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In the pursuit of accurate descriptions of strongly correlated quantum many-body systems, dynamical mean
field theory (DMFT) has been an invaluable tool for elucidating the spectral properties and quantum phases of
both phenomenological models and ab initio descriptions of real materials. Key to the DMFT process is the self-
consistent map of the original system into an Anderson impurity model, the ground state of which is computed
using an impurity solver. The power of the method is thus limited by the complexity of the impurity model
the solver can handle. Simulating realistic systems generally requires many correlated sites. By adapting the
recently proposed adaptive sampling configuration interaction (ASCI) method as an impurity solver, we enable
much more efficient zero-temperature DMFT simulations. The key feature of the ASCI method is that it selects
only the most relevant Hilbert space degrees of freedom to describe the ground state. This reduces the numerical
complexity of the calculation, which will allow us to pursue future DMFT simulations with more correlated
impurity sites than in previous works. Here, we present the ASCI-DMFT method and example calculations on
the one- and two-dimensional Hubbard models that exemplify its efficient convergence and timing properties. We
show that the ASCI approach is several orders of magnitude faster than the current best published ground-state
DMFT simulations, which allows us to study the bath discretization error in simulations with small clusters, as
well as to address cluster sizes beyond the current state of the art. Our approach can also be adapted for other
embedding methods such as density matrix embedding theory and self-energy embedding theory.
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I. INTRODUCTION

The systematic study of the properties of strongly cor-
related many-electron systems remains one of the main ar-
eas of research in condensed matter physics. In this regard,
dynamical mean field theory (DMFT) has been successfully
applied to study metal-insulator phase transitions [1,2], exotic
quantum phases of matter [3,4], critical exponents in quantum
field theories [5], the volume expansion in plutonium [6],
and high-temperature superconductivity [7,8], among others.
DMFT works by mapping the many-body system of interest
self-consistently into an Anderson impurity Hamiltonian [9].
A central feature of the method is the impurity solver, which
finds the ground state of the impurity model. Numerically ex-
act solvers based on Monte Carlo approaches [10–12] can be
used in the finite-temperature case, but these have difficulties
converging to the T = 0 regime.

One of the greatest challenges to expand the applicability
of zero-temperature DMFT is to find an efficient representa-
tion of the ground-state wave function of the impurity system
[13–22]. Simulations with configuration interaction (CI) [23]
based approaches have been used in zero-temperature studies.
These approaches attempt to identify a subspace in which to
find the ground state and have had some success in treating
strongly correlated systems [24–27]. One of these methods,
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CI singles and doubles (CISD), has been used in an attempt
to increase the size of the systems that can be simulated
[19,20]. Additionally an iterative CISD has been considered
as a DMFT solver [21,22], which has also been successful,
but somewhat computationally expensive. This iterative CISD
approach developed recently, which is called adaptive config-
uration interaction and is unrelated to the method used in this
work [21], misses some of the key features that are important
for an efficient DMFT impurity solver as will be described
below.

The CI methods currently used in the DMFT literature
are not representative of modern CI techniques [28–33]. Se-
lected CI (SCI) methods have recently been shown to be
much more efficient than previous CI methods. Recently, the
adaptive sampling CI method (ASCI) was introduced as a
modern approach to SCI, and since then the ASCI method and
other approximate SCI methods have been rapidly developing
further [34–39]. The key idea that allows this method to be
more efficient than traditional CI methods is to remove the
active space and instead to identify the most relevant degrees
of freedom in Hilbert space to describe the ground state. The
ASCI method has been shown to successfully and efficiently
treat strongly correlated electronic systems known for their
difficulty, for example, the Cr2 dimer [34,40].

In this paper, we adapt the ASCI algorithm to act as impu-
rity solver in zero-temperature cluster DMFT calculations. In
Sec. II we present the algorithmic details, briefly describing
the DMFT loop and discussing the ASCI method and its
extension as impurity solver. In Sec. III we summarize the
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performance of the ASCI-DMFT algorithm with a detailed
convergence study in the different parameters of the method
and some exemplary applications to full cluster DMFT calcu-
lations. Finally, Sec. IV concludes with summarizing remarks
and possible directions to pursue with this new tool.

II. METHODOLOGY

A. DMFT formalism

In this work, we implement the ASCI method as the impu-
rity solver for cluster DMFT (CDMFT) simulations. DMFT,
originally proposed for studying lattice models [41–44],
works by self-consistently finding bath parameters for a set
of sites in a sublattice (the cluster). Correlation effects are
taken into account [9,45], allowing for quantum fluctuations
between the cluster sites and the rest of the system. This is
done by mapping the original system self-consistently into an
Anderson impurity model with Hamiltonian

Himp = HC +
Nb∑

p=1

εp d†
pdp

+
p=Nb,α=Nc∑

p=1,α=1

(Vα,p d†
pcα + H.c.). (1)

The parameters of this map are the number of cluster sites
Nc, the number of bath sites Nb, the bath energies {εp}, and
the coupling terms between the bath and cluster sites {Vα,p}.
The term HC corresponds to the original system Hamiltonian
restricted to the Nc cluster degrees of freedom. Here and
henceforth, greek indices will be used for cluster degrees of
freedom, while the index p will be reserved for bath degrees
of freedom.

The self-consistent map begins by a choice of the bath
parameters. Given the bath parameters, the ground-state wave
function |ψ0〉 and energy E0 of the impurity Hamiltonian are
computed using the impurity solver. The impurity Green’s
function for the cluster degrees of freedom can then be
computed [19]

Gimp(ω)α,β = 〈ψ0| cα

1

ω − (Himp − E0) + iη
c†
β |ψ0〉

+ 〈ψ0| c†
β

1

ω + (Himp − E0) − iη
cα |ψ0〉 , (2)

where η is a small number. From that one can access the
cluster self-energy

�c(ω)α,β = (ω + μ + iη)δα,β − himp,α,β

− G−1
imp(ω)α,β − 
bath(ω)α,β, (3)

where μ is the chemical potential, himp is the noninteracting
part of the cluster Hamiltonian HC , and we have introduced
the hybridization function 
bath(ω). This hybridization func-
tion is the noninteraction part of the Green’s function that
comes from the bath degrees of freedom, and obeys the
analytical expression


bath(ω)α,β =
Nb∑

p=1

V ∗
α,pVβ,p

ω − εp
. (4)

The impurity Green’s function and self-energy are local
quantities defined only on the cluster. The lattice Green’s
function restricted to the cluster can be computed from these
local quantities according to

G(R0, iω) = 1

VBZ

∫
BZ

dk [(iω + μ) − h(k) − �c(iω)]−1,

(5)

where BZ denotes the first Brillouin zone and h(k) is the
momentum-space representation of himp. The self-consistent
condition then amounts to equating the Green’s function of
the Anderson model Gimp(iω)α,β to the full lattice Green’s
function G(R0, iω)α,β . This is solved by iteratively fitting the
bath parameters. The magnitude to be fit is the hybridization
function 
calc(ω)α,β , which is computed from G(R0, iω) in
Eq. (5) by rewriting Eq. (3) as


calc(ω)α,β = (ω + μ + iη)δα,β − himp,α,β

− G−1(R0, iω)α,β − �c(ω)α,β . (6)

This hybridization function is then fitted to the analyt-
ical expression in Eq. (4), which provides with new bath
parameters {εp}, {Vα,p}. In this work, we use the BOBYQA

implementation in the NLOPT library [46,47] to minimize the
cost function

χ ({εp}, {Vα,p}) = 1

NωN2
c

Nω∑
n=1

|
calc(ωn) − 
bath(ωn)|, (7)

where we use the Frobenius norm. To fit over smooth func-
tions, the frequencies ωn are usually chosen along the imag-
inary axis. For more details and specific prescriptions on the
CDMFT calculation, consult Refs. [48,49].

Upon completion of the DMFT self-consistency, i.e., upon
identification of the optimal bath parameters {εp}, {Vα,p} that
define the impurity Hamiltonian in Eq. (1) encoding the low-
energy physics of our original system of interest, one can
proceed to compute properties along the real frequency axis.
In this work, we report lattice spectral weights A(k, ω), which
can be interpreted as the momentum-resolved density of states
for single-particle and single-hole excitations. To compute this
magnitude, one first has to determine the full lattice Green’s
function Glatt (k, ω). This is calculated by periodizing the
cluster restricted Green’s function. One of the usually applied
periodization schemes follows:

Glatt (k, ω) = 1

Nc

Nc∑
α,β=1

eik(rα−rβ )G(R0, ω)α,β . (8)

The spectral weights are then the imaginary part of the lattice
Green’s function

A(k, ω) = − 1

π
Im(Glatt (k, ω)). (9)

B. ASCI algorithm

To proceed, we present ASCI as an impurity solver for
the cluster Hamiltonian Himp. There has been a lot of in-
terest in developing CI methods to treat DMFT impurity
systems, especially recently [19–22]. CI methods work as an
impurity solver by diagonalizing a Hamiltonian in a basis
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of many-fermion states (determinants). However, traditional
CI methods that have been previously considered for this
purpose are not the most effective to treat strongly correlated
systems since they are missing several important aspects
that are central to SCI. A key feature of SCI methods is to
identify the most relevant determinants needed to describe the
ground-state wave function. In particular, ASCI does so by
ranking the determinants according to their coefficient in a
trial ground-state wave function and the Hamiltonian matrix
elements [34,40]. The method proceeds iteratively, improving
the subspace onto which Himp is projected. This subspace is
referred to as the target space and is characterized by the
number of determinants included, tdets.

ASCI starts with a guess for the target space, denoted
as {Dtdets}, e.g., the Hartree-Fock determinant plus some set
of low-rank excitations (singles, double, triples, . . .). The
ground-state energy and wave function of the Hamiltonian of
interest H are then computed in the space {Dtdets} (e.g., by
Lanczos). After diagonalization, the wave function is defined
by its expansion coefficients Cj in the {Dtdets} space. The
method then proceeds to update the target space by choosing
a new set of determinants (a set of size tdets) that better
describes the ground state. This update is done by searching
all the singly and doubly excited determinants from a subset
of {Dtdets}, which we denote as {Dsearch}. The size of {Dsearch}
is a parameter that we choose, cdets, and its influence on the
simulation is described in detail in Refs. [33,40].

The set {Dsearch} contains the determinants corresponding
to the largest coefficients |Cj | from the ground-state wave
function. We denote all determinants found in the search as
the set {DSD}. This set can have many orders of magnitude
more elements than {Dtdets}.

After the search, we calculate

Ai =
∑′

j Hi, jCj

Hi,i − E0
(10)

for all determinants in {DSD}, which provides an estimate of
their importance in the ground-state wave function. The prime
in the sum indicates a sum over {Dtdets}, Hi, j = 〈i|H | j〉, and E0

is the current best estimate of the ground-state energy.
A new target space is built by ranking elements of the the

old target space together with the new singles and doubles,
according to the absolute value of their coefficients Cj and
Ai, respectively, and selecting the tdets determinants with the
largest coefficients. H can then be generated in the new target
space and its ground state computed. This process is then
repeated until convergence.

This method is advantageous for systems in which the
ground state can be described with enough accuracy using a
small subset of the total Hilbert space. The required accuracy
is application dependent, but previous work has shown that the
ASCI method can treat strongly correlated systems generally
accepted as difficult, with higher accuracy and less resources
[33,40,50]. The speed of convergence of the ASCI method can
be greatly influenced by the correct choice of tdets, with larger
tdets yielding higher accuracy but requiring a longer time for
each iteration. When dealing with a new system, one begins
with a modest size of the target space and ramps this up until
the ground-state energy is converged to the desired precision.

For a more in-depth discussion of the ASCI algorithm, its
other parameters and further algorithmic details to highly
exploit its properties, see [33,40].

The ASCI method provides a deterministic prescription to
identify a compact representation of the ground-state wave
function |ψ0〉 in a chosen basis of Slater determinants. Com-
pact here means that ASCI identifies the most important de-
terminants (ranked by ground-state wave-function coefficient)
and thus reaches great energy convergence with a moderate
number of determinants.

C. ASCI-DMFT

In this paper, we adapt the ASCI algorithm to provide an
impurity solver for CDMFT simulations. The main point here
is that the ASCI wave-function compactness translates also
into a compact Green’s function representation, which makes
ASCI a time- and memory-efficient CI based impurity solver.

For this we need to perform an additional step in order
to calculate the Green’s function in Eq. (2) efficiently. The
Hamiltonian Himp has to be inverted once in the basis with
one particle more than in |ψ0〉 and once in the basis with
one particle less. In a CI approach, these bases for the
Hilbert spaces of single-particle and -hole excitations on top
of the ground-state target space {Dtdets} have to be truncated.
Naively, one could construct these spaces simply by applying
the corresponding creation (annihilation) operators on the
converged {Dtdets} basis, in order to be able to represent single-
particle (-hole) excitations. We denote these naive bases as
{D±

tdets}. These bases would be enough to represent the im-
purity Hamiltonian in the single-particle (-hole) spaces to the
accuracy of the ASCI wave function. However, to compute the
impurity Green’s function we need to invert the Hamiltonian.
To represent the inverse of the Hamiltonian to the accuracy of
the wave function, we need more states because by inverting
we shuffle all matrix elements communicating with the target
space {Dtdets}. The solution to this problem is to add the
states connected to the single-particle (-hole) space by the
Hamiltonian, which for any quartic Hamiltonian corresponds
to adding single and double excitations on top of the naive
bases. The coefficients of these states in the expansion of
the corresponding single-particle (-hole) states are zero in our
level of approximation, so we call them zero states. Adding
these zero states forms the final target space for the Green’s
function calculation {D+,Z

tdets}.
For clarification, we give a simple example. Let us consider

a Hilbert space where each state is characterized by five
fermionic modes. In second quantized notation, each state is
then characterized by the five occupation numbers, and can
be written as |n1n2n3n4n5〉. We will assume that the target
space {Dtdets} of the ASCI calculation in this system has two
fermions. A possible state would be |00011〉 ∈ {Dtdets}. When
computing the Green’s function matrix element (α, β ) =
(1, 1) in Eq. (2) we will act with c†

1. The corresponding
element of {D+

tdets} to |00011〉 is |10011〉 ∈ {D+
tdets}. To com-

pute the inverse of Himp more accurately, we now complete
{D+

tdets} by adding singly and doubly connected states, the zero
states. Now, which states are singly or doubly connected to
{D+

tdets} depends on Himp. For the sake of this example, let us
assume that the Hamiltonian only includes single excitations
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to neighboring sites in a 1D line, which is what would happen
in a 1D Hubbard chain. Then, for state |10011〉 we would
only need to add |01011〉 and |10101〉. After all the pertinent
inclusions, we have formed the final basis {D+,Z

tdets}.
Along the imaginary frequency axis, looking for one set

of zero states is usually enough to converge the Green’s
function, at least for the systems presented in the next section.
Along the real frequency axis, to converge the pole structure
of the Green’s function one has to add more than one set
of zero states. In particular for the calculations presented in
Sec. III, we needed to include all zero states connected to the
{D+,Z

tdets} set described above. For the Hubbard model, that only
includes single excitations in the spatial basis, this means that
we added the single excitations of the original naive space
{D+

tdets} and then added single excitations of those single exci-
tations. In this work, we refer to this as adding two “layers”
of zero-state excitations. With increasing correlation in the
Hamiltonian, it is expected that further layers of excitations
will be needed to get converged Green’s functions.

This method becomes more costly with increasing number
of degrees of freedom, i.e., with increasing Nc and Nb in
the DMFT method. The scaling is essentially exponential. To
avoid prohibitively large {D+,Z

tdets} sets, we perform a truncation
in the same spirit as done in previous configuration interaction
impurity solvers [21]. The main idea is to only include zero
states connected to the leading m determinants in the ASCI
ground-state wave function, ordered by the absolute value of
the coefficient. This critically reduces the size of the {D+,Z

tdets}
spaces and allowed to add up to Nc + Nb = 40 spinful degrees
of freedom [i.e., containing 2(Nc + Nb) spin orbitals], the
most complicated system being a Nc = (4 × 4) with Nb = 24.
We have found that adding all states with an absolute ground-
state coefficient larger than 10−4 is enough to converge all
Green’s functions presented in this work, while keeping the
size of {D+,Z

tdets} always below 10 × 106 states. In the next
section, we refer to the size of {D+,Z

tdets} as GFtdets.

III. RESULTS

To demonstrate the efficiency of the ASCI method as an
impurity solver in CDMFT calculations, we consider here
the one-dimensional (1D) and two-dimensional (2D) square-
lattice Hubbard models. The Hubbard model is characterized
by the Hamiltonian

HHub = −t
∑

〈i, j〉,σ
(c†

i,σ c j,σ + H.c.) − μ
∑

i

(ni,↑ + ni,↓)

+U
∑

i

ni,↑ ni,↓, (11)

with hopping amplitude t , chemical potential μ, Coulomb
interaction strength U , and spin label σ = {↑,↓}. This Hamil-
tonian, reduced to a number of sites, is what enters as HC in
Eq. (1). At half-filling we have μ = U/2, for other particle
fillings one would need to determine the chemical potential
and the number of electrons in the impurity model self-
consistently according to [19].

By optimizing the target space in the ASCI method, we
show that we can reproduce the results in the literature with
drastically reduced computational resources. We first show the

FIG. 1. Sorted absolute values of the ground-state wave-function
coefficients for the final iteration in a 1D Hubbard model DMFT
calculation with U/t = 8, Nc = 1, Nb = 11. The determinant order
is determined by the exact diagonalization calculation, represented
in all subfigures by the blue dashed line. Each subfigure presents
the corresponding wave-function coefficients for ASCI-DMFT cal-
culations using different tdets, namely, tdets = 250, 500, 1000, and
3000 as red dots. The estimated coefficients as computed according
to Eq. (10) are presented as orange circles.

convergence behavior of the ASCI impurity solver for 1D and
2D Hubbard models as a function of the target space size tdets
and the total basis size for the {D±,Z

tdets} spaces.

A. Convergence tests

1. Hamiltonian truncation

We first show that ASCI can indeed identify the most
important determinants to describe the ground-state wave
function for the typical impurity models that are encountered
in DMFT calculations. For that, we present the sorted absolute
values of the ground-state wave function coefficients for two
systems that can be solved with exact diagonalization (ED),
both at half-filling. (i) A 1D Hubbard model DMFT calcula-
tion with Nc = 1 and Nb = 11 (Fig. 1). (ii) A 2D square-lattice
Hubbard model cluster DMFT calculation with Nc = 2 × 2
and Nb = 8 (Fig. 2). The ED coefficients are shown as blue
dashed lines, and the coefficients computed in ASCI calcula-
tions with different tdets, namely, tdets = 250, 500, 1000, and
3000, are shown as red dots. As a reference, the total number
of states in the full Hilbert space is 853 776. Additionally, we
report the estimated coefficients Ai for the search set {DSD} in
Eq. (10) of the main text as orange circles. In both figures, the
ability of ASCI to select the most important tdets determinants
becomes completely evident, and the coefficients computed
with ASCI (red dots) show excellent agreement with the ED
results (blue dashed line). Both of these overlay the estimation
coefficients (orange circles), which become less accurate the
further away from the currently explored region of the Hilbert
space. The only minor discrepancies arise for the states with
smallest coefficients when the target space includes more
3000 states for the 2D system. In this case, ASCI seems to
have more difficulties to adapt to the abrupt decrease in the
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FIG. 2. Sorted absolute values of the ground-state wave-function
coefficients for the final iteration in a 2D Hubbard model cluster
DMFT calculation with U/t = 8, Nc = 2 × 2, Nb = 8. The deter-
minant order is determined by the exact diagonalization calculation,
represented in all subfigures by the blue dashed line. Each subfigure
presents the corresponding wave-function coefficients for ASCI-
DMFT calculations using different tdets, namely, tdets = 250, 500,
1000, and 3000 as red dots. The estimated coefficients as computed
according to Eq. (10) are presented as orange circles.

coefficients from the 104th state onward. These difficulties
arise probably from the higher degree of strong correlation
in this two-dimensional, cluster calculation. The estimated Ai

coefficients, shown as orange circles in the figures, have a
greater discrepancy with the ED results which in some cases
can be of some orders of magnitude. However, these estimates
follow the general shape of the ED coefficients well and allow
for the efficient and accurate identification of the most relevant
states. ASCI is shown thus to be able to select the most
important states to describe the ground state for the kind of
impurity models that arise in DMFT calculations.

The ASCI method can thus provide a compact and ac-
curate ground-state wave-function representation, converging
the wave-function coefficients fairly rapidly. To assess its
proficiency as an impurity solver, it is pertinent to assess how
frequency-dependent functions like the self-energy converge
with the number of determinants tdets. We present the con-
vergence of the first diagonal element of the self-energy for
different impurity problems: a 1D Hubbard model with Nc =
1 and Nb = 11 in Fig. 3, a 2D Nc = 2 × 2 and Nb = 8 in Fig. 4,
a 2D Nc = 3 × 3 and Nb = 19 in Fig. 5, and a 2D Nc = 4 × 4
and Nb = 24 in Fig. 6, all at half-filling and U/t = 8. Where
possible, we perform ED calculations for comparison. When
necessary, we truncate the Green’s function bases {D±,Z

tdets} to a
maximum of 10 × 106 states. The effect of the truncation of
the {D±,Z

tdets} spaces is presented in the following subsection.
We observe a very rapid convergence of the self-energy

with tdets in almost all cases. Indeed, the order of 105 determi-
nants seem to be enough to converge the qualitative behavior
in the low-frequency regime. A significant quantitative differ-
ence at low frequency between the different calculations with
tdets � 105 is only appreciable in the largest impurity cluster,
Nc = 4 × 4 in Fig. 6, which are not converged with the target

FIG. 3. Imaginary part of the self-energy along the imaginary
frequency axis Im�(iω) for a 1D Hubbard impurity model at half-
filling. ASCI results with U/t = 8, Nc = 1, Nb = 11 and different
sizes of the target space. Presented are tdets = 250, 500, 1000, 3000,
and 10000 in different scales of red, and the exact diagonalization
results in green.

space sizes used in this work. The success with the 3 × 3
cluster suggests, however, that further improvement of the
algorithm will make convergence in this challenging cluster
possible. In particular, we want to draw attention to the fact
that the current implementation of the ASCI impurity solver
is not exploiting any active space structure, which has been
noted to be fundamental for configuration interaction based
solvers [8,21,51]. Including this kind of structure will further
boost the convergence, by reducing the effective number of

FIG. 4. Imaginary part of the diagonal self-energy along the
imaginary frequency axis Im�(iω)0,0 for a 2D Hubbard impurity
model at half-filling. ASCI results with U/t = 8, Nc = 2 × 2, Nb = 8
and different sizes of the target space. Presented are tdets = 250,
500, 1000, 3000, and 10 000 in different scales of red, and the exact
diagonalization results in green.
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FIG. 5. Imaginary part of the diagonal self-energy along the
imaginary frequency axis Im�(iω)0,0 for a 2D Hubbard impurity
model at half-filling. ASCI results with U/t = 8, Nc = 3 × 3, Nb =
19 and different sizes of the target space. Presented are tdets =
10 000, 100 000, 200 000, 500 000, and 800 000 in different scales
of red, and 1 × 106 determinants in green.

orbitals to the active space, which results in an exponential
reduction of the Hilbert space size ASCI searches through.

The timings for the different parts of the computation
deserve consideration. Figure 7 shows the timings for the
ASCI procedure and for the Green’s function calculation for
the Nc = 3 × 3 impurity model calculations. Converging the
ground-state energy and wave function can be done under
15 min for all the impurity models presented here, while
computing the Green’s function elements can take up to 1 h
per element in the largest systems. These timings are orders of

FIG. 6. Imaginary part of the diagonal self-energy along the
imaginary frequency axis Im�(iω)0,0 for a 2D Hubbard impurity
model at half-filling. ASCI results with U/t = 8, Nc = 4 × 4, Nb =
24 and different sizes of the target space. Presented are tdets = 1000,
10 000, 100 000, 1 000 000, 2 000 000 in different scales of red, and
5 000 000 determinants in green.

FIG. 7. Time in seconds for the ASCI ground-state calculation
(blue) and the Green’s function computation (orange) for the Nc =
3 × 3, Nb = 19 2D Hubbard impurity model at half-filling, and
U/t = 8 as a function of the target space size tdets.

magnitude better than those reported for equivalent CI based
zero-temperature DMFT solvers [21]. In fact, the bottleneck
in the ASCI-DMFT procedure is now the fitting step for the
large cluster calculations, as reported below. To increase the
range of applicability of the ASCI-DMFT algorithm it is thus
imperative to improve upon the fit methodologies.

2. Green’s function truncation

In order to ascertain convergence in the truncation of the
{D±,Z

tdets} spaces, we report the self-energy for tdets = 5 × 105

and different truncation schemes in the intermediate size 2D
cluster Nc = 2 × 2 and Nb = 24 in Fig. 8. We report the
truncation as the number of layers of zero states included in
the {D±,Z

tdets} space, performing calculations with one, two, and
three layers. See Sec. II for details.

As shown in Fig. 8, the convergence behavior is rapid along
the imaginary frequency axis with the number of layers, the
results being quantitatively converged already with a single
layer. Adding the second layer, which corresponds to two
orders of magnitude more zero states in the {D±,Z

tdets} space,
does not change the self-energy in any significant way. This
property is inherited from the compact ASCI ground-state
wave function.

All the convergence results presented above concern the
calculation along the imaginary frequency axis, where the
DMFT loop takes place. As described in Sec. II, upon con-
clusion of this loop one finds the impurity Hamiltonian that
best describes the low-energy physics of the original lattice
model. To extract these physical properties, however, one has
to perform one final calculation along the real frequency axis.
Although this obviously does not change the convergence
requirements for the ground-state target space {Dtdets}, the
description of the poles of the Green’s function can and in
fact does increase the necessary size of the truncated space
{D±,Z

tdets}. As an illustrative example, we present the spectral
weights for a Nc = (2 × 2), Nb = 24 calculation at half-
filling with U/t = 8 and three different truncation schemes,
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FIG. 8. Imaginary part of the diagonal self-energy along the
imaginary frequency axis Im�(iω)0,0 for a 2D Hubbard impurity
model at half-filling. ASCI results with U/t = 8, Nc = 2 × 2, Nb =
24 with tdets = 5 × 105 for different truncation schemes of the
Green’s function spaces {D±,Z

tdets}. The curves correspond to adding
singles to the naive Green’s function space once, twice, and up
to three times. See Sec. II for details. Inset shows the absolute
difference between the results with one layer (blue) and two layers
(orange) with the three-layer calculation.

corresponding to adding different layers of zero-state excita-
tions in Fig. 9.

The example of Fig. 9 illustrates the claims made in Sec. II:
the pole structure of the Green’s function makes the conver-
gence along the real frequency axis more demanding, so that
we need to include at least two layers of zero-state excitations

FIG. 9. Imaginary part of the diagonal self-energy along the real
frequency axis Im�(ω)0,0 for a 2D Hubbard impurity model at
half-filling. ASCI results with U/t = 8, Nc = 2 × 2, Nb = 24 with
tdets = 5 × 105 for different truncation schemes of the Green’s
function spaces {D±,Z

tdets}. The curves correspond to adding singles to
the naive Green’s function space once, twice, and up to three times.
See Sec. II for details.

to converge all peaks. It is important to note, however, that
this is a small number of layers compared to equivalent
impurity solvers based on selective configuration interaction
methods [21]. Moreover, in the case presented in Fig. 9, all
self-energies are causal, even the unconverged ones computed
with the minimal number of zero-state layers. This is in strong
contrast with the method in [21], where it is necessary to go up
to four layers of zero-state excitations to achieve causality in
impurities of comparable size. This difference comes from the
more efficient identification of relevant states for the ground
state in the ASCI solver, which in turn translates in needing
only a minimal amount of states for the Green’s function rep-
resentation. Since the number of additional zero states scales
exponentially with the number of layers, this improvement is
very relevant to allow access to larger impurity and bath sizes.
This is especially so considering that larger impurities may
require a larger number of layers.

For all the calculations in the following section, we used
one layer along the imaginary frequency axis and two layers
along the real frequency axis.

B. cDMFT results

Having established the timing and convergence properties
of the ASCI algorithm as an impurity solver for the Hamil-
tonians that naturally arise from cluster DMFT calculations
in the 1D and 2D Hubbard models, we now show example
applications of the ASCI-DMFT to study the two-dimensional
square-lattice Hubbard model. Here, we choose U/t = 8 at
half-filling. When away from half-filling, one needs to under-
take a self-consistent determination of the chemical potential
and number of electrons that (a) minimize the energy, and
(b) represent the desired lattice filling [19]. Using current CI
based DMFT methods for this self-consistent calculation is
excessively expensive in time, and most benchmarking has
therefore been done at half-filling. Given the timings and
scaling presented above, the ASCI impurity solver can also
be used to speed up those kinds of calculations. We limit our
presentation to half-filling for reasons of brevity.

In the case of the small 2 × 2 cluster, the compact wave-
function representation of the ASCI impurity solvers allows
us to study the effect of the bath discretization error by
performing simulations with Nb = 8, 12, 16, and 24 bath sites.
The spectral weights for these simulations are presented in
Fig. 10. The Nb = 8 calculations can be done in 1 h on a single
core and show excellent agreement with previous literature
[21], while the Nb = 12, 16, and 24 calculations required 15,
48, and 65 h, respectively. These timings include the complete
DMFT calculations, which are performed in the imaginary
frequency axis, but do not account for the final computation
of the Green’s function along the real frequency axis. Due
to the multiple singularities along the real frequency axis,
the Hamiltonian inversion required in Eq. (2) is extremely
numerically demanding and required the use of a parallelized
Lanczos routine to compute all Green’s function elements in
under 24 h.

We see that the spectral weights can change noticeably
with the number of baths. In general, all calculations share
the same main features as the Nb = 8 case (upper left panel in
Fig. 10). The calculations with larger baths seem to include
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FIG. 10. Spectral weights A(k, ω) for the two-dimensional square-lattice Hubbard model in a calculation with U/t = 8, Nc = (2 × 2), and
Nb = 8, 12, 16, and 24, respectively. We show a particular cut through the first Brillouin zone. The abrupt change observed for the 16 and 24
bath calculations is due to instabilities inherent to the fitting process of the hybridization function [see Eq. (7)]. See main text for details.

more light bands than the Nb = 8 case, diminishing very
slightly the particle weight of the main bands. In particular,
there is an inverted parabola between the Y and X points
that becomes more and more pronounced with a larger bath.
Aside from that, there is little change in the shape of the main
features, which present an almost quadratic dispersion in the
vicinity of the � point.

There is, however, a drastic change in the spectral weights
when going from 12 baths to 16 baths. The lower hole band
shifts to smaller energies by almost a full energy unit t (see
lower panels in Fig. 10). While this change does not affect the
insulating gap appreciably, it is nevertheless unexpected that
the convergence in the number of bath sites would show such
a step change midway. This slow convergence behavior with
increasing number of baths is due to the inherent instability of
the fitting procedure with increasing Nb along the imaginary
frequency axis, and not to an issue with the impurity solver.
Concretely, the large bath solution with shifted lower bands
stems from overfitting the long-frequency behavior of the
hybridization function in Eq. (4) at the cost of an accurate
description of its low-frequency behavior, where the particular
physics are encoded. As a consequence, increasing the num-
ber of baths is making the DMFT self-consistency iteration
converge to a different fix point. While it is standard in the
literature to introduce a cutoff in the fit, and only consider the
very small frequency behavior, e.g., [52], it would be more
desirable to use a fitting method capable to account for both
the small and large frequency domains at the same time. The
authors are currently working on a collaboration to devise and
characterize an efficient and robust fitting method, and have

observed that while Nb = 16 is too small a bath to account
for the full frequency range, it is possible with Nb = 24 when
using an appropriate fit [53].

The impact of such a fitting method goes beyond just
allowing the study of the large bath limit in small clusters.
When treating impurity clusters with many degrees of free-
dom, the number of bath parameters to be determined by the
fit increases correspondingly, making the fitting process the
more complicated and unstable if done without care. Using
complex bath couplings in the Hamiltonian in Eq. (1), the
number of real fitting parameters grows as 2NcNb, which
for the 3 × 3 cluster with 17 baths corresponds to 306 real
fitting parameters to fit a 9 × 9 complex, frequency-dependent
matrix. This is a very demanding task for a fitting procedure,
and devising a robust and scalable method for this is far from
trivial. In this work, we used the BOBYQA implementation in
the NLOPT library [46,47]. The fitting procedure becomes the
bottleneck of our calculation for the 3 × 3 clusters, and for
a 4 × 4 DMFT loop it requires an impracticable amount of
time, needing on occasions up to 24 h to perform one fit.
In these circumstances, the quality of the fit has to be put
under severe scrutiny and a search for more reliably fitting
procedures becomes imperative.

Using ASCI as an impurity solver allows us to make first
calculations with cluster sizes larger than the current state of
the art for CI based DMFT methods. Figure 11 presents spec-
tral weights for the 3 × 3 cluster and Nb = 17 at half-filling.
This calculation took approximately 20 h. The computational
bottleneck as mentioned above is the fitting step for the bath
parameters. Increasing the number of cluster and bath sites

125165-8



DYNAMICAL MEAN FIELD THEORY SIMULATIONS WITH … PHYSICAL REVIEW B 100, 125165 (2019)

FIG. 11. Spectral weights A(k, ω) for the two-dimensional
square-lattice Hubbard model in a calculation with U/t = 8, Nc =
(3 × 3), and Nb = 17. We show a particular cut through the first
Brillouin zone.

dramatically increases the number of fitting parameters, which
makes the nonlinear fitting process expensive, an issue that the
authors are currently addressing [53].

The results for 3 × 3 with Nb = 17 agree well with the 2 ×
2 results. The system shows the insulating behavior and main
features seen for the 2 × 2 Nb = 8 calculations. However,
consistent with the larger bath size as noted above, the spectral
weights show a plethora of small side features, just as in the
2 × 2 Nb = 12, 16, and 24 calculations. It is important to
note that the spectral weights in Fig. 11 are not quantitatively
converged with respect to the Green’s function target space
size, due to limitations in the final real axis calculation. This
can be seen in the small dots of high intensity at ω ≈ 3 t .
However, this convergence issue should not affect the position
of the features, mainly the sharpness of the bands. Addi-
tionally, these effects are relatively far away from the Fermi
level, which is centered around ω = 0 in our figures. Thus,
we are confident of the qualitative picture shown in Fig. 11.
Further improvements on the ASCI algorithm, in particular
regarding the implementation of active space reduction as
already discussed in Sec. III A 1, will smooth out these small
mismatches.

IV. CONCLUSION AND OUTLOOK

We have presented a CDMFT implementation using ASCI
as the impurity solver, and shown that the superior efficiency
of this approach allows study of both the bath discretization
error in small clusters and exploration of cluster sizes beyond
the current state of the art for CI based DMFT methods.
The results provide strong motivation for undertaking further
application of modern CI techniques to DMFT. Additional
tools available with ASCI include many-body perturbation
theory corrections [54], heat-bath extensions [34], and the
exploitation of active space structures [51], all of which can

be expected to accelerate these algorithms for applications of
DMFT. A new suite of algorithms for increasing the efficiency
of ASCI on modern computers will improve the timings
presented here even further [33]. ASCI can also be readily
applied to other embedding techniques such as density matrix
embedding theory [55–57].

We demonstrated the effect of the main parameter of
the ASCI method in the truncation approach, the size tdets
of the active space. The physical properties of the system
along the imaginary frequency axis, represented by the cluster
self-energy, converge very quickly with a modest number of
determinants. The convergence on the real frequency axis
requires a larger space, but is also fairly rapid. A reasonable
strategy is thus to use small to moderate target space sizes for
the DMFT iteration loops, which occur along the imaginary
frequency axis, and then to increase the size on the real
axis for computing the measurable physical properties of the
system. Parameters may be further tuned during the iterations
along the imaginary frequency axis by beginning with a small
number of determinants, computing a few DMFT loops to
bring the bath parameters into the correct range, and then
increasing tdets to achieve high accuracy in the fits. This is
particularly important for calculations away from half-filling,
in which the number of electrons and the chemical potential
have to be determined in a self-consistent procedure. Thus, at
the beginning of the self-consistent method, one could start
with a small number of determinants, which can then be
increased once the desired particle filling is reached. At the
large bath or cluster limit, the development of efficient and
robust fitting methods is still necessary [53].

Application of ASCI to molecular Hamiltonians has al-
lowed simulation on the order of 50 electrons in 100–200
sites/orbitals [33]. For DMFT applications, we aim to further
develop the ASCI impurity solver to further increase the num-
ber of degrees of freedom that it can handle. Our main future
goal is the study of complicated systems, e.g., many-band
Hubbard models for the study of transitions between exotic
phases of matter [58] or realistic many body Hamiltonians,
for example, by combining our solver with ab initio methods
such as GW-EDMFT [59]. We envision this new efficient
impurity solver having the potential to also be useful for
benchmarking the solution of embedding Hamiltonians with
hybrid quantum-classical algorithms realized on quantum
computers [60,61].
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