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We consider the Kondo effect, arising from a hydrogen impurity in graphene. As a first approximation, the
strong covalent bond to a carbon atom removes that carbon atom without breaking the C3 rotation symmetry,
and we retain only the Hubbard interaction on the three nearest neighbors of the removed carbon atom which
then behave as magnetic impurities. These three impurity spins are coupled to three conduction channels with
definite helicity, two of which support a diverging local density of states (LDOS) ∝ 1/[|ω| ln2 (�/|ω|)] near the
Dirac point ω → 0 even though the bulk density of states vanishes linearly. We study the resulting three-impurity
multichannel Kondo model using the numerical renormalization group method. For weak potential scattering,
the ground state of the Kondo model is a particle-hole symmetric spin-1/2 doublet, with ferromagnetic coupling
between the three impurity spins; for moderate potential scattering, the ground state becomes a particle-hole
asymmetric spin singlet, with antiferromagnetic coupling between the three impurity spins. This behavior is
inherited by the Anderson model containing the hydrogen impurity and all four carbon atoms in its vicinity.
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I. INTRODUCTION

Interest in graphene magnetism and its potential applica-
tions in spintronics started to grow soon after the isolation
and characterization of this two-dimensional material [1–9].
One particularly intensively explored approach to making
graphene magnetic is through point defects [10–16], such
as adsorbing adatoms [17–24] and vacancies [25–34]. While
transition-metal adatoms with d or f electrons constitute an
obvious option, rather amazingly, it has been shown both
theoretically and experimentally that hydrogen impurities in
graphene are also capable of inducing local magnetic mo-
ments [35–42], of the order of one Bohr magneton per defect.
An intuitive explanation follows from the strong coupling
between the hydrogen impurity and the carbon atom directly
below it [43,44]. In the limit of this coupling going to infinity,
the large energy cost of transferring an electron from or
to the hydrogen-carbon pair effectively removes the pz orbital
of the carbon atom from the graphene sheet. If we approxi-
mate graphene as a Hubbard model defined on the bipartite
honeycomb lattice, then Lieb’s theorem predicts that the total
spin of the ground state should be 1/2 after the removal of the
pz orbital [45].

In metals with dilute magnetic impurities, conduction elec-
trons screen the impurity magnetic moments at low tempera-
tures, forming many-body singlets in the famous Kondo effect
[46,47]. Now understood in great detail, the Kondo effect is
frequently employed in various unconventional materials in
order to locally probe the bulk properties of the conducting
host. From a theoretical perspective, graphene is predicted
to support many exotic variants of the Kondo effect [48],
thanks to the Dirac cones in its electronic structure and

a diversity of possible impurity locations in the unit cell
[49,50].

On the experimental side, it has been found early on that
irradiation-induced carbon vacancies in single-layer graphene
produce a resistivity minimum versus temperature [51], which
is consistent with a high Kondo temperature (≈70K) if at-
tributed to the Kondo effect. However, subsequent magne-
tization measurements in irradiated thick graphite laminates
suggest paramagnetism down to the lowest accessed temper-
atures [52]. While alternative explanations of the resistivity
minimum based on weak localization or electron-electron
interactions have been proposed [53–55], the apparent contra-
diction between resistivity and magnetization measurements
is eventually resolved by scanning tunneling spectroscopy
[56,57]. The Kondo screening of vacancy-induced moments
generally takes place when the graphene layer is not locally
perfectly flat, and the Kondo temperature depends sensitively
on the local curvature. In corrugated graphene samples, va-
cancies come with different local curvatures and are subjected
to varying degrees of screening, but the distribution of Kondo
temperatures is not fully captured by either resistivity or mag-
netization measurements, with the former probing screened
moments and the latter probing unscreened ones.

Unlike a carbon vacancy which is subject to the Jahn-
Teller distortion, a hydrogen impurity preserves the C3 ro-
tational symmetry of the graphene lattice around the carbon
atom directly below it (henceforth referred to as the “central
site”). The induced magnetic moment predominantly resides
on the carbon sublattice where the impurity is not adsorbed.
Despite extending many lattice constants, the magnetization
is the strongest on the three nearest neighbors of the cen-
tral site [14,36,38,40,42]. This has motivated Ref. [38] to
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examine, among other models, a reduced Hamiltonian where
the Hubbard interactions are taken into account only on the
five-atom cluster including the hydrogen impurity, the central
site, and its three nearest neighbors. To study the Kondo effect,
Ref. [38] replaces the rest of the system by a noninteracting
bath of Dirac electrons; the cluster hybridizes with the bath
via a local density of states (LDOS) that vanishes linearly as
a function of energy near the Dirac points, as is characteristic
of the density of states in bulk graphene [3].

Upon closer inspection, however, one realizes that the sys-
tem with the five-atom cluster removed cannot be equivalent
to bulk graphene but rather comes with a four-site vacancy:
One site is removed from one of the sublattices and three
sites are removed from the other. In the nearest-neighbor
tight-binding model, it is known that a sublattice site number
imbalance produces the same number of zero-energy states
(or “zero modes”) dwelling exclusively on the sublattice with
more sites [58]. In the simpler case of a single-site vacancy,
the single zero mode produced by the vacancy cannot be
normalized, because its wave function decays as 1/r away
from the vacancy [59–62]. This is intimately related to a
strongly enhanced LDOS around the vacancy [58], which
diverges as 1/[|ω| ln2 (�/|ω|)] (� is a high-energy cutoff)
near the Dirac point ω → 0. (We refer to this as a “logarithmic
divergence” in the following.) When an impurity magnetic
moment located at the vacancy is coupled to the rest of the
graphene sheet, the divergent LDOS has a profound impact
on the ensuing single-channel Kondo effect at half filling
[63–67]: In stark contrast to the linear-LDOS case [68–72],
both potential scattering and Kondo scattering perturbations
become strongly relevant in the renormalization group (RG)
sense, leading to a high Kondo temperature, and the low-
energy behavior of the system is always controlled by a
strong-coupling fixed point. Similar impurity-related LDOS
enhancement mechanisms and their effects on Kondo screen-
ing have been discussed in the context of d-wave supercon-
ductors [73,74].

In this paper, we apply the above considerations to the
hydrogen impurity problem under the five-atom cluster ap-
proximation. The noninteracting bath with the four-site va-
cancy allows 3 − 1 = 2 zero modes, both of which are non-
normalizable. Correspondingly, we show that two conduction
channels with a diverging hybridization appear in the Kondo
problem. There is a third conduction channel with a vanishing
LDOS at low energies, but the perturbations associated with it
are strongly irrelevant; its importance is therefore diminished
by the other two channels.

As a first approximation, we consider the limit of infinite
coupling between the hydrogen impurity and the central site.
The central site is essentially eliminated from the low-energy
theory in this limit. Consequently, only the three nearest
neighbors of the central site are left to host the magnetic
moment, mapping to a three-impurity Kondo problem where
the impurities are symmetric under Z3 permutations. In a
metallic host, this problem is known to yield a rich phase
diagram [75,76], and many insights are carried over to our
case of a diverging hybridization.

To tackle the three-impurity problem, we first construct
an auxiliary problem: a single impurity spin of arbitrary
size S coupled to two conduction channels through the same

diverging hybridization. This is analyzed with the aid of the
numerical renormalization group (NRG) algorithm [77–79].
Systematic studies have been performed on the pseudogap
case where the hybridization vanishes at zero energy [80].
However, as in the single-channel case, the diverging hy-
bridization makes a qualitative difference. We find that all
low-energy fixed points are strong coupling and Fermi liq-
uid like; in particular, in the presence of particle-hole (p-h)
symmetry, the low-energy fixed point involves the impurity
spin screened by conduction electrons from both channels,
forming a residual spin of size |S − 1| for any S, including
S = 1/2 together with two phase-shifted conduction channels.
This is very different from the two-channel spin-1/2 Kondo
problem with a constant hybridization, whose ground state is
a non-Fermi liquid [81–84].

Returning to the three-impurity Kondo model, we map out
the phase diagram by NRG and study the thermodynamics
and the impurity spin correlations in each phase. The most
important coupling constants are the relevant ones associated
with potential and Kondo scattering in the two conduction
channels with a diverging hybridization. For weak and inter-
mediate potential scattering, we find two stable low-energy
fixed points: a p-h symmetric spin-1/2 fixed point with the
Kondo effect taking place in the spin sector which we label as
K-S, and a p-h asymmetric spin-singlet fixed point which we
label as AF-ASC. The latter is connected to an unstable fixed
point of the Kondo effect taking place in the isospin sector.
K-S is favored by weak potential scattering at the impurities
and ferromagnetic Ruderman-Kittel-Kasuya-Yosida (RKKY)
coupling between the impurities, and exhibits ferromagnetic
impurity spin correlations, whereas AF-ASC exhibits antifer-
romagnetic impurity spin correlations; the transition between
the K-S phase and the AF-ASC phase is shown to be a simple
level crossing. On the other hand, we find that very strong
potential scattering can overwhelm the Kondo scattering and
suppress the Kondo effect, in which case the impurity spins
couple to form a magnetic moment decoupled from the con-
duction electrons. Finally, the divergence of the hybridization
is inevitably cut off at low energies in more realistic models
of graphene [58], and we examine the consequences of such a
cutoff on a phenomenological level.

We then proceed to analyze with NRG the Anderson
model with Hubbard interactions on the five-atom cluster. The
system flows to the p-h symmetric spin-1/2 K-S fixed point
when p-h symmetry breaking perturbation is weak and to the
p-h asymmetric spin-singlet AF-ASC fixed point otherwise;
the two phases are again respectively characterized by fer-
romagnetic and antiferromagnetic impurity spin correlations.
We conclude that the Kondo effect occurs at the hydrogen
impurity both in the three-impurity Kondo model and the
five-atom cluster Anderson model.

The rest of this paper is organized as follows. In Sec. II,
we introduce the three-impurity Kondo model of a hydro-
gen impurity in the infinite hydrogen-carbon coupling limit,
highlighting the diverging hybridization between the magnetic
impurities and the two conduction channels. Section III is de-
voted to the three-impurity Kondo model: We give the scaling
behavior of various perturbations and the RKKY interactions
in the weak-coupling limit in Sec. III A, and then discuss
the NRG results on the two-channel spin-S Kondo model
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TABLE I. Abbreviations used in this paper.

Abbreviation Meaning

LDOS Local density of states
RG Renormalization group
NRG Numerical renormalization group
p-h Particle-hole
RKKY Ruderman-Kittel-Kasuya-Yosida
ALM p-h asymmetric local moment fixed point of the two-channel spin-S Kondo problem with a logarithmically divergent LDOS
SSC p-h symmetric strong-coupling fixed point of the two-channel spin-S Kondo problem with a logarithmically divergent LDOS
LM Free-spin p-h symmetric local moment fixed point
Free-ALM Free-spin p-h asymmetric local moment fixed point
K-S Ferromagnetic p-h symmetric Kondo fixed point
F-ALM Ferromagnetic p-h asymmetric local moment fixed point
K-I Antiferromagnetic p-h symmetric isospin Kondo fixed point
AF-ASC Antiferromagnetic p-h asymmetric strong-coupling fixed point
AF-ALM Antiferromagnetic p-h asymmetric local moment fixed point
F-ASC Ferromagnetic p-h asymmetric strong-coupling fixed point

with a diverging hybridization in Sec. III B. The numerical
results on the three-impurity Kondo model with a diverging
hybridization are analyzed in depth in Sec. III C. Section III D
closes our discussion of the three-impurity Kondo model by
demonstrating the effects of a low-energy cutoff on the di-
vergent LDOS. In Sec. IV, we interpret our numerical results
for the five-atom cluster Anderson model with a diverging
hybridization. Section V concludes the paper and discusses
some open problems. Appendix A contains a derivation of
the divergent LDOS from the four-site vacancy lattice model,
and the corresponding zero mode solutions of this model are
discussed in Appendix B. Finally, in Appendix C, we calculate
the RKKY interaction in the three-impurity Kondo model to
the second order in Kondo couplings. The abbreviations used
in this paper are summarized in Table I.

II. MODEL

We consider the nearest-neighbor tight-binding model of
a graphene layer defined on a bipartite honeycomb lattice
with two sublattices A and B. The “central site,” to which
the hydrogen impurity is coupled, is assumed to be on the
A sublattice. Throughout the paper, we follow Ref. [38] and
only retain the local Hubbard interactions on the five-atom
cluster, composed of the hydrogen impurity, the central A
site, and its three nearest-neighbor B sites. To highlight the
Kondo physics, in this section we furthermore approximate
the hydrogen-carbon coupling as infinity, which leaves both
the hydrogen and the central site decoupled from the rest
of the system. In the limit of strong Hubbard interactions,
we effectively localize the electrons on the three nearest-
neighboring B sites. The effect of the hopping from the three
B sites to the six outer A sites can be considered to leading
order in perturbation theory. The associated Anderson model
corresponds to three interacting impurities hybridizing with a
noninteracting bath through the outer A electrons:

H = Hvac + Hhyb + Himp. (2.1)

The noninteracting bath part of the effective three-impurity
Hamiltonian describes a graphene sheet with a four-site

vacancy

Hvac = − t
∑′

�R{[b†( �R) + b†( �R − �a2)

+ b†( �R − �a1)]a( �R) + H.c. }, (2.2)

where the summation excludes the central A site and its
three nearest neighbor B sites, as shown in Fig. 1. Here,

FIG. 1. Schematic representation of the effective model for a
hydrogen impurity in graphene. The central site on the A sublattice,
which is directly coupled to the hydrogen impurity, is marked by a
solid red circle. Its three nearest neighbors on the B sublattice are
marked by solid green circles. The repulsive Hubbard interactions
only reside on these four sites and the hydrogen impurity. The outer
six next nearest neighbors on the A sublattice are marked by dashed
blue circles. Each pair of these hybridizes with one of the nearest
neighboring (green) B sites. When the hydrogen-carbon coupling
goes to infinity, the central (red) A site is removed from the model
along with the hydrogen impurity itself, and the nearest neighboring
(green) B sites become the effective impurities.

125158-3



SHI, NICA, AND AFFLECK PHYSICAL REVIEW B 100, 125158 (2019)

�R = n�a1 + m�a2 are the Bravais lattice vectors with

�a1 = a

2
(
√

3, 1), �a2 = a

2
(
√

3,−1), (2.3)

where a is the lattice constant, and the B site labeled by
�R is displaced by (a/

√
3, 0) from the corresponding A

site. The four sites removed from Hvac are then labeled by
a(�0), b(�0), b(−�a1), and b(−�a2).

The impurity-bath hybridization, given by

Hhyb = −
√

2t
3∑

j=1

a†
j b j + H.c., (2.4)

is invariant under C3 rotations. Here, we have relabeled the
three impurity B sites as

b(�0) = b1, b(−�a2) = b2, b(−�a1) = b3, (2.5)

and defined the symmetric linear combinations of pairs of the
neighboring a†( �R) electrons as

a†
1 = 1√

2
[a†(�a1) + a†(�a2)], (2.6a)

a†
2 = 1√

2
[a†(−�a2) + a†(�a1 − �a2)], (2.6b)

a†
3 = 1√

2
[a†(−�a1) + a†(−�a1 + �a2)]. (2.6c)

Finally, the Hamiltonian of the three nearest neighbor B
sites consists of a local Hubbard interaction term and a local
on-site potential term:

Himp =
3∑

j=1

(εbnb, j + Unb, j↑nb, j↓, ) (2.7)

where nb, jα = b†
jαb jα , and nb, j = nb, j↑ + nb, j↓ is the number

operator for B electrons at site j. This model is p-h symmetric
when εb = −U/2 and the chemical potential μ = 0.

The lattice with a four-site vacancy inherits the C3 sym-
metry of the pristine lattice. Hence, we can construct helicity
eigenstates h = 0, 1, 1̄ from the a†

1,2,3 states:

c†
h=0 = 1√

3
(a†

1 + a†
2 + a†

3), (2.8a)

c†
h=1 = 1√

3
(a†

1 + e−i 2π
3 a†

2 + ei 2π
3 a†

3), (2.8b)

c†
h=1̄

= 1√
3

(a†
1 + ei 2π

3 a†
2 + e−i 2π

3 a†
3). (2.8c)

A counterclockwise 2π/3 rotation about the central A site acts
as a permutation of the three a†

1,2,3 states. Then, under this

rotation, we have c†
h → ei2πh/3c†

h.
In the limit U ∼ |εb| � t , by applying a Schrieffer-Wolff

projection as in Ref. [75], we obtain an effective Kondo model
which includes potential scattering and Kondo interactions:

H =Hvac + V0n0 + V1(n1 + n1̄ ) + J00s00 · S0

+ J11(s11 + s1̄1̄ ) · S0 + J11̄(s11̄ · S1 + s1̄1 · S1̄ )

+ J01[(s01 + s1̄0 ) · S1 + (s10 + s01̄ ) · S1̄], (2.9)

where the local moment operators of definite helicities are
[75,76]

Sh =
3∑

j=1

e−ih2π ( j−1)/3S j, S j = 1

2

∑
αβ

b†
jασαβb jβ, nb, j = 1.

(2.10)
We note that Sh=0 is simply the total impurity spin operator
and the total impurity spin quantum number can be S = 3/2
(one quartet) or S = 1/2 (two doublets); the two S = 1/2
doublets can be distinguished by their behavior under the Z3

permutation of impurity spins. We have also defined the par-
ticle number operators for ch, nh = ∑

α c†
hα

chα and the spin
operators

shh′ = 1

2

∑
αβ

c†
hα

σαβch′β, (2.11)

which can involve conduction electrons of different helicities.
For our particular microscopic model, the unrenormalized
couplings are

Jhh′ ≈ 4

3
t2

(
1

U + εb
+ 1

−εb

)
,Vh ≈ t2

(
1

−εb
− 1

U + εb

)
.

(2.12)

Generally |Vh|/Jhh′ � 3/4. Note that Vh will be generated by
breaking the p-h symmetry. This can occur not only when
εb �= −U/2, but also when we move away from the charge
neutrality point or take into consideration second neighbor
hopping [85].

The scaling dimensions of the various couplings in H are
determined by the LDOS of the ch conduction channels for
the four-site-vacancy graphene. A detailed solution of this
noninteracting problem in Appendix A gives the following
leading contributions to the ch channels:

c†
0 ≈ − 3

3
4 a

4π
1
2

∫ ∞

−∞
dk
√

|k|(φ̃†
�K,0,k

+ φ̃
†
�K ′,0,k

), (2.13a)

c†
1 ≈ −i

π
1
2

3
1
4

∫ ∞

−∞
dk

sgn k√|k|( ln �2

(vF k)2 − iπ sgn k
) φ̃†

�K,−1,k
,

(2.13b)

c†
1̄

≈ −i
π

1
2

3
1
4

∫ ∞

−∞
dk

sgn k√|k|( ln �2

(vF k)2 − iπ sgn k
) φ̃†

�K ′,1,k
.

(2.13c)

where � ∼ t is an ultraviolet energy cutoff, vF = √
3ta/2

is the Fermi velocity, and φ̃
†
�K/ �K ′,m,k

creates an electron in

the eigenstate of Hvac in valley �K or �K ′ = (
√

3,±1)(2π/3a),
with angular momentum m and momentum amplitude k. (The
low-energy Dirac theory has full rotational symmetry so that
eigenstates can be labeled by m, the two-dimensional angular
momentum quantum number [69].) Note that the low-energy
spectrum is determined from ε �K+�k ≈ vF k. Because of the
additional factor of a in Eq. (2.13a), c0 should become less
important compared to c1 and c1̄ at low-energy scales, as will
be confirmed in Sec. III. From this, is it straightforward to
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determine the leading contributions to the LDOS for ch in the
low-energy limit:

ρh=0(ω) = 3
√

3a2

8πv2
F

|ω|, (2.14)

ρh=1,1̄ (ω) ≈ π√
3|ω| ln2 �2

ω2

. (2.15)

While the helicity-0 channel has a behavior similar to pristine
graphene, helicities 1 and 1̄ show a logarithmic divergence in
their LDOS. We attribute such a divergence to the presence
of two non-normalizable zero modes in the four-site-vacancy
graphene, whose wave functions behave as 1/r when the
distance to the vacancy r is large [59,60,62]; see Appendix B
for details. Because NA = 1 A site and NB = 3 B sites are
removed, there are |NA − NB| = 2 zero modes (for each spin)
living on the A sublattice; due to the C3 symmetry in this case,
these two zero modes can be chosen as helicity eigenstates
[58]. Even though these zero modes are not true eigenstates in
an infinite system, they hybridize strongly with the low-energy
itinerant states in pristine graphene, forming low-energy scat-
tering states which are true eigenstates of Hvac and contribute
to the divergent LDOS [62].

III. KONDO MODEL

In this section, we establish the phase diagram of the
three-impurity, three-channel Kondo model Eq. (2.9), using
a combination of analytical arguments and NRG.

A. Scaling and RKKY interactions at weak coupling

It is instructive to begin by analyzing the weak-coupling
fixed point. To find the scaling behavior of various coupling
constants, we first define dimensionless couplings at the run-
ning energy cutoff D:

vh(D) ≡ ρh(D)Vh(D) (3.1)

and

jhh′ (D) ≡
√

ρh(D)ρh′ (D)Jhh′ (D). (3.2)

The second-order weak-coupling RG equations then read

− d j11

d ln D
=
(

1 − 2

ln �
D

)
j11 + (

j2
11 + j2

11̄ + j2
01

)
, (3.3a)

− d j11̄

d ln D
=
(

1 − 2

ln �
D

)
j11̄ + (

2 j11 j11̄ + j2
01

)
, (3.3b)

− d j00

d ln D
= − j00 + j2

00 + 2 j2
01, (3.3c)

− d j01

d ln D
= − 1

ln �
D

j01 + j01( j11 + j11̄ + j00), (3.3d)

− dv0

d ln D
= −v0, (3.3e)

− dv1

d ln D
=
(

1 − 2

ln �
D

)
v1. (3.3f)

From these equations, we can also see that the relation J11 =
J11̄, if true for the bare couplings, is preserved along the RG
flow.

Because of the singular LDOS for helicities 1 and 1̄, J11

and J11̄ are relevant at low energies (D � �), in analogy to the
single-channel problem with a divergent LDOS discussed in
Ref. [63]. This leads to a greatly enhanced Kondo temperature
for the corresponding Kondo couplings,

TK ∝ JK/ ln2 (�/JK ), (3.4)

where JK is either J11(D0) or J11̄(D0), D0 being the initial
semibandwidth of the Kondo model. The potential scattering
term V1 is likewise relevant, and has its own characteristic
energy scale

TP ∝ V1(D0)/ ln2 [�/V1(D0)], (3.5)

at which it flows to strong coupling. On the other hand, J01

is weakly irrelevant, becoming almost marginal only at very
low energies, even though it generates relevant couplings J11

and J11̄ at the second order. Finally, the linear LDOS of the
helicity-0 channel renders V0 and J00 strongly irrelevant.

It is also possible to consider the RKKY interactions
between magnetic impurities at weak coupling mediated by
conduction electrons [75,86]; this gives us some intuition
on possible magnetic orders of the impurities. It should be
clarified that these interactions are only introduced to help us
understand the Kondo model; they are not part of the NRG
input (as the Kondo couplings are), and we make no a priori
assumptions about the associated RKKY energy scale in our
NRG calculations. As in Refs. [75,76], the RKKY interactions
are of the form

HRKKY = I
∑
i< j

Si · S j, (3.6)

where we labeled a generic RKKY interaction by I in order to
avoid confusion with the valley-momenta �K, �K ′. This expres-
sion can be recast as

HRKKY = I

2

(
S 2

h=0 − S2
1 − S2

2 − S2
3

)
. (3.7)

HRKKY takes the value 3I/4 in the S = 3/2 multiplet state and
−3I/8 otherwise. Hence, strong antiferromagnetic RKKY
interactions (I > 0) project onto the S = 1/2 manifold, while
strong ferromagnetic RKKY (I < 0) prefers the S = 3/2 con-
figuration.

The RKKY coupling strength I has been evaluated in bulk
graphene [87–91], under the assumption that each magnetic
impurity interacts with one carbon atom but does not disrupt
the graphene lattice (e.g., by introducing vacancies). In that
case, it has been shown to be ferromagnetic between impu-
rities on the same sublattice and antiferromagnetic between
impurities on different sublattices. Nevertheless, antiferro-
magnetic RKKY interactions have also been reported between
same-sublattice magnetic impurities when other nonmagnetic
impurities are present [92], or when a large on-site potential
energy is associated with the magnetic impurities [93].

In Appendix C, we analyze the RKKY interaction between
the three effective magnetic impurities b1,2,3 generated by
Kondo couplings to O(J2

hh′ ), carefully including the effects
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of the vacancy. At low temperatures, we find I ∝ J2
11̄ − 2J2

11;
thus, I is ferromagnetic in a model with J11 only and anti-
ferromagnetic in a model with J11̄ only. In the Kondo model
obtained through the Schrieffer-Wolff transformation, where
J11 = J11̄, I is expected to be ferromagnetic. The RG flow of
the RKKY interaction is controlled by

−d
(

j2
11̄ − 2 j2

11

)
d ln D

=
(

2 − 4

ln �
D

)(
j2
11̄ − 2 j2

11

)
+ 2( j11̄ − 2 j11) j2

01 − 4 j3
11. (3.8)

In other words, the RKKY interaction does not change sign
along the RG flow near the weak coupling fixed point.

B. Auxiliary model: Two-channel spin-S Kondo model
with a logarithmically divergent LDOS

The weak-coupling analysis in Sec. III A shows that all
coupling constants associated with the helicity-0 conduction
channel are irrelevant, and the collective state of the impurity
spins can be either an S = 3/2, helicity-0 multiplet or an
S = 1/2, helicity-±1 multiplet. We are therefore motivated
to study the two-channel spin-S Kondo model where both
conduction channels 1 and 1̄ are characterized by the loga-
rithmically divergent LDOS, Eq. (2.15):

H = Hvac + V (n1 + n1̄ ) + J (s11 + s1̄1̄ ) · S (3.9)

with an antiferromagnetic Kondo coupling J > 0. Although
this model is interesting in its own right, it is quite different
from Eq. (2.9) even after ignoring the helicity-0 conduction
channel [see Eq. (3.10)]. In Eq. (2.9), we have spin operators
of conduction electrons that are diagonal (s11, s1̄1̄) and off-
diagonal (s11̄, s1̄1) in the helicity basis, while in Eq. (3.9) we
only have diagonal operators in the helicity basis; also, the
impurity in Eq. (2.9) comprises three S = 1/2 spins appearing
in different total spin sectors and different helicity combi-
nations, whereas the impurity in Eq. (3.9) is a single spin
of rigid size S. Nevertheless, as we will show in Sec. III C,
the auxiliary model Eq. (3.9) provides helpful intuitions for
understanding the limiting cases of the three-impurity model,
where the impurity can be effectively viewed as a rigid spin.
The auxiliary model also serves as an excellent benchmark
for the impurity contributions to thermodynamic quantities,
which we will discuss later in this section.

Let us briefly review the case where both channels have
a constant LDOS. In this case, at the weak-coupling fixed
point, V is exactly marginal and J is marginally relevant due
to the dynamics of the impurity spin. It is well known that
the low-energy behavior of this problem depends on the size
of the impurity spin [94,95]. When S > 1 (underscreened) or
S = 1 (exactly screened), the low-energy fixed point is simply
the strong-coupling one. This involves a decoupled residual
impurity spin of size S − 1 (when S > 1) and a Fermi liquid
theory for the conduction electrons, with a phase shift π/2 + δ

(δ being an odd function of V ) for each conduction channel
taking part in the screening of the impurity. On the other hand,
in the overscreened case S = 1/2, the strong-coupling fixed
point is no longer stable. If we consider a naive J → +∞
theory on a nearest-neighbor tight-binding lattice with hop-
ping amplitude t � J , then the electrons c1, c1̄ are strongly

bound to the impurity spin, forming an effective spin 1/2. The
effective spin is in turn coupled to the lattice with c1 and c1̄
removed (which we name as the “strong-coupling lattice”).
This O(t2/J ) coupling constant is antiferromagnetic, which
we already know to be marginally relevant. In contrast, the
underscreened strong-coupling fixed point is stable because
the large-J effective model is a Kondo model with a ferro-
magnetic Kondo coupling, which is marginally irrelevant (and
turns the system into a singular Fermi liquid [96]). The stable
low-energy fixed point in the overscreened case is therefore
an intermediate-coupling, non-Fermi-liquid one. Its properties
can be obtained by a range of theoretical methods, including
boundary conformal field theory [81], Bethe ansatz [83,84]
and Abelian bosonization [97]; in particular, an impurity
entropy of 1

2 ln 2 and an impurity magnetic susceptibility that
depends logarithmically on temperature have been predicted
and numerically verified.

We return to the two-channel Kondo model [Eq. (3.9)] with
a divergent LDOS [Eq. (2.15)]. As discussed in Sec. III A,
at the weak-coupling, p-h symmetric local moment fixed
point, both J and V are relevant on account of the energy
dependence of the LDOS. It is therefore natural to investigate
the corresponding strong-coupling theories on a lattice with
hopping amplitude t � J . The J → +∞ lattice theory as
before gives rise to an effective impurity spin of size |S − 1|
formed by the impurity spin and the electrons c1 and c1̄, which
is coupled to the remaining “strong-coupling lattice” with
an either ferromagnetic (when S > 1) or antiferromagnetic
(when S = 1/2) coupling constant of O(t2/J ). In the V →
±∞ lattice theory, on the other hand, no Kondo physics takes
place; the c1 and c1̄ states become nevertheless inaccessible
to other conduction electrons, being either empty or occupied
depending on the sign of V , and the original spin S is coupled
to the remaining “strong-coupling lattice.”

At this point, we should accentuate the crucial difference
between the logarithmically divergent LDOS and the constant
LDOS. In the constant LDOS case, removing c1 and c1̄
from the original lattice does not change the LDOS at the
sites which the effective impurity can couple to, because
the original lattice and the “strong-coupling lattice” are both
composed of one-dimensional chains. In graphene with a four-
site vacancy, however, projecting out c1 and c1̄ will remove
the logarithmic divergence in the LDOS, and the leading
contribution to the LDOS becomes linear near the Dirac point
as in the bulk. This can be shown explicitly using the method
outlined in Appendix A. On a more intuitive level, we can
also explain the disappearance of the logarithmic divergence
through the removal of the two non-normalizable zero modes.
In Appendix B, we see that the wave functions associated
with c1 and c1̄ cannot be simultaneously zero for a nontrivial
zero-energy solution of the lattice Schrödinger equation; in
other words, if we project out c1 and c1̄ from the lattice, i.e.,
demand the wave functions associated with c1 and c1̄ should
vanish, then no zero mode exists.

Because of the linear LDOS in the “strong-coupling
lattice,” any perturbation at the naive strong-coupling fixed
point—Kondo coupling or potential scattering—is strongly
irrelevant [71]. It is therefore reasonable to conclude that the
large-J and large-V strong-coupling fixed points are stable
in the two-channel Kondo model Eq. (3.9) with a divergent
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FIG. 2. Schematic phase diagram of the two-channel Kondo
model Eq. (3.9) with a single spin-S impurity and the logarithmi-
cally divergent LDOS Eq. (2.15) on the J-V plane. There are two
phases, the p-h symmetric strong-coupling (SSC) phase and the p-h
asymmetric local-moment (ALM) phase, characterized by J → ∞
and V → ∞ respectively. The residual spin is of size |S − 1| in the
maximally screened SSC phase and S in the unscreened ALM phase.
The two phases are separated by a second-order phase transition, as
in the single-channel case of Ref. [63]. Note that these results are
independent of the impurity spin size S.

LDOS Eq. (2.15), irrespective of the size of the impurity
spin S.

This picture is verified by NRG calculations, which we
perform with the “NRG Ljubljana” code [79]. The schematic
phase diagram is shown in Fig. 2. As conjectured, the
two regimes are controlled by the large-J p-h symmetric
strong-coupling (SSC) fixed point and the large-V p-h asym-
metric local moment (ALM) fixed point, with residual spin
sizes |S − 1| and S respectively. At both fixed points it is
possible to construct the entire finite-size spectrum from
single-particle excitations, in contrast to the non-Fermi-liquid
overscreened Kondo fixed point in the case of constant LDOS.
As in the single-channel spin-1/2 case discussed in Ref. [63],
the two phases are separated by a second-order transition.

To shed further light on the nature of the low-energy fixed
points, let us examine their thermodynamic properties. The
impurity contribution to any quantity � in a quantum impurity
system is defined as �imp = � − �0, the difference between
this quantity evaluated in the entire impurity system and in
the reference “clean” system without the impurity. In our
case, there are two possibilities for the reference system:
the pristine graphene and the noninteracting bath of a four-
site-vacancy graphene lattice with a logarithmically divergent
LDOS. Following Ref. [63], we choose the four-site-vacancy
graphene as the reference system while presenting our nu-
merical results, but impurity quantities measured with respect
to pristine graphene will also be discussed because they are
experimentally directly accessible (see Table II). We focus
on the impurity entropy Simp = −∂Fimp/∂T (F being the

free energy) and the impurity magnetic susceptibility χimp =
〈S2

z 〉imp/T .
It is useful to first discuss the effect of non-normalizable

zero modes. In short, with respect to pristine graphene, each
non-normalizable zero mode contributes ln 4 to the zero-
temperature impurity entropy and 1/(8T ) to the magnetic
susceptibility [63]. We can directly derive these results by
viewing pristine graphene as a (noninteracting) resonant-level
model with a logarithmically divergent LDOS, as has been
done in Appendix B of Ref. [63]. Alternatively, when we cal-
culate the impurity-induced density of states (which appears
in the Friedel sum rule) [47] in the single-vacancy graphene
lattice, we find a δ-function peak at zero energy [59,60,62];
this δ function is what contributes to the zero-temperature
impurity entropy and the impurity susceptibility, as if it were
a real spin-degenerate single-particle eigenstate of the system.
When the non-normalizable zero mode is removed, for in-
stance, at strong coupling, the impurity contributions vanish
correspondingly. This applies equally to the four-site-vacancy
graphene lattice, except there are now two channels with a
logarithmically divergent LDOS, so that the strength of the
δ-function peak is doubled together with the impurity entropy
and impurity magnetic susceptibility.

We can now determine the limiting behavior of the ther-
modynamic properties at the fixed points of the two-channel
spin-S Kondo model Eq. (3.9) with a divergent LDOS
Eq. (2.15). At the ALM fixed point, the non-normalizable
zero modes are removed by potential scattering; the local
moment then results in a zero-temperature impurity entropy
of Simp(T = 0) = ln (2S + 1) and an impurity susceptibility
of χimp = S(S + 1)/(3T ) relative to pristine graphene. At the
SSC fixed point, the zero modes are removed by strong Kondo
screening, so the residual spin |S − 1| yields Simp(T = 0) =
ln (2|S − 1| + 1) and T χimp = |S − 1|(|S − 1| + 1)/3. Fi-
nally, at the p-h symmetric local moment fixed point, the zero
modes together with the local moment give Simp(T = 0) =
ln (2S + 1) + 2 ln 4 and T χimp = 1/4 + S(S + 1)/3.

The high- to low-temperature crossover of Simp and T χimp

is plotted in Fig. 3, with the reference system chosen as the
four-site-vacancy graphene [where Simp(T = 0) = 2 ln 4 and
T χimp = 2 × 1/8 = 1/4]. In the S = 1/2 case, the crossover
between the unscreened S = 1/2 and the overscreened S =
1/2 is clearly visible from the nonmonotonicity of T χimp. At
low temperatures, Simp and T χimp have logarithmic correc-
tions in the form of 1/ ln (�/T ) near all fixed points [63].
However, unlike in a singular Fermi liquid, this logarithmic
behavior does not originate from a marginally irrelevant op-
erator, because the allowed operators at any of these fixed
points are strongly irrelevant irrespective of the spin size. We
can verify that the logarithmic corrections vanish when the
reference system is pristine graphene (in the form of a non-
interacting four-site cluster coupled to the four-site-vacancy
graphene); therefore, the logarithmic behavior in Fig. 3 can
be fully attributed to the non-normalizable zero modes of the
reference system.

C. Phases of the three-impurity model

We are in the position to present the NRG results on the
three-impurity, three-channel Kondo model, Eq. (2.9). Again,
as a first approximation, we neglect the helicity-0 conduction
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FIG. 3. Impurity entropy Simp and impurity magnetic susceptibility multiplied by temperature, T χimp, vs temperature T in the two-channel
Kondo model Eq. (3.9) with a single spin-S impurity and a logarithmically divergent LDOS [Eq. (2.15)]. Note that the reference “clean”
system is taken to be four-site-vacancy graphene rather than pristine graphene. We have chosen � = 1.5D0 in Eq. (2.15), where D0 is the
initial semibandwidth of the Kondo model, and have used J = 0.1D0, V = 0 for the SSC curves and J = 0, V = 0.1D0 for the ALM curves.

channel entirely on the grounds that all couplings J00, J01, and
V0 associated with it are irrelevant; we shall see later that this
approximation is usually justified. This leaves us with a three-
impurity, two-channel Kondo model,

H = Hvac + V1(n1 + n1̄ ) + J11(s11 + s1̄1̄ ) · S0

+ J11̄(s11̄ · S1 + s1̄1 · S1̄ ), (3.10)

with two relevant Kondo couplings J11 and J11̄ as well
as a relevant potential scattering V1. As in Refs. [75,76],
one may measure the relative strengths of J11 and J11̄
with the dimensionless RKKY coupling strength Ĩ ≡
(J2

11̄
− 2J2

11)/(2J2
11 + 2J2

11̄
). J11 = J11̄ = V1 = 0 marks the un-

stable p-h symmetric local moment (“LM”) fixed point, which
has three decoupled impurity spins and two non-normalizable
zero modes; therefore, at the LM fixed point, Simp(T = 0) =
3 ln 2 + 2 ln 4 = 7 ln 2, and T χimp = 3 × 1/4 + 2 × 1/8 = 1
relative to pristine graphene.

In Fig. 4, we present the NRG phase diagram of the
three-impurity, two-channel Kondo model, Eq. (3.10). Fig-
ure 4(a) is the phase diagram on the Ĩ-V1 plane when J2

11 +
J2

11̄
= (0.1D0)2, and Fig. 4(b) is the phase diagram on the

J11-V1 plane for J11 = J11̄. We also show the high- to low-
temperature crossover of Simp and T χimp in different phases
in Figs. 5 and 6.

In the following, we discuss the different regimes in the
phase diagram. We begin by considering each of the two
relevant Kondo couplings J11 and J11̄ separately.

1. J11 > 0, J11̄ = 0

The RKKY interaction is ferromagnetic (Ĩ = −1), favoring
S = 3/2; therefore, it is plausible that, at low energies, the

model is reduced to a two-channel problem with a logarith-
mically divergent LDOS and a single S = 3/2 impurity. This
picture for J11̄ = 0 is confirmed by NRG, and the coupling
between the two spin sectors S = 3/2 and S = 1/2 turns out
to be irrelevant.

Applying our results from Sec. III B, we find two different
phases: a p-h symmetric strong-coupling phase and a p-h
asymmetric local moment phase. In the symmetric phase, the
effective S = 3/2 impurity is strongly screened by both c1

and c1̄, and a residual S = 1/2 impurity emerges; thus we
name it “K-S” after the Kondo screening taking place in the
spin sector. In the asymmetric phase, the effective S = 3/2
local moment is unscreened, while both c1 and c1̄ are blocked
locally by strong potential scattering; we call this phase “F-
ALM” after the ferromagnetic RKKY interaction. K-S and
F-ALM are both stable fixed points as discussed in Sec. III B;
they are separated by a critical boundary marked by |V1|/J11 ∼
O(1), in analogy to the single-channel case [63]. The low-
temperature thermodynamic properties of K-S (F-ALM) are
identical to those of the SSC (ALM) fixed point in the two-
channel S = 3/2 problem with a logarithmically divergent
LDOS. Therefore, at K-S, Simp(T = 0) = ln 2 and T χimp =
1/4 relative to pristine graphene; at F-ALM, Simp(T = 0) =
ln 4 and T χimp = 5/4 relative to pristine graphene.

While our heuristic picture correctly predicts the ther-
modynamic quantities and the finite-size spectrum, it would
only be strictly true had we introduced by hand a strong
ferromagnetic RKKY interaction Eq. (3.6) into the Hamilto-
nian, assuming that the RKKY strength I was much greater
in magnitude than any other energy scale in the problem.
In reality, there might be no clear separation between the
RKKY energy scale, at which the effective S = 3/2 impurity
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FIG. 4. Phase diagram of the three-impurity, two-channel Kondo model Eq. (3.10) with a logarithmically divergent LDOS given
by Eq. (2.15). We have again chosen the ultraviolet cutoff as � = 1.5D0. (a) Phase diagram on the Ĩ-V1 plane, where Ĩ ≡
(J2

11̄ − 2J2
11)/(2J2

11 + 2J2
11̄ ) is the dimensionless RKKY interaction. We fix J2

11 + J2
11̄ = (0.1D0 )2. When V1 = 0, we find an underscreened

Kondo strong-coupling phase (K-S) with an effective impurity spin S = 3/2 in the ferromagnetic RKKY limit (Ĩ = −1) and a spin-singlet
isospin-doublet phase (K-I) with an isospin 1/2 in the antiferromagnetic RKKY limit (Ĩ = 1/2). For Ĩ = −1, sufficiently strong potential
scattering V1 will overcome the strong-coupling phase at V1/J11 ≈ O(1), resulting in a p-h asymmetric S = 3/2 local-moment (F-ALM)
phase. For Ĩ = 1/2, even an infinitesimal V1 drives the system into a p-h asymmetric, exactly screened strong-coupling phase (AF-ASC) with
S = 0 (lower inset), characterized by antiferromagnetic impurity spin correlations. A larger V1 comparable to J11̄ leads to a p-h asymmetric
local-moment phase (AF-ALM) with S = 1/2. Finally, a p-h asymmetric strong coupling phase with S = 1 and ferromagnetic impurity spin
correlations (F-ASC) exists in a small region of the parameter space and separates the three phases K-S, F-ALM, and AF-ASC (upper inset).
(b) Phase diagram on the J11-V1 plane for J11 = J11̄ (i.e., Ĩ = −1/4). We find that the critical value of V1/J11 at the K-S/AF-ASC transition
becomes smaller as J11/D0 is reduced.

forms, and the Kondo temperature TK (or TP), at which J11

(or V1) flows to strong coupling. These energy scales must
be extracted numerically, e.g., from thermodynamics (Fig. 5)
and impurity spin correlations (Fig. 7, which we will discuss
later).

2. J11̄ > 0, J11 = 0

The RKKY interaction is now antiferromagnetic (Ĩ = 1/2)
and favors the S = 1/2 state for the magnetic impurities.
While one might assume that the low-energy physics would
be captured by the two-channel S = 1/2 Kondo model with a
logarithmically divergent LDOS, we must also take note of the
additional helicity degeneracy of the S = 1/2 subspace and
the fact that J11̄ is not a conventional Kondo coupling.

We can again glean some insight from the constant-LDOS
version of this problem [75,76]. In the constant-LDOS three-
impurity, three-channel Kondo problem, when the RKKY
interactions are antiferromagnetic and J11̄ overwhelms J01,
it has been reported that the helicity-0 channel decouples,
and the low-energy effective model is a two-channel spin-1/2
Kondo model with spin and isospin sectors interchanged. (The
isospin for helicities 1 and 1̄ is defined as usual by Î z =
1
2

∑
h=±1,α (c†

hα
chα − 1/2) and Î+ = 1

2

∑
h=±1,αβ εαβc†

hα
c†

h̄β
,

where εαβ is the Levi-Civita symbol.) To be more concrete, the

effective model involves an isospin-1/2 impurity screened by
two conduction channels, one spin up and the other spin down.
We emphasize that such a fictitious isospin-1/2 impurity is
only invoked to describe the isospin state of the conduction
electrons, since the impurities themselves always possess p-h
symmetry and have isospin 0 by construction. The resulting
low-energy non-Fermi-liquid fixed point, dubbed “isospin
Kondo” in Ref. [75], is unstable against an infinitesimal p-h
symmetry-breaking perturbation V1, which plays the role of
a magnetic field in the isospin sector; the system flows to a
Fermi-liquid state in the presence of V1.

In our problem with a logarithmically divergent LDOS, the
condition of J11̄ dominating over J01 is always satisfied when
the bare couplings are weak, since J11̄ is relevant while J01

is irrelevant. We find that, as in the constant-LDOS case, the
low-energy physics is governed by a two-channel spin-1/2
Kondo model with spin and isospin sectors interchanged;
however, as shown in Sec. III B, the logarithmically divergent
LDOS dictates that the low-energy fixed point for V1 = 0
should be located at strong coupling rather than intermediate
coupling. We label this strong-coupling fixed point as “K-I”
due to the Kondo effect taking place in the isospin sector. The
ground state of K-I has spin zero and isospin 1/2, i.e., one
electron is either removed from or added to half filling. This
yields Simp(T = 0) = ln 2 and T χimp → 0 at the K-I fixed
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FIG. 5. Simp and T χimp vs T in various phases of the three-impurity, two-channel Kondo model, Eq. (3.10), with a logarithmically divergent
LDOS given by Eq. (2.15). Note again that the reference “clean” system is taken to be graphene with a four-site vacancy rather than pristine
graphene. � = 1.5D0; (J11, J11̄,V1)/D0 = (0.1, 0, 0) for K-S, (0, 0.1, 0.1) for AF-ASC, (0.1, 0, 0.3) for F-ALM, (0, 0, 0.1) for free-ALM,
(0, 0.1, 0.3) for AF-ALM, and (0.075, 0.0661438, 0.139) for F-ASC. Data for F-ASC are not z averaged [98] and therefore contains spurious
oscillations. The K-I fixed point is shown separately in Fig. 6.

point relative to pristine graphene. As an intuitive picture, in
the lattice version of K-I, the impurity spins form an effective
spin 1/2, which is in turn strongly coupled to (i.e., screened

by) one of the conduction channels; the other conduction
channel can be either empty or doubly occupied at the lattice
site closest to the impurity.

FIG. 6. Simp and T χimp vs T in a crossover from the unstable K-I fixed point to the stable AF-ASC fixed point as the p-h symmetry breaking
potential scattering V1 is increased. � = 1.5D0, J11 = 0, J11̄ = 0.1D0, and different curves correspond to different values of V1/D0. Solid red
squares represent the K-I fixed point V1 = 0, and solid black diamonds represent V1 = 0.1D0. In the Simp plot, the open black circles correspond
to V1/D0 = 10−7, 10−6, 10−5, 10−4, 10−3, and 0.01 in the direction of the arrow; in the T χimp plot, only V1 = 0.01D0 is shown in open black
circles for clarity. Data in these figures are not z averaged and therefore contain spurious oscillations.
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FIG. 7. Equal-time impurity spin correlation 〈S1 · S2〉 in the
Kondo model, Eq. (3.10), with a logarithmically divergent LDOS
given by Eq. (2.15). � = 1.5D0 and J2

11 + J2
11̄ = (0.1D0)2. The

topmost solid black circles represent a K-S system in the maxi-
mally ferromagnetic RKKY limit, with Ĩ = −1 and V1 = 0; solid
black squares correspond to a K-S system close to the K-S/K-I
transition, with Ĩ = 0.4926 and V1 = 0; the open black symbols
represent K-S systems between these two limiting cases, with V1 =
0.02D0, and Ĩ = −0.46, −0.25, −0.04, 0.125, and 0.365 from top
to bottom. Solid red upward-pointing triangles represent an AF-ASC
system with Ĩ = −0.25 (i.e., J11 = J11̄) and V1 = 0.14D0, solid blue
downward-pointing triangles represent an AF-ASC system with Ĩ =
0.5 and V1 = 0.1D0, solid cyan diamonds represent a K-I system with
Ĩ = 0.5 and V1 = 0, and solid pink left-pointing triangles represent
an F-ASC system with Ĩ = −0.344 and V1 = 0.139D0. F-ALM
systems behave qualitatively similarly to K-S systems with Ĩ < 0,
and AF-ALM systems behave qualitatively similarly to AF-ASC
systems with Ĩ > 0.

K-I is unstable against an infinitesimal V1, which picks out
a preferred isospin state from the doublet (i.e., one electron
removed from or added to half filling). We call the result-
ing p-h asymmetric strong-coupling fixed point “AF-ASC.”
In the lattice version of AF-ASC, one conduction channel
forms a spin singlet with the impurities and the other channel
takes advantage of the local potential scattering to lower the
ground-state energy; the remaining conduction electrons are
essentially free apart from constraints imposed by the Pauli
principle. With the isospin symmetry broken and the ground
state a spin singlet, we simply have Simp(T = 0) = 0 and
T χimp → 0 at AF-ASC relative to pristine graphene. Figure 6
shows how the system flows from K-I to AF-ASC for V1/D0

ranging from from 10−7 to 0.1.
Increasing V1 further, for sufficiently large |V1|/J11 ∼

O(1), we eventually encounter a second transition to the
large-V1 fixed point, where both c1 and c1̄ become blocked by
strong potential scattering and the ground-state electric charge
differs from half-filling by two. The antiferromagnetic RKKY
interactions remain in effect even though the impurity spins
are already decoupled from the conduction electrons, so we
are left with an S = 1/2 local moment with an additional

helicity degeneracy h = ±1. Therefore, at this fixed point
which we call “AF-ALM,” Simp(T = 0) = ln 4 and T χimp =
1/4 relative to pristine graphene.

In addition to cases (i) and (ii), it is also worth
mentioning that taking J11 = J11̄ = 0 but V1 �= 0 will lead
to another free-spin p-h asymmetric local moment fixed
point (“free-ALM”), where the impurity spins completely
decouple and the non-normalizable zero modes vanish. This
is an unstable fixed point, because even an infinitesimal
RKKY interaction induced by J11 or J11̄ drives the impurity
spins into the S = 3/2 or the S = 1/2 state. Obviously, due
to the three impurity spins, the free-ALM fixed point has
Simp(T = 0) = 3 ln 2 and T χimp = 3/4 relative to pristine
graphene. The three fixed points, F-ALM, AF-ALM, and
free-ALM, differ only in their impurity spin states.

Cases (i) and (ii) represent the limits of maximally ferro-
magnetic and maximally antiferromagnetic RKKY interaction
respectively. As shown in Fig. 4, when J2

11 + J2
11̄ = (0.1D0)2

and �/D0 = 1.5, the K-S fixed point controls a large region
of the parameter space where J11/J11̄ is not too small and
V1 is not too large. The K-I phase only occurs when the p-h
symmetry is preserved and J11/J11̄ is very small (i.e., Ĩ > Ĩc0

where Ĩc0 is close to 1/2) [99], but its direct descendant—the
AF-ASC phase—becomes progressively more important at
intermediate values of V1 when the RKKY interactions are not
too strongly ferromagnetic. Finally, at very large values of V1,
the F-ALM and AF-ALM phases come into play, separated
approximately by the Ĩ = 0 line.

While the phase boundaries of K-S, AF-ASC, and F-ALM
seemingly meet at a single tricritical point on the Ĩ-V1 plane,
a more careful survey of the parameter space reveals the
presence of another phase in a small area separating these
three phases. The ground state in this phase is again p-h
asymmetric with one electron removed from or added to
half filling. However, in contrast to the AF-ASC phase, the
ground state has a residual S = 1 impurity, consistent with
the ferromagnetic RKKY interaction (Ĩ < 0); thus, we name
this phase “F-ASC.” Because one of the two conduction
channels couples to the impurity spins and the other is blocked
by potential scattering, the S = 1 residual impurity in the
ground state can form in two distinct helicities. Combined
with the threefold degeneracy of the spin state, this helicity
degeneracy gives an impurity entropy of Simp(T = 0) = ln 6
relative to pristine graphene. The impurity susceptibility from
the residual impurity is simply T χimp = 2/3.

It is also enlightening to look at the correlation between
the impurity spins. In Fig. 7, we plot the expectation value
〈S1 · S2〉 as a function of temperature at various points in the
phase diagram. At high temperatures, its sign is simply oppo-
site to that of Ĩ , as perturbation theory predicts. At low tem-
peratures, 〈S1 · S2〉 takes the minimum possible value −1/4
in the K-I, AF-ASC, and AF-ALM phases, and the maximum
possible value 1/4 in the F-ALM phase; these results are
consistent with our previous analysis that the impurity spins
form a spin-1/2 in the K-I, AF-ASC, and AF-ALM phases
and a spin-3/2 in the F-ALM phase. The low-temperature
spin correlation in the K-S phase is more interesting: 〈S1 · S2〉
varies smoothly from 1/4 to 0 as Ĩ increases from −1 to Ĩc0

(recall that the K-I phase takes over for Ĩ > Ĩc0 and V1 = 0)
and is only weakly dependent on V1 as long as the system
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FIG. 8. Simp and T χimp vs T in the vicinity of the K-S/AF-ASC phase transition of the Kondo model, Eq. (3.10), with a logarithmically
divergent LDOS given by Eq. (2.15). � = 1.5D0; J11 = J11̄ = 0.1D0/

√
2, and different curves correspond to different values of V1. The critical

value |V1|/D0 = vc ≈ 0.126 is shown in solid red squares, solid black symbols are in the K-S phase, and open black symbols are in the
AF-ASC phase, with |V1/D0 − vc| = 10−7 (right-pointing triangles), 10−6 (left-pointing triangles), 10−5 (diamonds), 10−4 (downward-pointing
triangles), 10−3 (upward-pointing triangles), 0.01 (circles), and 0.1 (squares, only for K-S) in the direction of the arrow. Data in these figures
are not z averaged and therefore contains spurious oscillations.

remains in the K-S phase. Therefore, away from the strongly
ferromagnetic limit Ĩ = −1, the impurity spins generally form
a superposition of spin-3/2 and spin-1/2 states in the K-S
phase, even though the residual spin is always 1/2, with two
electrons participating in screening. A similar statement can
be made for the F-ASC phase: the impurity spins form a
superposition of spin-3/2 and spin-1/2 states, which couples
to one conduction electron to produce a residual spin-1.

In the Kondo model obtained by Schrieffer-Wolff trans-
forming the three-impurity Anderson model, J11 = J11̄ and
Ĩ = −1/4; in this case it is clear from Fig. 4 that K-S and
F-ALM control small- and large-V1 physics respectively as in
the strongly ferromagnetic RKKY limit, whereas the AF-ASC
phase sets in for intermediate values of V1 as in the strongly
antiferromagnetic RKKY limit. For J11 = J11̄ = 0.1D0/

√
2,

the AF-ASC phase occurs for 0.126 < |V1|/D0 < 0.152; this
cannot be realized by a Schrieffer-Wolff transformation,
which requires |V1|/J11 � 3/4. However, Fig. 4(b) indicates
that when J11 = J11̄ � 10−4D0, the critical value of |V1|/J11 at
the K-S/AF-ASC transition can be reduced dramatically, well
below 3/4. This strongly suggests that both K-S and AF-ASC
(or at least their generalizations) are accessible in an Anderson
model, although F-ALM and AF-ALM may still be out of
reach. We will confirm this picture in Sec. IV.

We now examine the K-S/AF-ASC transition, motivated
by the observation that a transition of similar nature may
exist in an Anderson model. For J11 = J11̄ = 0.1D0/

√
2, the

K-S/AF-ASC transition takes place at |V1|/D0 = vc ≈ 0.126.
Figure 8 shows the high- to low-temperature crossover of Simp

and T χimp as V1/D0 − vc sweeps from −0.01 to 0.1, and Fig. 9
shows the corresponding behavior of 〈S1 · S2〉. We can explain

FIG. 9. Equal-time impurity spin correlation 〈S1 · S2〉 in the
vicinity of the K-S/AF-ASC phase transition of the Kondo model
Eq. (3.10) with a logarithmically divergent LDOS given by
Eq. (2.15). � = 1.5D0; J11 = J11̄ = 0.1D0/

√
2, and different curves

correspond to different values of V1. The critical value V1/D0 =
vc ≈ 0.126 is shown in solid red squares, solid black symbols are
in the K-S phase, and open black symbols are in the AF-ASC
phase, with |V1/D0 − vc| = 10−8 (hexagons), 10−7 (right-pointing
triangles), 10−6 (left-pointing triangles), 10−5 (diamonds), 10−4

(downward-pointing triangles), 10−3 (upward-pointing triangles),
0.01 (circles), and 0.1 (squares, only for K-S) in the direction of the
arrows.
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TABLE II. Properties of various fixed points of the three-impurity, three-channel Kondo model Eq. (2.9). The charge number is measured
relative to half-filling; we assume a negative charge if the p-h symmetry is explicitly broken by potential scattering. Pristine graphene is chosen
as the reference system for Simp and χimp. Spin (1/2)3 refers to three independent spin-1/2 impurities; 0 < 〈S1 · S2〉 � 1/4 in the K-S phase. The
results for K-S and AF-ASC also apply to the five-atom-cluster Anderson model (see Sec. IV), with the exception that −1/4 � 〈S1 · S2〉 < 0
in the AF-ASC phase of the Anderson model.

Fixed point Stability Non-normalizable zero modes Spin Charge Helicity degeneracy Simp T χimp 〈S1 · S2〉
Free-spin symmetric
local moment (LM) Unstable 2

(
1
2

)
3

0 7 ln 2 1 0
Free-spin asymmetric
local moment (free-ALM) Unstable 0

(
1
2

)
3

−2 3 ln 2 3
4 0

Ferromagnetic symmetric
Kondo (K-S) Stable 0 1

2 0 ln 2 1
4 ∈ (0, 1

4

]
Ferromagnetic asymmetric
local moment (F-ALM) Stable 0 3

2 −2 ln 4 5
4

1
4

Ferromagnetic symmetric
isospin Kondo (K-I) Unstable 0 0 ±1 ln 2 0 − 1

4
Antiferromagnetic asymmetric
strong-coupling (AF-ASC) Stable 0 0 −1 0 0 − 1

4
Antiferromagnetic asymmetric
local moment (AF-ALM) Stable 0 1

2 −2 2spin ln 4 1
4 − 1

4
Ferromagnetic asymmetric
strong-coupling (F-ASC) Stable 0 1 −1 2channel ln 6 2

3 ∈ (0, 1
4

)

the unstable critical point separating the two phases as a
simple level crossing of the spin-1/2 doublet ground states in
the K-S phase and the spin singlet ground state in the AF-ASC
phase. The doublet and the singlet do not mix, as they belong
in different sectors of the Hilbert space. At the critical point,
Simp(T = 0) = − ln (16/3) relative to the four-site-vacancy
graphene, which is greater than the AF-ASC value by ln 3,
a signature of the accidental degeneracy. Moreover, the values
of both T χimp and 〈S1 · S2〉 at the critical point can be obtained
as weighted averages of the K-S value (with weight 2/3)
and the AF-ASC value (with weight 1/3). We mention that
this simple level-crossing picture also applies to the AF-CR
critical point in the single-channel case [63].

Finally we briefly discuss the effect of the helicity-0
channel. We assume that the irrelevant couplings J00, J01,
and V0 are not too large compared to the relevant couplings,
so that the intermediate-coupling phase transition identified
in Ref. [68] does not take place. In most cases, these
irrelevant couplings merely shift the phase boundaries
without modifying the phase diagram qualitatively. A notable
exception is the K-I fixed point. In the p-h symmetric strongly
antiferromagnetic RKKY limit J11 = V1 = 0 and J11̄ �= 0, we
find that V0 by itself or the combination of J00 and J01 does not
affect the low-energy K-I behavior. However, the combination
J00 �= 0, J01 = 0, and V0 �= 0 drives the system into the K-S
phase, while the combination J00 = 0, J01 �= 0, and V0 �= 0
drives the system into the AF-ASC phase. Therefore, as
with its constant-LDOS analog [75], the K-I phase is highly
fragile against p-h symmetry breaking and unlikely to be
experimentally observed.

We summarize our results on the fixed points of the three-
impurity, three-channel Kondo model Eq. (2.9) in Table II.
The results for Simp(T = 0) and T χimp are in full agreement
with Figs. 5 and 6 upon changing the reference system to
graphene with a four-site vacancy, i.e., subtracting 2 ln 4 from
Simp and 1/4 from T χimp.

D. Logarithmic LDOS with an infrared cutoff

In a more realistic model of the graphene sheet, the
small next-nearest-neighbor hopping t ′ between carbon atoms
replaces the zero mode associated with a vacancy by a number
of quasilocalized states shifted slightly away from the Dirac
point. While the LDOS remains strongly enhanced near the
energies of these quasilocalized states, it is no longer logarith-
mically divergent [58]. Nevertheless, following Ref. [63], we
can fine-tune the Fermi energy to the vacancy-induced peak
of the LDOS, and heuristically model the effect of a next-
nearest-neighbor hopping by imposing an infrared energy
cutoff X on the LDOS.

To be concrete, we replace ρ(ω) by a constant ρ(X ) for
|ω| < X in Eq. (2.15), so that the LDOS becomes a large con-
stant value at small energies. Although such a “hard” cutoff
scheme is slightly different from the “soft” cutoff adopted
in Ref. [63], we can verify that the two cutoff schemes do
not lead to qualitatively different results. In the X → 0 limit,
our LDOS recovers the logarithmic divergence in the t ′ = 0
case. For our choice of the ultraviolet energy cutoff in the
LDOS � = 1.5D0, we find that X/D0 ∼ 0.01 reproduces the
LDOS peak height found by solving the tight-binding model
[58] with the experimentally estimated value t ′ ≈ 0.1t [100].
Figure 10 shows Simp and T χimp in the K-S phase of the
three-impurity, two-channel Kondo model Eq. (3.10) as we
increase the infrared cutoff X from 0 to 10−2D0, and Fig. 11
shows the corresponding behavior of 〈S1 · S2〉.

At sufficiently low energies T � X , there is no longer any
contribution to Simp and T χimp from the non-normalizable
zero mode, so both Simp and T χimp recover their values in
the constant-LDOS spin-3/2 two-channel Kondo problem
in this limit, namely ln 2 and 1/4. Also, when X is far
smaller than T X=0

K (the Kondo temperature at X = 0), the
RG flow is still toward the K-S fixed point in the energy
range X � T � T X=0

K . These features are also present in the
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FIG. 10. Simp and T χimp in the Kondo model Eq. (3.10) with different infrared cutoffs X imposed on the logarithmically divergent LDOS; at
energies below X , the original LDOS Eq. (2.15) is replaced by its value at X . � = 1.5D0; (J11, J11̄,V1) = (0.1/

√
2, 0.1/

√
2, 0.02)D0. In each

plot, the thick line corresponds to X = 0, and X takes the following values along the direction of the arrow: 10−8, 10−6, 10−4, 10−3, 10−2.5,
and 0.01.

single-channel case [63] . On the other hand, as X increases,
Figs. 10 and 11 both show an increase of the total impurity
spin at low energies, which is particularly pronounced for
larger X (X � 10−4D0). When X = 10−2D0, 〈S1 · S2〉 is close
to 1/4, so that the effective spin is almost completely a spin-
3/2; this effective spin controls the physics across a wide

FIG. 11. 〈S1 · S2〉 in the Kondo model Eq. (3.10) with dif-
ferent infrared cutoffs X on the logarithmically divergent LDOS
Eq. (2.15). � = 1.5D0; (J11, J11̄,V1) = (0.1/

√
2, 0.1/

√
2, 0.02)D0.

The thick line corresponds to X = 0, and X takes the following
values along the direction of the arrow: 10−4, 10−3, 10−2.5, and 0.01.

range of energies between its formation around T ∼ 10−3D0

and the onset of screening below T ∼ 10−6D0.

IV. ANDERSON MODEL

Having discussed the three-impurity Kondo model in great
detail, in this section we turn back to our initial approximation
of ignoring the hydrogen impurity and the central A site. This
approximation is based on an infinite hydrogen-carbon cou-
pling strength. Realistic estimates put the hydrogen-carbon
coupling around twice the nearest-neighbor hopping between
carbon atoms [43,44,101]; it is therefore important to check
whether our intuitions from the Kondo model carry over to the
full five-atom cluster Anderson model. This Anderson model
is also represented by the Hamiltonian

H = Hvac + Hhyb + H ′
imp; (4.1)

Hvac and Hhyb are already given in Eqs. (2.2) and (2.4). The
impurity Hamiltonian has additional terms:

H ′
imp =

3∑
j=1

(εbnb, j + Unb, j↑nb, j↓) + εana,0

+Una,0↑na,0↓ + εH nH + UH nH↑nH↓

− [(tH g† + t0b†
1 + t0b†

2 + t0b†
3)a0 + H.c.]. (4.2)

Here we have labeled the hydrogen impurity as g, the cen-
tral A site a(�0) as a0, and defined na,0α ≡ a†

0αa0α, nHα ≡
g†

αgα, na,0 = na,0↑ + na,0↓, and nH = nH↑ + nH↓. Compared
to Eq. (2.1), Eq. (4.1) has a number of new coupling constants:
the on-site chemical potentials εa and εH , the Hubbard interac-
tion on the hydrogen impurity UH , the hydrogen-carbon cou-
pling strength tH , and the nearest-neighbor hopping between
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FIG. 12. Simp and T χimp vs T in the vicinity of the K-S/AF-ASC phase transition of the Anderson model Eq. (4.1) with a logarithmically
divergent LDOS given by Eq. (2.15). � = 1.5D0; U = t, UH = 2.8t, εa = εb = −U/2, tH = 2t, t0 = 0.6t , and different curves correspond
to different values of εH . The critical value (εH + UH/2)/t = ε̃c ≈ −1.055 is shown in solid red squares, solid black symbols are in the K-S
phase, and open black symbols are in the AF-ASC phase. (εH + UH/2)/t = 0 for solid black squares, −0.75 for solid circles, −1.25 for
open circles, and −2 for open squares. Closer to the transition, |(εH + UH/2)/t − ε̃c| = 10−8 (left-pointing triangles), 10−6 (diamonds), 10−4

(down-pointing triangles), and 0.01 (up-pointing triangles) in the direction of the arrows. Data in these figures are not z averaged and therefore
contain spurious oscillations.

the central A site and its nearest neighbors t0. t0 is generally
different from t due to the presence of the hydrogen impurity
[38]. We also note that, due to the two additional impurity
sites, Eq. (4.1) cannot be mapped to the simple Kondo model
Eq. (2.9) even in the limit U ∼ |εb| � t .

Because of the immense size of the parameter space, we
now focus on the experimentally relevant regime where all
parameters (including U and UH ) are of comparable magni-
tudes. We also continue to neglect the helicity-0 channel with
a linear LDOS and keep only the helicity-±1 channels with
a logarithmically divergent LDOS. Under these assumptions,
quite generally, we find that the ground state of the system
is a charge-neutral spin doublet state when the p-h symmetry-
breaking terms are weak or a spin singlet state with charge +1
(or −1) when the p-h symmetry-breaking terms are strong.
For reasons that will become clear later, we again call these
two phases K-S and AF-ASC respectively.

To be more concrete, we choose U = t, UH = 2.8t, εb =
−U/2, tH = 2t , and t0 = 0.6t . When εa = −U/2 − 0.7t and
εH = −UH/2, a Hartree-Fock calculation of the LDOS in the
full Anderson-Hubbard model (where the Hubbard interaction
is also included in Hvac) has been reported to agree qualita-
tively with density-functional theory results [38]. However,
we argue that the p-h symmetry breaking should be stronger
on the hydrogen impurity than on the central A site. In the
following, we therefore let εa = −U/2 and vary εH instead,
placing the p-h symmetry breaking term on the hydrogen
impurity. We nevertheless note that our results below are
not qualitatively modified by the presence of additional p-
h symmetry-breaking terms on the central A site or its

nearest-neighboring B sites, as long as these terms are not too
large compared to t .

Figure 12 shows the typical behavior of Simp and T χimp

in the K-S and the AF-ASC phases and across the phase
transition in between. The K-S/AF-ASC transition occurs at
(εH + UH/2)/t = ε̃c ≈ −1.055, and we tune (εH + UH/2)/t
from 0 to −2. The low-temperature behavior of Simp and
T χimp is completely identical to that of their Kondo model
counterparts, not only inside each phase but also at the transi-
tion (cf. Figs. 5 and 8). The K-S/AF-ASC transition can again
be explained as a simple level crossing of the spin-1/2 doublet
ground states in the K-S phase and the spin singlet ground
state in the AF-ASC phase. It is also interesting to consider
the equal-time spin correlations 〈S1 · S2〉 and 〈S1 · SH 〉, where
S1 is again the spin on the nearest-neighbor B site b1, and
SH ≡ 1

2

∑
αβ g†

jασαβg jβ is the spin on the hydrogen impurity;
these are plotted in Fig. 13 for different values of εH . We see
that 〈S1 · S2〉 is ferromagnetic in the K-S phase, but becomes
antiferromagnetic in the AF-ASC phase (although now much
smaller in magnitude than −1/4), changing sign across the
phase transition as in the Kondo model (cf. Figs. 7 and 9). A
similar behavior is seen in 〈S1 · SH 〉; i.e., the spin correlation
between the hydrogen impurity and the nearest-neighbor B
sites also goes from ferromagnetic to antiferromagnetic across
the K-S/AF-ASC transition. On the other hand, the spin
correlations involving the spin on the central A site, S0 ≡
1
2

∑
αβ a†

0ασαβa0β , are almost unchanged at the transition.
Further information of the K-S and AF-ASC phases is

given in Fig. 14, where we plot the low-energy expecta-
tion values of the following operators: the total spin on the
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FIG. 13. Equal-time impurity spin correlations 〈S1 · S2〉 and 〈S1 · SH 〉 in the vicinity of the K-S/AF-ASC phase transition of the Anderson
model Eq. (4.1) with a logarithmically divergent LDOS given by Eq. (2.15). � = 1.5D0, U = t, UH = 2.8t, εa = εb = −U/2, tH = 2t, t0 =
0.6t , and different curves correspond to different values of εH . The critical value (εH + UH/2)/t = ε̃c ≈ −1.055 is shown in solid red squares,
solid black symbols are in the K-S phase, and open black symbols are in the AF-ASC phase. (εH + UH/2)/t = 0 for solid black squares,
−0.75 for solid circles, −1.25 for open circles, and −2 for open squares. Closer to the transition, |(εH + UH/2)/t − ε̃c| = 10−8 (left-pointing
triangles), 10−6 (diamonds), 10−4 (downward-pointing triangles), and 0.01 (upward-pointing triangles) in the direction of the arrows.

nearest neighbor B sites (S1 + S2 + S3)2, the total spin on
the hydrogen impurity and the central A site (S0 + SH )2,
the total spin on the five-atom cluster S2

tot ≡ (S1 + S2 + S3 +
S0 + SH )2, the occupancy of a nearest-neighbor B site nb,1, the

occupancy of the central A site na,0, and the occupancy of the
hydrogen impurity nH . (S0 + SH )2 is almost unchanged across
the phase transition and remains small (less than 1/4) for
−2t � εH + UH/2 � 0, while both (S1 + S2 + S3)2 and S2

tot

FIG. 14. Low-energy total impurity spins and orbital occupancies as a function of εH in the Anderson model Eq. (4.1) with a logarithmically
divergent LDOS given by Eq. (2.15). See main text for an explanation of the plotted quantities. � = 1.5D0, U = t, UH = 2.8t, εa = εb =
−U/2, tH = 2t, t0 = 0.6t .
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FIG. 15. Simp and T χimp in the Anderson model Eq. (4.1) with different infrared cutoffs X on the logarithmically divergent LDOS Eq. (2.15).
� = 1.5D0, U = t, UH = 2.8t, εa = εb = −U/2, tH = 2t, t0 = 0.6t . The K-S phase with (εH + UH/2)/t = −1 is shown with solid blue
symbols and the AF-ASC phase with (εH + UH/2)/t = −2 is shown with open red symbols. Thick lines correspond to X = 0, and X/D0 takes
the following values along the direction of the arrows: 10−8, 10−6, 10−4, 10−3, and 0.01.

fall dramatically when the system goes from the K-S phase to
the AF-ASC phase. While (S1 + S2 + S3)2 decreases from 1.6
to 1.0, S2

tot undergoes a sharper drop from 1.7 to 0.8, which
is a natural result of 〈S1 · SH 〉 changing from ferromagnetic
in the K-S phase to antiferromagnetic in the AF-ASC phase.
Recalling that the K-S phase has total spin 1/2 and the AF-
ASC phase has total spin 0, we conclude that the spin of
the five-atom cluster is Kondo screened by the conducting
channels in both the K-S phase and the AF-ASC phase. We
stress that, in contrast to the linear-LDOS case [38], such a
Kondo effect does not require a very strong coupling between
the five-atom cluster and the surrounding noninteracting bath.
Meanwhile, nb,1, na,0, and nH all experience a sudden increase
across the transition as εH < −UH/2 decreases, which is
consistent with the total charge in the ground state increasing
by one; nb,1 increases by the largest amount of the three, from
0.98 to 1.2.

Finally, we briefly discuss the effect of an infrared energy
cutoff X of the LDOS on the Anderson model. Figure 15
shows Simp and T χimp for different values of X in both the
K-S phase and the AF-ASC phase. Not too surprisingly, the
behavior of Simp and T χimp approaches the X = 0 case at
intermediate energy scales X � T � T X=0

K , while at lower
energies T � X, S imp, and T χimp return to their values in
the constant-LDOS version of the model where there is no
contribution from non-normalizable zero modes. While in-
creasing X also leads to an increase in magnitude for the
spin correlations 〈S1 · S2〉 and 〈S1 · SH 〉, this is a tiny effect
in comparison with the spin correlation of the Kondo model
shown in Fig. 11.

To summarize this section, our results indicate that the
behavior of the Anderson model which contains the hydrogen

impurity and the four nearest carbon atoms is qualitatively
captured by the three-impurity Kondo model. There exist a p-h
symmetric spin-1/2 K-S phase where the impurity spins align
ferromagnetically, and a p-h asymmetric spin-singlet AF-ASC
phase where the impurity spins align antiferromagnetically.
It is possible that the K-S/AF-ASC transition picture is ap-
plicable to even more realistic models of the hydrogen im-
purity: Weaker p-h symmetry breaking favors ferromagnetic
spin correlation and leads to magnetic ground states, while
stronger p-h symmetry breaking favors antiferromagnetic spin
correlation and tends to suppress the ground-state degeneracy.

V. CONCLUSIONS AND OUTLOOK

In this paper, we have studied the Kondo effect associated
with a single hydrogen impurity on graphene. The hydrogen
impurity is strongly coupled to the “central” carbon atom
directly below it. First, we consider the limit of infinite
coupling, so that the hydrogen atom and the central carbon
atom are effectively decoupled from the rest of the system,
but the C3 rotation symmetry of the system is preserved. To
model the induced magnetization, we place a strong Hubbard
interaction on the three nearest neighbor carbon atoms, creat-
ing three magnetic impurities. The remaining graphene sheet
with four vacancy sites, approximated to be nearest neighbor
and noninteracting, supports two conduction channels which
hybridizes with the three impurities with a local density of
states diverging logarithmically as a function of energy near
the Dirac point, in addition to a conduction channel whose
LDOS vanishes linearly.

We study the resulting three-impurity, three-channel
Kondo model with the numerical renormalization group
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method. Couplings to the conduction channel with a linear
LDOS are irrelevant and usually negligible, and the phase
diagram is controlled by the Kondo and potential scatter-
ing coupling constants associated with the two conduction
channels with a logarithmically divergent LDOS. The regime
where the potential scattering is not too strong sees the
competition between a p-h symmetric Kondo phase (K-S) and
a p-h asymmetric strong-coupling phase (AF-ASC). Ferro-
magnetic RKKY interactions between the magnetic impurities
and weaker potential scattering favor the K-S phase, where
the p-h symmetric ground state is a residual spin-1/2 after
screening by the two conduction channels, and the impurity
spins tend to align ferromagnetically. On the other hand,
antiferromagnetic RKKY interactions and stronger potential
scattering favor the AF-ASC phase, where the ground state
is a spin singlet with one electron removed from or added
to half filling, and the impurity spins align antiferromagnet-
ically. In the strong potential scattering regime, the potential
scattering coupling strength renormalizes to infinity, and the
magnetic impurities decouple from the conduction channels,
forming a local moment whose size depends on the RKKY
interactions.

Relaxing the approximation of infinite hydrogen-carbon
hybridization, we obtain an Anderson model with five im-
purity sites: the hydrogen atom, the central carbon atom,
and its three nearest neighbors in the tight-binding model.
For realistic Hubbard interaction strengths on impurities, we
find through NRG that the ground state is the p-h symmetric
spin-1/2 K-S phase when the p-h symmetry breaking is not
too strong and the particle-hole asymmetric spin singlet AF-
ASC phase otherwise. Kondo screening is shown to take
place in both phases of the Anderson model. In the K-S
phase, the spins of the nearest neighbor carbon atoms align
ferromagnetically with each other and with the spin of the
hydrogen atom, whereas in the AF-ASC phase they align
antiferromagnetically with each other and with the hydrogen
spin. These provide evidence that our three-impurity Kondo
model approximation is qualitatively reasonable.

Many open questions remain to be answered. First of all,
we have assumed throughout this work that the bulk chem-
ical potential is fine-tuned to the singularity of the vacancy-
induced logarithmically divergent LDOS, which coincides
with the zero point of the bulk density of states. Perturba-
tions at the LM fixed point are thus strongly relevant for
the helicity-1, 1̄ channels with a logarithmically divergent
LDOS, and strongly irrelevant for the helicity-0 channel with
a linear LDOS. If the bulk chemical potential is shifted by
an applied gate voltage, it is interesting to check whether the
helicity-0 channel will have a progressively more important
influence on the Kondo temperature and the transport prop-
erties of the system, as one may expect from results on the
single-channel Kondo problem in gated or doped graphene
[57,102–105].

As a closely related point, in obtaining the five-impurity
Anderson model, we have neglected the next-nearest-neighbor
hopping between carbon atoms. While imposing an infrared
cutoff on the logarithmically divergent LDOS partially mim-
ics its effects [58], the next-nearest-neighbor hopping will also
change the wave functions of the bulk conduction electrons
and their coupling to the hydrogen impurity. A more careful

treatment of the next-nearest-neighbor hopping is thus neces-
sary for a quantitative comparison with experiments.

The electron-electron interaction on carbon atoms farther
away from the hydrogen impurity than the three nearest
neighbors is another essential ingredient in a more realistic
model, since experiments have shown that the spin-polarized
state induced by the hydrogen impurity has a large spatial
extension [40]. Such interactions have been taken into account
in previous studies within the Hartree-Fock approximation
[11,38] and using dynamical mean-field theory [14,16]. To the
best of our knowledge, it is not clear how the vacancy-induced
non-normalizable zero modes behave in the presence of bulk
electron-electron interactions when they are not strong enough
to turn graphene into a Mott insulator. Addressing this issue
will be useful for a theoretical understanding of the unusually
long-ranged coupling between the magnetic moments induced
by different hydrogen adatoms [40,106].
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APPENDIX A: CONDUCTION CHANNELS
AT LOW ENERGIES

In this Appendix, we derive the low-energy behavior of the
three conduction channels of definite helicities, Eqs. (2.13a),
(2.13b), and (2.13c). This is achieved by diagonalizing the
noninteracting Hamiltonian with a four-site vacancy Hvac and
finding the scattering state wave functions.

The vacancy can be implemented by strong potential scat-
tering: Hvac = H0 + Vi, with H0 describing the translationally
invariant pristine graphene,

H0 = − t
∑

�R{[b†( �R) + b†( �R − �a2) + b†( �R − �a1)]a( �R)

+ H.c.}, (A1)

and Vi simulating the vacancy,

Vi =U1a†(�0)a(�0) + U2[b†(�0)b(�0) + b†(−�a2)b(−�a2)

+ b†(−�a1)b(−�a1)]. (A2)

The limit U2 → ±∞ corresponds to the vacancy sites
a(�0), b(�0), b(−�a2), and b(−�a1). Physically we do not expect
the value of U1 to affect the scattering state wave functions in
the U2 → ±∞ limit, because a(�0) will be isolated from the
other sites.

We will work in the basis of the H0 eigenstates. These are
given by

(
ψ+�k
ψ−�k

)
= 1√

2

⎛
⎜⎝1 − 1+e−i�k·�a1 +e−i�k·�a2

|1+ei�k·�a1 +ei�k·�a2 |

1 1+e−i�k·�a1 +e−i�k·�a2

|1+ei�k·�a1 +ei�k·�a2 |

⎞
⎟⎠(a�k

b�k

)
; (A3)
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here we have performed the Fourier transform

a
(

�R
)

=
∫

1BZ

d2k√
S1BZ

ei�k· �Ra�k ,

b
(

�R
)

=
∫

1BZ

d2k√
S1BZ

ei�k· �Rb�k , (A4)

where S1BZ = 8π2/(
√

3a2) is the area of the hexagonal first
Brillouin zone. It is straightforward to rewrite H0 and Vi in

terms of ψ±,

H0 =
∫

1BZ
d2kε�k (ψ†

+�kψ+�k − ψ
†
−�kψ−�k ), (A5)

with the dispersion

ε�k = t |1 + ei�k·�a1 + ei�k·�a2 | (A6)

and

Vi = 1

2

∫
1BZ

d2kd2k′

S1BZ

{
[U1(ψ†

+,�k + ψ
†
−,�k )(ψ+,�k′ + ψ−,�k′ )] + U2[1 + ei(�k−�k′ )·�a1 + ei(�k−�k′ )·�a2 ]

× 1 + e−i�k·�a1 + e−i�k·�a2

|1 + ei�k·�a1 + ei�k·�a2 |
1 + ei�k′ ·�a1 + ei�k′ ·�a2

|1 + ei�k′ ·�a1 + ei�k′ ·�a2 | (ψ†
+,�k − ψ

†
−,�k )(ψ+,�k′ − ψ−,�k′ )

}
. (A7)

The scattering states are given by

φ
†
±, �p = ψ

†
±, �p +

∫
1BZ

d2 p′[G±,+( �p, �p′)ψ†
+, �p′ + G±,−( �p, �p′)ψ†

−, �p′ ], (A8)

where for λ, λ′ = ±1, Gλ,λ′ ( �p, �p′)(λε �p − λ′ε �p′ ) is finite. By definition φ diagonalizes Hvac:

[Hvac, φ
†
±, �p] = ±ε �pφ

†
±, �p. (A9)

The energy eigenvalues are those of the H0 eigenstates because the impurity is localized. This equation is then solved for
Gλ,λ′ ( �p, �p′).

In the limit of U2 → ±∞, the scattering states are indeed independent of U1:

φ
†
+, �p = ψ

†
+, �p +

∫
1BZ

d2k

S1BZ

(
− 1

ε �p − ε�k + i0
ψ

†
+,�k + 1

ε �p + ε�k + i0
ψ

†
−,�k

)
1

3
2 L(ε �p + i0) − ε �p

6t2 [−2 + ε �pL(ε �p + i0)]

×
(

[1 + ei(�k− �p)·�a1 + ei(�k− �p)·�a2 ]
1 + ei �p·�a1 + ei �p·�a2

|1 + ei �p·�a1 + ei �p·�a2 |
1 + e−i�k·�a1 + e−i�k·�a2

|1 + ei�k·�a1 + ei�k·�a2 | − 1

2

{
1 − L(ε �p + i0)

ε �p
3t2 [−2 + ε �pL(ε �p + i0)]

}
ε �pε�k
t2

)
.

(A10)

The negative-energy states are found by interchanging + with −, and inverting the signs of all absolute values. We have
introduced the shorthand

L(z) ≡
∫

1BZ

d2q

S1BZ

2z

z2 − ε2
�q
. (A11)

It is useful to give a low-energy asymptotic formula for L(ω+) ≡ L(ω + i0), valid for |ω| � � ∼ t , obtained by only keeping
contributions from near the two Dirac points:

L(ω+) ≈ 2

√
3a2

8π2

∫
d2k

2ω+

(ω+)2 − v2
F k2

≈ − 2ω√
3πt2

(
ln

�2
0

ω2
+ iπ sgn ω

)
, (A12)

where �0 = �e
π

6
√

3 is another ultraviolet energy cutoff.
Using Eqs. (A4) and (A3), we can rewrite a in terms of φ:

a( �R) = 1√
2

∫
1BZ

d2 p√
S1BZ

[(
ei �p· �R − 1

L(ε �p + i0) − L(�a1, ε �p + i0)

{
1 + ei �p·�a1 + ei �p·�a2

|1 + ei �p·�a1 + ei �p·�a2 | [L̃(− �R, ε �p + i0)

+ e−i �p·�a1 L̃(− �R − �a1, ε �p + i0) + e−i �p·�a2 L̃(− �R − �a2, ε �p + i0)] + 1

2

[
1 − 3t2

ε �p

L(ε �p + i0)

−2 + ε �pL(ε �p + i0)

]

×
[

2ε �p
t2

δ �R�0 −
ε2

�p
t2

L( �R, ε �p + i0)

]})
φ+, �p + (ε �p → −ε �p)

]
, (A13)
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where the ε �p → −ε �p part is the contribution from the negative energy eigenstates φ−, �p, and we have further defined

L( �R, z) ≡
∫

1BZ

d2k

S1BZ
ei�k· �R 2z

z2 − ε2
�k

, (A14)

L̃( �R, z) ≡
∫

1BZ

d2k

S1BZ
ei�k· �R 2t (1 + ei�k·�a1 + ei�k·�a2 )

z2 − ε2
�k

. (A15)

It is useful to note that L( �R, z) have all the symmetries of the hexagonal lattice, and that L(�a1, z) is related to L(z) by

3[L(z) + 2L(�a1, z)] = 1

t2
[−2z + z2L(z)]. (A16)

According to Eq. (A13), the symmetric linear combinations a1,2,3 have the form

a1 = 1

2

∫
1BZ

d2 p√
S1BZ

[
(ei �p·�a1 + ei �p·�a2 ) − 1

L(ε �p + i0) − L(�a1, ε �p + i0)

(
1 + ei �p·�a1 + ei �p·�a2

|1 + ei �p·�a1 + ei �p·�a2 |

×
{
−2

t
+ ε �p

t
[L(ε �p + i0) − L(�a1, ε �p + i0)]

}
− ε �p

3t2
[−2 + ε �pL(ε �p + i0)] + ε �p

3

L(ε �p + i0)L(�a1, ε �p + i0)

−2 + ε �pL(ε �p + i0)

)]
×φ+, �p + (ε �p → −ε �p), (A17a)

a2 = 1

2

∫
1BZ

d2 p√
S1BZ

[
(e−i �p·�a2 + ei �p·(�a1−�a2 ) ) − 1

L(ε �p + i0) − L(�a1, ε �p + i0)

(
1 + ei �p·�a1 + ei �p·�a2

|1 + ei �p·�a1 + ei �p·�a2 |e−i �p·�a2

×
{
−2

t
+ ε �p

t
[L(ε �p + i0) − L(�a1, ε �p + i0)]

}
− ε �p

3t2
[−2 + ε �pL(ε �p + i0)] + ε �p

3

L(ε �p + i0)L(�a1, ε �p + i0)

−2 + ε �pL(ε �p + i0)

)]
×φ+, �p + (ε �p → −ε �p), (A17b)

a3 = 1

2

∫
1BZ

d2 p√
S1BZ

[
(ei �p·(�a2−�a1 ) + e−i �p·�a1 ) − 1

L(ε �p + i0) − L(�a1, ε �p + i0)

(
1 + ei �p·�a1 + ei �p·�a2

|1 + ei �p·�a1 + ei �p·�a2 |e−i �p·�a1

×
{
−2

t
+ ε �p

t
[L(ε �p + i0) − L(�a1, ε �p + i0)]

}
− ε �p

3t2
[−2 + ε �pL(ε �p + i0)] + ε �p

3

L(ε �p + i0)L(�a1, ε �p + i0)

−2 + ε �pL(ε �p + i0)

)]
×φ+, �p + (ε �p → −ε �p). (A17c)

For the helicity-±1 combinations ch=1 and ch=1̄, at low energies it is permissible to keep only the terms that are logarithmically
divergent at the Dirac points:

ch=1 = 1√
3

(a1 + ei 2π
3 a2 + e−i 2π

3 a3) ≈ 1

3
1
4

√
2

∫
d2k

⎡
⎣ ieiθ�k φ �K,+,�k

k
(

ln �2

v2
F k2 + iπ

) + ieiθ�k φ �K,−,�k
−k
(

ln �2

v2
F k2 − iπ

)
⎤
⎦, (A18)

ch=1̄ = 1√
3

(a1 + e−i 2π
3 a2 + ei 2π

3 a3) ≈ 1

3
1
4

√
2

∫
d2k

⎡
⎣ ie−iθ�k φ �K ′,+,�k

k
(

ln �2

v2
F k2 + iπ

) + ie−iθ�k φ �K ′,−,�k
−k
(

ln �2

v2
F k2 − iπ

)
⎤
⎦. (A19)

Here φ �K,±,�k ≡ φ±, �K+�k . On the other hand, for the helicity-0 linear combination ch=0, the divergent terms are suppressed by
O(k2 ln k) at low energies, and the constant incident terms dominate instead:

ch=0 = 1√
3

(a1 + a2 + a3)

= 1

2
√

3

∫
1BZ

d2 p√
S1BZ

({
−3 + L(ε �p + i0)

L(ε �p + i0) − L(�a1, ε �p + i0)

[
ε2

�p
t2

− ε �pL(�a1, ε �p + i0)

−2 + ε �pL(ε �p + i0)

]}
φ+, �p + (ε �p → −ε �p)

)

≈ − 3
3
4 a

4
√

2π

∫
d2k(φ �K,+,�k + φ �K ′,+,�k + φ �K,−,�k + φ �K ′,−,�k ). (A20)

We now take advantage of the rotational invariance at low energies and introduce angular momentum eigenmodes labeled by
the quantum number m:

φ �K/ �K ′,±,�k = 1√
2πk

∞∑
m=−∞

eimθ�k φ̃ �K/ �K ′,m,±|k|. (A21)
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FIG. 16. The alternative labeling scheme of four-site-vacancy
graphene lattice sites used in Appendix B. We divide the lattice into
three parts: the left half-plane with a zigzag edge (l < 0), the right
half-plane with a “bearded” edge (l > 0), and a middle strip that
contains the four vacancy sites (l = 0).

These eigenmodes φ̃ obey

{φ̃ �K,m,k, φ̃
†
�K,m′,k′ } = δmm′δ(k − k′), (A22)

and in terms of φ̃,

HVac =
∫ ∞

−∞
dk vF k

∑
m

(φ̃†
�K,m,k

φ̃ �K,m,k + φ̃
†
�K ′,m,k

φ̃ �K ′,m,k ).

(A23)
Inserting Eq. (A21) into Eqs. (A18), (A19), and (A20) then
yields Eqs. (2.13a), (2.13b), and (2.13c).

APPENDIX B: NON-NORMALIZABLE ZERO MODES

This Appendix elaborates on the zero modes of the infi-
nite graphene sheet with four vacancy sites. As discussed in
Sec. II, these non-normalizable zero modes are responsible
for the logarithmic divergence in the LDOS of our impurity
models. We will solve the lattice Schrödinger equation by
generalizing the method of Ref. [59], give the long-distance
asymptotics of the two solutions, and briefly discuss their fate
in the strong-coupling regime of the impurity models.

It is convenient to relabel the lattice sites as in Fig. 16, with
the two solid red lines dividing the plane into three parts: the
left half-plane with a zig-zag edge, the right half-plane with
a “bearded” edge, and the middle strip that contains the four
vacancy sites. The zero mode wave functions vanish on the
entire B sublattice, so we focus on the wave function on the A
sublattice, which we denote as φl, j ; here l is an integer and j
is either an integer or a half-integer, but l + 2 j is always even.

Away from the vacancy, the Schrödinger equation at zero
energy reads

φl, j + φl, j+1 + φl−1, j+ 1
2

= 0; (B1)

this allows the expansion of the zero mode wave function
on the left half-plane in edge states of the zigzag edge

[107],

φl, j =
∫ 4π

3a

2π
3a

dk

2π

(
−2 cos

ka

2

)−l−1

eik jaφL
k (l � −1). (B2)

as well as the expansion on the right half-plane in edge states
of the bearded edge,

φl, j =
∫ 2π

3a

− 2π
3a

dk′

2π

(
−2 cos

k′a
2

)−l+1

eik′ jaφR
k′ (l � 1). (B3)

Inserting these expansions into the l = 0 and l = 1 equations
and eliminating φ0, j , we have∫ 2π

3a

− 2π
3a

dk′

2π
eik′( j+ 1

2 )a

(
2 cos

k′a
2

)2

φR
k′ =

∫ 4π
3a

2π
3a

dk

2π
eik( j+ 1

2 )aφL
k ,

(B4)
which is true for any integer j as long as j �= 0 and j �= −1.
Using the relation∫ 2π

3a

− 2π
3a

dk′

2π
eik′ ja = −

∫ 4π
3a

2π
3a

dk

2π
eik ja (B5)

valid for nonzero integer j, we find two nontrivial solutions
by inspection:

φ
L,(1)
k = −e−i ka

2 , φ
R,(1)
k′ = e−i k′a

2(
2 cos k′a

2

)2 (B6)

and

φ
L,(2)
k = −ei ka

2 , φ
R,(2)
k′ = ei k′a

2(
2 cos k′a

2

)2 . (B7)

These solutions are linearly independent and are therefore the
only zero-energy solutions allowed [58].

We can show the long-distance asymptotic behavior of
these solutions is given by

φ
(1)
l, j ∼ (−1)l+1 1

2π

(
ei 2π

3 je−i π
3

1

x + iy
+ e−i 2π

3 jei π
3

1

x − iy

)

(B8)

and

φ
(2)
l, j ∼ (−1)l+1 1

2π

(
ei 2π

3 jei π
3

1

x + iy
+ e−i 2π

3 je−i π
3

1

x − iy

)
,

(B9)

where x = √
3la/2, y = ja and r =

√
x2 + y2 → ∞. For in-

stance, on the right half-plane, the first solution

φ
(1)
l, j =

∫ 2π
3a

− 2π
3a

dk′

2π

(
−2 cos

k′a
2

)−l+1

eik′ ja e−i k′a
2(

2 cos k′a
2

)2 (B10)

is dominated by momenta near k′a = ±2π/3 when l � 1:

φ
(1)
l, j ≈ (−1)l+1ei 2π

3 je−i π
3

∫ 2π
3a

2π
3a −�̃

dk′

2π
e[

√
3

2 (l−1)+i j](k′a− 2π
3 )

+(−1)l+1e−i 2π
3 jei π

3

∫ − 2π
3a +�̃

− 2π
3a

dk′

2π
e[−

√
3

2 (l−1)+i j](k′a+ 2π
3 ),

(B11)
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where �̃ is a momentum cutoff of O(1/a). Performing the
integrals and taking the �̃ → ∞ limit, we promptly obtain
Eq. (B8). Equations (B8) and (B9) suggest that the linear
combinations e−i π

3 φ(1) − ei π
3 φ(2) and ei π

3 φ(1) − e−i π
3 φ(2) are

eigenstates of the C3 rotation, which is indeed the case: The
former has helicity 1 and the latter has helicity 1̄.

Since φ(1) and φ(2) are linearly independent, we are unable
to construct a normalizable zero mode whose wave func-
tion drops to zero faster than 1/r as r =

√
x2 + y2 → ∞.

However, if we consider removing even more sites from
the graphene lattice, more than two zero modes may be
allowed. (The simplest example of removing a site together
with its three nearest neighbors and six next nearest neighbors
produces |1 + 6 − 3| = 4 zero modes.) In such a situation,
at most two zero modes decaying as 1/r are linearly inde-
pendent, which we can choose as 1/(x + iy) and 1/(x − iy);
any other zero mode can be combined with these two non-
normalizable modes to yield a wave function that decays faster
than 1/r . In other words, at most two conduction channels
have a logarithmically divergent LDOS.

We conclude this Appendix by explaining why the zero
modes cease to exist in the “strong-coupling lattice.” The
removal of c1 and c1̄ from the original lattice amounts to
the condition that the corresponding wave functions vanish.
We can directly calculate these wave functions for the two
solutions:

c(1)
1 = c(2)

1̄
= − ei 2π

3√
6a

, c(1)
1̄

= c(2)
1 = −e−i 2π

3√
6a

. (B12)

It is easy to verify that ch̄ vanishes for the helicity-h zero
mode e−ih π

3 φ(1) − eih π
3 φ(2). However, ch does not vanish for

the helicity-h solution, which means the electronic states c1

and c1̄ cannot be projected out without removing both zero
modes.

APPENDIX C: RKKY INTERACTION IN GRAPHENE
WITH A FOUR-SITE VACANCY

In this Appendix, we calculate the RKKY interaction be-
tween magnetic impurities in the Kondo model Eq. (2.9) to
the second order in the Kondo couplings. We show that the
RKKY interaction at low temperatures is dominated by the
helicity 1 and 1̄ channels and remains ferromagnetic despite
the presence of the vacancy.

Following Ref. [91], to the second order in Kondo cou-
plings Jhh′ , we can write the RKKY interaction between b1

and b2 as

HRKKY,12

= −[J2
00χ00 + J2

11(χ11 + χ1̄1̄ ) + J2
11̄(ei 2π

3 χ11̄ + e−i 2π
3 χ1̄1 )

+ J2
01(ei 2π

3 χ01 + ei 2π
3 χ1̄0 + e−i 2π

3 χ01̄ + e−i 2π
3 χ10)

]
S1 · S2,

(C1)

where the (isothermal) static spin susceptibilities χhh′ are
evaluated using Wick’s theorem for the noninteracting Hamil-
tonian with a four-site vacancy HVac,

χhh′ ≡ −1

4

∫ β

0
dτGc

hh(τ )Gc
h′h′ (−τ ). (C2)

The factor of 1/4 comes from spin degrees of freedom,
and β = 1/T . The imaginary time Green’s function Gc is
defined by

Gc
hh′ (τ ) ≡ −〈Tτ ch(τ )c†

h′ (0)〉. (C3)

Gc is diagonal in the helicity index and may be expressed as linear combinations of the real space Green’s function
Gaa( �R, �R′, τ ) ≡ −〈Tτ a( �R, τ )a†( �R′, 0)〉.

We proceed to find Gaa by solving its equation of motion (coupled with that of Gba(τ ) ≡ −〈Tτ b(τ )a†(0)〉) in momentum
space [60,61]. The result is

Gaa( �R, �R′, iωn) =1

2
L( �R − �R′, iωn) − 1

2

1

L(iωn) − L(�a1, iωn)

{
L̃(− �R, iωn)L̃(− �R′, iωn)

+ L̃(− �R − �a1, iωn)L̃(− �R′ − �a1, iωn) + L̃(− �R − �a2, iωn)L̃(− �R′ − �a2, iωn)

− 1

t2
(iωn)2L( �R, iωn)×L( �R′, iωn)

L(�a1, iωn)

L(iωn) + 2L(�a1, iωn)

}
, (C4)

where the fermionic Matsubara frequency iωn = (2n + 1)π/β. With the help of Eq. (A16) and the identity

z2

t2
L(�a1, z) = [L(z) + 5L(�a1, z) + 2L(�a1 + �a2, z) + L(2�a1, z)], (C5)

we find Gc
hh in particularly simple forms:

Gc
00(ω+) = ω+

2t2
− 3

2

L(ω+)

−2 + ω+L(ω+)
≈ ω

3t2
−

√
3

2π

ω

t2

(
ln

�2

ω2
+ iπ sgn ω

)
, (C6)

Gc
11(ω+) = Gc

1̄1̄(ω+) = ω+

2t2
+ 6

−2ω+ + [(ω+)2 − 9t2]L(ω+)
≈ π√

3

1

ω
(

ln �2

ω2 + iπ sgn ω
) . (C7)

The low-energy expressions of these Green’s functions can also be found from Eqs. (2.13a), (2.13b), and (2.13c). One can show,
term by term, that Gc

hh(z) is analytic everywhere except on the real axis.
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We are ready to compute χhh′ :

χhh′ = − 1

4β

∑
iωn

Gc
hh(iωn)Gc

h′h′ (iωn) = 1

4

∫ ∞

−∞

dω

2π i
nF (ω)[Gc

hh(ω+)Gc
h′h′ (ω+) − Gc

hh(ω−)Gc
h′h′ (ω−)]

= 1

2

∫ ∞

−∞

dω

2π
nF (ω)[Im Gc

hh(ω+) Re Gc
h′h′ (ω+) + Re Gc

hh(ω+) Im Gc
h′h′ (ω+)], (C8)

where nF (ω) = 1/(eβω + 1), ω± ≡ ω ± i0, and we have deformed the contour of integration into two straight lines Im z = ±0+.
While χ00 and χ01 = χ01̄ = χ10 = χ1̄0 are finite, it turns out that χ11 = χ11̄ = χ1̄1 = χ1̄1̄ is divergent for temperatures T � �:

χ11 ∼ π2

3

∫ �

−�

dω

2π
nF (ω)

−π sgn ω ln �2

ω2

ω2
(

ln2 �2

ω2 + π2
)2

= π2

6

∫ �

−�

dω

[
nF (ω) − 1

2

] − sgn ω ln �2

ω2

ω2
(

ln2 �2

ω2 + π2
)2

∼ π2

3

1

T ln3 �2

T 2

. (C9)

Inserting this into Eq. (C1), we find that at TK � T � �, the RKKY interaction can be approximated as

HRKKY,12 ∼ [
J2

11̄(T ) − 2J2
11(T )

]π2

3

1

T ln3 �2

T 2

S1 · S2, (C10)

where Jhh′ (T ) are the renormalized Kondo couplings at energy scale T .
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[41] E. Şaşıoğlu, H. Hadipour, C. Friedrich, S. Blügel, and I.
Mertig, Phys. Rev. B 95, 060408(R) (2017).

[42] N. A. García-Martínez, J. L. Lado, D. Jacob, and J. Fernández-
Rossier, Phys. Rev. B 96, 024403 (2017).

[43] J. P. Robinson, H. Schomerus, L. Oroszlány, and V. I. Fal’ko,
Phys. Rev. Lett. 101, 196803 (2008).

[44] T. O. Wehling, S. Yuan, A. I. Lichtenstein, A. K. Geim, and
M. I. Katsnelson, Phys. Rev. Lett. 105, 056802 (2010).

[45] E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).
[46] J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
[47] A. Hewson, The Kondo Problem to Heavy Fermions, Cam-

bridge Studies in Magnetism (Cambridge University Press,
Cambridge, UK, 1997).

[48] L. Fritz and M. Vojta, Rep. Prog. Phys. 76, 032501 (2013).
[49] L. Dell’Anna, J. Stat. Mech. (2010) P01007.
[50] Z.-G. Zhu, K.-H. Ding, and J. Berakdar, Europhys. Lett. 90,

67001 (2010).
[51] J.-H. Chen, L. Li, W. G. Cullen, E. D. Williams, and M. S.

Fuhrer, Nat. Phys. 7, 535 (2011).
[52] R. R. Nair, M. Sepioni, I.-L. Tsai, O. Lehtinen, J. Keinonen,

A. V. Krasheninnikov, T. Thomson, A. K. Geim, and I. V.
Grigorieva, Nat. Phys. 8, 199 (2012).

[53] J. Jobst, F. Kisslinger, and H. B. Weber, Phys. Rev. B 88,
155412 (2013).

[54] K. Takehana, Y. Imanaka, E. Watanabe, H. Oosato, D. Tsuya,
Y. Kim, and K.-S. An, Curr. Appl. Phys. 17, 474 (2017).

[55] E. Araujo, J. Brant, B. Archanjo, G. Medeiros-Ribeiro, and E.
Alves, Phys. E (Amsterdam) 100, 40 (2018).

[56] Y. Jiang, P.-W. Lo, D. May, G. Li, G.-Y. Guo, F. B. Anders,
T. Taniguchi, K. Watanabe, J. Mao, and E. Y. Andrei, Nat.
Commun. 9, 2349 (2018).

[57] D. May, P.-W. Lo, K. Deltenre, A. Henke, J. Mao, Y. Jiang, G.
Li, E. Y. Andrei, G.-Y. Guo, and F. B. Anders, Phys. Rev. B
97, 155419 (2018).

[58] V. M. Pereira, J. M. B. Lopes dos Santos, and A. H. Castro
Neto, Phys. Rev. B 77, 115109 (2008).

[59] V. M. Pereira, F. Guinea, J. M. B. Lopes dos Santos, N. M. R.
Peres, and A. H. Castro Neto, Phys. Rev. Lett. 96, 036801
(2006).

[60] N. M. R. Peres, S.-W. Tsai, J. E. Santos, and R. M. Ribeiro,
Phys. Rev. B 79, 155442 (2009).

[61] B. R. K. Nanda, M. Sherafati, Z. S. Popović, and S. Satpathy,
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that the system flows to the K-I fixed point when J11/J11̄ <

0.0060, or Ĩ > Ĩc0 ≈ 0.494. Changing �NRG and z shifts the
phase boundaries only slightly; however, where (and indeed,
whether) the K-I fixed point is numerically attainable depends
sensitively on the value of z. In the continuum limit �NRG →
1, it is not clear to us whether Ĩc0 is exactly 1/2, i.e., whether
the K-I phase exists only in the limiting case J11 = 0.
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