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From weak to strong disorder in Weyl semimetals: Self-consistent Born approximation
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We analyze theoretically the conductivity of Weyl semimetals within the self-consistent Born approximation
(SCBA) in the full range of disorder strength, from weak to strong disorder. In the range of intermediate disorder,
we find a critical regime which separates the semimetal and diffusion regimes. While the numerical values of the
critical exponents are not expected to be exact within the SCBA, the approach allows us to calculate functional
dependences of various observables (density of states, quasiparticle broadening, conductivity) in a closed form.
This sheds more light on the qualitative behavior of the conductivity and its universal features in disordered Weyl
semimetals. In particular, we have found that the vertex corrections in the Kubo formula are of crucial importance
in the regime of strong disorder and lead to saturation of the dc conductivity with increasing disorder strength.
We have also analyzed the evolution of the optical conductivity with increasing disorder strength, including its
scaling properties in the critical regime.
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I. INTRODUCTION

In recent years, a major focus in condensed-matter physics
has been put on three-dimensional Weyl and Dirac semimet-
als. This interest is motivated by topological phenomena char-
acteristic of these materials and by a deep connection to high-
energy (relativistic) quantum field theories. This connection
is due to a peculiar band structure with linearly touching
bands at certain points in the Brillouin zone, as realized in
TaAs [1,2], NbAs [3], TaP [4], and NbP [5], which gives
rise to such phenomena as the chiral anomaly [6–8] and
the emergence of protected Fermi arcs [9]. Various experi-
mental observations, such as a giant transversal magnetore-
sistance [5,10–15] and a negative longitudinal magnetore-
sistance [5,16–24], peculiar thermoelectric effects [25], and
induced superconductivity [26], promise a huge potential for
future applications.

Transport properties of Weyl semimetals are especially
peculiar close to the charge neutrality point. One central
aspect of this peculiarity is the appearance of a disordered
critical point within the perturbative analysis. This was first
pointed out within a mean-field approach in Refs. [27,28];
later, the emergence of this critical point was established
by a renormalization group (RG) analysis [29–31] with di-
mensional regularization and by numerical studies [32–37].
Similar results are obtained within the U (N ) Gross-Neveu
model [38,39]. The self-consistent Born approximation ap-
plied for weak and strong disorder in Refs. [40,41] also shows
the appearance of the disorder critical point. Recently, the
critical point was also found within the Schwinger-Dyson-
Ward approach of Ref. [42]. Related effects of disorder have
also been addressed in topological insulators in three and
four dimensions, including the limit of the three-dimensional

Weyl and Dirac semimetallic phases [29,43–47]. Beyond the
commonly used models of Weyl semimetal with pointlike or
finite-range disorder, effects of the long-range (1/r2) disorder
potential were studied in [48,49]. Manifestations of the bulk
disorder effects on the surface were discussed in Ref. [50].

For sufficiently weak disorder (i.e., below the critical
strength), the density of states evaluated within the pertur-
bation theory vanishes quadratically as a function of energy
around the Weyl point. However, nonperturbative effects were
argued to create an exponentially small density of states at
the Weyl point. These tails were considered in Refs. [51–54].
Analytical calculations of the tails in the density of states were
performed in Refs. [55,56] for resonant scattering and within
a T -matrix approach, respectively. Instantons in the replica
approach, which are known to produce Lifshitz tails [57],
were calculated in high dimensions in Ref. [58]. At the
same time, recent works [59,60] found that the rare-region
effects in Weyl semimetals are very special, and individual
local disorder configurations are insufficient to induce a finite
density of states. In the strong-disorder regime, the density
of states is finite at the Weyl point already without invoking
exponentially small contributions.

An interesting question about the behavior of the density
of states in the critical regime separating weak- and strong-
disorder regimes was addressed in several works. The mean-
field approach (controlled by the large number of “flavors,”
N � 1) results in a square-root low-energy behavior of the
density of states [27,28] (see also Sec. II). Within the RG
approach, the density of states also exhibits a power-law
dependence on energy at the critical disorder strength. Setting
ε = 1 in the one-loop RG equations derived for 2 + ε dimen-
sions (i.e., controlled for |ε| � 1) yields a linear vanishing of
the density of states (see Refs. [29–31,61]). The second-loop
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(ε2) contributions to the β function were explicitly calculated
in Refs. [31,62], implying that the linear behavior is not
exact. Both the mean-field and RG approaches are, however,
uncontrolled in the physical case of a three-dimensional Weyl
semimetal with a number N of Weyl nodes of order unity.

Most numerical studies [32–35,37,45,47,52] suggest the
power-law behavior of the critical density of states which is
close to the RG results. Specifically, the obtained numerical
values of the dynamical exponent z that governs the energy
scaling of the density of states range from 1.38 ± 0.05 [35]
to 1.53 ± 0.03 [47]; see Ref. [63] for review. However, the
spreading of values of the correlation-length exponent (com-
pare, e.g., ν = 1.47 ± 0.03 in Ref. [33] with ν = 0.86 in
Ref. [45]) reflects a difficulty with extracting the exponents
characterizing the true asymptotic behavior.

In this paper, we use the self-consistent Born approxima-
tion (SCBA), which is a microscopic version of the mean-field
approach. In general, like other approaches, the SCBA is also
not a controlled approximation close to the critical disorder
strength. However, the advantage of SCBA compared to other
methods is that one can capture analytically the qualitative
behavior of various observables and their universal features.
While the numerical values of the critical exponents are not
expected to be exact within the SCBA, the approach allows us
to calculate the functional dependences of the conductivity of
Weyl semimetals on various parameters in a closed form for
an arbitrary disorder strength within the unified framework.

More specifically, we investigate the conductivity in the
full range of disorder, from weak to strong (including the
critical regime), with the focus on properly including current
vertex corrections. Former works included vertex corrections
in the consideration of the weak-disorder regime [64]. In that
regime, the vertex corrections (important for Weyl semimetals
even for the pointlike impurity potential) lead to the change
in the numerical prefactor in the conductivity. In the present
work, we find that the vertex corrections are of particular
importance for the strong-disorder regime, where they lead to
a saturation of conductivity with increasing disorder strength.
To determine this behavior, it is required to consider the full
self-consistent equation for the calculation of the density of
states and of the real part of the self-energy, going beyond the
calculation of Refs. [27,28].

This paper is organized as follows. In Sec. II, we intro-
duce the model with pointlike impurity scattering and discuss
the results for the energy-dependence of the self-energy and
density of states in the whole range of disorder strength.
In Sec. III, we calculate the conductivity within the SCBA
and analyze its dependence on disorder, temperature, and
frequency. Our findings are summarized and discussed in
Sec. IV. Throughout the paper we set h̄ = c = kB = 1.

II. POINTLIKE IMPURITIES IN SCBA

We consider the effects of disorder within SCBA to iden-
tify the different phases of disordered Weyl semimetals. We
analyze the self-energy �̂(p, ε) in the (impurity-averaged)
Green’s function generated by impurity scattering,

Ĝ(p, ε) = 1

ε − vσ · p − �̂(p, ε)
, (1)

where the Pauli matrices σ operate in pseudospin space and
v is the quasiparticle velocity. The calculations are performed
under the assumption that disorder is diagonal in both spin and
pseudospin indices and by neglecting the scattering between
different Weyl nodes. The absence of internode scattering
leads to a trivial structure in the node space. Therefore, the
calculated density of states and the conductivities are those
per Weyl node.

The pointlike impurity potential has the following form:

V̂dis(r) = u0

∑
i

δ(r − ri )1, (2)

with the unit matrix 1 in the pseudospin space. For such
an impurity potential, the disorder correlator (which is, in
general, a rank-four tensor) is diagonal and independent of
the transferred momentum:

Wαγβδ (q) = γ δαγ δβδ, (3)

where γ = nimpu2
0 and nimp is the concentration of impurities.

Within the SCBA, the self-energy is given by

�αβ (r, r′) =
∫

d3q

(2π )3
Wαγβδ (q)eiq·(r−r′ )Gγ δ (r, r′) (4)

and is proportional to the unit matrix in the energy-band
space for the correlator (3). For the pointlike impurities,
Eq. (3), the self-energy is momentum independent, and the
self-consistency equation (4) takes the form

�R(ε) = γ

∫
d3 p

(2π )3

[
1

ε − v|p| − �R
+ 1

ε + v|p| − �R

]
.

(5)

(The superscript R indicates the we consider the retarded
self-energy.) Since the integral is divergent at large momenta,
we introduce the ultraviolet energy cutoff � (imposing a
hard momentum cutoff at �/v). The integration over the
momentum then leads to

�R(ε) = β(ε − �R)

[
−1 + ε − �R

2�
ln

(
ε − �R + �

ε − �R − �

)]
,

(6)

where we introduced the dimensionless disorder strength

β = γ�

2π2v3
. (7)

For pointlike impurities, we formally consider arbitrary
disorder strengths, including the case of strong disorder, β �
1. As discussed below, for microscopic lattice models, β � 1
can be realized for sufficiently smooth disorder. At the end of
Sec. III, we describe the generalization of the results obtained
for pointlike impurities to the case of smooth disorder. The
density of states ρ(ε) is related to the imaginary part of the
self-energy as follows:

ρ(ε) = − 1

πγ
Im�R(ε). (8)

Therefore, within the SCBA, the energy scaling of the density
of states is that of the imaginary part of the self-energy.

A detailed analysis of Eq. (6) is performed in Appendix A;
here we present and discuss the most salient results. We first
consider the case of zero energy, ε = 0, under the assumption
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FIG. 1. Broadening � = −Im�R as a function of dimensionless
disorder strength β. Equation (A6) is numerically solved for ε/� =
0, 10−3, 10−2 (green, dark blue, and red curves, respectively). The
results illustrate analytical asymptotics given by Eqs. (11), (14),
and (17).

Re�R(ε = 0) = 0, which will be justified later. Equation (6)
gives two solutions for the disorder-induced broadening,

� = −Im�R. (9)

The first solution is � = 0, and the second is given by the
following equation:

β − 1

β
= �

�
arctan

(
�

�

)
. (10)

The left-hand side of Eq. (10) exhibits a sign change at β = 1.
For β < 1, Eq. (10) has no physical solution (non-negative �),
while for β > 1 a nonzero broadening arises. This manifests
the emergence of the critical point at β = 1. Above the critical
disorder strength, a finite density of states is generated. The
emergence of this critical point is illustrated by a numerical
evaluation of Eq. (10) in the full range of disorder in Fig. 1. In
this figure, the zero-energy broadening is shown by the green
curve. For β < 1 it is zero, as discussed above. For β > 1 we
find

�(ε = 0) =

⎧⎪⎪⎨
⎪⎪⎩

2�

π
(β − 1), β − 1 � 1,√

β

3
�, β � 1.

(11)

In the following, we determine the self-energy in the differ-
ent regimes of disorder for finite energies, ε > 0. As long as
|ε − �R| � �, the logarithmic term in Eq. (6) can be replaced
by a constant −iπ . This results in a quadratic equation for
the complex quantity (ε − �R)/� (see Appendix A), whose
solution reads

Re�R = ε − �|β − 1|√
2πβ

√√√√√
1 +

[
2πε

(β − 1)2�

]2

− 1, (12)

� = �(β − 1)

πβ

+ �|β − 1|√
2πβ

√√√√√
1 +

[
2πε

(β − 1)2�

]2

+ 1. (13)

These expressions should be contrasted with the results ob-
tained in Ref. [40], where the inner square roots were, in
effect, expanded in ε. We will see that this approximation
is not valid at criticality. Indeed, the behavior of the self-
energy is governed by the parameter (β − 1)2�/|ε|. When
this parameter is large (i.e., away from the critical point β =
1), one can expand Eqs. (12) and (13) with respect to ε/�. For
β < 1 this yields

Re�R � − β

1 − β
ε, � � πβε2

2(1 − β )3�
. (14)

The density of states in this regime of weak disorder (or low
energies) reads

ρ(ε) � ε2

2π2v3(1 − β )3
, |ε| � (β − 1)2�. (15)

For critical disorder, β = 1, the self-energy can be written
as

Re�R � −ε

√
�

π |ε| , (16)

� �
√ |ε|�

π
, (17)

which is in agreement with the large-N mean-field result of
Refs. [27,28,44,64]. The subleading (for ε/� � 1) correc-
tions to Re�R and � are linear in ε and |ε|, respectively
(see Appendix A). Equations (16) and (17) imply that the
dynamical critical exponent z within SCBA is z = 2. The
result for the critical regime is valid under the condition that
it is opposite to that in Eq. (15),

|β − 1| �
√

2π |ε|/�. (18)

If the disorder is slightly away from the critical value β = 1
[but the system is still in the critical regime (18)], the leading
behavior (17) acquires a correction δ� � �(β − 1)/π . The
condition (18) determines the product of the correlation-
length exponent ν and the dynamical exponent z within the
SCBA: νz = 2. In combination with z = 2 it yields ν = 1. As
follows from Eq. (17), the critical density of states scales as
the square root of energy:

ρ(ε) � �3/2|ε|1/2

π7/2v3
, β = 1, (19)

where the critical exponent for the scaling with energy is given
by d/z − 1, with d = 3 and z = 2.

Next, we discuss the energy dependence of the self-energy
in the case of strong disorder, β > 1. Outside of the crit-
ical regime, i.e., under the condition opposite to Eq. (18),
the imaginary part of the self-energy is mainly determined
by the zero-energy result, Eq. (11), with energy-dependent
corrections proportional to ε2. The real part is obtained by
an expansion in low energies, as performed in Appendix A,
leading to

Re�R ≈ β̃ − 2

β̃ − 1
ε, (20)
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FIG. 2. Scaling of the imaginary part of the self-energy and
the density of states with energy ε in the three regimes (Weyl
semimetal, critical region, diffusive metal) depending on the strength
of disorder characterized by δ = 1 − β and on energy. The diagram
clearly shows the regimes (“phases”) of weak (blue region), critical
(green), and strong disorder (yellow). The borders of the regimes are
indicated by red dashed lines.

where the renormalized dimensionless disorder strength is
defined as

β̃ = β
�2

�2 + �2(ε = 0)
. (21)

In the limit of very strong disorder, using Eq. (10), we get

β̃ � 3β

β + 3
→ 3, β → ∞. (22)

This saturation of the renormalized disorder strength will
be of key importance for establishing the strong-disorder
asymptotic behavior of the conductivity in Sec. III.

The scaling of � [and thus of the density of states according
to Eq. (8)] in different regions of the parameter plane spanned
by the disorder and the energy is presented in Fig. 2. This
plot has an appearance characteristic of the vicinity of a
quantum critical point: the critical regime separating the Weyl
semimetal and the metallic phases. It is seen that, for β not
far from the critical value β = 1, the system enters, with
increasing energy, the critical regime with the square-root
energy dependence of the density of states.

Let us now compare the analytical results with the numeri-
cal evaluation of Eq. (6). The imaginary part of the self-energy
at two values of the bare energy ε is shown, along with the
ε = 0 curve, in Fig. 1. The critical smearing of the transi-
tion is evident. To better visualize the ε dependence of the
imaginary part in different regimes, we show it as a function
of energy at various β in Fig. 3. All three types of behavior
(semimetallic ε2, critical ε1/2, and metallic ε0) are perfectly
observed. In particular, Fig. 3 illustrates the crossover from
either semimetallic or metallic behavior to the critical regime
with increasing energy, as implied by the “phase diagram”
(Fig. 2).

const.

FIG. 3. Imaginary part of the self-energy as a function of energy
ε obtained by numerically solving Eqs. (A6) and (A5) for weak
disorder, β = 0.1 (green curve) and β = 0.5 (light blue curve);
critical disorder β = 1 (dark blue curve); and strong disorder β =
2.3 (red curve). The results illustrate analytical asymptotics given by
Eqs. (11), (14), and (17).

Figures 4 and 5 illustrate the behavior of the real part of the
self-energy. In agreement with Eqs. (14) and (20), the real part
scales linearly in ε in both semimetallic and metallic regimes.
The corresponding coefficient Re�R/ε is small far away from
the critical point and diverges when β approaches unity (see
the dashed line in Fig. 5). At fixed energy, the divergence
is avoided by the crossover to the critical regime. In the
critical regime (18) the real part scales as ε1/2 as predicted
by Eq. (16). Figure 6 illustrates the behavior at very strong
disorder, β � 1, where Re�R/ε → 1/2. This behavior will
be important for the analysis of the conductivity in the next
section.

It is worth mentioning that, compared to Ref. [42], where
the density of states was analyzed as a function of the disorder
strength only at ε = 0, our results describe also the energy
dependence of the density of states. A related advantage of our
SCBA analysis is its essentially analytical character, which
should be contrasted with the computational self-consistent

FIG. 4. Real part of the self-energy as a function of energy ε ob-
tained by numerically solving Eqs. (A5) and (A6) for weak disorder,
β = 0.23 (green curve); critical disorder, β = 1 (dark blue curve);
and strong disorder, β = 1.8 (red curve) and β = 5 (orange curve).
The results illustrate analytical asymptotics given by Eqs. (14), (16),
and (20).
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FIG. 5. Real part of the self-energy (divided by energy ε) ob-
tained from the numerical solution of Eq. (A5) as a function of β for
different values of ε. The green, red, and light blue curves correspond
to ε/� = 10−4, 10−3, 10−2, respectively. The dark blue dashed curve
represents the limit ε → 0. The results illustrate analytical asymp-
totics given by Eqs. (14), (16), and (20).

approximation (“Schwinger-Dyson-Ward approximation”) of
Ref. [42].

It is also instructive to compare the SCBA results for
the self-energy with those obtained with the one-loop RG
approach. The energy renormalization at criticality considered
in Ref. [61] translates to

ε − Re�R(ε) ∼ ε

√
�

vK (ε)
, (23)

where K (ε) is the energy-dependent momentum scale that sat-
isfies the self-consistent condition of the RG flow termination,

ε − Re�R(ε) ∼ vK (ε). (24)

It follows from Eqs. (23) and (24) that

vK (ε) ∼ ε2/3�1/3, Re�R(ε) ∼ ε

(
1 − �1/3

ε1/3

)
. (25)

FIG. 6. Real part of the self-energy (divided by ε) as a function
of β for β � 1. The green dashed line shows the numerical solution
of Eq. (A5). The black solid curve corresponds to the solution of
Eq. (A15) with the numerical solution for � given by Eq. (A6).

TABLE I. Critical exponents z and ν obtained for three-
dimensional Weyl semimetals within various approximate analytical
schemes (cf. Ref. [63]): SCBA [27,28] as studied in this work
(controlled by the large number of nodes N → ∞; with the leading
1/N correction included [44], the SCBA value of the correlation-
length exponent at N = 1 is ν = 1 + 16/3π 2 � 1.54), one-loop RG
in dimension d = 2 + ε (controlled at |ε| → 0) at ε = 1 [29,30,61],
and two-loop RG in d = 2 + ε at ε = 1 [31].

SCBA d = 2 + ε one-loop RG d = 2 + ε two-loop RG

z 2 3/2 11/8
ν 1 1 2/3

The difference between Eq. (25) and the SCBA result (16) is
that the square-root renormalization factor in the RG calcu-
lation is cut off by vK (ε) rather than by ε. As a result, the
dynamical exponents differ in the one-loop RG and SCBA
approaches: z = 3/2 vs z = 2, respectively.

Within the two-loop RG [31], in addition to the energy
renormalization, there is also renormalization of velocity,
corresponding to the momentum-dependent corrections to the
self-energy that are beyond the SCBA scheme for pointlike
impurities. The analytical results for the critical exponents
z and ν obtained within the SCBA and RG approaches are
summarized in Table I. It is worth emphasizing once again
that none of these values of critical exponents is expected to
be accurate in the physical case, as the SCBA is controlled at
N → ∞, whereas only the small-|ε| expansion is controlled
for the RG in d = 2 + ε dimensions. For the corresponding
numerical results, see a brief summary in Sec. I, as well as a
detailed list in Table 1 in Ref. [63].

III. CONDUCTIVITY WITHIN SCBA

We calculate now the conductivity σxx of a Weyl semimetal
for weak, strong, and critical disorder within the pointlike
disorder model discussed above. We use the Kubo formula
for the real part of the conductivity, reading

σxx(ω, T ) = Re
∫

dε

2π

fT (ε)

ω

∫
d3p

(2π )3

× Tr
{
[ĜR(ε, p) − ĜA(ε, p)] ĵtr

x ĜA(ε − ω, p) ĵx

+ ĜR(ε + ω, p) ĵtr
x [ĜR(ε, p) − ĜA(ε, p)] ĵx

}
.

(26)

Here ĵx = evσx is the bare current operator, and ĵtr
x is the cur-

rent vertex dressed by disorder and dependent on the external
frequency ω. The dressed vertex is discussed in Appendix B.

The importance of vertex corrections in Weyl semimet-
als in the dc limit and for weak disorder was discussed in
Ref. [64]. Here we consider the effect of the vertex correction
also for the ac conductivity and in the full range of disorder.
We find that the vertex corrections are of particular importance
in the regimes of critical and strong disorder.
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After performing the momentum integration, the conductivity reads

σxx(ω, T ) = e2v2

3γ

∫ ∞

−∞

dε

2π

fT (ε) − fT (ε + ω)

ω

× Re

{
v

v − vRA
x (ε, ω)

[
�R(ε + ω) − �A(ε)

�R(ε + ω) − �A(ε) − ω
+ �R(ε + ω) + �A(ε)

2ε + ω − �R(ε + ω) − �A(ε)

]

− v

v − vRR
x (ε, ω)

[
�R(ε + ω) − �R(ε)

�R(ε + ω) − �R(ε) − ω
+ �R(ε + ω) + �R(ε)

2ε + ω − �R(ε + ω) − �R(ε)

]}
, (27)

where vRA/RR
x (ε, ω) are calculated in Appendix B. Using Eqs. (B5) and (B6), we express the conductivity in terms of the self-

energies as

σxx(ω, T ) = 2e2v2

γ

∫ ∞

−∞

dε

2π

fT (ε) − fT (ε + ω)

ω

× Re

{
(ε + ω)�A(ε) − ε�R(ε + ω)

[ε − �A(ε)][3ω + 4�A(ε)] + [ε + ω − �R(ε + ω)][3ω − 4�R(ε + ω)]
− [�A(ε) → �R(ε)]

}
. (28)

A. Weak and critical disorder

In the regime of weak disorder, using Eq. (14) for the
self-energy, we calculate the conductivity in the two most
interesting limits, T = 0 and ω = 0. We start with the case
of ω = 0. The conductivity is dominated by the retarded-
advanced contribution in Eq. (27),

σxx(T, ω = 0) � e2v2

2πγ

1 − β

1 + β
= e2�

4π3v

1 − β

β(1 + β )
, (29)

which does not depend on temperature. Only at the crossover
to the regime of critical disorder at T ∼ (1 − β )2� does the
T -dependent retarded-retarded term

σ RR
xx (T, ω = 0) ∼ e2T 2

v�

β

(3 + β )(1 − β )3

become comparable to the main contribution. We emphasize
that the condition of validity of Eq. (29) is T � �(1 − b)2,
which agrees with condition (18) for the border separating the
regimes of weak and critical disorder. This means that in the
limit T → 0 Eq. (29) is valid for all β < 1.

For finite ω and T = 0, the integral over ε is dominated
by the point ε = −ω/2 in the retarded-retarded contribution
in Eq. (27). Evaluating the integral around this point, we get
a linear frequency dependence of the conductivity with the
disorder-dependent coefficient:

σxx(T = 0, ω) � e2|ω|
4πv(1 − β )(3 + β )

. (30)

Similar to Eq. (29), the condition of validity of this expres-
sion is ω � �(1 − b)2, which again means that in the limit
ω → 0 the range of the applicability of the weak-disorder
formula (30) extends up to β → 1. For small β → 0, we
obtain

σxx(T = 0, ω) = e2|ω|
12πv

(
1 + 2

3
β

)
, (31)

which agrees with the results of Refs. [65,66]. We see that
the limits of ω = 0 and T = 0 are not interchangeable, as
discussed in Ref. [65]. Furthermore, we find that the dc con-
ductivity vanishes at the critical-disorder point. We would like

to stress that the vanishing of the ac conductivity at ω → 0 is
related to the vanishing density of states in the regime of weak
disorder within the SCBA scheme.

For the calculation of the conductivity at critical disorder,
we use Eqs. (16) and (17) for the self-energies. For ω = 0, the
result is

σxx(T, ω = 0) = CT
e2

2πv

√
�T . (32)

The numerical prefactor for the hard-cutoff model used in
this paper is given by CT = 3(1 − √

2)ζ (1/2)/4π ≈ 0.14,
where ζ (x) is the Riemann zeta function. We see that the
conductivity in the dc limit (finite T and ω = 0) matches the
result for weak disorder at (1 − β )2� ∼ T . The calculation of
the ac conductivity at T = 0 and β = 1 yields

σxx(T = 0, ω) = Cω

e2

2πv

√
�|ω|, (33)

where

Cω = 1

6π3/2

[
29

15
− ln(3 + 2

√
2)

2
√

2

]
≈ 0.04.

Expression (33) matches Eq. (30) at ω ∼ �(1 − β )2 and
Eq. (32) at ω ∼ T . The obtained quantum critical scaling of
the ac conductivity is in agreement with the general scaling
form discussed in Ref. [66].

B. Strong disorder

Let us now discuss the regime of strong disorder, β > 1.
We substitute the result for the self-energy for strong disorder,
Eq. (11), into Eq. (27) and write Eq. (20) with Eq. (21) as

Re�R = Aε, A = β̃ − 2

β̃ − 1
. (34)

For ω → 0 and T → 0, the vertex corrections (B5) and (B6)
simplify for strong disorder to

vRR
x = −v

2 − A

3(1 − A)
, (35)

vRA
x = v

A + 1

3(1 − A)
. (36)
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Vertex corrections need to fulfill the condition vx/v < 1. This
is indeed the case for A < 1/2, which is valid up to the highest
disorder strength, β → ∞ [see Eq. (A19) in Appendix A
and Fig. 6]. For lowest temperatures and frequencies, the
conductivity reads

σxx(T → 0, ω → 0) = e2v2

2πγ

(7 − 8A)

(1 − 2A)(5 − 4A)
. (37)

We note that, in contrast to the weak-disorder regime,
Eq. (29), the RR contribution is not small compared to the
RA one:

σ RA
xx = e2v2

2πγ (1 − 2A)
, σ RR

xx = e2v2

πγ (5 − 4A)
.

We find that the condition A < 1/2 for the vertex correc-
tions is manifested again in the calculation of the conductivity,
where a positive conductivity without any singularities is
obtained under this restriction. It is important to emphasize
that the conductivity saturates as a function of disorder in the
limit β � 1. Indeed, using Eqs. (34) and (A19), we see that
1 − 2A → 9/5β for β → ∞, which cancels the factor γ ∝ β

in the denominator of Eq. (37). The saturation value of the
conductivity in the limit of strong disorder is then given by

σxx � 5e2�

36π3v
, β � 1. (38)

Furthermore, the conductivity vanishes at the critical dis-
order β = 1, where A � −1/(β − 1) → −∞:

σxx � e2v2

2πγ
(β − 1), β → 1. (39)

Note the factor of 2 compared to Eq. (29) in the dependence
of the conductivity on |β − 1| around the critical point: this
asymmetry is due to the RR contribution at β > 1. The renor-
malization (21) of the dimensionless disorder strength β can
be neglected around β = 1 but becomes crucial for stronger
disorder, ensuring that A < 1/2. Thus, by fully incorporating
the vertex corrections, one has to consistently keep track of the
modification of the real part of the self-energy in the SCBA
analysis for strong disorder.

The dependence of the low-T , zero-frequency conduc-
tivity on the disorder strength β as obtained by the nu-
merical evaluation of the Kubo formula is demonstrated in
Fig. 7. The observed behavior confirms the analytical asymp-
totics (29), (32), and (37).

The saturation of the conductivity at strong disorder should
be contrasted with the result of Ref. [40], where the conductiv-
ity was found to decrease as 1/β. The reason for this behavior
is that in Ref. [40] the formula for vertex corrections derived
for weak disorder was used in the strong-disorder limit.

C. Smooth disorder

Considering the limit of large β for pointlike impurities
on a lattice model corresponds to a large potential on each
lattice site which would completely destroy the model. Below,
we consider a model of smooth-disorder potential, where the
limit of large β is realized by increasing the correlation length
instead of the amplitude of the potential.

0.5

1.0

FIG. 7. Conductivity in the limit ω → 0 and then T → 0 with
the self-energies (real and imaginary parts) obtained numerically
from Eqs. (A5) and (A6). The dotted part corresponds to the region
close to the critical point βc where the straightforward numerical
evaluation is complicated by the divergence of Re�R for β → 1
[in this region, the conductivity vanishes linearly with |β − 1|; see
Eqs. (29) and (39)]. The conductivity saturates at the value 5/18 �
0.28 in units of e2�/(2π 3v2); see Eq. (38). The inset depicts the
conductivity in units of e2v2/2πγ used for the conductivity at weak
disorder (where Re�R � ε); see Eq. (29) at β → 0. Thus, the inset
emphasizes the important role of the real part of the self-energy
and renormalization of the disorder strength, β → β̃, in the vertex
corrections for strong disorder.

In analogy with the model of pointlike impurities consid-
ered above, we assume that the disorder potential is diagonal
in both spin and pseudospin indices and neglect the intern-
ode scattering. This impurity correlator relates the disorder
strength γb to the characteristic magnitude of disorder poten-
tial U0 and its correlation radius b as

γb = nimp(U0b3)2. (40)

The self-energy for smooth disorder is momentum depen-
dent, and the SCBA requires a solution of coupled integral
equations. Since the disorder correlator introduces a natural
momentum cutoff replacing �/v, the results obtained for
the pointlike disorder can be used to qualitatively describe
the smooth-disorder case (see, e.g., Refs. [40,67]), with the
replacements β → βb and � → �b, where βb and �b are
given by

βb = γb

2π2v2b
, �b = v

b
. (41)

To show that large values of βb can be realized for a relatively
low impurity potential U0 < �, we rewrite the dimensionless
disorder strength in terms of the bandwidth � and the lattice
constant a = v/�, assuming that the distance between the
impurities is of the order of their correlation radius, nimp ∼
1/b3:

βb ∼
(

U0

�

)2(b

a

)2

. (42)

This shows that large βb can be achieved for large b � a even
for small impurity potentials, U0 � �.

The qualitative behavior of the density of states does not
fundamentally change within the model of smooth disorder
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compared that of pointlike disorder. In particular, the density
of states remains vanishing for βb < 1 for ε = 0 and becomes
finite above. In the limit of strong disorder, the broadening can
be approximated by

�smooth ∼ �b

√
βb, (43)

again in full analogy with the case of pointlike impurities.
This renders our results (37) for the conductivity in the strong-
disorder regime applicable to the model of smooth disorder,
with A defined by Eqs. (34), (20), and (21), where we replace
β → βb, � → �b, and � → �smooth.

IV. SUMMARY

We considered the density of states and the conductivity
of a Weyl semimetal within the SCBA in the full range
of disorder strength, from weak (β � 1) to strong (β � 1)
disorder (see Fig. 2). The limit of large β can be realized in
a smooth-disorder model for rather weak impurity potentials.
The density of states for weak disorder vanishes as ε2, while
the density of states for strong disorder is finite. For the regime
of critical disorder, we find a density of states proportional to
the square root of energy ε.

The conductivity for weak disorder is constant in the dc
limit (first taking ω → 0 and then T → 0). In the opposite
limit, the weak-disorder ac conductivity is linear in ω. In both
limits, we derived the explicit dependence of the conductivity
on β < 1. The conductivity at critical disorder, β = 1, is
proportional to

√
ω or

√
T , whichever is larger.

For the strong disorder, the renormalization of the dimen-
sionless disorder strength β ensures that the vertex corrections
remain small, vx/v < 1, leading to a saturation of the conduc-
tivity in the limit β → ∞. This limit of very strong disorder
with the saturating conductivity is realized within a model of
smooth disorder, where the strong-disorder limit (βb � 1) can
be established by the large correlation length instead of a large
magnitude of the impurity potential. For smooth disorder, the
appearance of the critical point persists at the Weyl point.
The SCBA density of states vanishes below βb ∼ 1 and can be
approximated by �smooth ∼ �b

√
βb for strong disorder, thus

leading to the saturation of the conductivity (Fig. 7).
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APPENDIX A: DETAILS OF THE CALCULATION
OF SELF-ENERGY

In this Appendix, we present the details of the SCBA cal-
culation of the Green’s function in the model with a pointlike
disorder. The self-consistent equation (6) for the self-energy
at arbitrary energy ε, as obtained after momentum integration
performed in the main text, Eq. (5), reads

ε − E − i�=β(E + i�)

[
−1+ (E + i�)

2�
ln

(E + i� + �

E + i� − �

)]
,

(A1)

where we introduced for brevity

E ≡ ε − Re�R, � ≡ −Im�R. (A2)

We are interested in the situation when the energy is much
smaller than the cutoff scale, � � |E |. At the same time,
the relation between the cutoff � and the broadening � can
be arbitrary: for weak and critical disorder, we will have
� � �, whereas for strong disorder, we will find � � � [see
Eq. (10)].

We first consider the case � � � and replace the loga-
rithmic term in Eq. (A1) by a constant −iπ . The next term
in the expansion of the logarithm at � → ∞ is given by
2(E + i�)/� and can be omitted to establish the leading
behavior of the self-energy. This yields a quadratic equation
for the complex quantity E + i�:

ε � (1 − β )(E + i�) − iπβ
(E + i�)2

2�
, (A3)

whose solution is given by

E + i�

�
= −i

1 − β

πβ
+ i

√(
1 − β

πβ

)2

− 2iε

πβ�
. (A4)

The sign in front of the square root is dictated by the require-
ment � � 0. Taking the real and imaginary parts of the square
root on the right-hand side of Eq. (A4), we arrive at Eqs. (12)
and (13) of the main text. The results (16) and (17) follow
immediately from Eq. (A4) at β = 1.

Let us now analyze the self-energy in the limit ε → 0 in
the full range of disorder, including strong disorder, β � 1.
For definiteness, we assume ε � 0. The consideration below
allows us to extract the subleading corrections to Eq. (A4) at
weak and critical disorder and to calculate the self-energy for
strong disorder on equal footing. Using

Re

{
ln

(E + i� + �

E + i� − �

)}
= ln

(√
[�2 − E2 − �2]2 + (2��)2

(� − E )2 + �2

)
≈︸︷︷︸

E/
√

�2+�2�1

2�E
�2 + �2

[
1 + (�2 − 3�2)E2

3(�2 + �2)2

]
,

−Im

{
ln

(E + i� + �

E + i� − �

)}
= π

2
+ arctan

�2 − E2 − �2

2��
≈︸︷︷︸

E/
√

�2+�2�1

2 arctan
�

�
− 2��E2

(�2 + �2)2
,
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we split the self-consistent equation (A1) into the equations corresponding to the real and imaginary parts of the self-energy:

ε − E = −βE + β
E2 − �2

2�
ln

(√
[�2 − E2 − �2]2 + (2��)2

(� − E )2 + �2

)
+ β

E�

�

(
π

2
+ arctan

�2 − E2 − �2

2��

)
, (A5)

� = β� − β
E�

�
ln

(√
[�2 − E2 − �2]2 + (2��)2

(� − E )2 + �2

)
+ β

E2 − �2

2�

(
π

2
+ arctan

�2 − E2 − �2

2��

)
. (A6)

In the range of weak and critical disorder, we have � � �

and arctan(�/�) � π/2 − �/�, which allows us to simplify
Eqs. (A5) and (A6):

ε � (1 − β )E + πβ
E�

�
, (A7)

� � β� + πβ
E2 − �2

2�
− 2β

�E2

�2
. (A8)

For weak disorder, we reproduce Eqs. (14) from the main text,
which were obtained there by expanding Eqs. (12) and (13):

E � ε

1 − β
, � � πβε2

2�(1 − β )3
. (A9)

For the critical disorder, β = 1, we get

E � ε�

π�
, �2 � E2 − 4

π2
εE (A10)

and refine the result of Eq. (A4) by including the leading
corrections to −iπ in the logarithmic term in Eq. (A1):

� �
√

ε�

π
− ε

π2
, E �

√
ε�

π
+ ε

π2
. (A11)

For an arbitrary sign of ε, this translates into

� �
√

|ε|�
π

− |ε|
π2

, Re�R(ε) � −ε

(√
�

π |ε| + 1 − 1

π2

)
,

(A12)

where small corrections to Eqs. (17) and (16) of the main text
are included.

Let us now turn to the case of strong disorder. In this
regime, � is finite already at ε = 0. In order to calculate the
real part of self-energy, one can keep only the linear-in-E
terms in Eq. (A5), which also implies using there �0 = �(ε =
0) from Eq. (10):

ε � (1 − β )E − βE �2
0

�2 + �2
0

+ 2βE �0

�
arctan

�

�0
, (A13)

β − 1 � β
�0

�
arctan

�

�0
. (A14)

This yields

Re� = ε

(
1 − 1

|β̃ − 1|
)

, (A15)

with the renormalization of the dimensionless disorder
strength according to

β̃ = β
�2

�2 + �2
0

. (A16)

Using the asymptotics for �0 from Eq. (11), we write the real
part of the self-energy explicitly in terms of β:

Re� = ε ×
{− 1

(β−1) , β − 1 � 1,

1
2 , β � 1.

(A17)

In the limit of strong disorder, including the correction to the
second line of Eq. (A17),

�0 �
√

β

3

(
1 − 9

10β

)
, β → ∞, (A18)

we obtain

Re�

ε
� 1

2
− 9

10β
, β → ∞. (A19)

It is interesting to notice that Eqs. (A15) and (A16) turn
out to be applicable also for weak disorder, where �0 = 0
and hence β̃ = β [see Eq. (14)]. Further, using Eq. (A15), we
calculate a small energy-dependent correction to �0:

�(ε) = �0 +
[
β̃

�4 + �4
0

�2
(
�2 + �2

0

) − 1

]
ε2

�0(β̃ − 1)3
. (A20)

Here the structure ε2/(β̃ − 1)3 is again reminiscent of
Eq. (14). The above results for the self-energy are used in the
main text to analyze the density of states and the conductivity
in the full range of disorder strength.

APPENDIX B: FREQUENCY-DEPENDENT VERTEX CORRECTIONS

This Appendix is devoted to the evaluation of the vertex corrections in the Kubo formula for conductivity. Assuming a finite
external frequency ω, the vertex corrections to the current vertex are given by the geometric series

ĜR(ε + ω) ĵtr
x ĜR(ε) = v

v − vRR
x

ĜR(ε + ω) ĵxĜR(ε), (B1)

ĜR(ε + ω) ĵtr
x ĜA(ε) = v

v − vRA
x

ĜR(ε + ω) ĵxĜA(ε), (B2)
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where

vRR/RA
x (ε, ω) = vγ

2

∫
d3 p

(2π )3
TrσxĜR(ε + ω, p)σxĜR/A(ε, p)

= vγ

∫
d3 p

(2π )3

[ε + ω − �R(ε + ω)][ε − �R/A(ε)] − v2 p2
z

{[ε + ω − �R(ε + ω)]2 − v2 p2}{[ε − �R/A(ε)]2 − v2 p2} . (B3)

Evaluation of the momentum integrals, using the self-consistency equation (5), yields

vRR/RA
x (ε, ω) = v

3

[
−1 + ω

�R(ε + ω) − �R/A(ε) − ω
+ 2(2ε + ω)

2ε + ω − �R(ε + ω) − �R/A(ε) − ω

]
. (B4)

After some algebra, the vertex corrections can be expressed as

v

v − vRR
x (ε, ω)

= 3[2ε + ω − �R(ε + ω) − �R(ε)][ω − �R(ε + ω) + �R(ε)]

[ε − �R(ε)][3ω − 4�R(ε)] + [ε + ω − �R(ε + ω)][3ω − 4�R(ε + ω)]
, (B5)

v

v − vRA
x (ε, ω)

= 3[2ε + ω − �R(ε + ω) − �A(ε)][ω − �R(ε + ω) + �A(ε)]

[ε − �A(ε)][3ω − 4�A(ε)] + [ε + ω − �R(ε + ω)][3ω − 4�R(ε + ω)]
. (B6)

In the main text, these results are used in the explicit formula (28) expressing the conductivity through the self-energies for an

arbitrary disorder strength.
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