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Percolation description of charge transport in amorphous oxide semiconductors
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The charge transport mechanism in amorphous oxide semiconductors (AOS) is a matter of controversial
debates. Most theoretical studies so far neglected the percolation nature of the phenomenon. In this paper, a
recipe for theoretical description of charge transport in AOSs is formulated using the percolation arguments.
Comparison with the previous theoretical studies shows a superiority of the percolation approach. The results
of the percolation theory are compared to experimental data obtained in various InGaZnO materials revealing
parameters of the disorder potential in such AOS.
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I. INTRODUCTION

Amorphous oxide semiconductors such as InGaZnO
(IGZO) systems are in the focus of intensive research due
to applications of these materials in thin-film transistors for
transparent and flexible flat-panel displays. Although charge
transport plays a decisive role for such applications, there is no
agreement on the basic transport mechanism. In particular, the
percolation nature of charge transport inherent for electrical
conduction in disordered materials has not been addressed
properly thus far. In the present work, we develop a concise
description of charge transport in AOS based on the percola-
tion theory.

In solids, there are basically three distinct transport mech-
anisms, and all of them were suggested as possible candidates
for charge transport in AOS. In the following, we discuss them
briefly before we describe the random band-edge model that
looks most plausible for amorphous oxide semiconductors.

A. Band transport via extended states in
the random barrier model

In their pioneering works [1–5], Hosono and collaborators
proposed band transport via extended states as a possible
transport mechanism in IGZO materials. They assumed that
charge carriers can move above the band edge Em but their
motion is affected by a disorder in the form of random
potential barriers with a Gaussian distribution of heights,

GB(V ) = 1

δφ

√
2π

exp

(
− (V − φ0)2

2δφ
2

)
. (1)

Here, φ0 is the average height of the barriers and δφ is the
standard deviation in the distribution of the barrier heights.
This random barrier model is sketched in Fig. 1.

Charge transport in the random barrier model was de-
scribed in the framework of the Drude approach that is based
on the average relaxation time 〈τ 〉 for free carriers in the
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states above the band edge Em. In this approximation, the
carrier mobility is determined as μ = e〈τ 〉/m, where m is
the effective mass. For the band transport in the absence of a
disorder potential, the Drude approach leads to the expression
[4,6–8]

μ = − e

m · n

∫ ∞

Em

τ (E )vz(E )
∂ fe(E )

∂vz
Dm(E )dE , (2)

where n is the concentration of carriers, τ (E ) is the momen-
tum relaxation time at the electron energy E , vz(E ) is the
electron velocity along the transport direction (z axis), Dm(E )
is the density of states above the band edge Em, and fe(E ) is
the Fermi function.

In the presence of substantial disorder in AOS, the Drude
approach is then modified heuristically by the introduction of
the weight function [4]

�(E ) =
∫ ∞

E
GB(ε)dε , (3)

which was termed “transmission probability” [4]. The expres-
sion for the charge carrier mobility in AOS thus attains the
form

μ = − e

m · n

∫ ∞

Em

τ (E )vz(E )�(E )
∂ fe(E )

∂vz
Dm(E )dE . (4)

The introduction of the weight function �(E ) into Eq. (4)
was interpreted [4] as taking into account the percolation
arguments suggested by Adler et al. [9]. However, percolation
has little to do with Eqs. (3) and (4), as is readily seen from
the fact that the percolation threshold does not appear in the
above equations. This feature will be discussed in Sec. III.

More importantly, if disorder creates potential barriers
above the band edge as sketched in Fig. 1, it will also
create potential wells below the band edge. The statistical
distribution of these wells must be taken into account as
well, which makes Em a regional, random quantity (random
band-edge model). A description of charge transport based on
percolation theory for the random band-edge model will be
given in Sec. III.
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FIG. 1. Random barrier model for band transport above the band
edge Em affected by random potential barriers.

B. Trap-limited band transport

Trap-limited transport in the spirit of the multiple-trapping
(MT) model has also been considered as a possible transport
mechanism in AOS [10,11]. In the MT process, the motion of
charge carriers via delocalized states is interrupted by trapping
into the localized states with subsequent activation of carriers
back into the conducting states above the mobility edge.

The energy spectrum of localized states in the band tails of
inorganic amorphous semiconductors is widely considered to
exhibit a purely exponential shape [12–16],

g(E ) = Nm exp

(
E

E0

)
, (5)

where E is the energy of the trap counted from the band edge
Em, E0 is the energy scale, and Nm is the density of localized
states at the band edge Em. Lee et al. [11] used an extraction
technique to determine the subgap density of states in an
n-channel amorphous InGaZnO (a-IGZO) thin-film transistor
based on the study of the multifrequency capacitance-voltage
(C–V) characteristics. They concluded that the subgap density
of states is a superposition of two distinct coexisting exponen-
tial functions. Lee et al. [17,18] combined the above models
of band transport limited by potential barriers [1,3–5] and
the multiple-trapping transport [10,11]. Consequently, they
assume two distinct transport regimes in a thin-film transistor
based on AOS, depending on the concentration of carrier.
At low gate voltages, i.e., at small carrier concentrations n,
the Fermi level lies in the manifold of the localized states,
characterized by the density of states given by Eq. (5), with
energies below the band edge Em. In this MT regime, the drift
mobility of carriers is determined as

μ � μmod
nfree

nfree + ntrap
, (6)

where nfree and ntrap are the free (above Em) and trapped
(below Em) carrier densities, respectively, and μmod is treated
as the usual band mobility μ0, “modulated by the percolation
term” [17]. Lee et al. [17] mention that this term should be
determined by the ratio between the potential barrier height
and the average barrier width. Nevertheless, they use the
relation between μmod and μ0, derived by the averaging of
transition rates for overcoming potential barriers. The latter
method has been, however, qualified as not appropriate for
description of incoherent charge transport [15,19].

C. Hopping transport

The incoherent tunneling of charge carriers between local-
ized states, distributed randomly in space and energy, also has
been suggested as a possible charge transport mechanism in
IGZO materials [8]. A marginal admixture of band transport

FIG. 2. Schematic representation of the spatial fluctuations of the
band edge Em in the random band-edge model. The carrier motion is
due to activation from the Fermi level Ef towards the percolation
level Ep.

was also assumed in order to account for the Hall measure-
ments. The theoretical analysis by Germs et al. [8] is based
on the concept of the transport energy Et . According to this
approach, charge transport in a system with localized electron
states is due to the activation of carriers from the Fermi level
E f towards the vicinity of the transport energy [20–24]. The
carrier mobility in this transport regime can be written as
[15,25–27]

μ = μ̃0 exp

[
−Et − E f (n, T )

kT

]
, (7)

where Et is the transport energy and the prefactor μ̃0 depends
on the concentration of carriers n.

At very low temperatures, this equation should be replaced
by Mott or Efros-Shklovskii approach to the variable-range
hopping (VRH) [12,19]. The quantitative criteria on tem-
perature for the exponential distribution of localized states
[8] were discussed elsewhere [28]. In Ref. [4], experimental
data in c-IGZO were fitted using the Mott approach to VRH,
though the VRH regime was rejected due to arguments based
on Hall measurements [4].

To fit with Eq. (7) the high values of the carrier mobility
measured in IGZO materials, an unusually large value of the
localization length in the tail states, a � 4.8 nm, is needed
in the model of hopping transport [8]. This value exceeds by
far the estimates for the localization length of carriers in the
band tails of inorganic semiconductors [12–15]. Therefore,
it appears unlikely that hopping transport is the dominant
mechanism for charge transport in AOS.

D. Random band-edge model

Recently, Fishchuk et al. [29] addressed a model that
combines band transport and localized band-tail states, though
with a significant modification. While Kamiya et al. [2,4] and
Lee et al. [17,18] assume the distribution of potential barriers
of the form given by Eq. (1) above a global band edge Em, see
Fig. 1, Fishchuk et al. [29] assume that the disorder potential
causes random long-range variations of the band edge Em,
as illustrated in Fig. 2. The spatial fluctuations of the band
edge Em are assumed to be Gaussian with the distribution
function [29]

G(Em) = 1

δ
√

2π
exp

[
−1

2

(
Em

δ

)2
]

, (8)

where δ is the standard deviation, and the position of the band
edge Em is counted from the position of the band edge without
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disorder potential. In this work, we consider the random band-
edge model suggested by Fishchuk et al. [29] as appropriate
for the description of charge transport in AOS.

Fishchuk et al. [29] applied the effective-medium-
approximation (EMA) to a theoretical study of charge trans-
port. In contrast, we use percolation arguments to develop
a theoretical description of charge transport in the random
band-edge model. At kT � δ, where kT is the thermal energy
and δ is the scale of disorder in Eq. (8), the results of our
percolation theory are reliable and they substantially differ
from those of the EMA approach used previously [29], as
shown in Sec. IV. Therefore, the percolation theory seems
superior to the EMA for the description of charge transport
within the random band-edge model.

E. Outline

In Sec. II, we describe in more detail the random band-edge
model of Fishchuk et al. [29] that we employ for our study. In
Sec. III, we show how to calculate the carrier mobility using
percolation theory. In Sec. IV, we compare our percolation
approach with the effective medium approximation. In Sec. V,
we compare our theoretical results with experimental data.
It is shown that percolation theory is capable of account-
ing for the dependencies of the charge carrier mobility on
temperature and on the concentration of charge carriers in
IGZO materials. Moreover, a comparison between the results
of percolation theory with experimental data reveals the char-
acteristic parameter δ of the band-edge disorder in Eq. (8) and
the conduction-electron mobility μ0.

II. RANDOM BAND-EDGE MODEL FOR
CHARGE TRANSPORT IN AOS

The random band-edge model by Fishchuk et al. [29] as-
sumes that the position of the band edge Em varies in space due
to disorder potential. The distribution of Em values that belong
to different spatial regions is characterized by the Gaussian
distribution G(Em) given by Eq. (8). This distribution in the
regional positions of the band edge plays a crucial role in the
rest of this paper.

For the sake of completeness, we also include localized
states with energies below Em, whose density of states is
assumed to be exponential, see Eq. (5), where the energy
E is counted from the band edge Em. Following Fishchuk
et al. [29], we assume that the delocalized states with energies
above Em are characterized by the density of states

g(E − Em) = gc

√
E − Em + 	E , (9)

where the value gc = 1.4 × 1021 cm−3 eV−3/2 has been re-
ported for a-IGZO thin films [4]. Equations (9) and (5) can
be combined to the regional density of states

g(E − Em) = 
(E − Em) gc

√
E − Em + (Nm/gc)2

+ [
1 − 
(E − Em)

]
Nm exp

(
E − Em

E0

)
,

(10)

where 
(x) is the Heaviside step function. The first term
on the right-hand side describes the density of delocalized

states above Em, and the second term describes the density
of localized states below Em. The energy shift 	E in Eq. (9)
guarantees the continuity of the density of states at E = Em

when we choose 	E = (Nm/gc)2.
For a given value of Em, one can find a corresponding

regional electron density,

nregion(Em) =
∫ +∞

−∞
g(E − Em) f (E ) dE , (11)

where f (E ) is the Fermi function,

f (E ) =
[

exp

(
E − E f

kT

)
+ 1

]−1

, (12)

and E f is the Fermi level. The total electron density n,
averaged over the regional positions of the mobility edge
Em, is

n =
∫ +∞

−∞
G(Em) nregion(Em) dEm . (13)

For given temperature T and electron concentration n, the
position of the Fermi level E f can be found from the system
of Eqs. (10)–(13).

The AOS material is assumed to be a medium with a
smoothly varying regional conductivity σregion, which is a
product of the elementary charge e, the conduction-band
electron mobility μ0, and the local concentration of mobile
electrons (with energies above Em),

σregion(Em) = eμ0

∫ +∞

Em

g(E − Em) f (E ) dE . (14)

This assumption is justified when the electron mean-free path
is small compared to the spatial scale for variations of Em.
Coefficient μ0 is the intrinsic (band) charge-carrier mobility in
extended states determined by the electron effective mass and
the average scattering time. It may depend on temperature and
also on the electron concentration in the case of a degenerate
system. However, one cannot study the dependence of μ0 on
T and n without deep understanding of the electron scatter-
ing mechanisms in the given material. Therefore, following
Fishchuk et al. [29] we consider μ0 as a constant for the sake
of simplicity. Below we will focus on the exponential factor in
the temperature dependence of the drift mobility leaving the
pre-exponential factor containing μ0 as a fitting parameter.

The global (macroscopic) conductivity σ is to be found by
some “averaging” of the regional values σregion(Em), taking
into account the Gaussian distribution G(Em) of the mobility
edge Em, i.e., σ = 〈σregion〉. When the global σ is found, one
can calculate the (measured) mobility μ as

μ = σ

en
. (15)

In the case of an exponentially broad scatter of regional
conductivities, a proper choice of the averaging procedure is
crucial for a correct determination of the global conductivity
σ . We will consider three methods of “averaging”: The first
is based on the effective medium approximation, expressed
by Eq. (31), see Sec. IV; the other two procedures are based
on percolation theory expressed by Eqs. (19) and (25), see
Sec. III.
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For the experimentally accessible regions of the (n, T )
phase diagram of IGZO materials, Fishchuk et al. [29] have
shown that the conductivity σ (n, T ) and the mobility μ(n, T )
depend on the carrier concentration n and the temperature T
mostly through the variations of the conduction-band edge Em,
and are not limited by the localized states. Therefore, localized
states might be disregarded in IGZO films.

III. PERCOLATION THEORY FOR CHARGE TRANSPORT
IN THE RANDOM BAND-EDGE MODEL

A. From regional to global conductivities in
continuum percolation theory

The random band-edge model belongs to the class of
continuum percolation problems [19]. The transport is de-
termined by charge carriers with energies above the perco-
lation level Ep, which is defined as the minimal energy that
allows a transport path via connected regions with Em not
exceeding Ep.

Let p(E ) denote the volume fraction of regions where the
mobility edge Em is below E ,

p(E ) =
∫ E

−∞
G(Em) dEm . (16)

The quantity

ϑc = p(Ep) (17)

plays the role of the dimensionless percolation threshold
determined as the minimal volume fraction of the conducting
material that enables electrical connection throughout the
infinitely large sample. Numerical studies for Gaussian energy
distributions with various spatial correlation properties yield
the value ϑc = 0.17 ± 0.01 for the three-dimensional contin-
uum percolation problem [19]. Using the value ϑc = 0.17 in
Eq. (17), one obtains the value of the percolation level Ep

Ep = −0.95 δ . (18)

It remains to determine the macroscopic conductivity σ from
the regional conductivities σregion(Em).

According to the percolation approach, only electrons with
energies E above the threshold Ep determine the macroscopic
conductivity. There are two options for such electrons: Em <

Ep < E (mobile electrons in the “valleys”) and Ep < Em <

E (mobile electrons in the “mountain regions”). One might
assume that it would be sufficient to take into account only
regions with Em � Ep in order to determine the conductivity
of the system. However, one should take into account that the
transport path at the energy level E = Ep is negligibly thin
[19,27,30]. Therefore, electrons have to climb to the energies
larger than Ep and, concomitantly, to explore the regions
with Em > Ep. In other words, each conducting path goes
not only through places with Em < Ep (“valleys”) but also
through short regions with Em > Ep (“mountain passes”). The
latter regions dominate the resistivity of the system, because
they are the most resistive parts of the conduction path and
they are connected in series with the less resistive “valleys.”
The higher the band edge Em, the lower the local electron
concentration, and consequently the larger the local resistivity.
For this reason, when calculating the conductivity or mobility,

only places with band edge Em above the threshold Ep are
decisive for charge transport. These places possess the highest
resistivity among those, which belong to the percolation path.
One can find more details to this issue in the review papers
[27,30]. The simplest recipe to calculate σ on the basis of
percolation theory is to average the regional conductivities
over the regions where Em > Ep,

σ = 1

1 − ϑc

∫ +∞

Ep

σregion(Em) G(Em) dEm , (19)

where G(Em) is the Gaussian distribution of the local mobility
edges Em. The mobility μ = σ/en that corresponds to Eq. (19)
can be expressed as

μ = μ0
nmob

n
, (20)

where nmob is the average concentration of mobile electrons
in the regions with Em > Ep, and n is the total electron
concentration. It is easy to recognize that Eq. (19) gives the
correct value of the conductivity σ = eμ0n in the absence of
disorder, δ = 0.

Equation (19) also gives the correct value in the opposite
limit of very pronounced disorder, kT � δ, for a nondegener-
ate occupation of states above Ep, when the regional conduc-
tivities σregion(Em) have an exponentially broad distribution of
values. In this case, the Fermi function can be approximated
as f (E ) = exp [(E f − E )/kT ] and Eq. (14) yields the expo-
nential dependence

σregion(E ) = eμ0Nc exp

(
E f − E

kT

)
, (21)

where Nc is the effective density of states in the conduction
band,

Nc =
∫ +∞

0
g(E ) exp(−E/kT ) dE . (22)

Inserting Eq. (21) into Eq. (19) gives the asymptotic expres-
sion for the carrier mobility

μ = σ

en
= μ0Nc

n(1 − ϑc)

∫ +∞

Ep

exp

(
E f − E

kT

)
G(E ) dE . (23)

At low temperatures, kT � δ, the main contribution to the
integral comes from the vicinity of the percolation level Ep.
Therefore, one can approximately replace G(E ) by G(Ep)
and take the constant factor G(Ep) out of the integral. The
remaining integral is elementary and the carrier mobility given
by Eq. (20) assumes its asymptotic form

μ ≈ μ0
Nc

n

G(Ep) kT

1 − ϑc
exp

(
E f − Ep

kT

)
. (24)

The exponential term in Eq. (24) shows that the charge
transport is dominated by thermal activation of electrons to
the percolation level Ep, as schematically depicted in Fig. 2.
More sophisticated considerations [19,28] lead to a marginal
correction of the pre-exponential factor in this equation. In
fact, the pre-exponential factor should contain (kT )ν instead
of kT where ν � 0.88 is the critical exponent for the correla-
tion length of the percolation cluster [31–33]. Below, we will
use Eq. (24) and ignore this marginal correction.
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B. Averaging procedure by Adler et al.

In several theoretical studies of charge transport in AOS,
the percolation approach suggested by Adler et al. [9] has been
invoked [4,34]. Adler et al. [9] considered a system with a
Gaussian distribution of the regional band edges as given by
Eq. (8). They suggested that the global conductivity σ can be
obtained as

σA = 1

kT

∫ +∞

Ep

σ (E ) f (E )[1 − f (E )] dE . (25)

Here σ (E ) is the contribution to the conductivity of carriers
with energy E ,

σ (E ) = B̃[p(E ) − ϑc]2, (26)

where B̃ is some unspecified constant.
For a comparison with our approach in Sec. III A, we

analyze the conductivity σA from Eq. (25) when the Fermi
level is far below the percolation level, E f < Ep and kT �
Ep − E f . Then, we can use the Boltzmann approximation
f (E ) ≈ exp [(E f − E )/kT ] and 1 − f (E ) ≈ 1 for the Fermi
functions in Eqs. (25) and (26) in the nondegenerate case,
leading to

σA = B̃

kT

∫ +∞

Ep

exp

(
E f − E

kT

)
[p(E ) − ϑc]2 dE . (27)

At low temperatures, kT � δ, the major contribution to this
integral comes from the region E ≈ Ep, providing G(E ) ≈
G(Ep). Using Eqs. (16) and (17), the factor [p(E ) − ϑc] can
be simplified to

p(E ) − ϑc =
∫ E

Ep

G(E ′) dE ′ ≈ (E − Ep)G(Ep) . (28)

Concomitantly, Eq. (27) simplifies to

σA ≈ B̃

kT
[G(Ep)]2

∫ +∞

Ep

exp

(
E f − E

kT

)
(E − Ep)2 dE .

(29)

The integral is elementary. Using its value in Eq. (29), we
obtain the asymptotic expression for the mobility

μA ≈ 2B̃[G(Ep)]2(kT )2

en
exp

(
E f − Ep

kT

)
. (30)

A comparison of this expression with the result of percolation
theory in Eq. (24) shows that the exponential term is correctly
reproduced by Eq. (30). However, besides the unknown co-
efficient B̃, Eq. (30) displays an incorrect temperature depen-
dence of the pre-exponential factor due to the assumption of
a quadratic energy dependence of the regional conductivity
above the threshold, see Eq. (26).

The (global) band-edge Em in the random-barrier model,
as described in Sec. I A, and the percolation threshold Ep

are unrelated conceptually. However, the question remains:
Is it possible to interpret the energy level Em in the model
sketched in Fig. 1 as the percolation level Ep in Fig. 2 so
that the random-barrier model can be viewed as part of the
random band-edge model for energies above the percolation
level, E > Ep? Unfortunately, this is not the case. First, the
random-barrier model in Fig. 1 cannot contain a recipe on

how to calculate the percolation level Ep. Second, since Em

is a regional feature determined by the distribution (8), one
cannot consider the value E in Eqs. (2) and (4) as if Em were
uniform for the whole system. Therefore, an approach based
on replacing Em in Fig. 1 by the percolation level Ep would
not make sense.

In Sec. V, we will compare the predictions of the perco-
lation theory expressed by Eq. (19) with experimental data
obtained by several experimental groups on the dependences
of the carrier mobility μ(n, T ) on the carrier concentration n
and temperature T in IGZO materials [2,4,8,29]. Before that
we address in Sec. IV the relation between the results from
percolation theory and those based on the effective-medium
approximation (EMA).

IV. COMPARISON BETWEEN PERCOLATION
THEORY AND EMA

The EMA and percolation theory are often considered
complementary to each other in their ability to account for
charge transport in disordered systems. Percolation theory is
considered to be valid for strongly disordered systems [19],
while in systems with a weak disorder the EMA is often
applied [29]. In fact, percolation theory gives reliable results
not only for the case of strong disorder, kT � δ, but also for
the opposite case of δ → 0, as discussed in Sec. III in the
context of Eq. (19). Therefore, it is instructive to estimate the
difference between the results of percolation theory and those
of the EMA in the case of strong disorder.

In the EMA framework used by Fishchuk et al. [29]
the conductivity σ was determined from its regional values
σregion(Em) via the equation〈

σregion − σ

σregion + (d − 1)σ

〉
= 0 , (31)

where d is the spatial dimension, and the angular brackets
mean the averaging over the density distribution function
G(Em)

〈A〉 ≡
∫ +∞

−∞
G(Em)A(Em) dEm . (32)

To calculate the carrier mobility μ(n, T ) in the framework
of the EMA, one should calculate the Fermi level E f from
Eqs. (10)–(13) and then determine the dependence of the
regional conductivity σregion(Em) on the regional mobility
edge Em, which then leads to the global conductivity σ via
Eq. (31) and to the carrier mobility μ via Eq. (15).

Let us rewrite the averaging condition (31) in the following
equivalent form in three dimensions, d = 3,〈

σregion

σregion + 2σ

〉
= 1

3
. (33)

In the limit of low temperature and low electron concentration,
the dependence σregion(Em) of the regional conductivity on
the regional conduction band edge Em is very steep, i.e., for
almost all values of Em we have either σregion(Em) � 2σ or
σregion(Em) � 2σ . In the first case, the expression inside the
angular brackets in Eq. (33) is close to unity, in the second

125202-5



A. V. NENASHEV et al. PHYSICAL REVIEW B 100, 125202 (2019)

case, it is close to zero. Therefore,

σregion(Em)

σregion(Em) + 2σ
≈

{
1 if Em < E∗ ,

0 if Em > E∗ ,
(34)

where E∗ is the value of Em that separates these two limits,

σregion(E∗) = 2σ . (35)

Inserting Eq. (34) into Eq. (33), and using the rule of averag-
ing (32), one can evaluate Eq. (33) as∫ E∗

−∞
G(Em) dEm = 1

3
. (36)

This equation defines the energy E∗.
In the case of Gaussian distribution function G(Em),

Eq. (8), the solution is

E∗ ≈ −0.43 δ . (37)

With this value for E∗, one can find the macroscopic con-
ductivity σ from Eq. (35), where σregion(E∗) is to be calcu-
lated from Eq. (14). Inserting Eq. (21) into Eq. (35) pro-
vides the following asymptotic expression for the mobility
μ = σ/en,

μ ≈ μ0
Nc

2n
exp

(
E f − E∗

kT

)
. (38)

The expression (38) is valid when E f < E∗, kT � E∗ − E f

and kT � δ.
According to Eq. (38) one can interpret the transport

in the low-temperature and low-concentration case as ther-
mal activation of electrons to the energy level E∗. This re-
sult is to be compared with that of the percolation theory
given by Eq. (24). Even if we ignore the differences in
the pre-exponential factors we can conclude that the results
given by Eqs. (38) and (24) differ by an exponential factor
∝exp(−0.52 δ/kT ), which is essential for strong disorder,
kT � δ.

However, this result is specific to the present case and
does not imply that the EMA framework always leads to an
exponentially large error in the case of strong disorder. As has
been shown in several studies [35,36], one can achieve a better
description of the conductivity within the EMA framework
by replacing the spatial dimension d = 3 with the inverse
of the percolation threshold 1/ϑc ≈ 6. However, conceptual
improvements of the EMA are beyond the scope of our
present study. Instead, in next Sec. V we turn to a comparison
between the results of percolation theory from Sec. III and
experimental data.

V. COMPARISON WITH EXPERIMENTAL DATA

In this section, we show that the percolation approach
developed in Sec. III and applied to the random band-edge
model presented in Sec. II is able to reproduce experimental
data on charge transport in InGaZnO materials. The main
theoretical result to be compared with experimental data is
Eq. (19) for the conductivity σ (n, T ), as discussed in Sec. III.
The regional conductivity σregion(Em) in this equation is given
by Eq. (14), where the regional density of states g(E − Em)
is taken in the form of Eq. (10) with gc = 1021 cm−3 eV−3/2.

FIG. 3. Temperature dependence of the conductivity σ (T ) in
c-IGZO (a) and a-IGZO (b) samples with different carrier concen-
tration n. Circles: experimental data [4]. Solid lines: fit to Eq. (19).
The values of fitting parameters are specified in the text.

Following Ref. [29], we take into account the distribution
G(Em) of the regional positions of the band edge Em in the
form of Eq. (8) and neglect for simplicity the presence of
localized states with energies below Em by setting Nm = 0. We
address experimental data for the temperature dependencies
of conductivity σ (T ) and mobility μ(T ) at different con-
centrations of charge carriers n. The carrier concentration is
changed experimentally either by varying the doping level [4]
or by varying the gate voltage in the field-effect transistors
[8,18,29].

In their pioneering works [2,4], Kamiya et al. investigated
two series of n-type IGZO films: crystalline (c-IGZO) and
amorphous (a-IGZO). Samples of c-IGZO are crystalline ma-
terials but they contain inherent disorder due to the statistical
distribution of Ga and Zn ions. Therefore, such materials are
to be considered as disordered materials with respect to charge
transport [4]. In each series of the samples, the conductivity
σ (T ) was measured varying the carrier concentrations n be-
tween n < 1016 cm−3 and n ∼ 1020 cm−3 [4].

Experimental data on the temperature dependencies of
the conductivity σ (T ) are shown by circles in Fig. 3(a)
for c-IGZO and in Fig. 3(b) for a-IGZO. These data are
copied from Fig. 1(b), and Fig. 1(d) of Ref. [4], respectively.
Theoretical results given by Eq. (19) are shown in Fig. 3 by
solid lines. These results are obtained by adjusting the band-
edge disorder parameter δ in Eq. (8) and the conduction-band
mobility μ0, keeping these parameters fixed for each group
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FIG. 4. Dependence of the carrier mobility μ on the gate volt-
age Vg at different temperatures. Circles: experimental data [8].
Solid lines: fit μ(n, T ) = σ (n, T )/(en), where σ (n, T ) is given by
Eq. (19). The values of fitting parameters are specified in the text.

of samples. Since the values of the carrier concentration n in
different samples were not exactly specified [4], we use n as
an adjustable parameter. Values for n in the range between
n = 1015 cm−3 and n = 6 × 1019 cm−3 give the best fits,
in good agreement with experimental estimates [4]. The
parameters δ, μ0, and n are considered as independent of
temperature. The values of δ and μ0 that provide the best fit
to the experimental data are δ = 0.057 eV, μ0 = 39 cm2/Vs
for c-IGZO, and δ = 0.036 eV, μ0 = 47 cm2/Vs for
a-IGZO. It is not obvious why amorphous samples should
possess a slightly higher carrier mobility as compared to
the crystalline ones. One should, however, take into account
that c-IGZO and a-IGZO films were created by different
technological techniques: a reactive solid-phase epitaxy
method for c-IGZO and pulsed laser deposition for a-IGZO.
One can expect different factors resulting in the energy
disorder and electron scattering (nonstoichiometry, dangling
bonds, etc.) due to different technological techniques.

Another set of experimental data to be compared with the-
oretical predictions is related to the carrier mobility μ(n, T )
measured in thin-film transistors with IGZO channels [8,29].
In Fig. 4, experimental data for the dependencies of μ on
the gate voltage Vg at different temperatures are reproduced
from Ref. [8] as depicted by circles. Solid lines are the the-
oretical results for μ(n, T ) = σ (n, T )/(en), where σ (n, T ) is
obtained from Eq. (19). The carrier concentration n is assumed
linearly dependent on the gate voltage Vg,

n = λ[Vg − V ∗(T )] , (39)

where the proportionality constant λ serves as a fitting param-
eter. It depends on the relative capacitance between the gate
and the channel and on the thickness of the electron accumu-
lation layer. The value λ = 9.11 × 1016 cm−3 V−1 gives the
best fit. Following Ref. [8], the experimental gate voltage is
counted from its threshold value. The flat-band voltage V ∗
is also treated as an adjustable parameter. Following Ref.
[29], V ∗ is considered temperature dependent. This depen-
dence could be caused by the temperature dependence of
the density of surface charges at the interface IGZO/SiO2.

FIG. 5. Dependence of the carrier mobility μ(Vg, T ) on temper-
ature at different gate voltages Vg. Circles: experimental data [29].
Solid lines: fit of μ(n, T ) = σ (n, T )/(en), where σ (n, T ) is given
by Eq. (19). The values of fitting parameters are specified in the text.

The values V ∗ = 2.69 V, 2.32 V, 2.79 V, 3.61 V, 5.57 V are
used for T = 150 K, 200 K, 250 K, 300 K, 350 K, respec-
tively. The best fits to the experimental data in Fig. 4 are
achieved by choosing the band-edge disorder parameter δ =
0.063 eV in Eq. (8) and the conduction-band mobility μ0 =
30 cm2/Vs. The lower bound on the curves in Fig. 4 is
0.5 Volts above V ∗, so it is different at different temperatures.
A noticeable conduction below V ∗ at T = 250 K and at higher
T could be due to electrons in the bulk of IGZO films.

Experimental data on the carrier mobility in a-IGZO thin-
film transistors, analogous to those in Fig. 4, were obtained
by Fishchuk et al. [29] who converted the data into μ(T )
at different gate voltages Vg. The data are shown by circles
in Fig. 5. Solid lines are fits to Eq. (19). The temperature
dependence of V ∗ in Eq. (39) is taken from Ref. [29],
V ∗(T ) = −1.61 V + 109 V/(T/K). The value λ = 1.32 ×
1017 cm−3 V−1 gives the best fit. The best agreement with
experimental data in Fig. 5 is achieved by choosing the
band-edge disorder parameter δ = 0.05 eV in Eq. (8) and the
conduction-band mobility μ0 = 36 cm2/(Vs). These values
are close to the values δ = 0.04 eV and μ0 = 22 cm2/(Vs)
obtained by Fishchuk et al. [29] from a comparison of their
experimental data and their theory based on the EMA. This
evidences that there is not much difference between the results
of the percolation theory and those of the EMA for the range
of parameters δ, kT, n, and μ0 relevant to the experimental
situation studied in Ref. [29].

For a fairly small range of parameters, 36 meV < δ <

63 meV and 30 cm2/(Vs) < μ0 < 47 cm2/(Vs) for the band-
edge disorder parameter δ in Eq. (8) and the conduction-band
mobility μ0, percolation theory reliably reproduces different
sets of experimental data in IGZO materials over a broad
range of temperatures and charge carrier densities.

VI. CONCLUSIONS

Theoretical approach based on the percolation theory is
developed to describe charge transport in amorphous oxide
semiconductors in the framework of the random band-edge
model that takes into account the effect of disorder on the
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regional position of the band edge Em. For the case of a
Gaussian distribution for Em, the superiority of the percolation
approach is proven in comparison with previously used aver-
aging schemes. Our percolation approach reproduces exper-
imental data on charge transport in IGZO materials obtained
by several groups. The comparison between theoretical results
and experimental data reveals the energy scale of disorder in
such materials.
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