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Time-dependent potential impurity in a topological insulator
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We consider periodically driven potential impurities coupled to the surface states of a two-dimensional
topological insulator. The problem is addressed by means of two models, of which the first model is an effective
continuum Hamiltonian for the surface states, whereas the Kane-Mele lattice model is our second approach.
While both models result in drastic changes in the local density of electron states with increasing amplitude and
frequency of the driving field, the linearly low-energy local density of electron states remains in the continuum
model, however, with an increased Fermi velocity. The spectrum of the continuum model remains gapless under
the emergence of new impurity resonances near the Fermi energy. The Kane-Mele lattice model represents a
finite size system, with edge states appearing at the boundary of the system. We, thus, consider the impurity at
two different positions, one at the boundary and one at the center of the lattice. In the former case, a reduction
and broadening of the low-energy local density of electron states result with increasing amplitude of the driving
field. On the other hand, there are no new resonances emerging in the spectrum. In the latter case, the spectrum
is gapped both in the absence of the impurity as well as for weak amplitudes of the driving field, while the gap
tends to fill up with impurity states with increasing amplitude.
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I. INTRODUCTION

Classical and quantum systems show new phases with
unexpected properties when driven by an external time-
dependent periodic field. In many cases, these phases do not
have any counterpart in static systems. For example, periodic
driving in a one-dimensional system generates chaotic motion
of particles [1–4]. In molecular systems, temporal changes of
microscopic parameters or bias voltage may lead to various
exotic nonequilibrium states [5]. The ratio between kinetic
and potential energy as well as lattice spacing can be varied in
optical lattices to create nontrivial states [6,7]. Recently, peri-
odically driven systems have given rise to new phases [8–17]
such as Floquet block states in topological insulators [18,19],
optical lattices [20], and cold-atom [21] systems. Topological
insulators have metallic edge states due to the spin-orbit
coupling and nontrivial topology of the band structure, while
sustaining an insulating gap in the bulk. Materials such as
Bi2Se3 and Bi2Si3 show topologically protected Dirac cones,
resulting from the properties of these edge states [22–24].
Moreover, due to spin-momentum locking, backscattering of
potential impurities is prevented. In other words, the definite
chirality of the edge states does not allow transitions between
the states |k ↑〉 and | − k ↓〉 assisted by scattering of time-
reversal-symmetric (nonmagnetic) impurities.

The robustness of these edge modes has been proven
theoretically by examining the backscattering due to poten-
tial impurity in continuum and lattice models [25–30]. The
protection of the Dirac surface states against disorder is also
seen in various experiments [31–33]. Magnetic impurities,
on the other hand, do not keep these edge modes intact,
which results in imperfect quantization of the conductance
[34–36].

Even though there are many theoretical and experimental
studies of the effects of static impurities on topological in-
sulators, the effects of dynamical impurities have not been
considered previously. Dynamical local interaction can give
rise to various nonlinear phenomena such as multiphoton
dissociation or excitation of atoms or molecules when exposed
under a strong laser field [37–39]. In this paper, we con-
sider an atomically sharp time-dependent impurity potential,
simulating the conditions of a local, yet extremely focused,
monochromatic laser field, affecting a single lattice site. We
show the emergence of impurity resonances, in accordance
with previously discussed impurity resonances for stationary
conditions [28–30,40–44], which give rise to strong modifica-
tions of the local density of electron states near the impurity
site, with an increasing number of resonance features with
increasing amplitude and frequency of the driving field. While
the metallic edge states tend to develop a sharp density peak
around the Fermi level for impurities interacting with the edge
states, the density gap of the bulk states becomes increasingly
filled up with increasing scattering potential strength, for
impurities directly perturbing the bulk sites.

II. MODEL AND FLOQUET-GREEN’S FUNCTION

In this section, we describe the general formalism of the
Floquet-Green’s function method. The Hamiltonian of the
full quantum system is a periodic function in time, H (t ) =
H (t + τ ), where τ = 2π/� is the period of the external
driving field. As a direct consequence of the periodicity, we
can use the Floquet theorem [45–50], which can be regarded
as a time domain equivalent to the Bloch theorem. Due to
the explicit time dependence of the Hamiltonian, electrons
can be excited to different energy states. However, if the
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time-dependent potential is characterized by a single fre-
quency (�), the energy difference between the final and initial
state should be an integer multiple of �. This restriction gives
rise to an energy space representation of the Hamiltonian, the
corresponding Green’s function, as well as of operators.

We define the Floquet Hamiltonian, a Hermitian operator,
for the generic time-dependent Hamiltonian H (x, t ),

HF (x, t ) = H (x, t ) − ih̄
∂

∂t
, (1)

which gives the Floquet-Green’s function written as

(ε − HF (x, t ))GF (x, x′; t, t ′) = δ(x − x′)δ(t − t ′). (2)

The time periodicity of the Hamiltonian is inherited in the
Floquet-Green’s function, which becomes periodic in both
t and t ′. Hence, we can Fourier expand both the Green’s
function and the Hamiltonian into

HF (x, t ) =
∑

γ

HF
γ (x)eiεγ t , (3a)

GF (x, x′; t, t ′) =
∑

α,β

GF
αβ (x, x′)eiεαt−iεβ t ′

. (3b)

Here, the quasienergy εα is a conserved quantity. In this
way, a time-periodic driven system is reduced to an algebraic
matrix equation. Although the Fourier expansion reduces the
complexity of the problem, the dimensions of the correspond-
ing Hilbert space are infinite. Therefore, there is no exact
analytical closed form of the Green’s function. In fact, even
the exact solution of a two-level system driven with linearly
polarized light is not known [51].

Due to this intrinsic complexity, we approach the Floquet-
Green’s function numerically, by considering a harmonic
monochromatic time-dependent driving field. The Hamilto-
nian, then, assumes the form

H = H0 + 2V cos �t, (4)

where H0 is the time-independent part of the Hamiltonian,
whereas V represents the coupling to the time-dependent
driving field. The corresponding Floquet Hamiltonian for
the assumed driving field has a block tridiagonal structure,
according to

HF
αβ = (H0 − αh̄�)δαβ + V(δα+1β + δα−1β ). (5)

The Floquet-Green’s function becomes

(1Eα − H0)Gαβ − V(Gα+1β + Gα−1β ) = 1δαβ, (6)

where Eα = ε + αh̄�. This matrix equation can be solved
iteratively by using the matrix continued fraction method
[52,53]. As a result, we obtain a recursive matrix equation for
the Green’s function:

[1Eα − H0 − Veff(Eα )]Gα,α = 1, (7a)

Veff(Eα ) = V+
eff(Eα ) + V−

eff(Eα ). (7b)

Here, the effective potential is given by

V±
eff(Eα ) =V

1

Cα±1 − V 1
Cα±2−V 1

...
V

V
V, (8)

where Cα = 1Eα − H0. Assuming that the impurity sits at the
origin (r = 0), the effective potential for a single impurity can
be written as

V±
eff(Eα ) = |0〉〈0| 1

Cα±1 − |0〉〈0| 1
Cα±2− 1

...

|0〉〈0| |0〉〈0|

= |0〉〈0| 1

Cα±1 − |0〉〈0|V±
eff(Eα±1)|0〉〈0| |0〉〈0|

= V ±
eff(Eα )|0〉〈0|. (9)

We compute these effective potentials numerically by setting a
maximum frequency EM above which the effective potentials
are zero, that is, V±

eff(Em) = 0, for all Em > EM . Typically we
take m to be on the order of 100, which normally is sufficient
for convergence. The terms in the denominator of the above
equation are a matrix equation which needs to be inverted to
get the higher- or lower-frequency effective potential. After
the inversion only one of the elements is needed for the next
iteration.

III. TOPOLOGICAL INSULATOR SURFACE

First, we will investigate the effect of time-dependent im-
purity on the edge of three-dimensional topological insulators.
The low-energy effective model within k · p approximation
can be described by

H = v
∑

k

�
†
k[k × �e3] · σ�k. (10)

We are interested in the local properties of this system
such as density of states N (r, ω), which is related to the
(retarded) Green’s function through the identity N (r, ω) =
−tr ImGr (r, r; ω)/π . As a function of the effective potential,
we write the Green’s function in momentum space as

Gk,k′ = δkk′G0
k + G0

k

Veff

1 − VeffG0
0

G0
k′ , (11)

where G, G0, and V are implicit functions of the energy.
We consider the driving potential V = 2Aδ(r −

r0)σ 0 cos �t with frequency �, amplitude A, at the position
r0. In Fig. 1, we plot the local density of electron states for
increasing impurity amplitude A, panels (a)–(d). In absence
of the impurity, Fig. 1(a), we retain the typical Dirac-like
density of states with vanishing density of state at the
Fermi energy, as expected. However, the linear density of
states around the Fermi energy is preserved also at finite
driving amplitudes, Figs. 1(b)–1(d). In addition to the linear
low-energy spectrum, high-energy features emerge with
increasing A. These features, which appear symmetrically
around the Dirac point, are direct consequences of the
excitations that are generated by the time-dependent potential,
much in analogy with the impurity side resonances that are
caused by vibrational defects on Dirac materials [54,55]. In
fact, the symmetric appearance of the excitations is caused by
the combination of positive and negative scattering potentials
V+

eff and V−
eff, respectively, each of which is responsible for

the equally distributed set of excitations on either the valence
or the conduction side of the electronic band structure.
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FIG. 1. Local density of electron states at the impurity site with
driving frequency � = 0.50 for different values of the driving am-
plitude A = 0.0 (a), 0.5 (b), 1.0 (c), and 2.0 (d).

Moreover, the number of excitations increases substantially
with increasing A, which we understand to be an effect of the
increased order of Cα that contributes to the effective potential
Veff. Therefore, the Green’s function picks up an increasing
number of higher-energy modes. We also notice that the
bandwidth of the local density of states increases the stronger
the driving force. We attribute this to the increasing number
of contributing excitations that become available in the
scattering processes and which necessitates a redistribution of
the total density onto an increased set of excitations.

IV. KANE-MELE MODEL

In the second part of this paper, we will consider a lattice,
Kane-Mele, model for a topological insulator. The model
pertains to a tight-binding Hamiltonian on a honeycomb lat-
tice which is a straightforward generalization of the Haldane
model [56]. Here, we write

H = − t
∑

〈i j〉σ
c†

iσ c jσ + iλso

∑

〈〈i j〉〉σ
c†

iσ σ zc jσ + μ
∑

iσ

c†
iσ ciσ ,

(12)

where t is the nearest-neighbor (NN) hopping integral, λ is
the spin-orbit coupling which act as a next-nearest-neighbor
hopping element, whereas μ is the chemical potential which
fixes the number of particles of the system. Here, we consider
a half-filled system for which μ = 0. Note that spin-orbit
coupling acts as a purely imaginary hopping integral and
differs by a sign for up and down spin components. We
set t as our absolute energy scale, and we have imposed
open boundary conditions in the x direction and periodic
boundary conditions along the y direction. We calculate Veff

iteratively for a lattice size 100 × 50. We consider the same
driving potential as above, V = δ(r − r0)2Aσ 0 cos �t , with
the frequency �, amplitude A at r0.
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FIG. 2. (a) Total density of state of the Kane-Mele model for
the topological insulator with a single impurity at the middle of
the lattice. The vertical lines indicate the energy at which the local
density of state is plotted in the bottom panel. Real-space map of
the local density of state for different values of energy E = 0.0 (b),
0.5 (c), and 1.0 (d). The other parameters are A = 50, � = 0.5,

λso = 1.0.

The plots in Fig. 2 display the total density of states of
the Kane-Mele model with a single impurity located at the
center of the lattice. The red vertical line signifies the energy
values at which the spatial maps of the local density of state
are plotted in panels (b)–(d). The density of state for this tight-
binding model on a honeycomb lattice vanishes at the Fermi
energy and increases linearly away from the Fermi energy. A
finite spin-orbit coupling opens up a gap in the spectrum. Due
to the nontrivial topological nature of this system, this gap
only appears in the bulk while metallic edge states appear at
the boundary. In Figs. 2(b) and 2(c), this can be seen as an
enhanced density of states at the edges x = 0 and x = 100.
Moreover, one should notice the finite density of states around
the impurity, a density which oscillates and decays far away
from it. At higher energies, however, bulk states appear which
display a uniform density of states throughout the whole
system [see Fig. 2(d)].

The properties of the spectrum can be better understood by
considering the imaginary part of the T matrix, defined by

T = Veff

1 − VeffG0
0

, (13)

as a function of energy. In Fig. 3 we plot −Im T as a function
of the energy for six different frequencies � of the driving
field. The T matrix contains scattering effects of all orders,
and the plots in Fig. 3 show −Im T for an impurity located
at the center of the lattice. Since the bulk of a topological
insulator does not have any states available near the Fermi
energy, the imaginary part of the T matrix remains gapped for
small driving frequencies. Hence, the spectral content of the
T matrix only marginally deviates from the expected spectral
properties of the pristine lattice. However, huge resonances
appear symmetrically outside the bulk gap, providing coherent
resonance peaks. These resonances can be thought of in
similar terms as the impurity resonances induced in Dirac
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FIG. 3. T matrix of an impurity at the middle of the lattice with
driving amplitude A = 5.00. The bulk gap in the spectrum induced by
finite spin-orbit coupling reflects in the T matrix. When the driving
frequency is small the gap remains intact and no states appear within
the gap. With increasing driving frequency states appear in the gap.

materials by particle scattering of local defects [28,30,40,57–
60].

By contrast, it can be noticed from the plots in Fig. 3
that, with increasing frequency of the driving field, a finite
number of states emerge within the bulk gap, which tends to
become filled up by these states. Simultaneously, the coherent
peaks vanish with increased driving frequency as a result of
the necessary charge redistribution which follows from the
emergence of additional resonances in the spectrum.

Next, we consider the impurity to be located at the edge
of the lattice, that is, (x, y) = (0, 25), resulting in the plots
−Im T shown in Fig. 4 for six different frequencies of the
driving field. In stark contrast to the situation discussed, the
coherence peaks outside the bulk gap at ω = ±1 turned into
dips. The metallic nature of the edge states gives rise to
finite scattering states even for small driving frequencies. As
the driving frequency is increased, an increased number of
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FIG. 4. T matrix of an impurity at the edge of the lattice with
driving amplitude A = 0.50. Topological iInsulators have edge states
at the boundary of the sample and a finite number of scattering states
appear within the bulk gap. T matrix also shows similar behavior
with a finite weight within the gap, even for a small frequency region.
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FIG. 5. Local density of electron states for a single impurity with
driving frequency � = 0.50 at the impurity site which is located in
the middle of the lattice for small energy. The inset figure shows the
local density of electron states in a large energy range.

Floquet modes contribute to the scattering process, which
leads to a nonmonotonic oscillation pattern in the T matrix.

V. LOCAL DENSITY OF STATES

In this section, we consider the effect of impurity on
the local density of electron states, something which might
be useful for local probing experiments, such as scanning
tunneling microscopy. First, we focus on the case in which
the impurity is located at the center of the lattice. In Fig. 5, we
plot the local density of electron states at the impurity site for a
sequence of different values of the amplitude A of the driving
field for a fixed frequency �. In the absence of the impurity,
A = 0, the local density of states at the center (in bulk, far
from the edge) of the lattice has a gap (not shown), which is
caused by the finite spin-orbit coupling. For a weak driving
amplitude, the local density of electron states shows a hard
gap, which is reminiscent of the bulk gap in the unperturbed
case. Surprisingly, however, even by increasing the driving
amplitude by more than an order of magnitude, the local
density of electron states does not change appreciably within
the gap. This difference is in stark contrast when compared
to the T -matrix results, where a finite weight appears when
the impurity is located at the center of the lattice. The local
density of electron states increases away from the Fermi
energy, which can be seen by zooming in inside the gap, while
the local density of electron states remains constant at the
Fermi energy. This implies that even though there is a finite
number of states appearing within the bulk gap due to impurity
scattering, the density of states at the Fermi level does not
change. The coherence peaks emerging at the edges of the
gap, become less prominent with increasing amplitude of the
driving field.

In Fig. 6, we plot the local density of electron states for
the case where the impurity is located at the edge of the
lattice. It is clear that this setup leads to completely different
kinds of features in the local density of electron states, as
compared to the previous one. The nontrivial nature of the
metallic TI metallic edge states, due to the chirality, becomes
more significant at the boundary of the lattice. As can be
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FIG. 6. Local density of electron states for a single impurity with
driving frequency � = 2.00 at the impurity site which is located
at the edge of the lattice for small energy. Inset figure shows local
density of electron states in a large energy range.

seen in Fig. 6, the local density of electron states is not
gapped in the absence of impurities, A = 0. This property is
preserved for weak driving fields, 0 < A � 2; although it is
also clear that both the density of states at the Fermi level
as well as the sharp resonances (|ω| ≈ 1) become slightly
weaker, there is, nonetheless, a finite local density of electron
states inside the bulk gap. With even larger amplitudes, the
overall low-energy local density of electron states becomes
simultaneously broadened and suppressed in amplitude.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have studied the effects of a time-
dependent potential impurity in two-dimensional topological
insulators. By employing a numerically exact matrix contin-
ued fraction method, which takes into account higher-order
Floquet modes, we capture the low-energy physics throughout
a wide range between weak and strong driving fields. This ap-
proach is implemented for both continuum and lattice models
of the topological insulator.

Regarding the continuum model, we find that the low-
lying energy states remain unaffected by driving fields with
weak to moderate strength, whereas the higher-lying energy
states become strongly modified. The linear property of the
local density of electron states disappears with increasing
amplitude of the driving field. Many more oscillations emerge
in the local density of electron states due to contributions from
the higher Floquet modes at larger driving amplitude, as well
as a slight increase in the bandwidth.

We have imposed open boundary conditions for the two-
dimensional lattice model of the topological insulator along
with the x direction, which gives metallic edge states. Here,
we have analyzed the effect of an impurity at two different
locations, namely, at the center and an edge of the lattice.
The bare local density of electron states has insulating and
metallic properties at these two lattice sites, respectively. The
imaginary part of the T matrix has very different responses
for impurities located at these two positions. For a weakly
perturbing impurity located at the center of the lattice, the
bulk gap of the lattice is preserved in the T matrix, while a
finite density grows up within the gap at stronger driving fields
caused by increased impurity scattering. For strong enough
fields, this density eventually fills up the gap. On the other
hand, for an impurity located at the edge of the lattice, the T
matrix and, hence, the impurity scattering, largely impacts the
electronic density around the Fermi energy already for weak
driving fields.

Previously it was found that in the case of a static impurity
[28], a bound state emerges within the insulating gap. The
energy of this bound state is dependent on the strength of
the scattering potential. Here in the dynamic impurity case,
we find no such bound state inside the bulk gap. We can,
nonetheless, observe a gradual filling of the gap. This filling
may be due to multiple scattering of the higher Floquet modes,
which prevent the formation of a discrete bound state. We
should also mention that within our current formalism a zero
frequency limit cannot be reached as it leads to infinitely
large matrix dimensions, something which cannot be handled
within the present approach.

We conclude that despite the apparent simplicity of the
model and some similarities with the physics originating
from a single impurity interacting with the surfaces states of
a three-dimensional topological insulator, there is increased
complexity in the present setup which can be directly linked
to the time-dependent potential. This should have bearing on
issues related to vibrational defects as well as the external
driving field we have in mind here. However, since the driving
frequencies in the two situations should be expected to differ
by orders of magnitude, we can, nonetheless, conjecture that
our low-frequency results should be applicable to vibrational
impurities. We anticipate that studies of the time-dependent
potential using different methods should corroborate our
findings.
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