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Experimental investigation of the weak antilocalization (WAL) effect on the Hall resistivity is quite rare,
because the WAL is known to have no influence on the Hall effect in a single-band system. We challenge this
view in a system that has both electrons and holes by deriving a two-band model modified by the WAL effect
and by applying it to the low-field magnetoresistance (MR) and Hall resistance (HR) of Bi1−xSbx single crystals
(0 � x � 17.0%). Simultaneous occurrence of a dip in MR and nonlinearity in HR suggests that the Bi1−xSbx is a
rare three-dimensional system, in which WAL and two distinct charge carriers interplay. The modified two-band
model describes all the main features of MR and HR that are not captured by the conventional theory. From
the quantitative analysis based on the modified theory, the values of key parameters, such as carrier density
and mobility of electrons and holes, are estimated. The modified two-band model provides a solid framework
for understanding electrical transport phenomena of a material with strong spin-orbit interaction and multiple
distinct charge carriers.
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I. INTRODUCTION

Diffusive transport of electrons at low temperatures is
modified by quantum interference effects, such as weak local-
ization (WL) and weak antilocalization (WAL). These effects
occur between two time-reversal trajectories of electrons that
constructively interfere in a system with a weak spin-orbit
interaction (SOI), giving rise to WL. In contrast, an additional
π phase shift resulting from the strong coupling of spin and
orbital wave functions gives rise to destructive interference
and WAL in a system with strong SOI. Because the mag-
netic field B breaks the time-reversal symmetry required for
interference, the magnetoresistance (MR) or ρxx(B) is a sen-
sitive measure for these quantum interference effects. Indeed,
signatures of WL and WAL have been found as positive and
negative MR, respectively, at low B in thin films [1,2], two-
dimensional (2D) electron gas systems [3,4], graphene [5–8],
topological insulators [9–13], and so on. Even though the in-
fluence of quantum interference effects on ρxx(B) is quite well
understood, that on Hall resistivity (HR) or ρxy(B) has rarely
been studied, because the quantum interference effects have
been believed to not alter the transverse transport coefficient.
However, this is true only for a single-band system. Although
ρxx depends on scattering time τ , ρxy is independent of it in
a single-band system; ρxy is expressed by the well-known
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formula ρxy = RH · B, where RH is the Hall coefficient and
RH = −1/nec (n is carrier density, e is elementary charge, and
c is, as usual, the velocity of light). It turns out that WL or
WAL correction does not change this universal form [14,15].
Only when the system contains at least two different charge
carriers distinguishable by the charge of the carrier or different
scattering times, Hall resistivity ρxy explicitly depends on
scattering times. This suggests that the Hall resistivity may
be affected by the quantum interference effects in multi-band
systems.

In 2D systems, the conductivity change �σ arising from
the quantum interference effects is described by the Hikami-
Larkin-Nagaoka theory [16] and its extensions [7,14,17]. In
these theories, there are four fundamental length scales that
determine the B dependence of �σ : the mean free path l ,
the phase-coherence length lφ , the magnetic length lB, and the
spin-orbit scattering length lSO. Here l measures the average
distance that an electron travels before its momentum is
changed by elastic scattering; lφ measures the average distance
over which an electron can maintain its phase coherence. The
phase coherence is usually destroyed by inelastic scattering
between electron and phonon or between electrons. Thus, the
ratio of lφ/l divides classical and quantum diffusive regimes.
In the quantum diffusive regime, where lφ/l � 1, electrons
conserve the phase coherence even after being scattered many
times. Here lB and lSO are characteristic length scales, which
denote the strength of B and the SOI, respectively. For strong
SOI, i.e., lSO/l < 1, the electron wave function acquires an
additional π phase without losing phase coherence after an
electron adiabatically completes a closed trajectory because

2469-9950/2019/100(12)/125162(8) 125162-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.125162&domain=pdf&date_stamp=2019-09-27
https://doi.org/10.1103/PhysRevB.100.125162


DUY MINH VU et al. PHYSICAL REVIEW B 100, 125162 (2019)

of strong coupling between the spin and orbital parts of the
wave function. This additional π phase is the origin of WAL
in a system with strong SOI.

Despite negligible SOI, graphene can exhibit WAL be-
cause of chirality and the resultant π Berry’s phase [5–7].
Because chirality in graphene originates from the equivalence
of A and B sublattices, the long-range scatterers that do not
mix the A and B states cannot backscatter electrons. This
effect diminishes in B, resulting in an increase of resistiv-
ity with increasing B. In contrast, the point defects, which
locally break sublattice degeneracy, cause intervalley scat-
tering, which thereby leads to conventional WL. Graphene,
therefore, shows competition between the WL and WAL
phenomena that depend on the nature of the defects and
consequently on the fundamental length scales discussed
above.

Another system that contains a π Berry’s phase is the topo-
logical surface state, which is composed of an odd number of
massless Dirac cones. Electrons in this state have helical spin
structures and acquire a π Berry’s phase after completing a
closed trajectory around a Fermi surface. As in graphene, this
π Berry’s phase leads to absence of backscattering and WAL
[9–13]. In contrast to the graphene case, the WAL is robust
against nonmagnetic scattering in a topological surface state,
because that state is protected by time-reversal symmetry
and has no valley degree of freedom. On the other hand,
magnetic scatterers, which break time-reversal symmetry,
weaken WAL, resulting in crossover to WL, i.e., crossover
from symplectic to unitary classes [18].

Even though the quantum interference effects have been
extensively explored in 2D systems, these effects are much
less studied in 3D systems [19,20], partially because these
effects are weaker in 3D systems than in 2D cases. Thus
for systematic investigation, it is necessary to find a 3D ma-
terial that exhibits pronounced quantum interference effects.
A good candidate is a material with strong SOI, because
strong SOI allows the quantum interference effects to be easily
observable. Another problem that has been overlooked is the
influence of the quantum interference on the Hall effect or
ρxy. This problem is rarely explored. To fully understand
this issue, it is necessary to systematically investigate both
ρxx and ρxy. In this regard, the Bi1−xSbx alloy is a very
suitable system, because not only does it have both electrons
and holes, but it also possesses strong SOI, whose strength
changes with x as does its electronic structure. Furthermore,
upon increasing x, it undergoes a band character change at the
hallmark topological phase transition (x ∼ 3 − 4%) [21–24].
Thus, electrical transport and quantum interference effects are
influenced by the evolution of band structure. As a conse-
quence, the Bi1−xSbx alloy is a system to be systematically
explored for quantum interference effects, offering a clue to
the relation between band topology and quantum interference
effects.

The Bi1−xSbx alloy has a large region of the 3D topological
insulator (TI). A 3D TI [25], which emerges in a system
with strong SOI, has an inverted gap structure and Dirac-like
gapless surface states. Being derived from Bi, Bi1−xSbx is
the 3D TI in the region of 8.9 � x � 22.0%. It is a 3D TI
theoretically predicted and later experimentally confirmed.
The schematic phase diagram for the electronic structure of

FIG. 1. Schematic phase diagram of the Bi1−xSbx system. The
band at the L point undergoes a topological phase transition at x =
3 − 4%, whereas the top of the band at T shows a decline with x. The
insulating state is stabilized at x ∼ 7 − 9%, in which the Fermi level
EF is higher than the top of the T band. The present figure is adapted
from Ref. [21].

Bi1−xSbx is given in Fig. 1. One remarkable feature of this
alloy is a topological phase transition of the band at the L
point, from a band “insulating” state at low x to a topological
insulating state at high x. Bi is a well-known semimetal with
electron pockets at the L point and hole pockets at the T point
in the reciprocal space [22,26]. As the Sb concentration x
increases, the hole band descends gradually below the Fermi
energy EF and the gap size at the L point decreases. At the
critical concentration of x ∼ 3 − 4%, the top of the valence
band touches the bottom of the conduction band, and a 3D
Dirac metallic state is realized, with linear band dispersion
as schematically shown in Fig. 1 [21–23]. This state is trans-
formed into the 3D Weyl metallic state when the (pseudo)
chiral degeneracy is lifted, for instance, by an external B.
The 3D Weyl metallic state is robustly formed, even when the
system is not precisely at the critical point, because of Zeeman
splitting and the large g factor of Bi1−xSbx [17]. The existence
of the 3D Weyl metallic state at x ∼ 3 − 4% under the external
B was confirmed by observing the chiral anomaly effect in
transport phenomena [27] and the violation of Ohm’s law in
this Weyl metallic state [28]. By further replacing Bi with Sb,
the gap at the L point reopens with inverted band structure in
the wide x range of 7% � x � 22%. This is a region of 3D
TI. Notably, in this region impurity bands are easily formed
even at tiny impurity concentrations of ∼1012 cm−3 owing to
small effective mass (∼0.01 m0; m0 is electron mass) and a
large dielectric constant (∼100 ε0; ε0 is the vacuum dielectric
constant) [29]. Because of this, even a very pure single crystal
has significant residual conductivity. The evolution of the
band structures explained above has been extensively studied
and measured by angle-resolved photoemission spectroscopy
[23–25,30,31]. However, the low-field (magneto) transport
properties of Bi1−xSbx, particularly in the 3D TI region, which
might be intimately related to nontrivial band topology, are
not well understood. The Bi1−xSbx alloy is a unique system
that can provide important clues to how the electrical trans-
port is influenced by nontrivial band topology and quantum
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interference effects. Nontrivial band topology and multiple
charge carriers are expected to interplay in this system, lead-
ing to anomalous electrical-transport phenomena with charac-
teristic signatures in the transverse (Hall) resistivity.

We measure ρxx(B) and ρxy(B) at T = 4.2 K for −4 T �
B � 4 T over the wide x concentrations of 0% � x � 17.0%.
The systems in the semimetallic region (0.0% � x < 3.0%)
show the transport behavior with extremely large MR, even
at B = 4 T, because of compensation of electron and hole
carriers. Here ρxx(B) increases quadratically near B = 0, and
ρxy(B) shows noticeable nonlinearity [see Fig. 3(a)], which is
evidence of multiple charge carriers. These features undergo a
drastic change at the critical concentration of x ∼ 3.0 − 4.0%,
where a narrow dip in ρxx(B) and kinks in ρxy(B) occur simul-
taneously at very low B [27]. The former is attributed to the
WAL correction resulting from the Berry phase of 3D Dirac
fermions [27]. In the TI region (8.9 � x � 17.0%), ρxx(B)
increases with increasing B concave downward [see Fig. 3(a)].
This is distinguished from a conventional B-quadratic increase
of ρxx(B); ρxy(B) is still nonlinear in this region. A nar-
row dip at the critical concentration (x ∼ 3.0 − 4.0%) and
a concave-downward increase of ρxx(B) in the TI region are
clear manifestations of WAL. To quantitatively analyze both
ρxx(B) and ρxy(B), we formulate a two-carrier model modified
by the WAL effect. The main features of the experimental data
are successfully described by this model. The key parameters
of systems, such as the carrier density and mobility values, are
estimated.

II. EXPERIMENTS AND RESULTS

We have grown Bi1−xSbx single crystals over the wide x
range of 0 � x � 17.0% by a Bridgeman method, as reported
previously [23]. The concentrations of Sb were measured by
energy dispersive x-ray analysis. We investigated five samples
with x = 0.0, 2.3, 8.9, 11.6, and 17.0%. Temperature depen-
dences of resistivity ρ for Bi1−xSbx single crystals were mea-
sured from 4.2 to 300 K. The ρxx(B) and ρxy(B) measurements
were carried out by a six-probe method at 4.2 K by using a
superconducting magnet with B up to 4.0 T applied along the
trigonal axis and with the current perpendicular to B (binary
direction).

The temperature dependence of resistivity ρ(T ) for
Bi1−xSbx single crystals in the semimetallic (x = 0 and 2.3%)
and gapless (x = 3.0%) regions and those in the 3D TI
regions (8.9% � x � 17.0%) are presented in Figs. 2(a) and
2(b), respectively. The samples in the semimetallic region are
metallic; Bi has the smallest residual resistivity [ρ(4.2 K)]
among the samples in the semimetallic and gapless regions. In
these regions, the residual resistivity increases with increasing
concentration of x. Notably, the ρ(T ) curve for the sample
with x = 3.0% shows a peak at T ∼ 25 K. A similar peak
was observed in another nearly gapless system [32]. In con-
trast, the samples in the 3D TI region (8.9% � x � 17.0%)
exhibit semiconducting ρ(T ) behaviors below T ∼ 100 K.
Another interesting observation in this region is flattening
or saturation of the resistivity at low temperatures, as can
be seen in the sample with x = 11.6%. Here we add the
extrapolation to low temperatures of the resistivity curve
near 70–100 K. Clearly, this extrapolation is much higher
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FIG. 2. Temperature dependences of resistivity ρ for Bi1−xSbx

single crystals in the semimetallic and gapless regions (0 � x �
3.0%) (a) and in the 3D TI region (8.9% � x � 17.0%) (b).

than the experimental resistivity data at low temperatures,
suggesting an increase of conductivity at low temperatures.
One possible origin for the residual conductivity is the sur-
face states. A topological surface state could open additional
conduction channels, particularly at low temperatures, giving
rise to residual conductivity. However, the present samples are
quite metallic, with resistivity values of only a few m	 cm.
Such low resistivity values imply dominant bulk conduction.
Instead of surface states, residual conductivity can arise from
the bulk effect, which is competition between two opposite
tendencies. One is the drop of Fermi level EF , upon decreasing
temperature, caused by charge-carrier trapping, which reduces
conductivity. On the other hand, there is much more coherence
of charge carriers at low temperatures when lattice vibrations
are suppressed. This is expected to increase the mean free
path. The former effect dominates conductivity at higher
temperature, the latter at lower temperature. Thus, coherence
could result in the residual conductivity at low temperatures.
In fact, the Bi1−xSbx alloy possesses a small effective mass
and large dielectric constant as described above, which makes
ionization energy unusually small and the Bohr radius anoma-
lously large [29]. Even at extremely small concentrations of
dopants, therefore the Bohr radius of a charge carrier overlaps
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FIG. 3. (a) Magnetic field dependence of longitudinal resistivity ρxx (B) and (b) that of Hall resistivity ρxy(B) of the Bi1−xSbx single crystals
with x = 0.0, 2.3, 8.9, 11.6, and 17.0%. The solid (dashed) lines represent theoretical curves that are obtained by fitting ρxx (B) and ρxy(B)
simultaneously (independently) based on the modified two-band model. All the curves are vertically shifted for clarity. The arrows indicate the
characteristic magnetic field B∗.

that of another. Thus even very clean Bi1−xSbx crystals can
exhibit residual conductivity at low temperatures.

Figures 3(a) and 3(b) display ρxx(B) and ρxy(B), respec-
tively, for Bi1−xSbx single crystals. The curves are vertically
shifted to avoid overlap and the horizontal dashed line is
the zero level of each curve. For the samples with x = 0%
and 2.3%, the MR is quadratic in B in the low B region for
−0.5 T < B < +0.5 T. Here MR is defined as

MR = �ρxx/ρxx = (ρxx(B) − ρxx(0))/ρxx(0),

where ρxx(B) and ρxx(0) are resistivity values at B = B and
0 T, respectively. The MR of the Bi crystal is extremely
large, exceeding 4 × 105 at B = ±4.0 T, and its Shubnikov–de
Haas (SdH) oscillations start at B = ±1 T. In contrast, the
SdH oscillation is suppressed in the 2.3% sample, because
of increased disorder in this doped system. Interestingly,
compared to Bi, ρxx(B) of the 2.3% sample has a narrower B-
quadratic region, beyond which a B-linear tendency emerges.
The ρxy(B) curves of the Bi1−xSbx single crystals with x =
0% and 2.3% are not conventional, in that they are highly
nonlinear. This nonlinear ρxy(B) implies the existence of both
electron and hole charge carriers. In fact, according to the
phase diagram in Fig. 1, both electron and hole bands exist
at the L and T points, respectively, in these concentrations.

Figures 3(a) and 3(b) also display the ρxx(B) and ρxy(B)
data for the Bi1−xSbx single crystals in the 3D TI region
(8.9 � x � 17.0%). In this region, upon increasing B, ρxx(B)
increases concave downward, which differs from the ρxx(B)
curves at x = 0% and 2.3%. We observe no B-quadratic
dependence even at very low B in the 3D TI region. Concave-
downwardness strongly suggests that the B dependence of
ρxx is not determined simply by conventional orbital motion
of electrons. The ρxy(B) curves are also quite unusual in
the 3D TI region. They are highly nonlinear, particularly in
the range of −2 T < B < 2 T. Here we define the inflection
point in the ρxy(B) curve as a characteristic field (B∗). As
x increases, B∗ decreases and the nonlinear region narrows.
If this feature were explained by the conventional two-band
model, this result would imply the mobility increase with

increasing Sb concentration. However, this is not consistent
with the intuition that the sample with large x contains more
disorder. Therefore, the narrowing of the nonlinear region
is not reasonably explained by the conventional two-band
model. It is also noted that the characteristic B defined in
ρxy(B) and ρxx(B) roughly coincides in the same sample.

III. MODIFIED TWO-BAND MODEL

Even ρxx(B) and ρxy(B) curves in the semimetallic region
(x < 3.0%) have peculiarities that may not be explained very
well by the conventional transport theory. The first notable
feature is the B dependence of ρxx. Although ρxx(B) is
quadratic for −2 T < B < 2 in Bi, that quadratic dependence
does not continue beyond the region of −0.5 T < B < 0.5 T
in the 2.3% sample. Phenomenologically, ρxx(B) seems to
undergo crossover from quadratic to linear dependence on
increasing B in the 2.3% sample, as we pointed out before.
That quadratic dependence completely disappears in the 3D
TI region. Instead, concave-downwardness and a dip, which
we can attribute to WAL effects, develop. In this perspective,
the crossover from quadratic to linear dependence may also
be a manifestation of a WAL effect even in the semimetallic
region. This is a quite reasonable suggestion, because the
Bi1−xSbx system is expected to have stronger SOI at smaller
x. On the other hand, ρxy(B) is nonlinear for all x concen-
trations, which clearly implies the existence of electron and
hole carriers in all the samples that we investigated. In fact,
the existence of both electron and hole carriers is consistent
with the electronic phase diagram with small electron doping
for x � 3.0%, where there is a single hole pocket at the
T point and three electron pockets at the L point. Even in
the 3D TI region (8.9 � x � 17.0%), doped electrons and
holes are expected to exist in the L conduction and T (or H)
valence bands, respectively, because of unavoidable doping by
impurities.

When electrons and holes coexist, ρxx(B) and ρxy(B) are
described by the so-called two-band theory [33,34]. This
theoretical framework, however, does not include quantum
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interference effects such as WAL and WL. Therefore, a
modified two-band model that takes WAL effects into account
is necessary to quantitatively describe the ρxx(B) and ρxy(B)
curves of Bi1−xSbx single crystals, because these systems have
some features of WAL. In natural units (h̄ = 1 and c = 1),
ρxx(B) and ρxy(B) in the conventional two-gap theory are
given by

ρxx(B) = σxx(B)

σxx(B)2 + σxy(B)2 , (1)

ρxy(B) = − σxy(B)

σxx(B)2 + σxy(B)2 , (2)

σxx(B) = neeμe

1 + μ2
eB2

+ nheμh

1 + μ2
hB2

= nee2De

1 + e2D2
eB2

+ nhe2Dh

1 + e2D2
hB2

, (3)

σxy(B) =
(

neeμ2
e

1 + μ2
eB2

− nheμ2
h

1 + μ2
hB2

)
B

=
(

nee3D2
e

1 + e2D2
eB2

− nhe3D2
h

1 + e2D2
hB2

)
B, (4)

where σxx and σxy are magnetoconductivity and Hall
conductivity, respectively, and μe(h), ne(h), and De(h) are the
mobility, carrier density, and diffusion coefficient of electron
(hole), respectively. The relation between mobility μe(h)

and the diffusion coefficient De(h) is given by the equation
μe(h) = eDe(h). In the conventional two-band model, the
diffusion coefficient is determined by a single scattering event
and thus is given by the elastic scattering rate. According to
the Drude model, the Drude conductivity σD is expressed by
σD = nee2DD = nee2

me

−1

imp, where 
imp and DD are the transport
rate and the Drude diffusion coefficient, respectively. When
the WAL correction is of significance, the diffusion coefficient
is modified. In Bi1−xSbx, we assume that the diffusion
coefficient of the electron-doped L band is renormalized by
WAL because this band is more influenced by SOI. Indeed,
the electron-doped L band features the topological phase
transition driven by SOI. In this case, we have

De = DD

1 + αWAL/
imp
,

αWAL


imp
= − 1

πne

∫
d3q

(2π )3

1

DDq2
= − 1

2π3neDD

∫ l−1

l−1
B

dqq2 1

q2

= − 1

2π3neDD

(
1

l
− 1

lB

)
= − 1

2π3neDD

(
1

l
−

√
eB

)

= − 1

2π3neDD


imp

vF
+

√
eB

2π3neDD

= − 1

2π3nekF D2
D

+
√

eB

2π3neDD
,

where vF , kF , l , and lB are the Fermi velocity, Fermi wave
vector, mean free path, and magnetic length, respectively.
Here it is noted that (1) the above integration is explicitly
performed in the 3D case and (2) the above calculation is

carried out in the limit of a very long phase-coherence length
(lφ → ∞) and strong SOI (lSO → 0). Combining the above
two equations leads to the renormalized diffusion coefficient
of the electron band,

De = DD

1 − 1
2π3nekF D2

D
+

√
eB

2π3neDD

. (5)

We used Eqs. (1)–(4), along with renormalized diffusion
coefficient [Eq. (5)] to analyze the ρxx(B) and ρxy(B) data of
the Bi1−xSbx samples. In fact, kF depends on ne, and we use
the formula kF = (3π2ne)1/3 that holds for a simple spherical
Fermi surface as an approximation.

IV. ANALYSIS AND DISCUSSION

We use two different approaches for fitting. The first is to
independently fit the ρxx(B) and ρxy(B) data with each set of
parameters. The second is to fit ρxx(B) and ρxy(B) simulta-
neously with one common set of parameters. By comparing
three sets of parameters (two from the independent fitting and
one from simultaneous fitting), it is possible to estimate the
valid range of each fitting parameter. As the measurements
of resistivity involves at least a few tens of percent errors or
larger because of uncertain sample and contact dimensions,
particularly in a bulk sample, we consider the fitting reason-
able if the values fitting parameters are within error ranges
given by uncertain sample and contact dimensions.

The solid and dashed lines in Figs. 3(a) and 3(b) represent
theoretical curves of ρxx(B) and ρxy(B), respectively, fit in the
range for −2 T < B < 2 T based on the modified two-band
model with the WAL correction. The solid (dashed) lines
are the theoretical curves obtained from the simultaneous
(independent) fitting. Because the theory is applicable only
in the low-field region, we restrict the fitting in this B range.
For Bi, which contains the least disorder, the SdH oscillation
is observed in the region of |B| > 2T. The fitting parameters
of the analysis are the electron density ne, the diffusion
coefficient of electron DD, the hole density nh, and the hole
mobility μh. The theoretical curves follow the experimental
results reasonably well, and all the main characteristics of
the experimental data are well captured by the theory. For
instance, the theoretical curves can reproduce both the low-
field B-quadratic increase and the concave downwardness of
ρxx(B) in the semimetallic and 3D TI regions, respectively.
Furthermore, nonlinearity of ρxy(B) is also well simulated
by the theory. One important question here is how much the
modified two-band model improves the quality of fitting com-
pared to the results from the conventional two-band model. In
fact, without the renormalization of the diffusion coefficient
for the electron band [Eq. (5)], the concave downwardness
of ρxx(B) in the 3D TI region is not well reproduced with
any reasonable parameter values. Thus, the WAL correction is
quite necessary in describing the ρxx(B) curves. The situation
for ρxy(B) is more subtle, because the conventional two-band
model equally well fits the ρxy(B) curves. However, when the
conventional two-band model is used in fitting, an incorrect
sign of charge carrier is acquired in the 3D TI region. In this
case, the sign of the carrier types is the same. In addition,
the hole mobility and electron mobility estimated by using

125162-5



DUY MINH VU et al. PHYSICAL REVIEW B 100, 125162 (2019)

(a) (b) 

(c) (d) 

0 3 6 9 12 15 18

0

1x104

2x104

3x104

4x104

5x104

6x104

h (
cm

2 /V
s)

x (%)

0 3 6 9 12 15 18

15.2

15.6

16.0

16.4

16.8

17.2

17.6

x (%)

lo
g[
n h

] (
lo

g[
cm

-3
])

0 3 6 9 12 15 18

15.9

16.2

16.5

16.8

17.1

17.4  Simultaneous fit
 Independent fit ( xx)
 Independent fit ( xy)

x (%)

lo
g[
n e

] (
lo

g[
cm

-3
])

0 3 6 9 12 15 18

21

22

23

24

lo
g[
D
D
] (

lo
g[

cm
2 /J

s]
)

x (%)

FIG. 4. (a) The electron density ne and (b) the hole density nh as a function of the concentration of x gained from the analysis of the
modified two-band model. (c) The diffusion coefficient of electron DD and (d) the hole mobility μh at different x. The shading represents the
range of each parameter value.

the DD values are different by two orders of magnitude.
This situation, however, cannot occur, because this result
implies a colossal disparity in cleanness of two different
bands in a single system. If the sign of the charge carriers is
constrained differently, the fitting curves significantly deviate
from the experimental data. This demonstrates the necessity of
the WAL correction even in the analysis of ρxy(B) and makes
the analysis of ρxx(B) and ρxy(B) consistent.

Figures 4(a) and 4(b) show the electron (ne) and hole
(nh) densities, respectively, as a function of concentration x,
as were deduced from the modified two-band analysis. The
open (solid) symbols represent ne and nh acquired in the
independent (simultaneous) fitting. The values of ne and nh

are both in the range of 1016 − 1018 cm−3. Because Bi with no
doping is known to have equal numbers of electrons and holes
in the range of ne = nh ∼ 1017 cm−3, the estimated ne and
nh values are reasonable. Despite discrepancy, the parameter
values from simultaneous fitting of the ρxx(B) and ρxy(B) data
are placed between two values from the independent fittings
in most cases and their x dependences show a similar trend;
both ne and nh reach maximum around the boundary between
the semimetallic and 3D TI regions at x ∼ 3 − 4%. Above
the maximum, ne is slightly decreasing or is nearly constant
whereas nh increases with increasing x. The values of DD

and μh as a function of x, presented in Figs. 4(c) and 4(d),

respectively, also display an interesting x dependence. DD has
relatively high values in the semimetallic region. It drops by
one to two orders of magnitude near the boundary between
semimetallic and 3D TI regions and increases with increasing
x in the 3D TI region. Similarly, μh undergoes a drop by
a factor of four at the boundary between the semimetallic
and 3D TI regions. The values of μh are in the order of
∼2 − 4 m2/Vs in the semimetallic region, which suggests that
these systems belong to a clean regime. On the other hand, the
μh values are considerably smaller in the 3D TI region. An
assumption about a spherical Fermi surface and Eq. (5) enable
one to convert DD to the electron mobility μe. The estimated
DD values in the range of 1024 − 1022 cm2/Js correspond to
the μe values of 10−2 − 1 m2/Vs.

Phenomenologically, the parameters ne, nh, DD, and μh

exhibit an x dependence that changes around the boundary
between the semimetallic and 3D TI regions, suggesting a
fundamental change in doping characteristics. In particular,
one interesting aspect in Fig. 4 is the correlation between ne

and DD as a function of x. Below x ∼ 3 − 4%, DD decreases
but ne increases with increasing x. This suggests that both
impurity and dopant concentrations increase simultaneously
with x, as can happen when impurities act as dopants. In
contrast, above x ∼ 7 − 8%, ne slightly decreases while DD

increases with x. This behavior signifies shrinkage of the
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FIG. 5. Simulation of the ρxx (B) and ρxy(B) curves using the modified two-band model. (a)–(h) represent how the ρxx (B) and ρxy(B) curves
change when one of the parameters is changed. (a) and (b) show the effects of electron density ne on ρxx (B) and ρxy(B), respectively: (c) and
(d) the effects of the electron diffusion coefficient DD, (e) and (f) those of the hole density nh, and (g) and (h) those of hole mobility μh.

electron Fermi surface. As a consequence of reduction of
phase space for electrons, impurity scattering is suppressed
with increasing x. This is reflected in the increase of DD with
x above x ∼ 7 − 8%. Clearly this differs from the behavior
below x ∼ 3 − 4%, indicating a main influence of Sb on
the band structure. For the hole band, nh and μh also show
interesting x dependence. Below x ∼ 3 − 4%, both nh and
μh increase with x. This simultaneous increase indicates that
Sb, which is effective as an impurity in the electron band
does not play a role as an impurity in the hole band. Above
x ∼ 7 − 8%, nh increases with x whereas μh stays constant.
This behavior implies more dominant effect of Sb as a dopant
than as an impurity that increases disorder.

To see the effects of each fitting parameter on the ρxx(B)
and ρxy(B) curves, we simulate the ρxx(B) and ρxy(B) curves
at different values of the parameter. Figures 5(a) and 5(b)
display the effects of ne on ρxx(B) and ρxy(B), respectively,
and Figs. 5(c) and 5(d) those of DD on ρxx(B) and ρxy(B),
respectively. When ne decreases at fixed DD, nh, and μh, the
quadratic increase in ρxx(B) evolves into concave-downward
increase through the tiny dip at the low B region. At higher
B, the concave downwardness appears below ne < 6.23 ×
1016 cm−3. The concave downwardness remarkably differs
from the B-quadratic increase of ρxx(B) observed in a metal
in the absence of the WAL correction. In the parameter ranges
that we investigate, the dip and concave downwardness is
more pronounced at smaller ne. On the other hand, ρxy(B) is
nonlinear, as expected, and the amplitude of this nonlinear
S-shape becomes smaller with increasing ne. Notably, the
changes of the ρxx(B) and ρxy(B) curves caused by DD look
very similar to the effect of ne. Compare [Figs. 5(a) and
5(b)] with [Figs. 5(c) and 5(d)]. This can be understood by
considering the dependence of De on ne and DD [Eq. (5)].

Because De is a function of both ne and DD, a change of DD

can change the ρxx(B) and ρxy(B) curves much as that of ne

does.
Even though only the electron band is corrected by WAL,

the hole density nh and mobility μh influence the ρxx(B) and
ρxy(B) curves drastically. This change of ρxx(B) and ρxy(B) by
nh and μh is demonstrated in Figs. 5(e)–5(h). Upon increase
of nh, ρxx(B) at high B is flattened. This change leaves a
smaller dip feature at the low B region, which gets smaller at
higher nh. The influence of nh on ρxy(B) is also interesting.
As nh increases, ρxy(B) is more curved and overall slope
change occurs at high B region, whereas the slope at the low
B region is still negative. The section in ρxy(B) with positive
slope widens. Thus, the slope at B = 2 T changes from the
negative value at nh = 0.55 × 1016 cm−3 to positive at nh =
1.55 × 1016 cm−3. The effects of the μh parameter on ρxx(B)
and ρxy(B), presented in Figs. 5(g) and 5(h), respectively, are
also nontrivial. The concave downwardness of ρxx(B) evolves
into the quadratic MR with a tiny dip with μh increasing.
The ρxy(B) curve also shows drastic μh dependence as ρxx(B)
does. The ρxx(B) curve is almost linear at μh = 320 cm2/Vs
with overall negative slope and become curved at μh =
2320 cm2/Vs. From μh = 7320 cm2/Vs, the slope at the high
B region changes into negative value. Further increase of μh

leads to change of the curvature at the high B region of ρxy(B).
Relatively large values of μh make overall slope of the ρxy(B)
curve positive as nh does. This indicates dominant contribu-
tion of hole carriers at relatively high values of μh and nh.

V. CONCLUSION

We have systematically studied the MR and HR of
Bi1−xSbx single crystals over the wide Sb concentration range
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of x (0 � x � 17.0%) at 4.2 K and with B up to 4.0 T. These
transport quantities were quite unconventional because of the
weak antilocalization and two-carrier transport. MR shows
not conventional B-quadratic behavior, but a dip at low B
in the 3D topological insulating region. On the other hand,
HR is nonlinear in B with an S-shape. The former and the
latter can be mainly attributed to weak antilocalization and
two-band effects, respectively. To understand the MR and
HR of Bi1−xSbx single crystals based consistently on weak
antilocalization and two-band effects, we formulated a two-
band model modified by weak antilocalization. We applied
it to analyze MR and HR data, and the modified two-band
model successfully described all the main features of the
experimental data that are not captured by the conventional
two-band theory. This suggests that the Bi1−xSbx alloy is a
system that shows the interplay of weak antilocalization and
two distinct charge carriers. As a transport theory that includes

not only two-carrier transport but also weak antilocalization,
the modified two-band model offers a solid framework to
understand the electrical properties of a material with strong
spin-orbit interaction and multiple charge carriers. Our study
also provides a clue how to incorporate the quantum interfer-
ence effect into a transport theory, particularly in the regime
of strong spin-orbit interaction.
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