’s constant [56]. The
source-to-drain transmission coefficient T can be calculated
using Caroli’s formula [57]:

T = tr(�sG
r�d Ga), (2)

where �s (�d ) is the broadening matrix of the source (drain)
lead. Gr (Ga = Gr†) represents retarded (advanced) Green’s
function given by

Gr (E ) = [(E + iη)S − H − �s(E ) − �d (E )]−1, (3)

where η is a small infinitesimal number usually about 10−4.
Here, S is the overlap matrix built in a similar way to the
second term in Eq. (1) and taking the form

S =
∑

i, j

si, j (c
†
i c j ), (4)

where si, j represents the overlap integral between atomic
orbitals (pz) located at i and j. It is worth noting that orbitals
at two different atomic sites are not necessarily orthogonal to
each other. Therefore, nonzero values exist on the S matrix
if the 3rd nearest approximation is considered (see Table I).
However, these values are small due to the long-distance
interactions between atomic orbitals. The open boundary con-
dition at the source and drain is incorporated into the transport
study via the last two terms in Eq. (3), which are the so-
called self-energy terms. Self-energy matrices are calculated
via �s = A†

s gs As and �d = Ad gd A†
d , in which As, d are given

by

As, d (E ) = [(E + iη)SsS, Sd − HsS, Sd ]. (5)

Here, HsS and SsS are the interaction Hamiltonian and in-
teraction overlap matrices between the source and the first
supercell in the scattering area, while HSd and SSd are the
interaction Hamiltonian and interaction overlap matrices be-
tween the last supercell in the scattering area and drain lead

(index S refers to the scattering area, whereas s and d denote
the source and drain). In the process of building HsS (SsS),
the ith index in Eq. (1) [Eq. (4)] goes over the atomic sites
in the source lead while the jth index goes over the atomic
sites in the first supercells of the central scattering area. HSd

and SSd are constructed similarly. We employed the Sancho-
Rubio iterative scheme to calculate the retarded surface
Green’s functions, gs, d [58,59], from which one can easily
obtain the broadening matrices via �s, d = i(�s, d − �

†
s, d ).

Another important parameter is the local density of state
(LDOS) given by

LDOS(E ) = (i/π )diag[Gr (E ) − Ga(E )], (6)

where diag refers to the diagonal elements of the matrix. We
can also evaluate LDOS by extracting the real part of the
diagonal elements of the spectral function (Gr�s, d Ga). This
parameter determines the spatial distribution of wavefunction
at a specific Fermi energy. Inversion of the large matrix in
Eq. (3), which is associated with the large number of atoms in
the scattering area, is a massive task. For many of the physical
quantities such as the transmission function and LDOS, only
part of the full Green’s function is required. The recursive
scheme, explained in detail in Ref. [60], allows us to obtain
the essential parts of the Green’s function to perform the
necessary calculations.

In tight-binding theory, expansion of free electron wave
function in terms of Block’s wavefunction together with the
minimization of energy converts the Schrödinger equation
into an eigenvalue matrix equation, H (k) − E (k)S(k) = 0,
where k is the two dimensional wave vector whose range is
determined by high symmetry points in graphene’s reciprocal
lattice [61]. In systems with a physical confinement in the
transverse direction, it is possible to further simplify the 2D
band structure calculation by assuming a plane-wave wave
function in the longitudinal direction: eik‖x‖ , where the in-
dex ‖ denotes the longitudinal (transport) direction. Physical
confinement in the transverse direction leads to H (k⊥) −
E (k⊥)S(k⊥) = 0, where the index ⊥ denotes the transverse
direction. The eigenvalues E (k⊥) of the following character-
istic equation (the so-called secular equation),

det[H (k⊥) − E (k⊥)S(k⊥)] = 0, (7)

give rise to the quasi-one-dimensional band structure. Note
that H (k⊥) is given by

H (k⊥) ≡ Hlce(−ik⊥ac ) + Hcc + Hcre(ik⊥ac ), (8)

where ac is the distance between the neighbor supercells.
Hcc denotes the interaction Hamiltonian between all atoms in
the central supercell, while Hlc (cr) represents the interaction
Hamiltonian between atoms in the left (central) supercell with
atoms in the central (right) supercell. One can use Eq. (1) to
build each of the Hamiltonian matrices in Eq. (8). S(k⊥) has a
similar form to H (k⊥) in which Slc, Scc, and Scr [constructed
via Eq. (4)] replace the equivalent Hamiltonian terms in
Eq. (8). Altogether, Eq. (7) can be constructed to solve the
eigenvalue problem.
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FIG. 2. Conductance of 20-nm-wide AO-GW (red-dot lines) and
ZO-GW (green-solid lines) with different side barrier width, WSB.
Panels (a)–(c) with the 1NN approximation and (d)–(f) with the 3NN
approximation.

III. RESULTS AND DISCUSSIONS

A. Straight waveguides

We begin our study by considering straight graphene
waveguides in both edge orientations (AO-GWs and ZO-
GWs), exploring three different side-barrier widths (WSB) and
investigating the effect of WSB on the conductance. The length
of graphene waveguide (L) and the width of the guiding region
(WG) are fixed at 100 nm and 20 nm, respectively. The 20 nm
wide guiding region is equivalent to the number of dimer
lines NA − GW = 163 in AO-GW and NZ − GW = 188 in
ZO-GW. The total width of scattering area W is 40, 60,
and 80 nm, which corresponds to WSB = 10, 20, and 30 nm,
respectively. At the same time, leads with the number of
dimer lines NaS, aD = 161 [metallic armchair leads; a stands
for armchair and S(D) stands for source (drain)] and NzS, zD =
188 (symmetric zigzag leads; z stands for zigzag) have been
considered for AO-GW and ZO-GW, respectively. The on-site
potential energy in the scattering area is smoothly varied
within �W = 44acc ≈ 6.25 nm from USB = 0 eV at the side
barriers to UW G = −0.3 eV at the guiding area for all devices
[53]. As mentioned earlier, source leads and waveguide areas
are set to possess the same potential energy (UW G), while drain
leads are grounded in all samples. We conducted a transport
study for these six samples by considering both the first (1NN)
and the third (3NN) nearest tight-binding approximations. The
results are shown separately on the left and right panels in
Fig. 2. In Fig. 2 both the 20 nm ZO-GW and AO-GW exhibit a
quantization of conductance G = 1, 3, 5 G0 in each configura-
tion (see the green curve and red curve in each panel). The first
plateau of ZO-GW is clearly wider in energy axis than that of
AO-GW. The first conductance plateaus for both ZO-GW and
AO-GW are flat, whereas other higher plateaus are not, and
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FIG. 3. Conductance of source (blue-dot line), drain (red-
dashed-dot line), and ZO-GW (green-solid line) considering (a) 1NN
and (b) 3NN approximations.

show a gradual losing flatness toward more positive energies.
Importantly, the effect of side-barrier widths (WSB) seems
negligible for both orientations. This suggests a minimum
influence of edge disorders on conductance of a gate-defined
graphene waveguide as long as the edges (the border between
side barriers and vacuum) are far enough from the waveguide
area. When the 3NN approximation is employed, noticeable
dips in the conductance of AO-GWs (red-dot lines) appeared
around E = 0 eV, as can be seen in Figs. 2(d)–2(f). This can
be understood by the fact that the 3NN approximation tends
to yield a small band gap in an AGNR (i.e., terminals) [62].
Both 1NN and 3NN approximations give rise to the noisy
conductance features at E < 0 eV in ZO-GW. Similar noisy
conductance has also been observed in a AO-GW but at much
lower energy levels. For example, E < −0.2 eV (not shown
in Fig. 2) [48]. We attribute these noises to the increase of
current passing through side barriers in this range of energy.
At higher energies, the plateaus gradually disappear because
there are only a few confined wavefunctions localized in the
waveguide area.

In addition, with the 3NN approximation, the difference in
conductance between two orientations became more visible.
For example, the conductance of ZO-GW exhibits larger
values at E < 0 eV. This difference can be explained by
comparing the conductance of the drain electrode and ZO-
GW under the 3NN approximation, as shown in Fig. 3.
Note that the conductance of the drain electrode refers to
the conductance of the semi-infinite GNR that is used as a
drain lead in our structure. The correspondence between the
red-dashed-dot line and green-solid line in Fig. 3 suggests that
the conductance of the waveguide follows the conductance
behavior of the drain terminal.

We further explore the effect of leads on waveguide trans-
port properties. Here, we modified the number of dimer lines
of leads by 1 or 2 to make them either metallic or semi-
conducting (nonmetallic). In contrast to the insensitivity of
conductance to the widths of side barriers, conductance of
waveguide for both orientations shows a clear dependence on
the metallic (m) or nonmetallic (n) nature of leads, as shown
in Figs. 4(a) and 4(b). One-third of the AGNRs and an ideal
ZGNR have metallic behavior because their band structures
possess zero-energy mode.
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Different combinations of metallic and nonmetallic leads
are considered for a previously studied configuration, i.e.,
WSB = 20 nm and WG = 20 nm. Nonmetallic drain in AO-
GW yields a finite gap on conductance around E = 0 eV
[gray-solid and green-dot lines in Fig. 4(a)], while the con-
ductance of a configuration with nonmetallic source and
metallic drain is identical to that with both metallic leads
[i.e., blue-solid line is identical to red-dot line in Fig. 4(a)].
Moreover, the conductance of AO-GW with nonmetallic drain
(m-n and n-n) shows shorter spacing between plateaus with
quantization steps at multiples of G0 compared to that with
metallic drain (n-m and m-m), which shows quantization steps
at multiples of 2G0. On the other hand, an ideal ZGNR (with
closed hexagonal crystal structure) represented by an even
number of dimer lines is indeed metallic. However, a ZGNR
with an odd number of dimer lines results in breaking the
crystal symmetry and is nonmetallic due to the absence of the
zero-energy mode. As a result, the gap in conductance is even
wider in the case of ZO-GW with disordered (nonmetallic)
drain [green-dot line in Fig. 4(b)]. Here, we refer to a ZGNR
lead with an odd number of dimer lines as a disordered
lead. Also, like AO-GW, the conductance of ZO-GW with a
nonmetallic source and a metallic drain (n-m) is identical to
that with both metallic leads (m-m), as shown by the blue-solid
and red-dot lines in Fig. 4(b). Configurations with nonmetallic
drain (m-n and n-n) in ZO-GW do not change the quantization
step (in contrast to AO-GW) but it has shifted the conductance
both vertically and horizontally, as shown in Fig. 4(b). This
result again indicates that the nature of the drain plays a
significant role on the conductance of a graphene waveguide
for both orientations.

Therefore, we adopted metallic leads for the rest of our
studies because they yield early onset of a nonzero conduc-
tance plateau for both edge orientations. Altering the width of
leads at nanometer scale also influences the conduction of a

graphene waveguide, as shown in Figs. 4(c) and 4(d) for both
edge orientations.

Wider conductance plateaus are presented for short leads
and vice versa. Note that the situation WD, S 	= WG has added a
visible level of noise to the conductance plateaus in the cases
of much shorter (16 nm) and much wider (40 nm) leads as
compared to the primary case of WD, S = WG.

In further study of the effect of parameter WG on the con-
ductance of a graphene waveguide for both edge orientations,
we evaluated three values of WG (20, 30, and 40 nm), with
leads satisfying the condition WD, S = WG. For these tests,
length L = 100 nm and side barriers WSB = 20 nm are kept
fixed. Conductance and quasi-one-dimensional band struc-
tures for supercells corresponding to each WG are plotted in
Fig. 5 with the same color schemes. For both edge orienta-
tions, as WG decreases from 40 nm to 20 nm, conductance
plateaus get longer. This is a result of larger spacing between
the energy bands, as visible in Figs. 5(b)–5(d) and 5(f)–5(h).
Note that the subbands of AO-GW are twofold degenerate
[see Figs. 5(b)–5(d)], while the subbands of ZO-GW are not
degenerate [see Figs. 5(f)–5(h)]. For a specific WG, one can
deduce that the first plateau on conductance for E > 0 eV does
not originate from the first band of the graphene waveguide
by tracking the background gray dashed lines between the
conductance and the corresponding bands in Fig. 5. For in-
stance, the fourth band of the 20 nm wide graphene waveguide
in Fig. 5(d) (bands are named by numbers regardless of
degeneracy) around E = 0 eV coincides with the beginning
of the first plateau in Fig. 5(a) (solid-green line). To further
explore the transport properties of a graphene waveguide in
two different edge orientations, local density of states (LDOS)
are calculated for the case of WG = 20 nm.

In Figs. 6(a)–6(d), normalized LDOS for both orientations
of the 20 nm wide waveguide are presented at two Fermi en-
ergies (E1 = 0.05 eV and E2 = 0.15 eV), which correspond
to the conductance plateau at G0 and 3G0, respectively. Right
(lower) panels of Figs. 6(a) and 6(b) [Figs. 6(c) and 6(d)] plot
the average of the unnormalized LDOS (〈LDOS〉) within the
black-dashed lines shown in Figs. 6(a) and 6(b) [Figs. 6(c)
and 6(d)]. Reasonable localization of LDOS is apparent within
the waveguide area at E1 for both orientations, as shown
in Figs. 6(a) and 6(c). The four peaks visible in the right
panel of Fig. 6(a) correspond to the fourth mode in the
band structure of AO-GW [see Fig. 5(d)], which contributes
to the first plateau in the WG = 20 nm waveguide. Similar
analysis can be performed for other graphene waveguides
with different widths and at different energies. Comparison
between Fig. 6(a) and Fig. 6(b) [or Figs. 6(c) and 6(d)] shows
stronger confinement of the wavefunction at E1 as compared
to E2. Nevertheless, 〈LDOS〉 shows that leakage of the wave
function toward side barriers is still negligible at E2 for both
edge orientations.

B. U-, L-shape, and split waveguides

In this section, we further study the transport properties of
waveguides with the geometries that can be potentially used
in nanoelectronic devices. Three types of curved waveguides,
U-shape, L-shape, and split-shape, have been taken into ac-
count to investigate the conductance profile and the ability to
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FIG. 5. (a) Conductance of AO-GWs for various WG = 20, 30, and 40 nm. (b)–(d) Band structure plotted for different WG employed in (a).
The color of the bands in each panel corresponds to the color used in (a). (e) Conductance of ZO-GWs for various WG used in (a). (f)–(h) Band
structure plotted for corresponding WG of (e). Solid gray lines in the band structures denote the bands corresponding to the wavefunctions that
are not confined in the waveguide.

confine the charge carriers in these highly bent structures. In a
U-shape graphene waveguide, both the source and drain
leads are connected to the same edge orientation (either arm-
chair or zigzag edge). In the following, we use the notation
U-AO-GW (U-ZO-GW) to represent the U-shape AO-GW
(ZO-GW). A U-AO-GW (U-ZO-GW) can be constructed by
bending a straight AO-GW (ZO-GW) by 180◦ as shown in
Fig. 7(a) [Fig. 7(b)]. Dimension of the scattering area is W ×
L = 120 nm × 80 nm for U-AO-GW and W × L = 80 nm ×
120 nm for U-ZO-GW. Here, we consider the waveguides
with two different widths (WG = 20 nm and 30 nm) in each
orientation. The width of the middle barrier between the
source and drain [i.e., 2R1 in Fig. 7(a) and Fig. 7(b)] is
set to 40 nm (30 nm) when WG = 20 nm (30 nm), while
WSB = 20 nm was consistent across all structures. The on-
site potential energy of the U-shape waveguides with WG =
20 nm is constructed by a combination of three segments: two
AO(ZO)-GWs with L = 20 nm, which are parallel to each
other, and half of a circular waveguide with inner (outer)
radius of 20 nm (40 nm), which provides a smooth bending
around the center of the circular part [i.e., point C in Fig. 7(a)
and Fig. 7(b)]. Conductance of the U-AO-GWs and the U-
ZO-GWs both resemble that of their counterparts (straight
AO-GWs and ZO-GWs), as can be observed by comparing
Fig. 7(c) with Fig. 5(a) and Fig. 7(d) with Fig. 5(e). In the
U-shape case, the general form of quantized conductance is
preserved, but the second plateau is modulated by a visible
oscillation as highlighted by a dashed ellipse in Fig. 7(d).
This oscillation is more pronounced in the WG = 20 nm case
and becomes less visible when WG is 30 nm. The normalized
LDOS for U-shape waveguide with WG = 20 nm in both

orientations at a given energy of E = 0.03 eV (which locates
within the first plateau) is plotted in Figs. 7(e) and 7(f),
respectively. Both LDOS again show reasonable confinement
at a given Fermi energy which corresponds to the conductance
plateau.

Next, we studied the L-shape graphene waveguide to in-
vestigate the effect of 90◦ bending on their transport prop-
erties. Here, we considered two configurations of L-shape
waveguide in a fixed-size scattering area (W = L = 100 nm),
as shown in Fig. 8(a) and Fig. 8(b). First, a AO-GW bent
to become a ZO-GW, with source on the zigzag interface
and drain on the armchair interface, as labeled as L-AZ-
GW. Secondly, a ZO-GW bent to become a AO-GW, with
source on the armchair interface and drain on the zigzag
interface, as labeled as L-ZA-GW. Note that the edge ori-
entation of the scattering area is fixed, while the location of
source and drain leads is different for each case, as visible
in Fig. 8(a) and Fig. 8(b). The waveguide (equivalently the
on-site potential energy) is constructed using a combination
of AO-GW and ZO-GW (both with L = 50 nm) perpendicular
to each other, and a quarter of a circular waveguide with
inner (outer) radius of 10 nm (30 nm), which provides a
smooth 90◦ bending around the center of the system [i.e.,
point C in Figs. 8(a) and 8(b)]. To calculate the conductance of
the aforementioned configurations, one only needs to switch
the on-site potential energy between source and drain, and the
relative positions of �s and �d in Eq. (2). Conductance of the
L-shape waveguide in each configuration, with WG = 20 nm
and 30 nm, is plotted in Figs. 8(c) and 8(d), respectively.
Consistent with the previous results of straight waveguides,
conductance of the L-shape graphene waveguides (both ZA
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FIG. 6. LDOS for a AO-GW (a) at E1 = 0.05 eV and (b) at
E2 = 0.15 eV. Right panels of (a) and (b) show the averages of the
unnormalized LDOSs (〈LDOS〉) in the selected region between the
black-dashed lines shown in (a) and (b). (c) and (d) The same as
(a) and (b) but for ZO-GW.

and AZ) show dependence on the nature of the drain, as can
be seen by comparing Fig. 8(c) with Fig. 5(a) and Fig. 8(d)
with Fig. 5(e) for WG = 20 nm and 30 nm. Conductance of
a 20 nm L-ZA-GW also shows a visible oscillation at the
second conductance plateau, which is similar to the case of
a U-shape graphene waveguide. This phenomenon could be
attributed to the bending-induced scattering between K and
K ′ sublattices. Similarly, we calculated the LDOS of L-shape
graphene waveguides with WG = 20 nm and at E = 0.05 eV
(within the first conductance plateau). Both L-shape graphene
waveguides present a decent confinement of wavefunction
along the straight parts and around the bending area, as shown
in Figs. 8(e) and 8(f). As an extension to the L-shape graphene
waveguide, we subsequently studied the split waveguides,
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FIG. 7. Panels (a) and (b) show the schematic diagram for U-
AO-GW and U-ZO-GW. Panels (c) and (d) show the conductance
of U-AO-GW and U-ZO-GW, with WG = 20 nm (red-dot line) and
30 nm (green-solid line), respectively. Panels (e) and (f) show LDOS
calculated for U-AO-GW and U-ZO-GW with WG = 20 nm and at
E = 0.03 eV.

which could be viewed as the counterpart of an optical beam
splitter. The on-site energy of a split graphene waveguide can
be constructed by combining that of two adjacent L-shape
waveguides bent in opposite directions. The split waveguide
built in the scattering area consists of two parts: a stem part
and two split parts.

In our example, the stem part is 40 nm wide and it splits
equally into two 20 nm wide bent graphene waveguides. We
also considered two configurations for the split waveguide,
labeled by SP-AZ-GW and SP-ZA-GW, in which SP-AZ-GW
(SP-ZA-GW) refers to a split waveguide where the orientation
of stem is armchair (zigzag), while that of the branches is
zigzag (armchair). Like the case of the L-shape waveguide,
drain leads at the end of branches are connected to differ-
ent interfaces, which are opposite to the interface between
the source lead and the stem, due to the 90◦ bending of
each L-shape waveguide. The calculated conductance through
different paths (G12 and G13) is shown in Figs. 9(a) and
9(b), in which the first subindex (i.e., 1) refers to the stem,
while the second subindex (i.e., 2 or 3) refers to each branch.
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GW, with WG = 20 nm (red-dot line) and 30 nm (green-solid line),
respectively. Panels (e) and (f) show LDOS calculated for L-AZ-GW
and L-ZA-GW with WG = 20 nm and at E = 0.05 eV.

Conductance for both paths in the three-terminal SP-AZ-GW
shows a similar trend to that of the 20 nm straight ZO-GW.

The conductance of SP-ZA-GW also follows a similar
pattern to the 20 nm straight AO-GW, which can be rec-
ognized by the small dip in conductance around E = 0 eV
[see Fig. 9(b)]. Together with the small dip observed in
other armchair drain-based waveguides, we concluded that
the nature of drain leads (metallic or nonmetallic, and width)
significantly determines the conductance profile of various
types of graphene waveguides, regardless of their bending
geometries [53]. Again, we plotted the normalized LDOS of
split waveguides for each configuration in Figs. 9(c) and 9(d)
to depict the confinement at E = 0.05 eV corresponding to the
first conductance plateau. In addition, quasi-one-dimensional
band structures for selected supercells around the splitting
point, indicated by dashed rectangles in Figs. 9(c) and 9(d),
are plotted in Figs. 10(a) and 10(b), respectively. We have
chosen these segments of the scattering area because they
give us the information of the energy bands at the beginning
of two independent branches. The calculated energy bands
show the twofold [Fig. 10(b)] and fourfold [Fig. 10(a)] de-
generacy for supercells with zigzag [Fig. 9(d)] and armchair
[Fig. 9(c)] edges. The number of energy bands in the presence
of branches has doubled compared to the band structures
of the straight graphene waveguides [see Figs. 5(b)–5(d)
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-0.1 0 0.1 0.2 0.3
0
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FIG. 9. Panels (a) and (b) show the conductance of SP-AZ-GW
and SP-ZA-GW with WG = 40 nm for stem and WG = 20 nm for
branches. LDOSs of SP-AZ-GW and SP-ZA-GW are presented in
(c) and (d) at E = 0.05 eV.

and Figs. 5(f)–5(h)]. Each of the twofold energy bands in
Fig. 10(b) can be attributed to a nondegenerate energy band
belonging to each branch. Similarly, one can divide the four-
fold degenerate energy bands of SP-AZ-GW in Fig. 10(a) into
two twofold degenerate bands resulting from each branch.
Moreover, the symmetry of the system along the transport
direction in the stem part assures the spatial continuity of
energy channels along each branch segment. Therefore, the
incoming wave has equal probability to scatter into each
branch at the splitting point and results in ballistic transport
from splitting point to drains. This justifies the similarity of
conductance between two branches, as can be observed in G12

and G13 [see Figs. 9(a) and 9(b)].

C. Upscaling graphene waveguides

Although the recursive NEGF enables us to perform trans-
port calculations on all the aforementioned examples, the
large amounts of memory required by the algorithm renders
it incapable of handling structures longer than 200 nm in
common computing machines. One solution to this hurdle is
to employ a scalable tight-binding approach to examine the
quantization of conductance on much larger graphene waveg-
uides. A scalable tight-binding model refers to upscaling the
real carbon-carbon bond length (acc) in graphene via ascale =
S f acc, with the scaling factor S f > 1 [45]. On the other hand,
the nearest hopping energy t0 must be modified to t0/S f to
keep the energy band structure unchanged in the low energy
regime. First, we performed the transport study on 20 nm
waveguides (i.e., our early example with armchair and zigzag
edge orientations) with two different scaling factors 2 and 4.
Note that the size of the waveguide is fixed, so the increase
of the scaling factor actually reduces the number of carbon
atoms in the calculation. Conductance of the scaled graphene
waveguides with both orientations along with conductance
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FIG. 10. Energy band structures for the split waveguides around
the splitting area. (a) Band structure calculated for the supercell
indicated by the dashed rectangle (an armchair supercell) in Fig. 9(c).
(b) Band structure calculated for the supercell indicated by the
dashed rectangle (a zigzag supercell) in Fig. 9(d). Different color
lines (except for the gray lines) are used to distinguish the fourfold
and twofold degenerated subbands in (a) and in (b), respectively.
Upper solid gray lines denote the bands corresponding to the wave-
functions that are not confined in the waveguide.

of the nonscaled devices (S f = 1 as a reference) have been
shown in Figs. 11(a) and 11(b). Conductance calculated by
the scalable model shows reasonable consistency with that
calculated using the real model. However, we detected two mi-
nor differences. First, the resulting conductance of the scaled
model in the case of AO-GW delivered noisier conductance in
the upper range of Fermi energy. Secondly, the conductance
of the scalable model with a larger scaling factor tended to
lower the original spacing between plateaus in the case of ZO-
GW. Furthermore, we performed a transport study for 80 nm
waveguides with L = 400 nm and L = 600 nm in both orien-
tations using the scaling factor S f = 4. The results are plotted
in Fig. 11(c). In general, conductance in both types of large-
scale graphene waveguides showed reduced spacing between
plateaus (less than 2G0 = 4e2/h) and became more fractional
with respect to nG0 [n = 1, 3, 5, . . .; see inset in Fig. 11(c)].

-0.1 0.0 0.1 0.2 0.3
0

2

4

6

0 0.1 0.2 0.3

-0.1 0.0 0.1 0.2 0.3
0

6

12

18

sf = 1
sf = 2
sf = 4

G
(G

0)

(a)AO-GW (b)ZO-GW

240 × 400
240 × 600

240 × 400
240 × 600

G
(G

0)

AO-GW

ZO-GW

(c)
W(nm)×L(nm)

W(nm)×L(nm)

0.02 0.1
1
3
5
7

G
(G

0)

E (eV)

FIG. 11. Panels (a) and (b) show the conductance of a 20-nm-
wide AO-GW and ZO-GW calculated by the scalable tight-binding
model with a scaling factor Sf = 1, 2, and 4, respectively. Note that
Sf = 1 corresponds to the original tight binding model (green-solid
line). (c) Conductance calculated by the scalable tight-binding model
with Sf = 4 for longer graphene waveguides in both orientations.
Panels (d) and (e) LDOSs of AO-GW and ZO-GW. LDOSs are
extracted at the energy value that is indicated by an arrow in (c).

Spacing between plateaus in zigzag oriented waveguides is
more uniform than in armchair oriented waveguides, which
has presented a series of hardly distinguishable plateaus for
E > 0.1 eV. Conductance of the longer devices (L = 600 nm)
are similar to results produced with the L = 400 nm devices
in both orientations. These results suggest that the effect of
valley degeneracy gradually disappears in a longer waveguide,
as indicated by the reduced spacing between plateaus (less
than 2G0), when the scaled model is applied. Two examples
of normalized LDOS, for 80-nm-wide graphene waveguides
in both orientations, are plotted in Figs. 11(d) and 11(e).
These show the effect of confinement achieved by the quan-
tum well in the scalable tight-binding model. In summary,
our results show that a small-width graphene waveguide is
capable of delivering quantized conductance with the scal-
able model as long as the well potential is deep enough,
which is in contrast to the shallower quantum wells used in
Ref. [43].
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IV. CONCLUSION

To conclude, by applying the nonequilibrium Green’s func-
tion, we have investigated the transport property of straight
and various bent graphene waveguides with two types of
edge orientations, i.e., armchair and zigzag configurations.
For the straight waveguides, we have shown that the width
of side barrier has little effect on the conductance, while the
nature (metallic or nonmetallic) and width of the source/drain
leads plays an important role in waveguide conductance pro-
files. In particular, the conductance of waveguides is found
to primarily follow the conductance property of the drain
terminal in the case of ZO-GW under the 3NN approxima-
tion. The conductance in both armchair and zigzag oriented
waveguides can be quantized by steps of 4e2/h in a similar
manner, but the zigzag oriented waveguide shows a longer
first plateau in cases where its drain terminal possesses zero
energy modes. From a series of analyses into conductance
characteristics, we have observed that the conductance of
bent graphene waveguides is similar to that of their straight
counterparts, regardless of the bending degree of the guide
region for different geometric configurations. LDOS maps
for all configurations have shown a good capacity to confine
charged particles at the Fermi energies corresponding to the
first few conductance plateaus. Moreover, we have employed

the scalable tight-binding model to effectively capture the
conductance of large-scale straight graphene waveguides. The
conductance profile of large-scale graphene waveguides with
both orientations exhibits quantized steps close to 4e2/h,
while the spacing between plateaus is sensitive to the em-
ployed scaling factor. Altogether, this study has demonstrated
that coherent transport can be achieved in various electrically
gated graphene waveguides with different edge orientations.
The conductance quantization realized in straight and highly
bent graphene waveguides is promising for application of
graphene in modern nanoelectronic devices and thus making
all-graphene integrated circuits possible in the future.
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[40] M. D. Petrović and F. M. Peeters, Phys. Rev. B 91, 035444

(2015).
[41] R. R. Hartmann, N. J. Robinson, and M. E. Portnoi, Phys. Rev.

B 81, 245431 (2010).
[42] J. Williams, T. Low, M. Lundstrom, and C. Marcus, Nat.

Nanotechnol. 6, 222 (2011).
[43] P. Rickhaus, M.-H. Liu, P. Makk, R. Maurand, S. Hess, S.

Zihlmann, M. Weiss, K. Richter, and C. Schönenberger, Nano
Lett. 15, 5819 (2015).

[44] Y. He, M. Ding, Y. Yang, and H. Zhang, Superlattices
Microstruct. 85, 761 (2015).

[45] M.-H. Liu, P. Rickhaus, P. Makk, E. Tóvári, R.
Maurand, F. Tkatschenko, M. Weiss, C. Schönenberger,

K. Richter et al., Phys. Rev. Lett. 114, 036601
(2015).

[46] M. Kim, J.-H. Choi, S.-H. Lee, K. Watanabe, T. Taniguchi,
S.-H. Jhi, and H.-J. Lee, Nat. Phys. 12, 1022 (2016).

[47] S.-M. Cao, J.-J. Zhou, X. Wei, and S.-G. Cheng, J. Phys.:
Condens. Matter 29, 145301 (2017).

[48] V. Mosallanejad, K. Wang, Z. Qiao, and G. Guo, J. Phys.:
Condens. Matter 30, 325301 (2018).

[49] J. A. Vergés, G. Chiappe, E. San-Fabián, and E. Louis, Phys.
Rev. B 98, 155415 (2018).

[50] T. Stegmann, J. A. Franco-Villafane, U. Kuhl, F. Mortessagne,
and T. H. Seligman, Phys. Rev. B 95, 035413 (2017).

[51] Y. E. Xie, Y. P. Chen, L. Sun, K. Zhang, and J. Zhong, Physica
B: Condens. Matter 404, 1771 (2009).

[52] C. G. da Rocha, R. Tuovinen, R. van Leeuwen, and P. Koskinen,
Nanoscale 7, 8627 (2015).

[53] V. Mosallanejad, K.-L. Chiu, and G.-P. Guo, J. Phys.: Condens.
Matter 30, 445301 (2018).

[54] S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejon, Phys. Rev.
B 66, 035412 (2002).

[55] R. Kundu, Mod. Phys. Lett. B 25, 163 (2011).
[56] S. Datta, Quantum Transport: Atom to Transistor (Cambridge

University Press, Cambridge, UK, 2005).
[57] C. Caroli, R. Combescot, P. Nozieres, and D. Saint James,

J. Phys. C 4, 916 (1971).
[58] M. L. Sancho, J. L. Sancho, J. L. Sancho, and J. Rubio, J. Phys.

F 15, 851 (1985).
[59] M. Pourfath, The Non-Equilibrium Green’s Function Method

for Nanoscale Device Simulation (Springer, Berlin, 2014).
[60] G. Thorgilsson, G. Viktorsson, and S. Erlingsson, J. Comput.

Phys. 261, 256 (2014).
[61] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical

Properties of Carbon Nanotubes (World Scientific, Singapore,
1998).

[62] W.-X. Wang, M. Zhou, X. Li, S.-Y. Li, X. Wu, W. Duan, and
L. He, Phys. Rev. B 93, 241403(R) (2016).

125412-11

https://doi.org/10.1002/pssa.201701065
https://doi.org/10.1002/pssa.201701065
https://doi.org/10.1002/pssa.201701065
https://doi.org/10.1002/pssa.201701065
https://doi.org/10.1063/1.4938073
https://doi.org/10.1063/1.4938073
https://doi.org/10.1063/1.4938073
https://doi.org/10.1063/1.4938073
https://doi.org/10.1126/science.aaf5481
https://doi.org/10.1126/science.aaf5481
https://doi.org/10.1126/science.aaf5481
https://doi.org/10.1126/science.aaf5481
https://doi.org/10.1038/ncomms3342
https://doi.org/10.1038/ncomms3342
https://doi.org/10.1038/ncomms3342
https://doi.org/10.1038/ncomms3342
https://doi.org/10.1126/sciadv.1700600
https://doi.org/10.1126/sciadv.1700600
https://doi.org/10.1126/sciadv.1700600
https://doi.org/10.1126/sciadv.1700600
https://doi.org/10.1103/PhysRevB.98.035413
https://doi.org/10.1103/PhysRevB.98.035413
https://doi.org/10.1103/PhysRevB.98.035413
https://doi.org/10.1103/PhysRevB.98.035413
https://doi.org/10.1103/PhysRevB.98.155420
https://doi.org/10.1103/PhysRevB.98.155420
https://doi.org/10.1103/PhysRevB.98.155420
https://doi.org/10.1103/PhysRevB.98.155420
https://doi.org/10.1126/science.1138020
https://doi.org/10.1126/science.1138020
https://doi.org/10.1126/science.1138020
https://doi.org/10.1126/science.1138020
https://doi.org/10.1103/PhysRevB.80.155406
https://doi.org/10.1103/PhysRevB.80.155406
https://doi.org/10.1103/PhysRevB.80.155406
https://doi.org/10.1103/PhysRevB.80.155406
https://doi.org/10.1063/1.3557500
https://doi.org/10.1063/1.3557500
https://doi.org/10.1063/1.3557500
https://doi.org/10.1063/1.3557500
https://doi.org/10.1103/PhysRevB.91.035444
https://doi.org/10.1103/PhysRevB.91.035444
https://doi.org/10.1103/PhysRevB.91.035444
https://doi.org/10.1103/PhysRevB.91.035444
https://doi.org/10.1103/PhysRevB.81.245431
https://doi.org/10.1103/PhysRevB.81.245431
https://doi.org/10.1103/PhysRevB.81.245431
https://doi.org/10.1103/PhysRevB.81.245431
https://doi.org/10.1038/nnano.2011.3
https://doi.org/10.1038/nnano.2011.3
https://doi.org/10.1038/nnano.2011.3
https://doi.org/10.1038/nnano.2011.3
https://doi.org/10.1021/acs.nanolett.5b01877
https://doi.org/10.1021/acs.nanolett.5b01877
https://doi.org/10.1021/acs.nanolett.5b01877
https://doi.org/10.1021/acs.nanolett.5b01877
https://doi.org/10.1016/j.spmi.2015.06.045
https://doi.org/10.1016/j.spmi.2015.06.045
https://doi.org/10.1016/j.spmi.2015.06.045
https://doi.org/10.1016/j.spmi.2015.06.045
https://doi.org/10.1103/PhysRevLett.114.036601
https://doi.org/10.1103/PhysRevLett.114.036601
https://doi.org/10.1103/PhysRevLett.114.036601
https://doi.org/10.1103/PhysRevLett.114.036601
https://doi.org/10.1038/nphys3804
https://doi.org/10.1038/nphys3804
https://doi.org/10.1038/nphys3804
https://doi.org/10.1038/nphys3804
https://doi.org/10.1088/1361-648X/aa5a7f
https://doi.org/10.1088/1361-648X/aa5a7f
https://doi.org/10.1088/1361-648X/aa5a7f
https://doi.org/10.1088/1361-648X/aa5a7f
https://doi.org/10.1088/1361-648X/aacfca
https://doi.org/10.1088/1361-648X/aacfca
https://doi.org/10.1088/1361-648X/aacfca
https://doi.org/10.1088/1361-648X/aacfca
https://doi.org/10.1103/PhysRevB.98.155415
https://doi.org/10.1103/PhysRevB.98.155415
https://doi.org/10.1103/PhysRevB.98.155415
https://doi.org/10.1103/PhysRevB.98.155415
https://doi.org/10.1103/PhysRevB.95.035413
https://doi.org/10.1103/PhysRevB.95.035413
https://doi.org/10.1103/PhysRevB.95.035413
https://doi.org/10.1103/PhysRevB.95.035413
https://doi.org/10.1016/j.physb.2009.02.020
https://doi.org/10.1016/j.physb.2009.02.020
https://doi.org/10.1016/j.physb.2009.02.020
https://doi.org/10.1016/j.physb.2009.02.020
https://doi.org/10.1039/C5NR00684H
https://doi.org/10.1039/C5NR00684H
https://doi.org/10.1039/C5NR00684H
https://doi.org/10.1039/C5NR00684H
https://doi.org/10.1088/1361-648X/aae09d
https://doi.org/10.1088/1361-648X/aae09d
https://doi.org/10.1088/1361-648X/aae09d
https://doi.org/10.1088/1361-648X/aae09d
https://doi.org/10.1103/PhysRevB.66.035412
https://doi.org/10.1103/PhysRevB.66.035412
https://doi.org/10.1103/PhysRevB.66.035412
https://doi.org/10.1103/PhysRevB.66.035412
https://doi.org/10.1142/S0217984911025663
https://doi.org/10.1142/S0217984911025663
https://doi.org/10.1142/S0217984911025663
https://doi.org/10.1142/S0217984911025663
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1088/0022-3719/4/8/018
https://doi.org/10.1088/0305-4608/15/4/009
https://doi.org/10.1088/0305-4608/15/4/009
https://doi.org/10.1088/0305-4608/15/4/009
https://doi.org/10.1088/0305-4608/15/4/009
https://doi.org/10.1016/j.jcp.2013.12.054
https://doi.org/10.1016/j.jcp.2013.12.054
https://doi.org/10.1016/j.jcp.2013.12.054
https://doi.org/10.1016/j.jcp.2013.12.054
https://doi.org/10.1103/PhysRevB.93.241403
https://doi.org/10.1103/PhysRevB.93.241403
https://doi.org/10.1103/PhysRevB.93.241403
https://doi.org/10.1103/PhysRevB.93.241403

