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Spontaneous symmetry breaking and the flat phase of crystalline membranes
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Crystalline membranes are one of the rare examples of bidimensional systems in which long-range order can
stabilize an ordered phase in the thermodynamic limit. By a careful analysis of the Goldstone mode counting,
we propose a symmetry-breaking mechanism associated with the generation of the flat phase, and we show how
it highlights the crucial role played by the crystalline lattice in the establishment of long-range order in these
objects. Comparison with other symmetry-breaking mechanisms in membrane physics is also used to unveil the
links between symmetry-breaking patterns and the physical properties of the flat phase.
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Crystals are generally defined as materials that possess an
underlying periodic structure: at the microscopic scale, their
atoms (or any other microscopic constituent) lie on a periodic
lattice. However, this can only be true at T = 0, otherwise
thermal agitation causes the atoms to fluctuate around their
equilibrium position—these fluctuations are called phonons.
For temperatures smaller than the melting temperature of the
crystal, such fluctuations remain weak enough, so that each
atom is still on average at its equilibrium position defined by
the lattice. This is the definition of a crystalline phase at a
nonzero temperature.

This picture holds for most of the observed crystalline
materials; however, it depends strongly on their dimension.
In the 1930s, simple arguments were found that show that
crystalline order is indeed destroyed at any T �= 0 for one-
dimensional crystals in the thermodynamic limit [1–3]. Later,
more rigorous arguments enabled the proof to be extended
to two dimensions [4]. Thus, only in three dimensions can
genuine crystals exist.

In this context, the observation of graphene sheets—a one-
atom-thick hexagonal lattice of carbon atoms—first came as a
surprise [5,6]. Since then, many more bidimensional crystals
have been observed and synthesized (see [7], for example, for
a review). How does this agree with previous findings about
the impossibility of the existence of crystalline phases in two
dimensions? It was later understood that height fluctuations
(also called flexurons or flexural phonons), or more precisely
their interaction with acoustic phonons, play a crucial role
in maintaining the stability of such bidimensional crystal
sheets: the long-range order is indeed not of a positional
nature (as in the previous definition of crystals), but of an
orientational one, i.e., it is not defined by the atoms being
at precise positions on average, but by the vectors normal
to the surface embodied by the crystal being correlated at
large distances [8,9]. Hence, despite their name, the ordered
phase of crystalline membranes is not a crystalline phase but
a so-called flat phase (in reference to the membrane’s typical
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configurations, although other geometries are allowed, e.g., as
spherical shapes for vesicles). This can be seen quite clearly
in diffraction patterns observed from graphene sheets [10].

The presence of long-range orientational order in crys-
talline membranes is at the origin of a number of unusual
scaling behaviors, captured by an anomalous exponent η: the
bending rigidity κ increases with the size L of the system as
κ ∼ Lη, whereas the elastic moduli such as Young’s modu-
lus Y get weakened as Y ∼ L2−2η (see [11] and references
therein). Additionally, Hooke’s law, which determines the sys-
tem’s response to an external stress, also becomes anomalous
[9,12,13]. The anomalous exponent η is moreover a universal
quantity that does not depend on the nature of the material
under consideration.

Still, the theorem of Hohenberg-Mermin-Wagner [14,15]
forbids the existence of such an ordered phase in most two-
dimensional systems. As for crystalline membranes, Nelson
and Peliti have shown, in an attempt to examine the possi-
bilities of a Kosterlitz-Thouless melting of the bidimensional
crystals, that interactions between the Gaussian curvature of
the membrane at different locations turn out to be long-range
[16]. In this paper, we show that a similar line of reasoning can
be applied at the level of the interaction involving the order
parameter field, which is also of long-range type, thereby
providing an explanation of why the theorem of Hohenberg-
Mermin-Wagner does not apply here.

In the scenario of Hohenberg-Mermin-Wagner, long-range
order is destroyed by thermal fluctuations, which are domi-
nated by the massless modes, if any, in the thermodynamic
limit, because such modes do not get screened at large dis-
tances. The appearance of such modes generally requires
particular symmetries to be at play in the system, which can
prevent the existence of a mass term; it is then possible (at
least in principle) to establish links between massless modes
and the symmetries of the state in which the system lies. The
Goldstone theorem [17] is one of the most useful tools that
one can use to relate the symmetries of an ordered phase to
the number of massless modes, but its original formulation
is valid only for Lorentz-invariant systems. It has long been
known that this theorem cannot be easily generalized to
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systems that do not possess this symmetry, the most well-
known example being Heisenberg ferromagnets that have
only one massless magnon instead of the two that would be
expected from a naive application of Goldstone’s theorem
[18]. Despite thorough investigations (see [19] for a review), a
proper counting rule for the massless modes in full generality
only came out very recently [20–23].

In this paper, we use these recent findings to shed new light
on the puzzling question of long-range order in crystalline
membranes. In particular, by applying the Goldstone counting
rule [22], we show that the previously proposed symmetry-
breaking mechanisms associated with the flat phase [9,12,24]
are not consistent with the well-known infrared spectrum of
this phase because they forget the subtle (but nonetheless
crucial) role played by the underlying crystalline lattice. In-
deed, in membranes without such a lattice—also called fluid
membranes—the long-range orientational order is destroyed
by thermal fluctuations [25]. The corrected mechanism is then
compared with other symmetry-breaking patterns from mem-
brane physics to investigate further its relations to the the-
orem of Hohenberg-Mermin-Wagner. We identify two main
important features of this mechanism (namely the occurrence
of two different types of fluctuation modes and the presence of
Goldstone modes with quadratic dispersion relation) that are,
respectively, associated with the stabilization of the ordered
phase in the thermodynamic limit and the generation of a
nontrivial field anomalous dimension in the ordered phase,
related to a strong degree of anharmonicity of the fluctuation
modes, and which is a key quantity to understand the physics
of the flat phase [11].

The paper is organized as follows: We first present the
Goldstone counting rule. Then, we apply it to find a consistent
symmetry-breaking mechanism associated with the flat phase.
In the third part, we show why long-range orientational order
is preserved by performing a careful analysis of the hy-
potheses of Hohenberg-Mermin-Wagner’s theorem. Finally,
we apply the same procedure to the study of the overstretched
phase, where the material undergoes a strong stretching effort,
thereby giving another example that helps us track down the
relations between the symmetry-breaking mechanism and the
peculiar properties of the flat phase of crystalline membranes,
and then we conclude.

I. GOLDSTONE MODES COUNTING WITHOUT
LORENTZ INVARIANCE

Different low-energy states that can be discriminated from
each other must have the same energy if they are related
by a symmetry of the free energy. In particular, if a ground
state breaks a symmetry of the free energy, all states that
can be obtained by recursively applying this symmetry to
the ground state are also possible ground states. This is how
the comparative study of the symmetries of the states that
the system can reach, and those of the free energy, gives
insight into the degeneracies of the spectrum of the theory.
In the following, we shall restrict ourselves to systems simple
enough that more refined arguments about Higgs mechanisms,
or other subtle ways to generate gaps [26,27], are not neces-
sary. Then the low-energy spectrum can be directly read from
the spontaneous symmetry-breaking pattern.

Obviously, not all symmetries need to be broken by the
ground state, i.e., there can be residual symmetries. In the case
when the broken symmetries are associated with continuous
transformations, it is possible to relate any pair of ground
states by a continuous path of other ground states. That is,
the spectrum includes massless excitations, which are the
Goldstone modes. Because of their massless nature, Goldstone
modes are not screened at large distances, and therefore they
play a crucial role in the infrared physics of the system.
In relativistic systems, Lorentz symmetry imposes on these
modes a dispersion relation of the form ω = qc; however, this
no longer holds for nonrelativistic systems. For example, the
ferromagnetic magnon has a low-energy dispersion relation
of the form ω ∼ q2 [18]. Hence for systems without Lorentz
invariance, the counting rule should give access not only to
the number of Goldstone modes, but also to their type of
dispersion relation.

The counting of Goldstone modes can be related to the
algebra of the symmetry groups of the free energy and the
ground states by Goldstone’s theorem [17]: let G be the
symmetry group of the free energy, and let H be the group of
symmetries of the ground states, namely the group of residual
symmetries, with H ⊂ G in light of the above. Goldstone’s
theorem (in its original version) states that the number of
Goldstone modes is simply given by dim (G/H ). However,
we must note the following:

(i) This rule cannot be trivially extended to nonrelativistic
systems. Indeed, in ferromagnets, for example, G = O(3) is
broken into H = O(2) (the ground state is still invariant with
respect to rotations of axis in the direction of the spontaneous
magnetization). The ferromagnetic state thus breaks two gen-
erators of G, but there is only one magnon [18].

(ii) As Goldstone’s theorem is intended only for relativistic
systems, it does not give any information about the dispersion
relations, which are crucial characteristics of the massless
modes in nonrelativistic theories. It was first pointed out
by Nielsen and Chadha that the infrared behavior of the
Goldstone bosons has a direct influence on the number of
generated massless modes: to continue with the example of
magnets, ferromagnets have one magnon with a quadratic
dispersion relation ω ∼ q2, whereas antiferromagnets have
two magnons with a linear dispersion relation ω ∼ q, while in
both cases two rotation generators are broken by the ground
state [18].

(iii) The knowledge of the algebra of broken generators
is not sufficient in general. Indeed, two different broken
generators can generate the same excitation on a given ground
state (see Fig. 1 for a simple example), and therefore they
are not associated with different Goldstone modes [28]. This
is all the more important for systems that possess spacetime
symmetries, which frequently generate nonindependent trans-
formations of the ground states [29].

It can be understood in light of the above that the central
quantity involved in the counting of Goldstone bosons should
include more information than the mere algebra of the broken
generators. Let us define the matrix ρ of the commutators of
independent broken generators {Qi} evaluated in the ground
state |0〉 [21]:

ρab = 〈[Qa, Qb]〉. (1)
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FIG. 1. Left: effect of a rotation on a line. Right: the action, on
the same line, of a combination of local translations induces the exact
same transformation of the line. It is one of the simplest examples
in which mathematically independent transformations can induce
similar excitations of a given state. This example is discussed in [28].

It is also important to discriminate the generated massless
modes according to their dispersion relation: we will call type-
A Goldstone bosons those that have a linear dispersion rela-
tion, and type-B those whose dispersion relation is quadratic
(the rigorous definition is a little bit more subtle, but the
difference is irrelevant to our purpose [22]). The numbers nA

and nB of each type of Goldstone mode is then given by the
following formulas [21]:

nA = dim(G/H ) − rank(ρ),

nB = rank(ρ)

2
.

(2)

Note that in the relativistic case, the existence of a nonzero
expectation value of the commutator in the ground state would
break Lorentz invariance [22], thus Lorentz symmetry re-
quires ρ = 0, and we recover the original Goldstone theorem
with dim (G/H ) type-A massless modes.

As a less obvious example, consider an ideal crystalline
solid in D dimensions. The ground state of the system is given
by the periodic lattice that breaks both the translation and
rotation symmetries of the free energy (given in that case by
the theory of elasticity [30]). The residual symmetry group H
is the discrete subgroup of symmetry of the crystalline lattice
denoted C. The spontaneous symmetry-breaking mechanism
characterizing the crystalline ground state can be written as
follows:

Mechanism 1: ISO(D) → C, (3)

where ISO (D) is the group of isometries.
There are D broken translation generators, as well as

D(D − 1)/2 broken rotation generators. However, the action
of translations and rotations on the ground state do not gen-
erate independent excitations [31,32], and the group of inde-
pendent broken generators reduces to the broken translations.
Because translations commute with each other, ρ = 0 and the
counting rule Eq. (2) gives D type-A Goldstone bosons, cor-
responding to the well-known D acoustic phonons of crystals,
and not D + D(D − 1)/2 = D(D + 1)/2 Goldstone bosons as
a naive application of Goldstone’s theorem would have given.

This simple example sheds light on two properties of
the counting rule Eq. (2): First, for non-Lorentz-invariant
systems, the total number of Goldstone modes does not need
to be equal to the total number of broken generators, even
if all of them have a linear dispersion relation (the equality
occurs only if we suppose further that the actions of each of

FIG. 2. Symmetries of the infinite plane in three dimensions: the
plane is invariant under two translations and one rotation (in blue in
the figure), but it breaks the other two rotations and the remaining
translation (in red). The SO(d − D) group reduces to the discrete Z2

group corresponding to reversing the up and down sides of the plane.

the generators on the ground state are independent). Second,
a nontrivial algebra of independent broken generators is re-
quired for the existence of type-B Goldstone bosons.

II. SPONTANEOUS SYMMETRY BREAKING
IN THE FLAT PHASE

In this section, we study the application of the Goldstone
counting rule Eq. (2) to the flat phase. Note that we are
concerned here with the symmetries of the zero-temperature
ground state of the crystalline membrane, which is still a
periodic crystal. The influence of thermal fluctuations on the
stability of such a state is discussed in the next section.

In addition to usual crystals, a fundamental property of
crystalline membranes is their ability to fluctuate in a bigger
embedding space, whose dimension will be called d . This
paves the way to more complex spacetime symmetry-breaking
patterns, which, as we can already anticipate, will be of
paramount importance to explain the quadratic dispersion
relation of flexurons (see below). The massless fluctuation
spectrum of the flat phase of crystalline membranes is well-
known. It includes the following [11]:

(i) D acoustic phonons, which are type-A Goldstone
bosons, as in any crystal.

(ii) d − D flexurons, which are type-B Goldstone bosons,
and therefore much stronger than the phonons in the infrared
limit.

There is no clear consensus in the literature on the spon-
taneous symmetry-breaking pattern associated with the flat
phase, to the best of our knowledge [9,12,24]. Note that most
patterns were proposed at a time when the Goldstone counting
rule was not known.

In the following, we will only discuss the more widely
used mechanism, which is also the one that best respects
the symmetries of the flat phase (see Fig. 2), and we will
argue why we think it is not correct. Consider the following
symmetry-breaking pattern [12]:

Mechanism 2: ISO(d ) → ISO(D) × SO(d − D). (4)

The free-energy is invariant under all isometries of the
embedding space, forming the group ISO (d ), and the flat
phase configuration is an infinite plane, which is still invariant
under the plane isometries ISO (D) as well as the rotations
of SO(d − D), which act only on directions of the embedding
space that are all orthogonal to the flat phase plane (see Fig. 2
for a picture for the physical dimensions D = 2, d = 3).
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The set of broken symmetry generators thus contains the
following:

(i) The d-D translations in the directions orthogonal to
the flat phase plane, denoted {Pα}α∈[[D+1;d]]. In the following,
greek letters denote indices in [[1; d]], whereas latin ones only
run into [[1; D]].

(ii) The D × (d − D) mixed rotations that bring the vector
giving the ith direction inside the flat phase plane to the
direction given by the αth vector of the embedding space
outside the membrane’s plane {Jiα}i∈[[1;D]],α∈[[D+1;d]].

The commutation relations between these generators are
given by the iso(d ) algebra of the isometry group [33]:

[Jμν, Jαβ ] = δναJμβ − δμαJνβ − δνβJμα + δμβJνα,

[Jμν, Pθ ] = δνθPμ − δμθPν,

[Pμ, Pν] = 0.

(5)

The next question one should answer is, which of these gener-
ators acts independently on the ground state |0〉? Consider the
action of a mixed rotation on the ground state:

Jiα|0〉 = (xiPα − xαPi )|0〉 = xiPα|0〉. (6)

The second equality follows from the fact that the translations
inside the flat phase plane are not broken. Hence the action of
a mixed rotation can always be canceled by a combination of
broken translations. The set of independent broken generators
thus reduces to {Pα}α∈[[D+1;d]], and the counting rule Eq. (2)
yields

nA = d − D,

nB = 0,
(7)

which is not consistent with the expected spectrum for the flat
phase of crystalline membranes.

This computation is quite enlightening though, since it un-
derlines the necessity of having a nontrivial algebra of broken
generators to describe type-B Goldstone bosons such as the
flexurons in crystalline membranes. Looking more thoroughly
at Eq. (7), we notice that the number of generated Goldstone
bosons is equal to the number of directions of the embedding
space orthogonal to the flat phase plane, which indicates that
they must be flexurons (but not with the expected dispersion
relation): the mechanism in Eq. (4) misses the phonons.
Thus, this mechanism seems more appropriate to describe
the flat phase of fluid membranes in which only flexurons
are at play. (Such an ordered phase only exists at T = 0,
however, because of Hohenberg-Mermin-Wagner’s theorem).
As a matter of fact, the constituents of an incompressible fluid
membrane are free to diffuse on its surface, thereby forbidding
the definition of any particular reference state by the position
of the molecules, and therefore any kind of positional order.
Such materials thus do not have acoustic phonons.

This assertion can indeed be checked for consistency with
usual models of fluid membranes: from the Canham-Helfrich
free energy [34,35], the flexuron’s propagator G(q) has the
following asymptotic behavior in the infrared limit:

G(q) = 〈h(q)h(−q)〉 ∼
q→0

1

σq2
, (8)

where σ is the tension of the membrane. Such behavior is
typical of type-A Goldstone bosons. One could argue that,

FIG. 3. Left: action of a mixed rotation on a one-dimensional
lattice. Right: a linear combination of translations can align the lattice
on the same line, but the state of the system is different because of the
dilation that the translations induce on the lattice due to Pythagoras’
theorem.

according to Eq. (8), another type of behavior could be
expected in tensionless fluid membranes, but this does not
hold since even if not present at the microscopic scale, σ is
generated by the renormalization-group flow when going to-
ward the infrared regime [11]. Our Goldstone modes analysis
leads to the following complementary argument: the tension
term is not protected by the symmetries of the system, and
therefore cannot be consistently enforced to be zero.

As we have seen in Eq. (3), the origin of acoustic phonons
in crystals is the breaking of the isometry group by the
discrete group of the crystalline lattice C. This must also
hold for crystalline membranes in which, although not well
preserved by the thermal fluctuations, a crystalline lattice is
still present in the flat phase. In light of these arguments,
it seems reasonable to take a closer look at the following
symmetry-breaking pattern:

Mechanism 3: ISO(d ) → C × SO(d − D). (9)

Note that the track of the discrete symmetry group C is
still present even in the continuum theory of crystalline mem-
branes: in [36], for example, the transition to the flat phase
is presented as the generation of a nonzero expectation value
for the metric of the flat phase g0

i j , which then characterizes
the ground state. Because the membrane is assumed to be
homogeneous and isotropic, its metric in the ground state
has to be proportional to δi j . The proportionality coefficient
ζ 2, called the extension parameter, characterizes the unit of
length inside the membrane’s plane. The presence of this
fixed reference metric is one of the key differences between
crystalline membranes and fluid ones.

The broken symmetry generators in the mechanism given
by Eq. (9) are thus as follows:

(i) The d − D external translations {Pα}α∈[[D+1;d]].
(ii) The D internal translations {Pi}i∈[[1;D]].
(iii) The D × (d − D) mixed rotations, mixing the internal

and external spaces {Jiα}i∈[[1;D]],α∈[[D+1;d]].
(iv) The D(D+1)

2 internal rotations {Ji j}(i, j)∈[[1;D]]2 .
The action of internal translations and rotations are not

independent, as in usual crystals. This time, however, the
action of mixed rotations on the ground state can no longer
be canceled by a carefully chosen combination of external
translations (see Fig. 3 for a picture in the one-dimensional
case). Indeed, whereas rotations always preserve the ground-
state metric, a combination of translations bringing the system
into a similar plane would induce a dilation of the system
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(as an obvious application of Pythagoras’ theorem shows)
and therefore a flat phase state with a different extension
parameter ζ . This is a direct consequence of the presence
of a microscopic lattice, or equivalently of the presence of
phonons in the system.

The internal space isometries can be used to relate the
mixed rotations with the same external index α, but different
internal indices i. All in all, the total number of independently
acting broken symmetry generators is as follows: D internal
translations + (d − D) external translations + (d − D) mixed
rotations, so that finally

dim(G/H ) = 2d − D. (10)

The commutation relations between these generators eval-
uated in a ground state are given as usual by the algebra of
isometries iso(d ):

〈[Jαi, Jβi]〉 ∝ 〈Jαβ〉 = 0,

〈[Pα, Pβ ]〉 = 0,

〈[Jαi, Pγ ]〉 =
γ �=i,γ �=α

0,

〈[Jαi, Pα]〉 = 〈Pi〉 �= 0,

〈[Jαi, Pi]〉 = 〈Pα〉 �= 0. (11)

It is then possible to write ρ is a basis where the determination
of its rank is simple, even without knowing the precise value
of the nonzero matrix coefficients, denoted “∗” below. We
choose to write in a basis in which the d translations are
displayed first, and then the d − D rotations:

ρ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 · · · ∗ ∗ 0 0 · · ·
0 0 0 0 · · · ∗ 0 ∗ 0 · · ·
0 0 0 0 · · · ∗ 0 0 ∗ · · ·
0 0 0 0 · · · ∗ 0 0 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
∗ ∗ ∗ ∗ · · · 0 0 0 0 · · ·
∗ 0 0 0 · · · 0 0 0 0 · · ·
0 ∗ 0 0 · · · 0 0 0 0 · · ·
0 0 ∗ 0 · · · 0 0 0 0 · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (12)

which leads to

rank(ρ) = 2(d − D), (13)

and finally, thanks to the counting rule Eq. (2),

nA = D,

nB = d − D.
(14)

Finally, we get D type-A Goldstone modes with a linear
dispersion relation, corresponding to the acoustic phonons,
and d − D type-B Goldstone bosons with a quadratic disper-
sion relation, corresponding to the flexurons; this is the exact
spectrum of crystalline membranes that we recalled at the
beginning of the section.

The crucial difference between the second and third pro-
posed mechanisms—Eqs. (4) and (9), respectively—is the
presence of the crystalline lattice discrete group in the latter,
which allows us to keep some independent rotation generators
required to get a nontrivial algebra Eq. (11) and thus a nonzero

rank for ρ, which allows for the existence of the type-B
flexurons. The consequences are far-reaching as among the
proposed mechanisms, only the third one is associated with
a stable ordered phase in two dimensions: phonons Eq. (3)
or flexurons Eq. (4) alone cannot stabilize a long-range order
of positional or orientational nature. Already at this stage, we
can notice two main differences between mechanisms 1 and 2
on the one hand and mechanism 3 [Eq. (9)] on the other hand
(although all three are built from the same groups), namely
that mechanism 3 has two different types of fluctuation modes,
and it has type-B Goldstone modes. The rest of this paper
is dedicated to an analysis of the consequences of these two
differences.

III. HOHENBERG-MERMIN-WAGNER’S THEOREM

The spontaneous symmetry-breaking pattern combined
with the counting rule [Eq. (2)] gives access to the number
of massless modes as well as their dispersion relation in
the large-distance limit in the ordered phase predicted by
mean-field theory, but it is not sufficient to know if such
an ordered phase is robust to thermal fluctuations. For that
last purpose, the most useful tool is the Hohenberg-Mermin-
Wagner theorem [14,15]. In their original paper, Mermin and
Wagner stressed an important hypothesis for their theorem
to apply: the interaction needs to have a short enough range.
Namely, if J is the coupling constant describing the strength
of the interaction between the order-parameter fields, J (x)x2

must be an integrable function in D dimensions [14]. Let us
test this hypothesis in the case of crystalline membranes.

First, we need the action describing the small fluctuations
around the flat phase. As stated before, crystalline membranes
can be described as an elastic medium fluctuating in an em-
bedding space, and their action thus contains both a curvature
term, proportional to the bending energy κ of the membrane,
and an elastic term quadratic in the strain tensor εi j :

S =
∫

x

[κ

2
(∂2�r)2 + ci jab

2
εi jεab

]
, (15)

where
∫

x = ∫
dDx is an integral over the internal space of

the membrane, �r is the position vector describing the mem-
brane, and ci jab is the elastic tensor, which can be expressed,
for example, in terms of the Lamé coefficients as λδi jδab +
μ(δiaδ jb + δibδ ja). The strain tensor εi j can be expressed as
half the difference between the metric in the current state of
the membrane gi j = ∂i�r.∂ j�r and that of the flat phase reference
state g0

i j = ζ 2δi j . To build a theory of small fluctuations
around the flat phase, it is necessary to expand �r around the
equilibrium configuration with extension parameter ζ :

�r = ζxi�ei + �u + �h, (16)

where a basis of the flat phase plane {�ei} has been introduced.
This expansion causes the phonons �u and the flexurons �h
to appear explicitly. Using the fact that the phonons and
flexurons vibrate in orthogonal spaces, the action in terms of
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the most relevant terms reads [8]

S =
∫

x

[κ

2
(∂2�h)2 + cabcd

2
uabucd + cabcd

2
uab(∂c�h · ∂d �h)

+ cabcd

8
(∂a�h · ∂b�h)(∂c�h · ∂d �h)

]
, (17)

where the symmetric tensor uab = (∂aub + ∂bua)/2 has been
introduced.

At first glance, it seems that the action Eq. (17) contains
only local interactions between phonons and flexurons, which
could lead one to conclude that the long-range orientational
order is broken by thermal fluctuations. But in the original
argument of Mermin and Wagner, there is only one fluctuation
mode.

We have seen that flexurons are the dominant modes in the
infrared limit. Moreover, the action Eq. (17) is quadratic in
the phonons, thus it is possible to perform an exact integration
over the phonons to define an effective action with the flex-
urons as only fields [37]. For the sake of simplicity, we give it
here in Fourier space, with implicit momentum conservation,
and the shorthand notation �h(ki ) = �hi:

Seff =
∫

k1,k2

κ

2
k4

1 (�h1 · �h2)

+
∫

k1,k2,k3,k4

[Rabcd (q)

4
ka

1kb
2kc

3kd
4 (�h1 · �h2)(�h3 · �h4)

]
,

(18)

with
∫

k = ∫
dDk

(2π )D according to our convention for Fourier
transforms, and q = k1 + k2 = −k3 − k4.

The price of working with only one type of field is that now
the interaction vertex R is nonlocal. It depends only on two
coupling constants, exactly like the elasticity tensor c, which
can be made explicit by decomposing it onto the following set
of orthogonal projectors:

Nabcd (q) = 1

D − 1
PT

ab(q)PT
cd (q),

Mabcd (q) = 1

2

[
PT

ac(q)PT
bd (q) + PT

ad (q)PT
bc(q)

] − Nabcd (q),

(19)

where PT
i j (q) = δi j − qiq j/q2 is the projector in the direction

orthogonal to q. The effective interaction vertex is then [37]

Rabcd (q) = μ(Dλ + 2μ)

λ + 2μ
Nabcd (q) + μMabcd (q). (20)

Note that in the particular case D = 2, corresponding to
physical membranes, the two projectors Eq. (19) are equal,
and R depends on only one elastic constant, which turns out
to be Young’s modulus Y [16].

The first proof of the presence of long-range content of the
interaction in Eq. (18) has been given by Nelson and Peliti
[16]. They showed that in two dimensions, the interaction
term in Eq. (18), Sint, can be rewritten as an interaction
between the local Gaussian curvature s(x) = det(∂i∂ jh):

Sint = Y
16π

∫
x,y

G(x − y)s(x)s(y), (21)

where the (nonlocal) interaction vertex between the Gaussian
curvature G behaves as G(x) � x2 ln(x/a) at large distance (a
being the lattice spacing), which is clearly a long-range type
of interaction.

To make the connection with the original work of Mermin
and Wagner [14], we must first find the equivalent to the J (x)
interaction term. An order parameter associated with the flat
phase is given by the extension parameter ζ , which is always
nonzero in the flat phase and equal to zero in a completely
disordered crumpled configuration. It can also be expressed
as a function of the correlation between the tangent vectors to
the surface generated by the membrane [12]:

ζ 2 = 1

D
〈∂i�r〉 · 〈∂i�r〉. (22)

Finally, taking into account the fact that the action in Eq. (18)
is generated after an integration over the phonon fields, the
analog of J (x) in our model is the interaction between the ∂h
terms, which turn out to be R.

To test if the range of R is short enough for Hohenberg-
Mermin-Wagner’s theorem to apply, it must be reexpressed in
direct space. We do not give here the full expression of R(x −
y), but rather we analyze the following elementary block:

PT
ab(q)PT

cd (q) = δabδcd − δab
qcqd

q2
− δcd

qaqb

q2
+ qaqbqcqd

q4
.

(23)

Each term can be expressed in direct space thanks to the
following formula of the Fourier transform of power laws (see,
for example, Ref. [38]):

1

(p2)a
= 1

4aπ
D
2

�
(

D
2 − a

)
�(a)

∫
x

eipx

(x2)
D
2 −a

, (24)

which finally gives

∫
q
δabδcd ei q(x−y) = δabδcd δ(D)(x − y),

∫
q

qaqb

q2
ei q(x−y) = δab

2π |x − y|2 − (xa − ya)(xb − yb)

π |x − y|4∫
q

qaqbqcqd

q4
ei q(x−y) = Xabcd

4π |x − y|2 − Yabcd (x − y)

2π |x − y|4 + 2(xa − ya)(xb − yb)(xc − yc)(xd − yd )

π |x − y|6 , (25)

with the following tensors being defined:

Xμνρσ = δμνδρσ + δμρδνσ + δμσ δνρ,

Yμνρσ (�x) = xμxνδρσ + xμxρδνσ + xμxσ δνρ + xνxρδμσ + xνxσ δμρ + xρxσ δμν.
(26)
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Among the different terms of Eq. (25), only the first one
is local. The other ones are not integrable over the mem-
brane’s internal space once multiplied by (x − y)2. Hence,
Hohenberg-Mermin-Wagner’s theorem does not apply, and
the orientational order in crystalline membranes can be long-
range.

In the previous argument, it is the nonlocal structure of the
effective interaction vertex between flexurons that is at the
origin of the stabilization of long-range order in two dimen-
sions. In light of our analysis of the spontaneous symmetry-
breaking pattern [Eq. (9)], we can add the following: in the
flat phase, even if flexurons are the modes that dominate in
the infrared limit, they are not the only important fluctuation
modes. In particular, acoustic phonons carry a nonlocal ef-
fective interaction between flexurons at various locations in
the flat phase’s plane. The mechanism in Eq. (9) moreover
guarantees that the phonons are Goldstone modes, i.e., thanks
to the massless nature they possess by symmetry, they are not
efficiently screened out at large distances. Thus, the effective
interaction they carry is a true long-range one, which explains
why Hohenberg-Mermin-Wagner’s theorem does not apply,
and the flat phase is robust against thermal fluctuations.

IV. THE ORIGIN OF LONG-RANGE ORDER
IN THE FLAT PHASE

In the previous sections, we identified two main differences
between the third mechanism [Eq. (9)] and the other two
mechanisms [Eqs. (3) and (4)]. To refine our comprehension
of the necessary ingredients to generate a stable order phase
in the system, we propose to analyze a fourth mechanism.

Whenever a crystalline membrane undergoes a strong
enough stress, it buckles. This buckling phenomenon
can be understood as a (second-order) phase transition
[9,12,13,39,40]: depending on the type of applied forces,
the membrane will either become buckled if compressed—
in this state, the membrane appears as a mosaic of locally
flat domains, the orientation of which is random [12]—or
overstretched if sufficiently dilated. Because our main concern
is the origin of long-range order in two-dimensional systems,
we will focus here on the overstretched phase in which a
strong long-range orientational order is present.

In the overstretched phase, the external stress screens the
effects of flexurons [39,41], which become energetically dis-
favored. As a result, the massless infrared spectrum of over-
stretched membranes contains only type-A Goldstone bosons.

Macroscopically, the shape of the overstretched membrane
is still flat, with weaker height fluctuations compared to the
flat phase. Microscopically, the stress dominates the local
rearrangement of atoms, and the ancient lattice positional
order is broken. Contrary to the flat phase examined in Sec. II,
the ground state in the overstretched phase cannot be uniquely
characterized by its metric [36]. Indeed, the local arrangement
of atoms depends both on the intrinsic properties of the
material (captured by ζ ) and the external stress. Consequently,
the previous argument that allowed us to disentangle mixed
rotations and external translations does not hold anymore: the
situation is analogous to that of Fig. 1 rather than Fig. 3. To
avoid confusion, and to ensure the disentanglement between
the action of translations and mixed rotations on the ground

state, the symmetry-breaking mechanism will be written as

Mechanism 4: ISO(d ) → SO(d − D). (27)

The set broken generators is the same as for the third mech-
anism, but now the unit of length at the surface of the
membrane is determined by the applied stress rather than the
sole extension parameter ζ . The set of independent broken
generators hence reduces to the d translations, so that

dim(G/H ) = d, ρ = 0, (28)

and the counting rule Eq. (2) leads to

nA = d,

nB = 0,
(29)

namely D type-A acoustic phonons and d − D type-A flex-
urons, as expected.

Finally, mechanism 4 [Eq. (27)] provides an example in
which long-range orientational order can be maintained in two
dimensions without requiring the help of type-B Goldstone
bosons. Indeed in the overstretched phase, the previous argu-
ment with regard to the Hohenberg-Mermin-Wagner theorem
still holds: despite the fact that the flexurons are screened by
the stress, they remain Goldstone bosons, and an effective
theory of interacting flexurons can still be built, in which the
phonons, which are also massless, carry an effective long-
range interaction between flexurons.

Note, however, that in the ground state of overstretched
membranes the local pseudo-ordering persists, which causes
the breaking of the group isometries inside the membrane’s
plane, which is in strong contrast with the second mechanism
[Eq. (4)], in which the microscopic constituents are free to
move and no phonon is generated (and therefore no long-
range interaction can occur and the ordered phase is destroyed
by the thermal fluctuations).

A remaining question involves the role of the type-B Gold-
stone bosons. To address it, we must compare mechanisms 3
[Eq. (9)] and 4 [Eq. (27)], which differ only by the dispersion
relation of the flexurons. The most striking difference between
the flat phase and the overstretched phase is the presence
in the former of a strong anomalous exponent η � 0.85
[11,42–44], at the origin of the highly anharmonic behavior
of the thermal fluctuations, which leads to many unusual
effects, as well as a modified elasticity theory, which is in
total contrast with the overstretched phase in which conven-
tional elasticity is restored and η = 0 (see [39–41] and [45]
for a comparative study). The role of the type-B Goldstone
bosons is thus probably related to the generation of such an
anharmonic behavior and unusual scaling relations.

To sum up on the Goldstone physics, we have analyzed
various nontrivial symmetry-breaking patterns related to the
physics of crystalline membranes, which have highlighted a
number of general features of the physics of Goldstone modes
in theories without Lorentz invariance. First, mechanism 1
[Eq. (3)] illustrates the fact that whenever different broken
symmetry generators generate linearly dependent transfor-
mations of the ground state, the total number of associated
Goldstone modes is smaller than the total number of broken
generators, which is the main lesson of Ref. [28]. This feature
is quite common in theories presenting spacetime symmetry
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breaking, since the action of rotations and translations are
rarely independent (it is much more difficult to see this if an
internal symmetry group is broken). Mechanism 2 [Eq. (4)]
teaches us the importance of the underlying microscopics,
even in continuum theories. Indeed, taking into account the
mere overall shape of the membrane leads to a spontaneous
symmetry-breaking mechanism without phonons, which is
much more sensitive to thermal fluctuations (as such, a system
cannot sustain long-range order in two dimensions). The
comparison between mechanisms 3 [Eq. (9)] and 4 [Eq. (27)]
shows that the presence of two different types of interact-
ing Goldstone modes is a sufficient condition to generate a
stable ordered phase in two dimensions, as whenever one
can reexpress the theory as an effective theory of a single
mode, the effective interaction carried by the second Gold-
stone mode must be long range, because of its massless
character. Having two different types of Goldstone modes,
however, requires particular patterns of symmetry breaking.
Finally, we also showed the necessity of having a nontrivial
algebra of independently acting broken generators to generate
type-B Goldstone bosons, which can be seen as an obvious
consequence of the Goldstone counting rule [Eq. (2)], but
which we have shown is not so easy to achieve in practice.
We also give hints at the possible link between the presence of
such type-B Goldstone bosons and unusual scaling behaviors
in the ordered phase, related to the generation of a nontrivial
field anomalous dimension η.

V. CONCLUSION

To conclude, the corrections of the symmetry-breaking
mechanism at the origin of the flat phase teach us two main

lessons on the physics of crystalline membranes. First, acous-
tic phonons cannot be overlooked, even though crystalline
order is broken by thermal fluctuations, and by the fact that
they are subdominant at large distances. It is all the more
important that the presence of a massless effective interaction
carrier is required to ensure that long-range orientational
order is not destroyed by fluctuations. This is why genuine
bidimensional crystals or fluid membranes, in which only
phonons alone or flexurons alone survive at large distances,
do not present any stable ordered phase in two dimensions,
but crystalline membranes, which possess both modes, also
present long-range order.

Second, the origin of the flat phase anomalous scaling laws
can be traced back to a delicate geometrical interplay between
the intrinsic properties of the material and its embedding
in the three-dimensional space. In the presence of a strong
enough external stress field—which drives the system into
the overstretched phase—this subtle balance is broken, and
conventional elasticity is restored, probably due to the absence
of type-B Goldstone bosons.

The key to understanding all these results is the Goldstone
counting rule Eq. (2). We hope that our work will motivate
further studies in the context of condensed matter physics,
in which Lorentz invariance is frequently absent, spacetime
symmetries are often at play, and therefore such tools are
certainly of interest.
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