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Dynamical band gap tuning in anisotropic tilted Dirac semimetals by intense elliptically polarized
normal illumination and its application to 8-Pmmn borophene
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The dynamical-gap formation in an anisotropic tilted Dirac semimetal modulated by intense elliptically polar-
ized light is addressed through the solution of the time-dependent Schrödinger equation for the two-dimensional
Dirac Hamiltonian via the Floquet theorem. The time-dependent wave functions and the quasienergy spectrum
of the two-dimensional Dirac Hamiltonian under normal incidence of elliptically polarized electromagnetic
waves are obtained using a nonperturbative approach. In it, the Schrödinger equation is reduced to an ordinary
second-order differential Mathieu equation. It is shown that the stability conditions of the Mathieu functions
are directly inherited by the wave function resulting in a quasiparticle spectrum consisting of bands and gaps
determined by dynamical diffraction and resonance conditions between the electron and the electromagnetic
wave. Estimations of the electromagnetic field intensity and frequency, as well as the magnitude of the generated
gap, are obtained for the 8-Pmmn phase of borophene. We provide a simple method that enables us to predict
the formation of dynamical gaps of unstable wave functions and their magnitudes. This method can readily be
adapted to other anisotropic tilted Dirac semimetals.
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I. INTRODUCTION

Recently, the so-called Dirac materials have received con-
siderable attention due to their possible implementation into
next-generation electronic devices [1–4]. The main physi-
cal properties of these materials were observed for the first
time in graphene, an allotrope of carbon consisting of a
monolayer of atoms in a honeycomb lattice with an electron
linear dispersion near the Dirac points. As a result of these
characteristics, the charge carriers in graphene behave like
massless Dirac fermions [4–12]. Thereafter, a wide variety of
two-dimensional materials with similar properties has been
discovered [13]. Examples of these are: Silicene [14,15],
germanene [16,17], stanene [18,19], and artificial graphene
[20,21]. Borophen, a two dimensional allotrope of boron,
also falls in this category. The chemical similarity between
boron and carbon atoms has triggered the search for stable
two-dimensional boron structures and synthesis techniques
to produce them [22]. Since their theoretical prediction [23],
many different allotropes of borophene have been experimen-
tally confirmed [24]. Among its many different phases, the
orthorhombic 8-Pmmn is one of the most energetically stable
structures [2], having a ground state energy lower than its
analogs [25]. Borophene, in contrast with graphene, shows
a highly anisotropic crystalline structure, which causes high
optical anisotropy and transparency [2,25,26]. It is thus a
strong candidate for flexible electronics, display technologies,
and in the design of smart windows where minimal photon
absorption and reflection are required [2,22,27].

Despite the many useful and fascinating properties of
graphene, borophene, and other Dirac materials, their lack
of an electronic band gap has stimulated the search for
either other two-dimensional materials with semiconducting
properties or techniques to induce them artificially. Among
other proposals to circumvent this problem, one of the most
promising ideas is generating a light induced dynamical
gap. As the electromagnetic field is a periodical function of
time, this technique has been termed Floquet gap engineer-
ing. High intensity electromagnetic waves interacting with
graphene have been studied using perturbative approaches
[28,29]. However, it has been shown that light induces a
renormalization of the electronic spectrum of Dirac materials
not captured by simple perturbation techniques [28,30–35].
In this regard, borophene brings interesting possibilities to
study the light-matter interaction in semimetals due to its
asymmetric spectrum. As graphene, borophene has a honey-
comb lattice with two nonequivalent sublattices. However, its
peculiar structure gives rise to a tilted anisotropic cone in the
vicinity of the Dirac points [25,26], as opposed to graphene
whose spectrum is completely isotropic in K space. Materials
with such an anisotropic spectrum are called anisotropic tilted
Dirac semimetals [36].

Recently, the formation of energy gaps in borophene sub-
ject to high-intensity linearly polarized light was studied
beyond the perturbative approximation [26]. It was found that
borophene, when interacting with light, acquires a complex
band structure from the stability conditions of the solutions
of the Mathieu differential equation. Among other effects,
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FIG. 1. Borophene sheet under an elliptically polarized electro-
magnetic wave.

the interaction with light produces a gap in the vicinity of
borophene’s Dirac point. The effects of an intense circularly
polarized electromagnetic field have, nevertheless, not been
discussed for borophene yet.

In this paper, we address the general problem of a particle
that obeys the Dirac Hamiltonian subject to an intense ellip-
tically polarized electromagnetic field. As it is schematized
in Fig. 1, our solutions can be applied to the particular case
of electrons in borophene under a strong elliptically polarized
field. We report the wave functions, the quasienergy spectrum,
and the magnitude of the dynamic gap opening. The case of
linearly polarized light, addressed by us previously [26], is
proven to be fundamentally different from the elliptically po-
larized one studied in this work. Our analysis mainly focuses
on the stability and instability of the time-dependent wave
functions. The results presented here display an interesting
interplay between the tilted anisotropy and the relative ori-
entation of the light-polarization ellipse. Moreover, we show
that the gaps may be tuned by changing the orientation of the
elliptical polarization profile of light.

The paper is organized as follows. In Sec. II we introduce
the low-energy effective two-dimensional anisotropic Dirac
Hamiltonian under an arbitrary electromagnetic field. Subse-
quently, in Sec. III, we determine the time-dependent wave
function of electrons in borophene subject to an elliptically
polarized electromagnetic field. In this same section we ana-
lyze the stability of the solutions inherited from Mathieu func-
tions in the strong electromagnetic field or long wavelength
regimes. We workout the time-dependent wave functions and
the solutions’ stability chart. To get an insight into the gap
structure, in Sec. III A, the stability and instability regions
are projected onto the tilted Dirac cones of the free electrons.
In Sec. III B, we extract the quasienergy spectrum from the
time-dependent wave function and prove that it consistently

shows a similar gap structure to that of the projected chart.
Finally, we summarize and conclude in Sec. IV.

II. TWO-DIMENSIONAL ELECTRONS IN A TILTED
DIRAC CONE SUBJECT TO ELECTROMAGNETIC FIELDS

A. The anisotropic Dirac Hamiltonian

The single-particle low-energy effective two-dimensional
anisotropic Dirac Hamiltonian in the K valley is given by
[25,26,37],

Ĥ = vt P̂yσ̂0 + vxP̂xσ̂x + vyP̂yσ̂y, (1)

where P̂x and P̂y are the momentum operators, σ̂i are the Pauli
matrices, and σ̂0 is the 2 × 2 identity matrix. For 8-Pmmn
borophene, the three velocities in the anisotropic Dirac Hamil-
tonian (1) are vx = 0.86vF , vy = 0.69vF , and vt = 0.32vF in
units of the Fermi velocity vF = 106 m/s [37]. The first term
in Eq. (1) gives rise to the tilting of the Dirac cones and the
last ones correspond to the kinetic energy. The Hamiltonian
associated with the second Dirac cone K ′ valley has the
opposite sign of vt , while the signs of vx and vy depend upon
the chosen basis [25]. Thus, here we start working with the
cone K, while the second Dirac cone is studied later on by
simply changing the velocities signs, as detailed in Sec. III.

The previous Hamiltonian results in the energy dispersion
relation

Eη,k = h̄vt ky + ηε, (2)

where

ε = h̄
√

v2
x k2

x + v2
y k2

y . (3)

The corresponding free electron wave function is

ψη, k(r) = exp(ik · r)√
2

[
1

η exp(i�)

]
, (4)

where η = ±1 is the band index, � = tan−1(vyky/vxkx ), and
the two-dimensional momentum vector is given by k =
(kx, ky).

B. The two-dimensional anisotropic Dirac Hamiltonian
in the presence of an electromagnetic wave

Now we consider a charge carrier described by the two-
dimensional anisotropic Dirac Hamiltonian subject to an elec-
tromagnetic wave that propagates along a direction perpendic-
ular to the surface of the crystal. From Eq. (1) and using the
minimal coupling we obtain

Ĥ =
(

vt�̂y vx�̂x − ivy�̂y

vx�̂x + ivy�̂y vt�̂y

)
, (5)

where �̂ = P̂ − eA, with A = (Ax, Ay) being the vector po-
tential of the incident electromagnetic wave. Calculations are
considerably simplified by choosing a gauge in which the
vector potential is only a function of time. The Schrödinger
equation for charge carriers is thus given by

Ĥ (r, t )�(r, t ) = ih̄
∂

∂t
�(r, t ), (6)
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where, in the two-dimensional spinor �(r, t ) =
(	A(r, t ), 	B(r, t ))�, A and B label the two sublattices.

To deduce the explicit form of the wave function �(r, t )
from Eq. (6) we make the following ansatz

�(r, t ) = exp (ik · r)�(t ), (7)

where �(t ) = (
A(t ),
B(t ))�. Substituting (7) reduces
Eq. (6) into

H(t )�(t ) = ih̄
d

dt
�(t ), (8)

where the matrix H(t ) is defined in Appendix A.
The diagonal terms of H(t ) can be lifted by explicitly

adding a time-dependent phase to the wave function

�(t ) = exp

[
− i

h̄

∫ t

dsαk(s)

]
χ(t ), (9)

with αk(t ) = h̄vt ky − evt Ay(t ) and χ(t ) = (χA(t ), χB(t ))�.
Following the procedure shown in Appendix A, Eq. (8) can
be recast in the form of a second-order ordinary differential
equation as

d2

dt2
χ(t ) + F(t )χ(t ) = 0, (10)

where the function F(t ) is defined by

F(t ) = − i

h̄
σ̂ · dS

dt
+ 1

h̄2 [H̃(t )]2, (11)

with [H̃(t )]2 = |κv − S|2, κv = h̄(vxkx, vyky) and S =
e(vxAx, vyAy). In the last expression, the vector κv is the
directional energy flux of the electrons, and the components
of S represent the work done by the electromagnetic wave
along the x and y directions.

III. ELLIPTICALLY POLARIZED WAVES

Let us now study the case of an elliptically polarized
electromagnetic wave characterized by the vector potential

A = 1


(Ex cos(t ), Ey sin(t )), (12)

where Ex and Ey are constants and  is the fre-
quency of the electromagnetic wave. The vector poten-
tial (12) corresponds to the electric field E = −∂A/∂t =
(Ex sin(t ),−Ey cos(t )).

Rewriting Eq. (10) in terms of the phase

φ = t (13)

yields the Hill equation [38]

χ′′(φ) + F(φ)χ(φ) = 0, (14)

where F(φ) is

F(φ) = i

(
ζx

h̄
σ̂x sin φ − ζy

h̄
σ̂y cos φ

)
+

(
1

h̄

)2[
ε2 − 2κv · S + 1

2

(
ζ 2

x + ζ 2
y

)
+ 1

2

(
ζ 2

x − ζ 2
y

)
cos(2φ)

]
, (15)

and

S = (ζx cos φ, ζx sin φ), (16)

ζx = eExvx/, (17)

ζy = eEyvy/. (18)

The unitless parameter ε/h̄ is the ratio of the electron energy
to the photon energy. Similarly, the parameter ζx/h̄ (ζy/h̄)
is the ratio of the work done by the electromagnetic wave
along the x (y) direction to the photon energy.

The determination of the stability regions of the differential
Eq. (14) is quite challenging mainly due to the imaginary part
in the first term of the right-hand side of Eq. (15). While the
real part gives rise to the Whittaker-Hill equation [39], the
imaginary term yields a Mathieu-like equation with complex
characteristic values, rarely discussed in literature [40]. Fortu-
nately, in the intense electric field or long wavelength regimes
the imaginary part is negligible. Other limits are treatable by
perturbation theory [28,29].

Here we focus on the intense electric field regime. We thus
assume that ζi/h̄ � 1 with i = x, y, which is equivalent to
ecEx/h̄2 � 349 and ecEy/h̄2 � 435. This corresponds to
electric fields Ex � 1.91 V/m and Ey � 2.39 V/m. Thereby,
we can neglect the linear terms of ζi/h̄ in Eq. (14) that yield
the imaginary terms. The obtained expression, best known for
describing the dynamics of the parametric pendulum [41,42],
is the Mathieu differential equation

χ′′(φ) + [a − 2q cos(2φ)]χ(φ) = 0. (19)

The purely real parameters q and a are given by

q = ζ 2
y − ζ 2

x

(2h̄)2 =
( e

2h̄2

)2(
v2

y E2
y − v2

x E2
x

)
, (20)

a = ε2 + ζ 2
y

(h̄)2 − 2q = 2ε2 + ζ 2
x + ζ 2

y

2(h̄)2

= ε2

(h̄)2 +
( e

h̄2

)2(
v2

x E2
x + v2

y E2
y

)
. (21)

The square root of the characteristic value of the Mathieu
equation can be identified with the ratio of the fundamental
frequency 0 to the frequency of the electromagnetic wave
, that is

√
a = 0


, (22)

where 0 =
√

2ε2 + ζ 2
x + ζ 2

y /
√

2h̄. The characteristic value
a parametrizes the family of ellipses in the kx − ky plane that
are characterized by the eccentricity [1 − (v2

y /v
2
x )]1/2. Stated

differently, each value of the parameter a corresponds to a
particular elliptical section of the Dirac cone. However, not
all the ordered pairs in the q-a plane produce stable solutions
of the Mathieu equation. Consequently, in the presence of an
intense electromagnetic radiation not all the elliptical sections
of the Dirac cones correspond to stable solutions. In fact, the
interaction with light induces elliptical sections of the Dirac
cone that alternate between forbidden (unstable) and allowed
(stable) solutions. As can be seen in Fig. 2, the stability chart
in the q-a plane consists of tonguelike stable regions (light
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FIG. 2. Mathieu equation stability chart of in the q-a plane. The
stability (light blue) and instability (white) domains are divided by
the characteristic curves ar (q) (solid blue lines) and br (q) (dashed
blue lines) where r ∈ Z. The Mathieu characteristic values ar (q) and
br (q) have even parity with respect to q and therefore the spectrum is
symmetric for ζx > ζy and ζx < ζy. The solid purple (ζx > ζy) and red
(ζx < ζy) lines correspond to the extra constraint due to Eq. (21). The
vertical dotted green line corresponds to q = −1.77 and the dotted
gray line to q = 0.87.

blue) that neighbor with unstable regions (white). The Math-
ieu equation might have either even or odd stable solutions.
Even stable solutions of (19) have the form

χ(φ) = C(a, q, φ) = exp[−ir(a, q)φ] f C (φ), (23)

where C(a, q, φ) is the even Mathieu function, f C (φ) is an
even function with period π , and a = ar (q) is the Mathieu
even characteristic value. Conversely, odd stable solutions
have the form

χ(φ) = S (a, q, φ) = exp[−ir(b, q)φ] f S (φ), (24)

where S (a, q, φ) is the odd Mathieu function, f S (φ) is an
odd function with period π and b = br (q) is the Mathieu odd
characteristic value. When r is a noninteger rational number,
inside the stable regions, the even and odd characteristic val-
ues are identical, namely ar (q) = br (q). The rational function
r(a, q) depends on the Mathieu characteristic value a and
the parameter q. On the boundaries between the stable and
unstable regions (solid and dashed blue lines, Fig. 2) r takes
an integer value and inside the stable regions r is a noninteger
rational number. Thus, inside the stability regions the even and
odd Mathieu functions have the same characteristic value. For
the particular situation in which q = 0, (19) reduces to the
differential equation of a harmonic oscillator whose solutions
are cos(

√
aφ) and sin(

√
aφ) [43]. Evidently, in this case

r = √
a. Moreover, in the special case where r = √

a ∈ Z,
resonant states are generated for which

0


= 1, 2, 3, . . . , (25)

and therefore when q → 0 two contiguous stability zones are
connected.

A. Wave function and stability spectrum

The general solution of Eq. (19) is the superposition of
the even and odd Mathieu functions C(a, q, φ) and S (a, q, φ).
The wave function is then given by

�(r, t ) = N exp

[
i

(
k · r − vt kyt − vtζy

vyh̄
cos(t )

)]
× [C(a, q,t ) ± iηS (a, q,t )]

(
1

η exp(i�)

)
,

(26)

where N is a normalization constant, � = tan−1 (vyky/vxkx ),
and η = ±1 denotes the conduction and valence bands, re-
spectively. The wave function (26) reduces to the free-particle
wave function (4) when the electric field vanishes.

Since the time-dependent wave function is expressed in
terms of the Mathieu functions, its stability is governed by the
stability chart in Fig. 2 that we discussed previously. Indeed,
the structure of the dynamical gaps of electrons, generated
in the presence of an intense electromagnetic radiation, is
inherited from the properties of the characteristic values of
the Mathieu functions.

The chart can be divided into two key regions according
to the shape of the electromagnetic wave: q < 0 (ζx > ζy) and
q > 0 (ζy > ζx) and q = 0 (ζx = ζx). If ζx > ζy (Exvx > Eyvy)
the work done by the electromagnetic wave on the electrons is
higher along the x axis. Conversely, if ζx < ζy (Exvx < Eyvy)
the work is higher along y. Finally, if ζx = ζy (Exvx = Eyvy)
the electromagnetic wave contributes with equal amounts of
work in each direction. Nevertheless, the electron state cannot
access any point (q, a) in the stability chart shown in Fig. 2;
Eq. (21) imposes an extra constraint. Defining � = ε/h̄ =√

v2
x k2

x + v2
y k2

y /, Eq. (21) takes the form of a straight line
a = �2 + (ζy/h̄)2 − 2q in the q − a plane. Hence, for any
state to be accessible to the electron, the ordered pair (q, a)
must satisfy the inequality

a �
(

ζy

h̄

)2

− 2q. (27)

In Fig. 2 the solid purple and solid red lines illustrate the
limiting case

a = (ζy/h̄)2 − 2q, (28)

for ζx > ζy and ζy > ζx respectively. Naturally, any of these
points should also fall on the stable regions allowed by the
Mathieu equation in order to produce a stable solution of the
wave function.

For fixed Ex, Ey, and , q is constant, and therefore the
allowed states should be located on the vertical line q = const
(see for example the green dotted line or the gray dotted line
in Figs. 2 and 3). Along these lines, the ranges of stable
and unstable states alternate producing the appearance of
bands separated by dynamical energy gaps. The opening of
these gaps is due to the space-time diffraction of electrons
in phase with the electromagnetic field, and effect akin to
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FIG. 3. Zoom of the stability chart near � = 0 (ε = 0 and
E±1,k − h̄vt ky = 0) in the long wavelength regime. (a) Crossing of
the vertical line q = −1.77 (green dotted line) and condition (27)
(purple solid line). The crossing falls inside an unstable state region.
(b) Third-order energy gap �L

3 in the q < 0 region (ζx > ζy) for
fixed fields Ex = 5.5 V/m and Ey = 2.6 V/m. (c) Crossing of the
vertical line q = 0.87 (gray dotted line) and condition (27) (red solid
line). The crossing falls inside a stable state region. (d) Second-
order energy gap �R

2 in the q > 0 region (ζx < ζy) for fixed fields
Ex = 2.6 V/m and Ey = 5.5 V/m. In all the panels the microwave
frequency is  = 50 GHz.

the magnetoacoustic diffraction of electrons in phase with
acoustic waves [26,44,45].

To further comprehend the connection between the Math-
ieu stability chart and the consequent wave function gap
structure, it is illustrating to project the stable and unsta-
ble regions of Fig. 2 on the surface of the tilted Dirac
cones that arise from the free particle equation. To this end,
we explicitly express the normalized energy dispersion Ẽ =
(1/h̄)E±1,k from Eq. (2) in terms of the normalized wave
vector components (̃kx, k̃y) and the parameter a in Eq. (21)
obtaining(

vx

vF

)2

k̃2
x +

(
vy

vF

)2

k̃2
y = a + 2q −

(
ζy

h̄

)2

, (29)

where k̃x = (vF /h̄)kx and k̃y = (vF /h̄)ky. Elliptical rings
of allowed and forbidden states form in the (̃kx, k̃y) plane or
on the surface of the Dirac cone for fixed values of Ex and Ey

(or fixed values of q and ζy/h̄). The dressed Dirac cones, the
Dirac cones over whose surfaces the allowed and forbidden
states have been projected, are shown in Fig. 4. The light
blue portion of the surface represents the allowed states and
the white rings are the forbidden ones. The first correspond

FIG. 4. Dirac cones-energy dispersion Ẽ (̃kx, k̃y) (E±1/h̄), for
the conduction η = +1 and valence η = −1 bands. (a) A gap opens
up at the tip of the Dirac cone for ζx > ζy (Ex = 5.5 V/m and Ey =
2.6 V/m). (b) When ζx < ζy (Ex = 2.6 V/m and Ey = 5.5 V/m)
gaps only open up far from the Dirac point. The white regions
correspond to forbidden energies and the blue ones to the allowed
energies.

to the stable regions and the latter to the unstable regions of
Fig. 2.

In Figs. 3(a) and 3(b) we plot the vertical line q = −1.77
(green dotted line) and the line (28) (solid purple line) su-
perimposed to a zoom of the stability chart for typical elec-
tromagnetic field values Ex = 5.5 V/m, Ey = 2.6 V/m, and
 = 50 GHz. The crossing between these two lines, seen in
Fig. 3(a), is the starting point for the search of stable solutions.
However, in the immediate region above the crossing we
observe a gap of unstable solutions, that projected on to the
Dirac cone produces the appearance of forbidden states at the
tip, forming a gap. At higher energies, we observe the rings
corresponding to the third order gap as can be appreciated
in Figs. 2 and 3(b). This gap yields an energy range �L

3 =
13.22 μeV (see Appendix B) of forbidden states. It should be
noted that the origins of the first gap at the Dirac point and the
following ringlike forbidden regions are essentially the same.
Both of them are generated in points that comply with the
inequality (27), and as a result of inherent instabilities of the
Mathieu solutions.

When the parameters are chosen to fall on the opposite
side of the stability chart (ζx < ζy) the arrangement of the
gaps is quite different. In Fig. 3(c) we observe the crossing
of the vertical line q = 0.87 and the limiting line (28) for
electromagnetic field values Ex = 2.6 V/m, Ey = 5.5 V/m,
and  = 50 GHz. In contrast to the previous case, above
the crossing we find ourselves well inside a stability region.
Hence, the tip of the Dirac cone is dressed entirely with
allowed states and the forbidden rings appear well above it
as can be seen in Fig. 4. At high energies the line q = 0.87
crosses the second order gap as can be seen in Fig. 3(d). A
ring of unstable states with an energy gap of �R

2 = 19.45 μeV
is projected on to the Dirac cone until the line reaches the next
stability zone [see Fig. 4(b)].
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FIG. 5. Energy gap (�E (q)/2) regions near the Dirac points. The
brown solid lines represent �E/2 as a function of q in the domains
where �E (q) > 0 for (a) Ey = 2.6 V/m and ζx > ζy, and (b) Ey =
5.5 V/m and ζx < ζy. The vertical dotted gray line and the dot in q =
−1.77 (a) correspond to Ex = 5.5 V/m, �E/2 = 17 μeV. Likewise,
the vertical dotted green line corresponds to q = 0.87 (b).

To systematize the search of gaps in the K point of the
Dirac cone we define the indicator

�E (q)/2 = h̄

√√√√cr (q) −
[(

ζy

h̄

)2

− 2q

]
, (30)

where r ∈ Z and cr (q) is either ar (q) or br (q), depending on
which one is at the bottom of the allowed band. This indica-
tor corresponds to the energy difference between the lower
allowed band edge and the limiting case of the inequality
(27) given by (28). The integer r is chosen so that the purple
line in Fig. 2 is situated directly below the top band edge
associated with the stable region. Therefore, if for a given
value of q the purple line falls on a forbidden region of states
then �E (q) > 0. If, on the other hand, the purple line falls
on an allowed band �E (q) is a pure imaginary number. The
domain where �E (q) is a pure real number corresponds, thus,
to a gap of forbidden states. Hence, the function E (q) provides
with a clear-cut criterion to detect the formation of gaps in the
surroundings of the Dirac point: �E (q) ∈ R.

In Fig. 5 we analyze the gap formation through the be-
havior of �E (q) in the case ζx > ζy for fixed Ey = 2.6 V/m.
The domains of q where �E (q) > 0 are shown as solid
brown lines in Fig. 5(a). The point given by Ex = 5.5 V/m,
q = −1.77, examined previously in Fig. 4(a), is shown in
Fig. 5(a). We notice that this value of q falls inside one of the

domains where �E (q) > 0, therefore indicating the presence
of a gap opening at the tip of the cone. Moreover, another
useful property of �E (q) is that it gives the energy of the gap.
In this example �E (−1.77)/2 = 17 μeV which corresponds
to the gap shown in Fig. 4(a). In contrast, for Ex = 2.6 V/m,
Ey = 5.5 (ζx < ζy), and q = 0.89, Fig. 5(b) shows that there
is no gap formation as expected from Fig. 4. These results
clearly show that if Ex > Ey, the function �E (q)/2 presents
more domains that yield forbidden gaps close to the Dirac
points than Ey > Ex. This strongly suggests that the shape
and position of the gaps is strongly influenced by the relative
orientation of the minor and major axes of the elliptical
profiles of the radiation and the free particle Dirac cone. If
the major and minor axes of the ellipses arising from the
Dirac cone are perpendicular to the major and minor axes of
the ellipses of the electromagnetic profile, a gap at the Dirac
point is more likely to form. Otherwise, if the ellipses are
oriented in the same direction, gaps are more improbable. It
is important to emphasize that this does not imply that the
two ellipses necessarily have to have the the same proportions.
Nevertheless, the only way to correctly predict the formation
of a gap in the Dirac point is to determine if the value of q falls
inside one of the domains where �E > 0, as we discussed
above.

B. Quasienergy spectrum

The Hamiltonian in Schrödinger equation (6) is a periodic
function of time, therefore the Floquet theorem must hold and,
consequently, the wave function must be of the form

�(r, t ) = N exp

(
−i

Et

h̄

)
f (t ). (31)

E is usually termed the quasienergy and f (t ) = f (t + 2π )
is a periodic function of time with the same period T = 2π/

as the Hamiltonian. Using Eqs. (23) and (24) we can rearrange
the Mathieu functions as

C(a, q,t ) − iηS (a, q,t ) = exp[−iηr(a, q)t] f (t ),
(32)

where r(a, q) is purely rational and therefore ar = br as
we discussed before. Substituting Eq. (32) into (26) and
comparing with (31) we find the explicit expression for the
quasienergy

E
h̄

= vt ky


+ ηr(a, q). (33)

To better visualize the shape of the spectrum we may use
r ≈ √

a for r � 1 to approximate the quasienergy. Using the
definition of a (21) and taking the limit for large quasimo-
menta we get

lim
kx,ky→∞

E = h̄vt ky + h̄
√

v2
x k2

x + v2
y k2

y . (34)

Hence, the quasienergy spectrum asymptotically approaches
the Dirac cone for large quasimomentum values. This feature
is clearly seen in Fig. 6. The light blue straight lines are the
section of the Dirac cone cut by the kx = 0 plane and the solid
gray lines are the quasienergy spectrum in the approximation
r = √

a. The blue, orange, green, and red lines correspond to
the different bands arising from the exact expression of the
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FIG. 6. Cut of the quasienergy spectrum with the section plane
kx = 0 as a function of the pseudomomentum k̃y for (a) Ex =
5.5 V/m, Ey = 2.6 V/m, q = −1.77 (ζx > ζy), and (b) Ex =
2.6 V/m, Ey = 5.5 V/m, q = 0.87 (ζx < ζy). The bands of allowed
states are distinguished with different colors: Blue for r = 1, orange
for r = 2, green for r = 3, and red for r = 4. The light blue solid
lines are sections of the Dirac cone. The section of the quasienergy
spectrum in the approximation where r = √

a is shown for reference
as a solid gray line.

quasienergy (33). We readily confirm that both the exact and
the approximated quasienergy spectrum lines asymptotically
come close to the Dirac cone. This is also seen in Fig. 7,
where the full quasienergy surface is shown and the Dirac
cone is depicted as a light blue semitransparent surface. The
most striking characteristic of these plots is the formation of
gaps. In Fig. 6(a) a gap appears close to the Dirac point for
Ex = 5.5 V/m, Ey = 2.6 V/m, and q = −1.77. It is located
inside the same region as the forbidden states in the dressed
Dirac cone shown in Fig. 4(a). In the full spectrum of Fig. 7(a)
this gap translates into a disk-shaped vacuum of states in the
tip of the quasienergy spectrum. Instead, for Ex = 2.6 V/m,
Ey = 5.5 V/m, and q = 0.87 there is no gap formation close

FIG. 7. Quasienergy spectrum as a function of the pseudomo-
mentum components k̃x and k̃y for (a) Ex = 5.5 V/m, Ey = 2.6 V/m,
q = −1.77 (ζx > ζy), and (b) Ex = 2.6 V/m, Ey = 5.5 V/m, q =
0.87 (ζx < ζy). The bands of allowed states are distinguished with
different colors: Blue for r = 1, orange for r = 2, green for r = 3,
and red for r = 4.

to the Dirac point, though a ring-shaped gap appears around
the tip of the quasienergy spectrum as it is shown in Figs. 6(b)
and 7(b). These results are consistent with the ones found
for the dressed Dirac cones. Newly, the relative orientation of
the minor and major axes of the radiation and the Dirac cone
determine the location and structure of the gaps.

Finally, to compute the quasienergy in the K ′ valley it
suffices to change the sign of the velocities. For the case of
an intense electromagnetic field, we observe from Eqs. (20)
and (21) that the stability diagram depends only upon the
squares of vx and vy. Thus, the stability diagram of the K ′

valley remains the same compared to the K one. However, the
quasienergies are modified as the transformation vt → −vt in
Eq. (33) is required to switch between valleys. This implies
that the Mathieu stability chart must be projected in a cone
tilted in the opposite direction with respect to the ky axis. In
Fig. 8 we observe that the cone as well as the quasienergy
corresponding to K ′ are tilted in the opposite direction to the
ones associated with K, as can be readily seen by comparing
with Figs. 7(a) and 6(a).

IV. CONCLUSIONS

We have systematically investigated the wave function
stability of charge carriers in an anisotropic tilted Dirac
semimetal under an intense elliptically polarized electromag-
netic radiation. To this end, we have worked out the time-
dependent wave function from the Schrödinger equation in
the limit of strong electric field (or long wavelength). We
have proven that the stability properties of the wave functions
are inherited from the Mathieu functions, in terms of which
they are expressed. The analysis of the stability chart of
the Mathieu functions projected onto the Dirac cones shows
the formation of gaps of unstable states for certain domain
regions of the quasimomentum space. We have shown that
the structure of the gaps strongly depends on the alignment
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FIG. 8. (a) Quasienergy spectrum in the K ′ valley as a function
of the pseudomomentum components for the same parameters used
to obtain Fig. 7(a), i.e., k̃x and k̃y for Ex = 5.5 V/m, Ey = 2.6 V/m,
q = −1.77 (ζx > ζy). The bands of allowed states are distinguished
with different colors: Blue for r = 1, orange for r = 2, and green
for r = 3. (b) Cut of the quasienergy spectrum with the section
plane kx = 0 as a function of the pseudomomentum for the same
parameters used to obtain Fig. 6(a), i.e., for k̃y for Ex = 5.5 V/m,
Ey = 2.6 V/m, q = −1.77 (ζx > ζy). The bands of allowed states
are distinguished with different colors: Blue for r = 1, orange for
r = 2, and green for r = 3. The light blue solid lines are sections
of the Dirac cone. The section of the quasienergy spectrum in the
approximation where r = √

a is shown for reference as a solid gray
line. Observe how the tilting of the dressed cones is inverted and thus
are changed for a given quasimomentum.

between the minor and major axes of the elliptical profiles of
the radiation and the Dirac cone of the free particle spectrum.
In summary, the formation of a gap at the Dirac point is more
likely if the radiation and Dirac cone axes do not match, or are
perpendicular. Otherwise, if the axes are aligned, ring-shaped
gaps form for higher energies. The quasienergy spectrum
extracted from the phase of the wave function consistently
reproduces the position and shapes of these gaps. Magnitude
estimations of the electromagnetic fields and gap values were
presented for the 8-Pmmn borophene phase.
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APPENDIX A

In this Appendix, we derive Eqs. (6) and (10) from the
ansatz (7) and (9). We start from the Dirac equation (6) and
applying the solution (7), we obtain Eq. (8), where

H(t ) =
(

αk β∗
k

βk αk

)
, (A1)

whose matrix elements are given by

αk = h̄vt ky − vt eAy, (A2)

βk = h̄(vxkx + ivyky) − e[vxAx + ivyAy]. (A3)

In the previous equations, the vector components Ax and Ay

only depend on the time variable.
Now, we substitute Eq. (9) in Eq. (8), to get

H̃(t )χ(t ) = ih̄
d

dt
χ(t ), (A4)

where

H̃(t ) =
(

0 β∗
k

βk 0

)
. (A5)

From Eq. (A4) we obtain

d2

dt2
χ(t ) + i

h̄

[
d

dt
H̃(t )

]
χ(t ) + 1

h̄2 [H̃(t )]2χ(t ) = 0, (A6)

where

d

dt
H̃(t ) = −σ̂ · dS

dt
. (A7)

In the equations above we used the vectors σ̂ = (σ̂x, σ̂y) and
S = e(vxAx, vyAy). Therefore, Eq. (A6) can be reduced into

d2

dt2
χ(t ) + F(t )χ(t ) = 0, (A8)

with

F(t ) = − i

h̄
σ̂ · dS

dt
+ 1

h̄2 [H̃(t )]2, (A9)

and

[H̃(t )]2 = |κv − S|2, (A10)

where κv = h̄(vxkx, vyky).

APPENDIX B

To estimate the gap size, first, we calculate the value of
the parameter q from Eq. (20) and subsequently use the
expression [26,28]

�r = h̄
√

|br (q) − ar (q)|, (B1)

where ar (q) and br (q) for r ∈ Z are the boundaries of a
forbidden region as it is shown in Fig. 2. For a microwave with
frequency  = 50 GHz, we estimate the gap in the following
cases: (a) For Ex = 5.5 V/m and Ey = 2.6 V/m(ζx > ζy), we
find q = −1.77 and �L

3 = 13.22 μeV. (b) For Ex = 2.6 V/m
and Ey = 5.5 V/m (ζx < ζy), we find q = 0.87 and �R

2 =
19.45 μeV.
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