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The direct experimental probing of locally varying lattice parameters and anisotropic lattice deformations in
atomic multilayers is extremely challenging. Here, we develop a combined numerical and graphical method
for the analysis of irregular moiré superstructures measured by scanning tunneling microscopy (STM) on a
small-twist-angle (∼0.6◦) graphene on highly oriented pyrolytic graphite (gr/HOPG). We observe distorted
moiré patterns with a spatially varying period in annealed gr/HOPG. The nanoscale modulation of the moiré
period observed by STM reflects a locally strained (and sheared) graphene with anisotropic variation of the
lattice parameters. We use a specific algorithm based on a rigid lattice Fourier method, which is able to
reconstruct the irregular and distorted moiré patterns emerging from strain-induced lattice deformations. Our
model is universal and can be used to study different moiré patterns occurring in two-dimensional van der
Waals heterostructures. Additionally, room-temperature scanning tunneling spectroscopy measurements show
electronic states at the Dirac point, localized on moiré hills, which increase significantly the apparent corrugation
of the moiré pattern. The measured topography is compared to classical molecular dynamics simulations. Density
functional theory calculations confirm that an AAB-stacked trilayer region itself can contribute electronic states
near the Fermi level, in agreement with the measured peak in the local density of states. Furthermore, classical
molecular dynamics calculations reveal direction-dependent bond alternations (∼0.5%) around the stacking
regions, induced by shear strain, which could influence electronic properties.
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I. INTRODUCTION

Graphene and other two-dimensional (2D) materials are
intensively studied from the perspective of building new van
der Waals heterostructures [1] by stacking one layer on top
of the other [2–6]. The resulting new materials can reveal
unusual properties and new phenomena [7–11]. Therefore, it
is important to understand the interaction between stacked
2D layers and to study the resulting electronic properties.
Already the interaction between two superimposed graphene
layers implies rich physics and determines the properties of
the stacked system [12–15]. Moiré patterns can appear when
two similar crystalline layers are superimposed, with a spatial
period depending on the misfit and the rotation angle between
the lattice parameters of the two layers [16]. This moiré super-
structure introduces not only a slight geometric corrugation
in graphene, but also modulates the local density of states
(DOS) [12–14]. It was also shown that a moiré pattern can
act as a perturbative periodic potential which induces sec-
ondary Dirac points in the graphene band structure [17–19].
Graphene layers superimposed with small twist angle (∼1◦)
are of peculiar interest due to the decreased Fermi velocity
and charge localization [20], the emergence of flat electronic
bands [21–23], and also due to the role of electron-electron
interaction [23]. Recently, unconventional superconductivity
and correlated insulator behavior was revealed for twist angles
of around 1.1◦ [24,25]. Furthermore, geometric and electronic
effects induced by heterostrain in twisted graphene layers near
this magic angle were reported very recently [26,27].

In this paper we investigate a small-twist-angle graphene
on highly oriented pyrolytic graphite (HOPG) by scanning
tunneling microscopy (STM) and show that the measured
moiré superstructure reflects a locally strained graphene with
anisotropic variations of the lattice parameter. Owing to the
magnifying property of the moiré pattern, the system is per-
fectly suitable for studying strain effects and deformations.
In theory, as the lattice mismatch and the twist angle be-
tween two adjacent layers tend to zero, the moiré wavelength
tends to infinity, meaning that atomic scale deformations
can be observed on the 10–100 nm scale moiré patterns.
Indeed, this phenomenon is visible in our STM results, as
the measured moiré becomes progressively irregular in one
region of the sample [(Fig. 1(a)]. This is possible because in
the measured system both magnifying criteria are fulfilled:
the lattice mismatch is very small, and the twist angle is
below 1◦.

In addition, we show that the corrugation of the observed
moiré pattern depends on the bias voltage used. Scanning
tunneling spectroscopy (STS) measurements reveal a local
DOS peak at the Dirac point, which is localized at the protrud-
ing sites of the moiré pattern. This induces increased moiré
corrugation when imaging at a bias voltage close to the Dirac
point (electronic effect). The results may have implications
in the nanoscale engineering of the atomic and electronic
properties of graphene and graphene-based van der Waals
heterostructures.

The paper is organized as follows. In Sec. II we summarize
the experimental details of sample preparation as well as the
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FIG. 1. (a) STM image of small-twist-angle graphene on HOPG.
A moiré pattern with 22-nm period (black circle) is observed on
graphene. The distance between moiré hills is position dependent:
it decreases to 11–12 nm (green ellipse) and increases up to 52 nm
(blue ellipse). Tunneling parameters: U = 100 mV, I = 0.25 nA. We
marked the positions on graphene (black dot) and on HOPG (white
dot) where the atomic resolution images shown in (b) were measured.
(b) Atomic resolution images on graphene (top) and on HOPG
(bottom). Graphene zigzag orientation (black line) is nearly parallel
to the HOPG zigzag orientation (green line). Tunneling parameters:
U = 100 mV, I = 1 nA.

applied density functional theory (DFT) methodology. The
STM results and their interpretation is presented in Sec. III A,
while in Sec. III B we provide a model to reconstruct the
observed distorted patterns. In Sec. III C we discuss the charge
localization observed at the moiré protrusions, which is the
main reason for the measured large apparent corrugation.
We compare the results with DFT calculations performed on
AAB-stacked trilayer graphene and a small-twist-angle moiré
coincident cell. In Sec. III D we provide classical molecular
dynamics (CMD) simulations for the observed small-twist-
angle graphene on graphite system. The geometric corruga-
tion obtained from simulations is compared to the experi-
mental STM topography data. Finally, the conclusions are
presented in Sec. IV.

II. METHODS

Graphene grown by chemical vapor deposition on copper
foil [28] was transferred onto HOPG substrate using ther-
mal release tape (TRT). An etchant mixture consisting of
CuCl2 aqueous solution (20%) and hydrochloric acid (37%)
in 4:1 volume ratio was used to etch the copper foil. After
etching, the TRT/graphene was rinsed in distilled water,
then dried and pressed onto freshly cleaved HOPG. The
TRT/graphene/HOPG stack was placed on a hot plate and
heated to 100 ◦C, above the release temperature (90 ◦C) of
the TRT. Thus, after one minute the TRT was easily removed,
leaving behind the graphene on top of the HOPG. The sample
was annealed at 650 ◦C in argon atmosphere for two hours,
in order to remove residual contaminations from the TRT
and to improve the adhesion of graphene to the HOPG. The
graphene/HOPG system was investigated by STM and STS,
using a DI Nanoscope E operating under ambient conditions.
The STM measurements were performed in constant current
mode.

DFT methodology: We used different levels of theroret-
ical DFT methods for the simple trilayer graphene (TLG)
calculations, and for the large-scale calculation (com-
mensurate moiré coincidence bilayer supercell including
33 076 atoms).

(a) For the AAB-TLG and ABA-TLG calculations (150
atoms/unit cell, aligned layers, zero twist) the accurate self-
consistent DFT/GGA(PBE) method has been used used
[Monkhorst-Pack 51 × 51 × 1, DZP numerical basis set, 300
Ry mesh cutoff, self-consistent field (SCF) tolerance is set
to 10−6, SIESTA code [29]]. The periodic geometry of the
ABA and AAB structures has been optimized by a conjugate
gradient (cg) minimizer together with a supercell relaxation
(variable cell method).

(b) For the commensurate moiré coincidence bilayer
(MCB) unit cell, the non-self-consistent DFT/Harris func-
tional (real-space mesh cutoff 150 Ry [29]) has been used
with a single k point (�-point calculation), which is sufficient
for such a large system in which the Brillouin zone and
the reciprocal lattice become extremly small. This approach
includes a single-matrix diagonalization with fully calculated
DFT matrix elements which provide the necessary eigenval-
ues for DOS calculation. The calculation of the projected DOS
is extremely time consuming for the MCB system, therefore,
we calculated only the total DOS, which is adequately infor-
mative on the features near the Fermi level. In both cases (a)
and (b) the periodic superlattice structures have been preop-
timized (relaxed) using classical molecular statics (LAMMPS

code [30], see Sec. III D). We used the lcbop/Kolgomorov-
Crespi-z (lcbop/KC) hybrid potential [31,32] which includes
the necessary van der Waals interaction term via the KC
potential. The lcbop potential accurately describes graphitic
systems in the planes and the interplane interaction has been
simulated by the KC force-field (cohesive energy is in the
range of a few tens of meV/C atom).

III. RESULTS

A. STM investigation of small-twist-angle graphene on HOPG

An STM image of a graphene flake transferred onto HOPG
is shown in Fig. 1(a). The graphene passes over an atomic step
of HOPG, which is marked with dashed line. A prominent
feature of the STM image is the observed moiré pattern,
the periodicity of which is around 22 nm (black circle)
in most graphene areas. According to the formula λM =
a/[2 sin(θ/2)] used for rotated graphene layers [33,34], where
a = 0.246 nm is the graphene lattice constant, such a moiré
period forms at a twist angle of θ = 0.64◦. Experimentally,
we observe that the zigzag orientations of graphene are nearly
parallel with the zigzag orientations of the HOPG substrate
[Fig. 1(b)], which is in very good agreement with the above
small twist angle. As one notices in Fig. 1(a), the moiré
periodicity is position dependent. There are areas where it
decreases to 11–12 nm (green ellipse), and also where in-
creases up to 52 nm (blue ellipse). This increase (decrease)
is anisotropic, it occurs predominantly in one direction. Note
that although the graphene edges have a shadow image due to
a double STM tip, the moiré parameters are not affected (see
Supplemental Material [35], Fig. S1).
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FIG. 2. (a) Experimental moiré pattern. The points A, B,C denote areas where the moiré parameters were measured and used in the fitting
procedure. M1, M2, M3 are the local moiré wavelengths in the depicted directions. a1, a2, a3 are the zigzag directions of the graphene. ϕ1, ϕ2

are the moiré angles. (b) The grayscale spatial map used in the RLFM model. Using linear interpolation, well-defined graphene parameters
were assigned to every grayscale level so that in A, B,C the measured values were preserved.

B. Reconstruction of the distorted moiré patterns using a rigid
lattice Fourier method

In order to better understand the observed anisotropy, we
developed a rigid lattice Fourier method (RLFM) to visualize
the dependence of the moiré pattern on the spatial distribution
of the graphene lattice constants. A model of a spatially vary-
ing anisotropic Moiré pattern can be found in [26]. In their
model the authors used uniaxial strain with a varying twist
angle as an approximation to heterostrain in a very specific
setup. In our case, however, we have a random strain field,
that arose from the transfer and annealing of the graphene
layer. Therefore, our model had to be very general. It can be
used with any kind of lattices, with any type of strains, and
can handle arbitrary lattice parameter gradients [see Fig. 2(b)]
through our graphical method (see later). In the following we
describe our model in detail.

A regular moiré pattern (ξ ) can be defined by its Fourier
series

ξ (�r) =
∑
nm

cnmei
(

n �G(M )
1 +m �G(M )

2

)
�r, (1)

where �G(M )
1 , �G(M )

2 are the reciprocal moiré vectors. We call
the trigonal pattern isotropic when the angle between the
reciprocal moiré vectors is 120◦ and their length is the same.
Deviations from these criteria make the pattern anisotropic.

On a larger scale, �G(M )
1 , �G(M )

2 , can have spatial dependence
�G(M )

1 ≡ �G(M )
1 (x, y), �G(M )

2 ≡ �G(M )
2 (x, y), in which case we call

the pattern to be irregular. The real-space moiré vectors cor-
responding to �G(M )

1 , �G(M )
2 are labeled �R(M )

1 , �R(M )
2 . According

to Ref. [34], the linear transformation between �R(M )
1 , �R(M )

2 and
the graphene lattice vectors �R(O)

1 , �R(O)
2 is

( �R(M )
1

�R(M )
2

)
= (1 − M )−1

( �R(O)
1

�R(O)
2

)
. (2)

As Eq. (2) shows, any anisotropy in the graphene lat-
tice induces anisotropy also in the moiré pattern. In the
work of Hermann [34], the theory is restricted to the case
when anisotropy comes only from the length differences
between �R(O)

1 , �R(O)
2 . There, the angle between graphene lattice

vectors ωO and the angle ωS between the substrate (HOPG)
lattice vectors �R(S)

1 , �R(S)
2 were considered to be the same (ωO =

ωS = ω), meaning that the author restricted the theory only
to the cases where the same type of lattices are put above
each other (e.g., hexagonal on hexagonal, rectangular on
rectangular, etc.). Here, however, we wanted to fully capture
the anisotropic effects, therefore, we allowed ωO and ωS to be
different. Taking this into account we recalculated the matrix
M, which was found to be

[1 − M]−1 = �

⎛
⎝sin(ωs) − p2 sin(ωo + α) qp1 sin(α)

− p2

q sin(	ω + α) sin(ωs) − p1 sin(ωs − α)

⎞
⎠, (3)

where � is

� =
[

sin(ωs) − p1 sin(ωs − α) − p2 sin(ωo + α) + p1 p2

sin(ωs)
[sin(ωs − α) sin(ωo + α) + sin(	ω + α) sin(α)]

]−1

, (4)

p1 = R(O)
1 /R(S)

1 , p2 = R(O)
2 /R(S)

2 , q = R(S)
1 /R(S)

2 , and 	ω =
ωO − ωS and α is the twist angle between the graphene and

the HOPG. We assume that there are no irregularities in the
substrate, i.e., every deformation comes from the graphene
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FIG. 3. (a) STM image of the moiré pattern. (b) Simulated moiré pattern resulting from the RLFM model. (c)–(f) Spatial distributions of
the following parameters: (c) length of a1 lattice parameter, (d) length of a2 lattice parameter, (e) the twist angle α between the graphene and
the HOPG, (f) the angle between a1 and a2, ωO. The directions of a1 and a2 are marked in point A by black and red vectors, respectively.

(see Supplemental Material [35], Fig. S2). Thus, �R(S)
1 , �R(S)

2
are the known equilibrium lattice vectors of graphite, and
ωs = 60◦. Next, we consider the graphene lattice vectors
as slowly varying, continuous functions of space: �R(O)

1 ≡
�R(O)

1 (x, y), �R(O)
2 ≡ �R(O)

2 (x, y). In this continuum model of
graphene we have a well-defined lattice parameter in every
point of the (x, y) plane. If �R(O)

1 (x, y) and �R(O)
2 (x, y) are known,

one can construct the moiré vectors �R(M )
1 (x, y), �R(M )

2 (x, y)
using Eq. (2). Then, the moiré vectors are transformed to
reciprocal space to get �G(M )

1 (x, y), �G(M )
2 (x, y) and the model

moiré pattern ξ (x, y) is obtained by building up the Fourier
series of Eq. (1). The simplest moiré contains six Fourier
components with equal cnm coefficients.

The [1 − M]−1 matrix depends on the twist angle α,
which cannot be extracted directly from STM experiments.
The measurable quantities which provide input for our
model are the moiré wavelengths in different directions, and
the moiré angle ϕ measured between the graphene zigzag
direction and the direction determined by neighboring moiré
bumps. Furthermore, the moiré pattern is very sensitive
on the ωO parameter. It cannot be measured accurately
enough from STM images, therefore, we consider ωO also
an unknown parameter. To get around this problem of
unknown parameters we implemented the least-square-fitting
algorithm of Powell [36]. The fitting parameters
were a1, a2 (the length of the graphene lattice
parameters), ωO, α. The fitting data were the moiré
wavelengths M1, M2, M3, and two moiré angles ϕ1, ϕ2

[Fig. 2(a)] (hereinafter moiré parameters). These
quantities can be calculated from the �R(M )

1 , �R(M )
2 vectors

for a particular set of a1, a2, ωO, α (hereinafter graphene
parameters), which can be fitted onto the measured data.

In particular, we measured the moiré parameters in three
different locations marked with A, B,C in the STM topogra-
phy image of Fig. 2(a). The three locations were chosen to

capture the basic irregularity of the moiré pattern: the bending
of the moiré rows in opposite directions. In A the pattern is
slightly anisotropic, but it is regular. As one goes along a
straight path from A to B, the pattern is rotating with a positive
angle, while it is rotating with negative angle through a path
from A to C. This makes the pattern highly irregular in the
region between B and C.

Once the moiré parameters are known, the graphene
parameters are fitted in each location. Then, the spa-
tial dependence of these graphene parameters a1(x, y),
a2(x, y), ωO(x, y), α(x, y) has to be built. If these are known,
�R(O)

1 (x, y) and �R(O)
2 (x, y) and [1 − M](x, y)−1 can be for-

mulated, and the anisotropic, irregular moiré pattern model
can be visualized. Our approach here was the following: a
grayscale spatial map was generated using gradient tools in
a graphic editor software [Fig. 2(b)], and in a separate step,
linear interpolation was used in our developed code to assign
every grayscale level of the pixels a graphene parameter value,
such that the fitted values in the A, B,C points were preserved.
In this way, we were able to conjecture the spatial distribution
of the graphene parameters, i.e., the distortion in the graphene
lattice. As an approximation, we used the same grayscale
map for each graphene parameter (with different parameter-
grayscale-level interpolation), meaning that we assumed the
same basic spatial distribution for the lattice parameters and
for the twist angle. The moiré pattern was then constructed
from a1(x, y), a2(x, y), ωO(x, y), α(x, y) using Eq. (1). The
next step was to manually fine tune the grayscale map in a trial
and error manner by comparing the simulated moiré pattern
with the STM image until a high level of agreement was
attained. The simulated moiré pattern is shown in Fig. 3(b).
As a result of our model the deformation of the graphene is
revealed in details in Figs. 3(c)–3(f).

It can be seen that the deformations of the lattice parame-
ters are highly anisotropic [Figs. 3(c) and 3(d)]. For example,
between points A and B, there is a contraction of 0.21% in a2,
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TABLE I. Result of the fitting procedure. For each point (A, B,C)
the table contains the fitted graphene parameters (a1, a2, a3, ωO, α)
and the corresponding moiré parameters (M1, M2, M3, ϕ1, ϕ2) com-
paring it with the measured moiré parameters (STM column).

A B C
STM Fit STM Fit STM Fit

a1 (Å) 2.461 2.467 2.461
a2 (Å) 2.458 2.457 2.459
a3 (Å) 2.459 2.459 2.455
ωO (◦) 59.99 59.93 59.87
α (◦) 0.59 0.62 0.72
M1 (Å) 231 230.92 220 218.42 228 229.89
M2 (Å) 225 225.03 195 194.87 187 185.66
M3 (Å) 252 252.04 270 271.34 224 222.32
ϕ1 (◦) 28 28.29 20 18.71 35 35.46
ϕ2 (◦) 31 30.71 32 25.81 21 27.41

but a dilatation of 0.27% in a1. We were able to determine the
spatial dependence of the twist angle α [Fig. 3(e)], which is
not a trivial task for irregular and anisotropic patterns. For an
isotropic and regular moiré pattern with wavelength of 22.2
nm the twist angle is 0.64◦ in equilibrium. We found slightly
different values in points A, B, and C, namely, 0.58◦, 0.62◦,
and 0.72◦, respectively. The deviations from the equilibrium
value are clearly very small, however, they represent a crucial
factor in the deformation of the moiré pattern. Because of
the strong magnifying property in this special system, very
small changes in the graphene parameters induce prominent
effects on the scale of tens of nanometers. To illustrate this,
we recalculated the whole moiré pattern by changing α in
the points B and C by a small amount, but keeping the other
graphene parameters at their fitted value. A change of only
0.1◦ in the twist angle resulted in a deflection of the moiré
rows by 8◦, which is a significant effect. A similar sensitivity
is true for ωO as well. We found that ωO is slightly less
than 60◦: 59.98◦, 59.93◦, and 59.86◦ in the points A, B, and
C, respectively. If ωO was 60◦, as it would be in graphene
without shear deformation, the deflection of moiré rows would
change by 7◦. This clearly shows the sensitivity of the moiré
pattern on the graphene parameters. The calculated graphene
parameters for the points A, B, and C are summarized in

Table I, where, additionally, the calculated moiré parameters
are compared with the measured ones. The observed defor-
mations and deviations from equilibrium values are ascribed
to local strain and twist inhomogeneity in graphene, probably
induced during annealing.

C. Charge localization on moiré hills

In the following, we will study the local DOS of graphene.
STS measurements were performed far from edges, on a
graphene part with regular moiré pattern [Fig. 4(a)]. The
dI/dU spectra show a slightly p-doped graphene with the
Dirac point at UD ≈ 50 mV, as observed from the spectrum
measured in a moiré valley (black line). In contrast with
this typical graphenelike spectrum, the dI/dU measured on
moiré hills reveal significantly higher local DOS near the
Dirac point. Such peak localization can be induced by the
moiré potential [20,37], and was observed in low-temperature
STM/STS measurements of twisted graphene layers with
small angle [27,38]. We note that at such low twist angle the
moiré-induced van Hove singularities are very close to each
other [38] and they are not resolved anymore, as the Fermi
velocity tends to zero [20].

In order to understand in more detail the observed local
DOS peak, DFT calculations have been carried out for CMD
preoptimized TLG supercells with AAB and ABA stackings,
which take into account also the uppermost two layers of the
HOPG substrate. Full self-consistency calculations performed
on AAB-TLG supercell resulted in a band structure as shown
in Fig. 5(b). The corresponding DOS calculations [Fig. 5(a),
red] show a double-peak feature near the Dirac point. Such
two-peak DOS structure is expected to occur at twist angles
below 1◦ from continuum model calculations as well [37].
Here, a Gaussian broadening of 0.04 eV was used to account
for the room temperature used in the STS experiments, which
actually smears the double-peak feature. Note that the DOS
of ABA-TLG is featureless near the Fermi energy [Fig. 5(a),
black]. These results capture very well the peak localization
in the AA-stacked regions and are in good agreement with the
measurements, although the peak splitting is not well resolved
by room-temperature STS [Fig. 4(a)].

In addition, we performed also a constrained, Harris-
functional-like DFT calculation for the full CMD preopti-
mized commensurate MCB supercell, including 33 076 atoms

FIG. 4. (a) dI/dU spectra measured on moiré hills (red curve) and moiré valleys (black curve). (b) STM images of the same moiré pattern
measured with bias voltages of U = 50 mV (top panel) and U = −500 mV (bottom panel). (c) Height profiles taken at U = 50 mV (red) and
U = −500 mV (black) along the same moiré hills, marked with white lines in (b).
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FIG. 5. DFT calculations of small-angle twisted TLG with different stackings, compared with the moiré commensurate bilayer (MCB)
supercell (33 076 atoms). (a) Calculated total DOS for ABA-TLG (black), AAB-TLG (red), and for the MCB supercell at misorientation angle
of 0.63◦. (b) Calculated band structure for the AAB-TLG. (c) The relaxed superlattice of the AAB-TLG system with 150 atoms. (d) The
topography plot of the relaxed superlattice of the MCB. In both cases (c) and (d) the periodic superlattices (AAB-TLG, ABA-TLG, MCB)
have been optimized by lcbop/Kolgomorov-Crespi potentials [31,32]. Gaussian broadening of 0.04 eV was used in all DOS calculations.

at 0.63◦ twist angle [Fig. 5(d)]. In this case a single diago-
nalization of the Hamiltonian provides us the eigenvalues for
total DOS calculation. This approach goes beyond the level of
simple (even DFT fitted) tight-binding methods since the DFT
matrix elements are calculated at first-principles level. The
obtained DOS [Fig. 5(a), dashed line] is comparable with the
more accurate DFT calculations of the AAB-TLG supercell.
We find that the MCB supercell gives a sharp single peak
at the Fermi level, in agreement with the flat band reported
for small-angle twisted graphene bilayers [22,37]. No peak
splitting occurs for the MCB commensurate supercell at 0.63◦
twist angle, which could be related to the mixed effect of
differently stacked regions. The detailed analysis of the MCB
DOS spectral features goes, however, beyond the scope of this
paper. STM simulation of the MCB supercell is challenging
as the non-self-consistent Harris charge density yields poor
surface energies [39], and the available basis set for such
calculation is short ranged [29]. Thus, the simulated STM
images lack of sufficient contrast to display the moiré pattern
and the associated small charge density modulations.

The apparent corrugation of the moiré pattern depends
strongly on the bias voltage (U ) used in the STM measure-
ments. This effect is clearly observed in Fig. 4(b), where
the moiré hills appear significantly much brighter at U = 50
mV (top panel) than at U = −500 mV (bottom panel). Note

that the vertical scale is the same in the two images. Line
profiles taken through the same bumps (marked with white
lines) reveal that the moiré hills are two to three times higher
for U = 50 mV [Fig. 4(c)]. This dependence of the apparent
height on the bias voltage is closely related to the localized
DOS peak, which contributes significantly to the tunneling
current. Hence, at U = 50 mV the STM tip has larger upward
(z) movements in order to keep the current constant when
scanning the moiré hills. In turn, at U = −500 mV the
local DOS of moiré hills and valleys is similar, therefore,
the electronic contribution to the measured corrugation is
less significant, and the z movement of the STM tip can be
attributed mainly to the geometric corrugation.

D. CMD simulations of small-twist-angle graphene on HOPG

In order to support these findings, we carried out clas-
sical molecular dynamics simulations of a small-twist-angle
graphene/HOPG system with regular and isotropic moiré
pattern. For this purpose, we used a commensurate supercell,
which was selected in a manner to approach the experimental
moiré parameters and twist angle. This supercell is a

√
8269

graphene × √
8269 HOPG structure, which was obtained

by iterating through highly ordered commensurate cells as
described in Refs. [40,41]. The cell has a twist angle of
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FIG. 6. (a) Topography of graphene for a 22.37 nm × 22.37 nm commensurate rhombic moiré superlattice at 0.63◦ twist angle, for
graphene on 22-monolayer-thick HOPG, as computed by classical molecular dynamics geometry relaxation. (b) Color-coded bond length map
of the moiré superlattice. In all cases, the rhombic simulation cells are denoted with solid lines. (c) Fine structure of bond alternations around
an AAB stacking from the simulation depicted in (a) and (b). The colored hexagons show how the graphene lattice is deformed in average
in that particular region. Red and white arrows indicate the main zigzag directions, where the bond alternations are the most pronounced.
(d) Simple analytic homogeneous twisting displacement field �d (�r). (e)–(g) Direction-dependent length change of the bonds marked with the
black thick lines in the hexagons above the figures induced by the displacement field in (d).

0.63◦, a moiré wavelength of 22.37 nm, and a moiré angle
of 29.68◦. The CMD simulation was implemented in the
LAMMPS code [30].

CMD simulations for bilayer graphene can be found in the
literature [42–44], and also for graphene on graphite [42]. In
the latter case, only one rigid layer of graphene was used to
mimic the substrate. However, at least a third layer should
be considered as it is necessary to reproduce the proper
stackings (AAB, ACA, ABC) occurring in the moiré pattern
of a gr/HOPG system. In STM measurements the effect of
the third layer is not negligible [45] (although it is mainly an
electronic effect). Therefore, we placed the graphene above a
thick HOPG substrate, which consists of 22 carbon layers. The
long-range bond order potential was utilized [31] for carbon-
carbon interactions within a single carbon layer. The weak
van der Walls forces between the carbon layers were modeled
using the Kolmogorov-Crespi potential [32]. We performed
geometry relaxation using the FIRE algorithm.

The resulting topography of the graphene sheet is shown
in Fig. 6(a). The maximal geometric corrugation induced
by the moiré pattern obtained from CMD is 0.23 Å. This
is even smaller than the corrugation of the experimentally
found moiré pattern measured at U = −500 mV [0.6–0.8 Å,

Fig. 4(c)]. The combination of the often-used carbon po-
tentials (lcbop, rebo, airebo) with the Kolmogorov-Crespi
potential might underestimate somewhat the corrugation [42].
However, the correction stemming from this underestimation
does not compensate for the measured large apparent height.
In light of this, the large apparent height of the moiré hills
measured at U = 50 mV can only be understood by taking
into account significant electronic effects, as described above.

The carbon-carbon bond length distribution in the opti-
mized moiré supercell [see Fig. 6(b)] shows that the local
strain is between −0.22% and +0.33%. The color-coded
pattern reveals some fine details of the moiré superlattice.
The pattern consists of three green spots and two types of
interconnections between them: a purple and a yellow one
[Fig. 6(b)]. The green spots are the different stacking regions
(AAB, ACA, ABC) having nearly equilibrium bond length
(∼1.42 Å), inferring a period of

√
3/3λM in the bond length

distribution. Due to the local twisting of the top graphene layer
around the stacking regions [42–44,46], there is a spatially
changing local shear around them, which manifests in rich
bond alternations [Fig. 6(c)]. The most pronounced bond
alternations occur in the purple areas which interconnect
the AAB regions. These regions appear purple because they
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are mixed up with red (dilated) and blue (contracted) bonds
[Figs. 6(b) and 6(c)]. It can be easily seen that these re-
gions coincide with the so-called soliton walls visible on the
CMD simulated topography [Fig. 6(a)], previously reported
in twisted bilayer graphene [47]. The yellow areas connect
different stackings: the AAB with ACA/ABC.

In Fig. 6(c) we analyzed the fine details of the bond alter-
nations around the AAB stacking. The nine colored hexagons
show how the graphene lattice is deformed in average in
that particular region. In each interconnection a major zigzag
direction can always be identified, where the bond alternation
effect is the strongest. We indicated these major directions
with white and red arrows in Fig. 6(c). In the case of purple
interconnections it turned out that the main direction for
the bond alternation is the zigzag direction perpendicular to
the soliton wall (white arrows). In contrast, for the yellow
interconnections the major direction is parallel with the in-
terconnection itself (red arrows). The twisting displacement
field around the stacking has the property that it deforms
the least those bonds that are either parallel (light green
bonds in yellow interconnections) or perpendicular (light blue
bonds in purple interconnections) to the local displacement
field. We depicted this in Figs. 6(d)–6(g), where we showed
how the bonds in specific directions would deform in a very
simple analytic homogeneous twisting diplacement field �d (�r)
[see Fig. 6(d)]. Although this is an oversimplification as the
real field has a radial dependence and the displacements are
not necessarily perpendicular to the (x, y) position vectors
of the carbon atoms [44], it gives a very good insight as to
what actually happens with the bonds. The twofold symmetry
observed in Figs. 6(e)–6(g) is modulated on a larger scale
by the sixfold symmetry of the moiré pattern [Fig. 6(b)
and 6(c)]. The bond pattern in Fig. 6(c) has a point reflection
symmetry around the AAB stacking. Such a specific lattice
arrangement could influence the electronic properties through
pesudomagnetic fields as the hoppings are having a very
unique directional feature. If this twisting deformation could
be enhanced with external techniques up to the critical shear
strain (∼17%) for gap opening, it could lead to direction-
dependent gaps, meaning that in a well-set configuration

the graphene would conduct electrons only between certain
stackings, that could lead to localization effects and flat-band
physics independently of the magic angle.

IV. CONCLUSION

Small-twist-angle graphene on HOPG has been studied
both experimentally and theoretically. The moiré superlattices
observed by STM reflected a locally strained graphene with
anisotropic variations of the lattice parameter. We developed
a combined graphical-numerical method in order to evalu-
ate the deformations that resulted in these distorted moiré
patterns. As a result of our approach, the spatial dependence of
the anisotropic deformations was revealed in unprecedented
detail: not only the anisotropic moiré pattern could be re-
produced, but also the local values of (a1, a2, ωO, α) could
be accurately calculated. The sensitivity of the moiré pattern
on the variation of graphene parameters was also demon-
strated. Additionally, a local DOS peak at the Dirac point
was observed, localized at the protruding sites of the moiré
pattern, which resulted in a significant increase of the apparent
moiré corrugation. These findings were supported by classical
molecular dynamics simulations, which also revealed rich
bond alternation patterns around the stackings, induced by
shear strain, which could have interesting applications in the
future of strain engineering. DFT calculations confirmed that
the measured local DOS peak can be attributed to AAB-
stacked trilayer regions in small-twist-angle gr/HOPG sys-
tems. The results may have implications in the nanoscale
strain engineering of the atomic and electronic properties of
graphene-based van der Waals heterostructures.
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