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Effects of interface steps on the valley-orbit coupling in a Si/SiGe quantum dot
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Valley-orbit coupling is a key parameter for a silicon quantum dot in determining its suitability for applications
in quantum information processing. In this paper we study the effect of interface steps on the magnitude and
phase of valley-orbit coupling for an electron in a silicon quantum dot. Within the effective-mass approximation,
we find that the location of a step on the interface is important in determining both the magnitude and the
phase of the valley-orbit coupling in a Si/SiGe quantum dot. Specifically, our numerical results show that the
magnitude of valley-orbit coupling can be suppressed up to 75% by a step of one atomic monolayer, and its phase
can change by almost π . When two steps are present, the minimum value of the valley-orbit coupling can even
approach zero. Our calculation can in principle be generalized to multiple steps as well, as long as the width of
the regions between steps is much larger than the atomistic length scale. We also clarify the effects of an applied
external magnetic field and the higher orbital states on the valley-orbit coupling. Overall, our results illustrate
that interface roughness can strongly affect both the magnitude and the phase of the valley-orbit coupling, which
are crucial parameters for both spin and charge qubits in silicon.
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I. INTRODUCTION

Silicon is an ideal host for electron or nuclear spin qubits
because of its low abundance of spinful isotopes (which can be
further reduced through isotopic enrichment) [1,2]. Extremely
long coherence times for both electron and nuclear spins were
reported in bulk samples back in the 1950s [3], and were more
recently observed in Si nanostructures for single spins [4–7].
There have been multiple experimental demonstrations of
high-fidelity quantum gates for single-spin qubits [8–14] and
encoded multispin systems [15–24]. The impressive quantum
coherence, together with the vast semiconductor industry and
its ever improving technological base, makes spin qubits in Si
an attractive and promising building block for a future scalable
quantum computer.

Significant technological challenges remain toward a fault-
tolerant spin qubit in Si, from controlling the effects of
charge noise on two-qubit gates to fast and high-fidelity spin
measurement. A particular issue of current interest is the
consequences of the multivalley structure of the Si conduc-
tion band [1,2,25]. The conduction band in bulk Si has six
degenerate minima. For electrons confined at an interface four
of the valleys have elevated energy so that only two are left
in the low-energy sector of the Hilbert space. Scattering at
the interface further couples the last two valleys (valley-orbit
coupling) and lifts the remaining degeneracy. However this
valley splitting tends to be relatively small, about 0.2 to
0.3 meV at a Si/SiO2 interface [26–28] and up to 0.1 meV
at a Si/SiGe interface [9–12,17–24], which is usually further
reduced by any interface roughness [8,29–31].

The presence of low-energy orbital excited states in a quan-
tum dot (QD) could potentially weaken the foundation for a
spin qubit and render it susceptible to leakage and decoher-
ence. Therefore existing experimental and theoretical studies

of valley effects have mostly focused on the valley splitting
[12,17–23,26–43], with particular interest in how atomic scale
features at the interface affect the valley splitting. However,
it is important to note that valley-orbit (VO) coupling is in
general complex, with its magnitude giving the valley splitting
while its phase determines how the valleys are mixed at the
interface [32,44]. In a single quantum dot only the magnitude
of VO coupling is important, whereas the phase does not
have any direct effect on low-energy dynamics. However, in
a multidot system both are important to the electron spectra,
with the phase in particular a determining factor for all the
tunneling matrix elements [20,37,44]. Considering that tunnel
coupling is crucial for electron transfer [44–50], charge qubit
manipulation [51–55], and exchange coupling between spin
qubits [56–58], the phase of the valley-orbit coupling, or more
specifically the phase difference between neighboring quan-
tum dots, lies at the foundation for a controllable multiqubit
system, and full knowledge of the valley-orbit coupling would
be crucial for a complete understanding of the spin and orbital
dynamics. Indeed, over the past few years researchers on spin
qubits in Si have started exploring the phase aspect of VO
coupling [31], and equivalently the intervalley tunnel coupling
in the case of a double dot [9,20,35,44,59].

In this paper we study how one or two well-defined inter-
face steps affect both the magnitude and phase of the valley-
orbit coupling within the effective-mass approximation. With
a single interface step, we find that magnitude of the VO
coupling can be reduced by up to 75%, while its phase can
vary up to ∼π . When two interface steps are present and are
strategically located, the magnitude of the VO coupling can
even vanish completely, while the phase of the VO coupling
can vary dramatically depending on where the steps are. In
short, our results show that both the magnitude and the phase
of the VO coupling are sensitive to the location of the interface
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step(s). It is thus inevitable that different quantum dots on
the same interface would have different VO couplings if
interface steps are present. Such variability in the VO coupling
could significantly impact two-dot properties that are impor-
tant to electron-based quantum information processing, such
as tunnel coupling and exchange coupling.

The rest of the paper is organized as follows. In Sec. II we
present the theoretical framework of our system and define the
Hamiltonians and wave functions of our models. In Sec. III,
we calculate the VO coupling for the ground valley states and
analyze our results for different geometries described in the
previous section. Section IV covers the effect of magnetic
field on VO coupling; moreover we discuss the role of ex-
cited states on the VO coupling in the ground-state manifold.
In the final section we summarize our results and discuss
their importance to the experimental study of Si quantum
dots.

II. THEORETICAL APPROACH

A. Model Hamiltonian

Typical heterostructures for Si-based quantum computing
employ either a silicon oxide or Si1−xGex alloy as a barrier
material. The former tends to have a relatively flat interface,
while the latter often has a small miscut angle to release the
strain built up in the growth process, which in turn results
in discrete interface steps. In this work we focus on the
Si/SiGe heterostructures, and explore in detail the effects of
the interface steps on the electronic states in a single gate-
defined quantum dot.

Our model consists of a single electron in a quantum dot
with an in-plane (x and y directions) circular confinement of
a nominal radius of �0 = 10 nm centered at the origin. The
out-of-plane confinement is triangular, with a barrier height
of U0, and can be tuned by an applied electric field F . The
total Hamiltonian of the electron is H ( j) = Hxy + H ( j)

z , with
superscript ( j) indicating the number of steps at the interface
within the quantum dot.

The in-plane part of the one-electron single-dot effective-
mass Hamiltonian takes the form

Hxy = − h̄2

2mt

(
∂2

∂x2
+ ∂2

∂y2

)
+ h̄2

2mt�
4
0

(x2 + y2), (1)

where mt = 0.192m0 is the transverse effective mass of an
electron in Si.

Valley-orbit coupling originates from electron scattering at
the interface, governed by Hz. For a smooth interface posi-
tioned at zI , with SiGe in the z < zI region while Si is in the
z > zI region, the out-of-plane part of the Hamiltonian is

H (0)
z (zI ) = − h̄2

2mz

∂2

∂ (z − zI )2
+ eF (z − zI ) + U0θ (zI − z).

(2)

Here e is the elementary charge, mz = ml = 0.98m0 is the
longitudinal effective mass of an electron, F is the inter-
face electric field, and θ is the Heaviside step function. For
Si/SiGe U0 = 150 meV. We use an applied electric field F =
15 MV/m, as is typical in the literature [30,32].

Within the effective-mass approximation, the electron
wave function at a conduction minimum can be written as
a product of an envelope function and the underlying Bloch
state,

D( j)
ξ (r) = F ( j)(r)uξ (r)e−ikξ ·r. (3)

Here F ( j)(r) is the envelope function with the superscript
indicating the type of the step(s) at the interface and uξ (r) =∑

K cξ

KeiK·r are the Bloch states with cξ

K the Bloch coef-
ficients. Here ξ = {z,−z} is the valley index, and kξ =
±0.85(2π/aSi )ẑ represents the location of the ±z band min-
ima in the first Brillouin zone of silicon with aSi = 0.543
nm being the lattice constant of Si. For a smooth interface
the envelope function for the ground state can be further fac-
tored into the in-plane and out-of-plane parts: F (0)(x, y, z) =
φ(x, y)ψI (z), where φ(x, y) = 1

π
√

�0
e
− x2+y2

2�2
0 is the ground state

of a two-dimensional harmonic oscillator and ψI (z) is the
modified Fang-Howard (mFH) wave function along the z
direction,

ψI (z) = Nz0e
kb(z−zI )

2 θ (zI − z)

+ N (z − zI + z0)e− kSi (z−zI )
2 θ (z − zI ), (4)

where N is the normalization factor. The modified Fang-
Howard wave function depends sensitively on the position
of the interface zI [29,60], with kb determined by the inter-
face potential, z0 computed from the continuity of the wave
function about zI , and kSi a variational parameter determined
by minimizing the electron energy and dependent on the
applied electric field along z. For our SiGe barrier, with U0 =
150 meV, kSi = 0.98 nm−1.

B. Variational wave function

During the growth process of the Si/SiGe heterostructure,
interface steps are inevitable [2,18]. The step heights are an
integral multiple of the atomic layer between the Si atoms. For
a step of one atomic layer, its height is d = aSi/4 = 0.136 nm.
In the presence of an idealized straight interface step at x = x0,
the z component of the potential is now x dependent,

H (1)
z (x0) = H (0)

z (zA) θ (x0 − x) + H (0)
z (zB ) θ (x − x0), (5)

where H (0)
z (zA) and H (0)

z (zB ) are the Hamiltonians given in
Eq. (2), with smooth interfaces at zA and zB, respectively, as
shown in Fig. 1(b).

The effects of an interface step have been considered
within the effective-mass approximation before, for example
using a smooth tilted interface approximation [17–19]. Here
we choose to use the Heaviside theta function to divide the
two sides of a step so as to preserve the information on step
location, which turns out to be a crucial factor in determining
the valley-orbit coupling.

The interface step couples the in-plane and out-of-plane
degrees of freedom, making an analytical solution to the
electron wave function impossible. We therefore take a vari-
ational approach in writing down the envelope function for
the QD-confined electron. The main requirement here is to
match the modified Fang-Howard wave function with the
correct interface position along the z direction because the
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FIG. 1. Schematic representations of different SiGe alloy inter-
faces that are discussed in this paper.

energy expectation value increases dramatically if there is a
mismatch. In the meantime, as an electron crosses an interface
step, its z-direction wave function should smoothly shift from
one mFH function to another, so that the wave function
remains differentiable at all points in space. This smooth
transition is achieved by stitching together the mFH functions
from regions A and B [Fig. 1(b)] using a complementary error
function (Erfc) [61].

Consider an example of a single interface step, where we
define ψA(z) as the ground eigenfunction of Hamiltonian
H (0)

z (zA), and ψB(z) for H (0)
z (zB ). The total envelope function

is then

F (1)(x0) = N1

2
φ(x, y)

[
ψA(z)Erfc

(
x − x0

Lx

)

+ψB(z)Erfc

(
x0 − x

Lx

)]
, (6)

where N1 is the normalization constant, and Lx is the
width of the error function around the step position x0.
Lx is a variational parameter obtained through minimizing
the expectation value of the ground-state energy E (1) =
〈F (1)(r)|H (1)(r)|F (1)(r)〉. For a one-monolayer step we find
Lx = 1.5 nm, while for a two-monolayer step Lx = 1.0 nm. In
Appendix A we give a more detailed discussion on Lx.

Interface steps are never truly in a straight line. There
are always zigzags along the step as atoms diffuse on the
surface during the formation of the interface [62]. We thus also
consider two examples as shown in Figs. 1(c) and 1(d), with
one having a sharp turn along y while the other has a kink, with
the steps on the two sides of the kink extending at different
angles. We have also considered an interface with two steps
within the range of the quantum dot, as shown in Figs. 1(e) and
1(f). We construct the wave functions in the same manner as
in the case of a single step, stitching together wave functions
with different interface locations using complementary error
functions. Details of the wave functions are discussed in
Appendix A.

III. VALLEY-ORBIT COUPLING

The key quantity of interest to us in this study is the valley-
orbit coupling, which is defined as

	( j) = 〈
D( j)

z

∣∣V ( j)
z (x, z)

∣∣D( j)
−z

〉 = ∣∣	( j)
∣∣ e−iφ( j)

, (7)

where V ( j)
z (x, z) is the interface potential along the z direction.

For a smooth interface at z = zI , V ( j)
z (x, z) is independent of x

and takes the form

V (0)
z (zI ) = eF (z − zI ) + U0 θ (zI − z). (8)

For an interface with one straight step, the potential can be
written as

V (1)
z (x0) = V (0)

z (zA) θ (x0 − x) + V (0)
z (zB ) θ (x − x0). (9)

The more irregular steps can be defined similarly, as discussed
in the Appendix A. For two steps,

V (2)
z (x, z) = V (0)

z (zA) θ (x1 − x) + V (0)
z (zB ) θ (x − x1)

× θ (x2 − x) + V (0)
z (zC ) θ (x − x2).

Below we present our results on VO coupling for all cases
using the above potentials.

A. VO coupling for a smooth interface

As a benchmark for VO coupling with interface steps, and
qualitative understanding on how the phase of VO coupling
arises, we first examine the effect of a smooth interface. For an
interface at z = zI , we obtain an analytical expression of VO
coupling in the absence of umklapp processes by substituting
Eq. (3) and Eq. (8) into Eq. (7),

	(0) = U0cz
0c−z∗

0

N2z2
0

kb − 2ik0
e−2ik0zI . (10)

Here cz
0 and c−z∗

0 are the Bloch coefficients, for which we
adopted values obtained via a density functional theory calcu-
lation [33,63]. The magnitude and phase of the VO coupling
depends on the strength of the applied electric field along the
growth direction via the Fang-Howard parameter kSi, and the
location of the interface. For a smooth interface with F =
15 MV/m, we have |	(0)| ∼ 0.1 meV [30,32]. The interface
location produces a phase shift, which is a trivial global phase
for a smooth interface and can be removed by assuming
zI = 0. However, when steps are present, the variations in
this phase shift play a crucial role in determining the overall
magnitude and phase of the VO coupling.

The phase shift 2k0zI arises from electron scattering be-
tween the two conduction band minima at ±k0. With zI = 0
as a reference, the interface at zI = ±d = ±aSi/4 leads to a
phase shift of ±2k0d . For a monolayer step, d is one quarter
of the Si lattice constant, so that the phase shift is ±0.85π

(±153◦) (the range of phase is {−π, π}). Hence, for step with
height zI = ±2d , the relative phase is ±0.30π (±54◦). This
phase shift across an interface step is at the heart of how a
step modifies the overall VO coupling at the interface.

B. VO coupling: An interface with one step

Now we calculate the effect of a single interface step on the
VO coupling, with particular focus on how the magnitude and
phase of the VO coupling depend on the location and height
of the step.

Figure 2(a) shows the numerical results of the magnitude of
VO coupling as a function of the step position. Clearly, when
a step is introduced, it always leads to suppression in the mag-
nitude of the VO coupling because the complex contributions
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FIG. 2. In (a) we have shown the ratio of magnitude of valley-
orbit coupling in the presence of a step to a smooth interface, and
in (b) phase change in valley-orbit coupling between interfaces has a
step to the smooth interface, as a function of position of step. Here
d = aSi/4 = 0.543 nm is the monolayer height of the step.

from the two sides of the step [regions A and B in Fig. 1(b)]
have different phases [19]. For a monolayer step this phase
difference is 0.85π . If the step is positioned at the center of
the QD, the two regions’ contributions to the VO coupling are
equal in magnitude but almost opposite in phase, so that they
largely cancel each other out. The resulting VO coupling has a
magnitude that is only 23% of the smooth-interface value, as
shown in Fig. 2(a). When the step moves away from the center
of the QD, one region starts to make larger contribution to
VO coupling than the other, until the step moves outside the
QD, at which point the VO coupling magnitude recovers its
smooth-interface value. These results are consistent with the
recent tight-binding calculations reported in Ref. [23].

Figure 2(b) shows the phase of the VO coupling as a
function of the step position. On the right side of the curve,
the phase is zero (by defining that the particular interface
location zI = 0) and on the left side the phase is different
for the step-up and step-down cases because of the different
interface locations, zI = ±d . The change around the center of
the QD is faster than at the edges, which is the consequence
of the varying complex contributions from each regions. A
change in the QD size along the x direction does not alter the
general behavior of the curve in either magnitude or phase,
but modifies the width of the changes around the center of
the QD. A change in the y dimension has no effect on VO
coupling here, while a change in the z dimension brings a
change in the VO coupling for a smooth interface, but does

not interfere with the effects of the interface step. It is worth
noting that near x0 = 0 (i.e., when the step is close to the
center of the dot), a small shift in the step location can lead
to a sizable shift in the phase. For example, a shift of x0 from
−2 nm to 0 nm leads to a roughly 0.7 rad (or 40◦) phase shift
in the figure (for an electron wave function with a radius of
10 nm). Such a change in phase could significantly impact
physical quantities that depend on the interdot VO coupling
phase difference, such as interdot tunneling [44].

Under certain experimental conditions, interface steps may
become bunched during the growth process [64] and the
resulting step height is of two atomic layers. Now the phase
change across the step is 4k0d = 1.7π = 306◦, which is
equivalent to −0.3π = −54◦. This phase difference is much
less than the single-monolayer case, so that the suppression
in the magnitude of VO coupling is now less severe. The
minimum value for VO coupling still occurs at the center of
the QD, though the reduction is only about 10% of the original
value. The phase varies from 0 to ±54◦ as shown in Fig. 2(b),
with the step-up and step-down cases opposite in their trends.

Considering that each contribution to the VO coupling
from a particular step region is a complex number and can
be represented by a two-dimensional vector, our results can
be explained using a simple vector model. Mathematically,
the VO coupling defined in Eq. (7) can be expressed as
follows in the presence of an interface step and neglecting
the overlapping contributions from the two sides of the step
(assuming the complementary error function as a step function
since Lx � �0):

	(1) ≈ 
0

∫
dxdydz e−2ik0z|φ(x, y)|2ψA(z)2θ (x0 − x)

+
0

∫
dxdydz e−2ik0z|φ(x, y)|2ψB(z)2θ (x − x0)

≈ 	0

a
√

π

[ ∫ ∞

−∞
dx e− x2

a2 θ (x0 − x)

+ e−2ik0 (zB−zA )
∫ ∞

−∞
dx e− x2

a2 θ (x − x0)

]
= 	A + 	B, (11)

where 
0 = U0cz
0c−z∗

0 . In the last expression above each term
can be assigned a two-dimensional vector. The first vector
represents a contribution from region A, the second vector
region B. The magnitude of a vector is given by the electron
probability in the corresponding region, while the relative
direction of the vectors given by the phase e−2ik0 (zB−zA ).

For the two interface regions A and B in Figs. 1(b)–1(d),
we associate each as a vectors with the following properties:

(1) The direction of each vector is fixed by the correspond-
ing zI , as −2ik0zI measured from the x axis.

(2) The magnitude of each vector depends on the fraction
of electron probability within the specific step region in
the QD.

(3) The algebraic sum of the magnitudes of all the vectors
is a constant (for one step here |	A| + |	B| = |	(0)|), reflect-
ing normalization of the electron wave function.

Consider the example of a step at the center of the quantum
dot. Here the vectors from the two sides of the step have the
same magnitude (|	A| = |	B| = |	(0)|/2) but are directed at
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different angles. The relative angle between the vectors for
a monolayer step is 153◦. Hence the ratio of the magnitude
should be | 1

2 (1 + e−i0.85π )| = 0.23, consistent with our nu-
merical calculation. When the step moves away from the cen-
ter, the magnitudes of the two vectors increase and decrease
with the same pace and can be represented as |	A| + δ and
|	B| − δ. Assuming the phases of the two contributions to be
0 and θ , the sum 	(1) of these two vectors/complex numbers
can be expressed as 	(1) = (|	A| + δ) + (|	B| − δ)eiθ . Its
magnitude is

|	(1)| =
√

|	(0)|2
2

+ 2δ2 + 2

( |	(0)|2
4

− δ2

)
cos θ, (12)

which is an even function of δ (which in turn is proportional to
the step location measured from the center of the dot). |	(1)|
also only depends on cos θ , so that the sign of θ does not
matter, which implies that the VO couplings for the step-up
and step-down situations should have the same magnitude.
The phase of the sum is given by

tan φ = (|	(0)| − 2δ) sin θ

|	(0)| + 2δ + (|	(0)| − 2δ) cos θ
, (13)

which approaches 0 when δ → −|	(0)|/2 (smooth interface
with zI = 0) and θ when δ → |	(0)|/2 (smooth interface with
zI a constant of d or 2d). Therefore, our results presented
above can be almost exactly represented by the behavior of
the sum vector 	(1).

C. VO coupling: Irregular one step

With wave function overlap negligible across a step, the
VO coupling is mostly determined by the contributions from
different regions proportional to their respective areas within
the QD range, as illustrated by the excellent agreement be-
tween our simple vector model and the numerical results for
a single straight step above. Within this model, the shape of
the step also does not matter. To demonstrate this point, we
introduce two irregular steps, one with a straight step along the
y direction but with a sharp zigzag turn along the x direction
[Fig. 1(c)], and the other with two segments that are at an
angle between each other [Fig. 1(d)].

Figure 3 presents the results of the zigzag turn case, with
the VO coupling as a function of variables xd (the length of the
x-direction segment) and y0 (the location of the zigzag). y0 =
−20 nm represents the point where the zigzag is below the
QD so that there is only a straight step through the QD. This
is thus similar to the straight-step case. In particular, when
xd = 0 we get a suppressed VO coupling of 23% magnitude,
the same as before, and the phase is also the same as expected.
Hence, we see similar results to one step for both magnitude
and phase. At y0 = 0 for xd = 10 nm, the area occupied by
region A is three quarters whereas that for region B is one
quarter. They both will add-up with the phase factor and give
the result of approximately 50% change in magnitude. This
case is symmetric when region B occupies three quarters and
region A one quarter. On the other hand, when y0 = 20 nm the
change of xd does not affect the VO coupling. The changes
happen outside the dimensions of the QD and we see no
change in the result.

FIG. 3. Three-dimensional plot of the ratios of magnitudes in
(a) and phase differences in (b) of VO coupling as a function of
positions of the step at y0 and a sharp turn of width xd in the x
direction.

For the angled-turn case shown in Fig. 1(d), we take
y0 to be fixed at the center of the QD and study the VO
coupling’s dependence on the turning angle θ . For example,
when θ = −π/2, region A occupies three-fourths of the total
area of the QD, while region B occupies one-fourth. The
results presented in Fig. 4, for both magnitude and phase of
the VO coupling, are the same as in Fig. 3. In short, the results
illustrate again our point that it is the area of each region, not
the shape of the boundary, that is the determining factor for
the overall VO coupling.

D. VO coupling for an interface with two steps

When two straight steps are present on an interface, the
VO coupling in a QD is the sum of contributions from
three step regions labeled as A, B, and C, as illustrated in
Figs. 1(e) and 1(f). These regions differ by the z position of the
barrier potential between Si and SiGe. There are four possible
geometrical combinations: stairs (upward or downward) and
rectangular terraces (normal or inverted), as discussed in
Appendix A 3. The VO couplings of stairs-up and stairs-down
cases are differentiated only through their phases, similarly
to the one-step case. Without loss of generality, we focus on
the stairs-up and rectangular-terrace cases in the following
calculations and discussion.
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FIG. 4. Magnitude (a) and phase (b) of VO coupling as a function
of tilt angle (θ ) for geometry given in Fig. 1(c). We fixed x0 = 0 and
y0 = 0, i.e., at the center of the QD.

1. VO coupling for stairs

Figure 5 shows the results of both magnitude and phase
of the VO couplings as functions of the locations of the two
steps in a stair configuration. The most prominent feature for
the magnitude of VO coupling here is that it can actually reach
zero for a specific set of step locations, when the steps are at
x1 = x10 = −4.4 nm and x2 = x20 = −x10 = 4.4 nm (recall
that the radius of the QD is 10 nm). While the chance of
getting such a step configuration is small in a real QD, the
VO coupling could be strongly suppressed if the two steps are
close to this configuration.

Physically, at this particular step configuration, the con-
tributions from each region toward the VO coupling cancel
one another because of their phase differences. Within our
vector model, if we let 	A = |	A|e−iθ , 	B = |	B|, and
	C = |	C |eiθ represent the contributions from each of the
step regions, with θ = 0.85π , the condition for a complete
cancellation of the VO coupling in the QD is

|	A| = |	C | = |	(0)|
2(1 − cos θ )

, (14)

|	B| = −|	(0)| cos θ

1 − cos θ
, (15)

FIG. 5. Magnitude ratios and phase differences for a staircase
with each step of height one monolayer as a function of second step.
We use different fixed positions of the first step and the position of
step two begins from first-step location.

with the magnitude of each contribution linearly proportional
to the electron probability in the respective step region, which
is roughly proportional to the area of the region within the
QD. Quantitatively, the middle step should occupy about 47%
of the electron probability in the QD, while the other two steps
split the rest.

The phase of the VO coupling is ill defined when its
magnitude vanishes, and could have a discontinuity as we
change the step configurations. This is indeed the case as
shown by the black solid line in Fig. 5(b), which represents
the configurations with x1 = x10 while x2 is varied around x20.
Somewhat surprisingly, in this case the phase has only two
values that differ by π . This feature can again be explained
within our vector model. Qualitatively, when x1 is fixed at x10,
the total vector changes only its magnitude but not its angle
when x2 is varied. When x2 sweeps past x20, the vector simply
flips its direction, so that the corresponding complex number
changes its phase by π . For a more detailed discussion please
see Appendix C.

Doubling the height of each step (Fig. 6) changes the
phases of regions A and C to ±4k0d = ∓0.3π (assuming
the phase of the region B contribution is 0). Now the overall
VO coupling cannot vanish anymore, and generally has much
larger magnitude than the case of two single-monolayer steps.
The minimum magnitude occurs when the two steps merge at
the center of the QD with a height of 4d , with the value of
| 1

2 (1 + e−4i0.85π )| = 0.59. As the second step moves outside
the dot the magnitude of VO coupling gets the value of one
step with height 2d . The phase of the VO coupling smoothly
shifts from the case of a step of height 4d to a height of 2d . In
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FIG. 6. Results of magnitude ratios and phase differences for
stair case with each step of height 2d for several fixed locations of
first step as a function of second-step position.

terms of the vector notation, here the magnitude of total VO
coupling never goes to zero, and there is no discontinuity in
its phase.

2. VO coupling in rectangular terraces

When a rectangular terrace is present on the interface (a
step up followed by a step down), the magnitude of VO
coupling has a nonzero minimum value just like in the single-
step case. Furthermore, this minimum value is identical to the
value obtained in the single-step case as well. In Fig. 7(a)
we show some numerical results for different terrace config-
urations, with five different locations of the first step on the
left side of the quantum dot. The second step position always
satisfies x2 > x1. Each of the curves starts from 1 when the
two steps are on top of each other so that the terrace is absent.
As the second step moves away from the first step, the value
of the magnitude of VO coupling drops to a minimum value
and then goes back up again. No matter where x1 is (as long
as x1 < 0), the minimum value of the VO coupling remains
the same. As for the phase of the VO coupling, for each x1

the phase starts from zero when both steps are at the same
point and there is no terrace. The contribution from the terrace
increases as x2 moves away from x1 and the terrace area
becomes larger. Finally, when the second step moves outside
the QD we recover the single-step case (with step location at
x1) as shown in Fig. 2(b).

These results can be interpreted by our vector model
straightforwardly. As in the case of a stair, here the contri-
butions to the VO coupling again come from three regions,
labeled as A, B, and C. What is different here is that regions
A and C have the same location for the interface, so that the

FIG. 7. Magnitude ratios and phase differences for rectangular
terrace of height one monolayer, d , as a function of second step. We
use different fixed positions of the first step and the position of step
two begins from first-step location.

vectors representing these two regions are aligned and can be
combined into a single vector, whereas the contribution from
region B is at an angle 0.85π from those of A and C. Clearly,
the sum of these three vectors (practically two if A and C are
combined) would never vanish. Writing the total VO coupling
as 	(2) = 	A + 	B + 	C = |	B| + (|	A| + |	C |)e−iθ , and
knowing that |	A| + |	B| + |	C | = |	(0)| is a constant de-
termined by the QD area, we can easily find that the minimum
of |	(2)| happens when |	B| = 1

2 |	(0)| irrespective of what
the split is between regions A and C, and the value of the
minimum is |	(2)| ∼ 0.23|	0|, the same as in the single-
step case. Again, from the perspective of this model, the
key factor is the electron probability distribution among the
different step regions within the QD, not exactly where the
terrace is.

If the terrace step height is 2d (two atomic monolayers;
Fig. 8), the magnitude of the VO coupling follows the same
trend as above, albeit with a smaller overall magnitude in
modification, consistent with what we observed in the single-
step case. The phase also follows the same trend as in the
single-step case (the −2d dot-dashed curve in Fig. 2), as
would be predicted by our vector model.

Our results on two-step interfaces show that both the
magnitude and phase of the valley-orbit coupling in a Si
quantum dot are dependent on the configurations of the steps.
In particular, when the two steps are in a stair formation,
the VO coupling can be completely suppressed for a specific
combination of step locations. However, digging beneath the
surface, our effective-mass model also indicates that it is
the electron probabilities in each step region within the QD
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FIG. 8. Results of magnitude ratios and phase differences for
rectangular terrace of height 2d for several fixed locations of first
step as a function of second-step position.

that determines the behavior of the overall VO coupling. For
example for the cases of terraces, the VO coupling would be
minimized as long as half of the electron probability is within
the terrace, no matter exactly where the terrace is within the
QD’s geometric shape.

In general, the effective-mass calculation performed here,
and the vector model we use to explain our results, can be
generalized to interfaces with many steps, as long as the
terraces between steps are much broader than the atomistic
length. If these terraces are too narrow, contributions from
neighboring terraces cannot be neglected (recall that our vari-
ational step width parameter takes the value of 1.5 nm) and the
envelope function approximation starts to break down. At this
limit of atomistic scale interface roughness, a tight-binding
calculation that can access the small length scale would be
more appropriate.

IV. EFFECTS OF MAGNETIC FIELD AND HIGHER
ORBITAL STATES ON THE GROUND-STATE

VALLEY-ORBIT COUPLING

So far in this study our key observation is that in the
case of a relatively smooth interface with one or two steps,
the crucial factor in determining the magnitude and phase of
the VO coupling is the area/electron probability of each step
(with a particular interface location zI ) within a quantum dot.
There is no direct contribution from the step edge within our
effective-mass model.

When a magnetic field is applied along the growth direc-
tion of a two-dimensional quantum dot, it causes a stronger

FIG. 9. In (a) and (b) we show the percentage difference in
magnitude and difference in the phase of the VO coupling given in
Eqs. (17) and (18), respectively, for three different values of magnetic
field as a function of step location.

confinement and a reduction in the Fock-Darwin radius of the
electron wave function (i.e., the characteristic length of the
electron wave function) [57],

�(B) = �0

[
1 + 1

4

(
�0

�B

)4
]− 1

4

, (16)

where �0 is the radius of the ground Fock-Darwin electron

state at B = 0, and �B =
√

h̄
eB is the magnetic length for the

applied magnetic field along the z direction. Such a change in
the size of a QD could theoretically shift the position of a step
relative to the center of the QD, therefore leading to changes
in the VO coupling. However, since the Si QD radius is
generally quite small (we have used a nominal value of 10 nm
in this study), this magnetic confinement effect turns out to
be negligible. Benchmarked against the zero-field results, the
quantities of interest here are the percentage difference in the
magnitude of VO coupling and overall phase shift,

γ = |	(1)(B)| − |	(1)(B = 0)|
|	(0)(B = 0)| × 100%, (17)

δ = φ(1)(B) − φ(1)(B = 0). (18)

In Fig. 9(a), we indeed observe a very small change in VO
coupling as a function of the magnetic field [65], in the pres-
ence of a single step because of the relatively small change in
the confinement radius: the largest change is 4.6%, at B = 6 T.
There is no change in VO coupling if the step is at the center of
the QD because the magnetic field does not shift the electron
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FIG. 10. The ground and the first excited state energy spectrum
as a function of step position are shown in (a) and (b), respectively.
The solid line curves represent the results which include the coupling
between s and p states and the dashed line approximates results with
the exclusion of coupling between s and p states.

wave function. The phase of the VO coupling has a similarly
very weak dependence on the magnetic field, as shown in
Fig. 9(b). As we mentioned before, this weak dependence on
the applied magnetic field is to be expected. Indeed, given a
10 nm zero-field radius for the electron ground state, we have
a total confinement radius for different values of the B field as
�(2 T) = 9.94 nm, �(4 T) = 9.78 nm, and �(6 T) = 9.54 nm.
Even at 6 T, the confinement length is still only modified by
5%. It is therefore not surprising that the field does not cause
the step location to change within the QD, so that VO coupling
is not affected significantly by a magnetic field.

Our results so far indicate that the determining factor in the
calculation of the VO coupling in the presence of interface
steps is the electron probability in each step region within
the QD. With our calculations based on a variational ground-
state wave function, it is important to establish its validity
by clarifying whether the steps cause significant scattering
between the ground and excited orbital states.

This can be done by introducing the higher-energy p states
in our calculations with a single interface step. Now the
low-energy Hilbert subspace comprises the ground state and a
twofold-degenerate excited orbital state [66], in addition to the

FIG. 11. Percentage difference in VO coupling for ground state
in the presence of p as a function of step position.

valleys. The basis is {D(1)
z,s , D(1)

−z,s, D(1)
z,px

, D(1)
−z,px

, D(1)
z,py

, D(1)
−z,py

}.
Qualitatively, the presence of a step on the interface breaks
the symmetry of the Hamiltonian along the x direction, re-
sulting in a coupling between the ground and the excited px

states.
The effective Hamiltonian within the s-p subspace can be

represented as

H =
[

Hss Hsp

Hps Hpp

]
.

Here the blocks Hss and Hpp represent the ground and first
excited orbital state manifolds (assuming valley splitting is
much smaller than the orbital excitation energy) and Hsp and
Hps are the coupling between the ground and excited states.
We diagonalize this matrix and plot the energy spectrum in
Fig. 10. We have also included results when assuming Hps =
Hsp = 0, and observe a very small change as shown by the
dotted lines in Fig. 10. In Fig. 11 we plot the percentage
change in the VO coupling in the presence of the excited
state as compared to ground-state-only results. Clearly, the
contribution from the excited states on the VO coupling
in the ground state is negligible, and our ground-state-only
calculation above is justified.

V. CONCLUSION

In conclusion, we have calculated the valley-orbit coupling
in a Si/SiGe quantum dot in the presence of interface steps.
We employ a variational approach within the effective-mass
approximation for this calculation. Our results show that the
presence of interface steps could lead to significant suppres-
sion of the magnitude of the VO coupling, and cause large
phase shift (up to π ) to the VO coupling. Our results can
be explained by the assumption that the overall VO coupling
is the sum of contributions from individual step surfaces.
The phase of an individual contribution is determined by the
interface position of the step along the growth direction, while
its magnitude is determined by the electron probability on
the particular step enclosed within the QD. This model can
be visualized using vectors to represent the individual step
surface contributions, with the sum of the magnitude of the
vectors a constant and the direction of each vector fixed. We
have also explored the effects of an external magnetic field
and the excited orbit states, and find both to have only minor
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effects. Our results on the magnitude of the VO coupling are
consistent with results reported in the literature, while our
results on the phase of the VO coupling should be a useful
guideline when exploring variations in the interdot tunneling
and exchange coupling in double and multiple quantum dots.

In this work we have systematically examined the depen-
dence of the complex VO coupling in a single quantum dot
on the presence of interface steps. As we have discussed
in the introduction, a clear understanding of both the phase
and magnitude of VO coupling is essential in the case of
a double or multiple quantum dot. For example, a phase
difference between neighboring quantum dots means that
tunneling between different valleys are allowed [44], while a
smooth interface would have only allowed tunneling between
the same valley eigenstates. The modified single-electron
tunneling in turn would affect the exchange coupling between
neighboring electrons, which are proportional to the square of
tunnel couplings. We are currently exploring these effects and
how they could impact spin and charge qubits in Si, and the
results will be presented elsewhere.
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APPENDIX A: VARIATIONAL WAVE FUNCTIONS

1. How to determine Lx

As discussed in the main text, in the presence of an inter-
face step, we assume that the growth direction electron wave
function on each step surface takes the modified Fang-Howard
form. To ensure that the wave function is continuous across
a step, we stitch the two modified Fang-Howard functions
together using the complementary error function:

Erfc(β ) = 2√
π

∫ β

−∞
e−t2

dt,

where β = x−x0
Lx

, x0 is the position of the step in the x direction,
and Lx represents the width of the error function. Lx thus
dictates how smooth the wave function transition is. We treat
Lx as a variational parameter and calculate it by minimizing
the energy of the ground state:

E (1) = 〈F (1)(r)|H (1)(r)|F (1)(r)〉.
The expectation value here depends on the location and height
of the step as well as the width of the error function. For a
given height of the step, the optimal Lx varies with the position
of the step. In our calculation reported in this paper, we choose
three values of x0 near the center of the QD, calculate the opti-
mal value of Lx, and then average over them. For the values of
x0 used in Fig. 12, we obtain Lx = 1.5 nm. Notice that while
the value of Lx is important in calculating the total energy of a
state, it has no significant impact on the calculation of the VO
coupling as we discuss below.

We observe in Fig. 12 that the variation in energy for the
one-step case is small if we vary the Lx within 1 to 2 nm,

FIG. 12. Change in the expectation value of energy (E (1) − E (0) )
in the presence of (a) step up and (b) step down as a function of a
variational parameter, the width of the complementary error function
Lx . We consider three locations of the step close to the center of
the QD.

whereas outside this range the change in energy is more
dramatic. Most importantly, we find that for the one-step case
the value of Lx (e.g., 0.5 nm and 5 nm, respectively) has
minimal effect on the VO coupling, as shown in Fig. 13. In
other words, the approximate nature of our choice of Lx does
not affect the objective of evaluating the VO coupling.

When excited states are included in our calculation, we
adopt the same approach in stitching together the growth-
direction wave functions across a step. For these states the
optimal value of Lx is not necessarily the same as that for
the ground state. Nevertheless, we adopt the same Lx for the
p states (Fig. 14), and observe through numerical calculation
that their effect on the ground-state VO coupling is less than
0.15 percent. It is thus safe to neglect the effects of the higher-
energy orbital states, as we have done in the calculations
presented in the main text.

FIG. 13. Effect of Lx on VO coupling.
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FIG. 14. Percentage difference in VO coupling in the ground
state in the presence of p from when there is only the s state for
different values of Lx .

2. Variational wave function: Irregular one step

On a realistic interface, a step is never a straight line. To
model irregular shapes of an interface step, we consider two
examples as shown in Figs. 1(d) and 1(e), with one having a
sharp zigzag turn along the y direction and the other having
two segments at an angle with respect to each other. The
Hamiltonians for the two cases are

H (a/b)
z = H (1)

z (x0) θ (y0 − y) + H (1)
z (x0 + x(a/b)) θ (y − y0),

(A1)
where H (1)

z (x0) is given in Eq. (5), and the corresponding wave
functions are given as

F (a/b)(y0) = 1

2

N(a/b)

N1

[
F (1)(x0)Erfc

(
y − y0

Ly

)

+ F (1)(x0 + x(a/b))Erfc

(
y0 − y

Ly

)]
, (A2)

where N(a/b) are the normalization constants, and F (1) is
given in Eq. (6). The parameters x(a) = xd and x(b) =
(y − y0) cot (θ ) define the step segment along the y direc-
tion and the slanted step edge in the xy plane, respectively.
Compared to the case of a single straight step, here there
is an additional parameter in the form of the width of the
error function along the y direction, Ly. We choose Ly = Lx,
considering that the value of Lx has a negligible effect on the
VO coupling.

3. Variational wave function: Two steps

In this Appendix we extend our formalism to the case of
two parallel straight steps along the y direction. Defining the
locations of the two steps at x1 and x2, we can now divide
the interface into three regions A, B, and C with respective
interface positions at z = zA, z = zB, and z = zC , as illustrated
in Fig. 1. Based on the locations of each region, there are four
possible configurations: the steps can form either upward or
downward stairs, or rectangular terraces that can be either a
bump or a dip. The Hamiltonian along the z direction for both
stair and terrace configurations can be written as

H (2)
z = H (0)

z (zA)θ (x1 − x) + H (0)
z (zB )θ (x − x1)

× θ (x2 − x) + H (0)
z (zC )θ (x − x2),

FIG. 15. Effect of in-plane quantum dot size on the magnitude
and phase of VO coupling.

where H (0)
z (zA), H (0)

z (zB ), and H (0)
z (zC ) are the Hamiltonians

for regions A, B, and C, with wave functions ψA(z), ψB(z),
and ψC (z), respectively. Following the same procedure for the
one-step case, the total wave function can now be written as

F (2)(x, y, z) = N2

2
φ(x, y)

[
ψA(z) Erfc

(
x − x1

Lx

)

+ 1

2
ψB(z) Erfc

(
x1 − x

Lx

)
Erfc

(
x − x2

Lx

)

+ψC (z) Erfc

(
x2 − x

Lx

)]
. (A3)

Here N2 is the normalization constant, which depends on the
locations of the steps at x1 and x2, and the width Lx of the
complementary error function. Since the value of Lx is much
smaller than the dimensions of the QD and does not affect
the VO coupling strongly, we assume that the widths of the
complementary error functions for the two steps are the same.
We use the value of Lx (=1.5 nm), the same as in the single-
step case.

APPENDIX B: EFFECT OF DOT SIZE ON VO COUPLING

The VO coupling results in the main text are all obtained
assuming a QD radius of 10 nm. Within our vector model only
the ratio of electron probability across a step is important;
thus we do not expect any qualitative change in the step
dependence for the VO coupling when QD size is varied.
To verify this assertion, here we choose three different radii
and calculate the phase and magnitude of VO coupling as
functions of step location. We have chosen the same value of
Lx for each radius. As shown in Fig. 15, the overall behavior of
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FIG. 16. Vector representation of the VO coupling for a single
step, a two-step stair, and a rectangular terrace. We show the top view
of the quantum dot in the first row; the vector representation of each
shaded region and their resultant sum are shown in the second and
third rows, respectively.

the magnitude and phase of VO coupling indeed remains the
same. Quantitatively, for smaller dots the changes in both the
magnitude and phase of VO coupling occur within a smaller
length scale, and thus the rate of change increases when the
dot size decreases, making VO coupling in a smaller quantum
dot more sensitive to the location of an interface step.

APPENDIX C: VECTOR MODEL FOR VO COUPLING

As we discussed in the main text, our results on valley-orbit
coupling can be explained in terms of vectors representing
contributions from each step region. Here we provide a more
detailed discussion of the vector model. In the following we
label individual vectors in terms of the step regions they
represent. After summing over all contributions, the resultant
vector R corresponds to the total VO coupling. For illustration

we consider the cases of a single step, a two-step stair, and a
rectangular terrace.

In the case of a single step, the step divides the QD into two
regions labeled as A and B. A top view with step position x0

is shown in Fig. 16. The directions of the two vectors A and
B are 0.85π and 0 from the x axis, respectively, as we choose
region B to have zB = 0 so that its contribution to VO coupling
is real. Their magnitudes are proportional to the electron
probability within the respective areas within the quantum dot.
Clearly, the magnitude and direction of the resultant vector
R depends on the location of the step. The magnitude of R
reaches its minimum when the step location is at the center
of the dot, so that vectors A and B are of equal length. The
resultant vector R has a finite minimum magnitude and its
direction varies from direction vector B to vector A as the step
moves from left to right as shown in Fig. 16. The presence
of a second step divides the quantum dot into three regions,
as illustrated in Fig. 16. Here we consider two geometrical
configurations, either two-stairs-up or a rectangular terrace. In
both cases the directions of the vectors representing regions A
and B are at 0.85π and 0 from the x axis, respectively, whereas
the direction of C is −0.85π for the stairs-up case and 0.85π

for the rectangular terrace. The different direction of the third
vector for the stairs-up case means that the resultant vector R
can cancel out completely. For a rectangular terrace, on the
other hand, vectors A and C are parallel, so that the resultant
vector R behaves in the same way as the case of a single step
even though regions A and C are separated by B physically.
Like in the one-step case, the minimum value of the VO
coupling (or the minimum magnitude of vector R) is reached
when the electron probability splits equally between region B
and the collective of regions A and C, and region B does not
necessarily lie at the center of the QD. The direction of the re-
sultant vector R for both the stairs-up and terrace cases varies
with the change in the contributions from vectors A, B, and C.
A final determination requires a more quantitative evaluation
of the individual vectors, as we discussed in the main text.
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