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In this work we explore the interplay between global symmetry and the mobility of quasiparticle excitations.
We show that fractonic matter naturally appears in a three-dimensional U (1) gauge theory, enriched by global
U (1) and translational symmetries, via the mechanism of anyonic spin-orbit coupling. We develop a systematic
understanding of such symmetry-enforced mobility restrictions in terms of the classification of U (1) gauge
theories enriched by U (1) and translational symmetries. We provide a unified construction of these phases by
gauging layered symmetry-protected topological phases.
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Recently, a new kind of topological quantum phenomenon
has been discovered in three dimensions, namely, emergent
particle excitations with restricted mobility. A variety of
exactly solvable lattice models have been constructed that
exhibit completely immobile particle excitations [1–8], called
“fractons.” These include the so-called type-I fracton models
[6,7], exemplified by the X-cube model, in which composites
of fractons become subdimensional particles, and the more
exotic type-II fracton models, such as Haah’s cubic codes [5],
where all particle excitations are immobile [9–13]. Many fur-
ther generalizations are being pursued, such as non-Abelian
fracton phases [14–16] and “twisted” fracton models [16,17].
Various aspects of gapped fracton phases are being actively
investigated [18–37]. On the other hand, it was also found
that a large class of gapless phases, whose low-energy theory
consists of higher-rank gauge fields, also supports matter
fields with restricted mobility [38–53] and can be connected
to gapped fracton phases via Higgs transitions [49,54]. As a
genuinely new class of emergent quantum order, fractons have
significantly broadened the horizon of three-dimensional (3D)
quantum phases [55].

In this work we consider how global symmetries, together
with translation symmetry, affect the mobility of quasiparticle
excitations. It is known that fracton phases can emerge in
translationally invariant systems with subsystem symmetries
[7,56–64]: if the symmetry acts nontrivially only on a lower-
dimensional subsystem, then moving the charged particles out
of the submanifold is clearly forbidden by the symmetry. Here
instead we consider the interplay between the translational
symmetry and certain ordinary global internal symmetries
(i.e., “0-form” symmetries [65]). In particular, we find scenar-
ios where the global symmetry quantum numbers of excited
quasiparticles depend on their positions in a nontrivial way.
As a result, moving them requires operators that are charged
under the symmetry. Therefore, in the presence of these global
symmetries, the mobility of the quasiparticles is restricted. If
the global symmetry is then gauged, the restricted particles
become fractons since charged operators are not allowed in
the gauge-invariant Hilbert space. We find a natural realiza-
tion of quasiparticles with such symmetry-enforced restricted

mobility in a U (1) spin-liquid phase enriched by a global U (1)
symmetry, where the global symmetry effectively imposes
electric dipole conservation [45,53,58,66].

More generally we reveal the relation between symmetry
restrictions on the mobility of quasiparticles and symmetry-
enriched topological orders, where the actions of transla-
tion and global symmetries on quasiparticle excitations do
not commute. This line of thinking proves fruitful as we
can systematically classify U (1) gauge theories enriched by
translation and certain global symmetry, and identify new
examples of fractonic matter in these theories. We propose
that all such theories can be constructed by gauging layered
symmetry-protected topological (SPT) phases.

I. TRANSLATION SYMMETRY FRACTIONALIZATION
IN GAPPED TOPOLOGICAL PHASES

We start from a family of toy examples in two dimen-
sions, which do not exhibit true fractonic behaviors but form
close analogs. Consider a translation-invariant system with
an internal symmetry group G. We assume that the system
is in a symmetric topologically ordered phase. Based on
the general formalism in Ref. [67] (see also Refs. [68,69]),
Ref. [70] classified the nontrivial actions of the symmetries on
the quasiparticle excitations, e.g., anyons in the gapped two-
dimensional (2D) topological order. First of all, translation
symmetries may permute anyon types. This is an interesting
symmetry action which we return to later. For now, we fo-
cus on the cases where anyons transform projectively under
the symmetries. Of particular interest to us is the so-called
anyonic spin-orbit coupling (ASOC), which refers to the non-
trivial interplay between translation- and internal-symmetry
quantum number. Simply speaking, as an anyon is transported
along some path in space, the G symmetry charge of the whole
system is changed accordingly. (Here the G symmetry charge
refers to a one-dimensional representation of G.) In other
words, the string operators that move anyons are “charged”
under the symmetry G. Mathematically such ASOC can be
rigorously defined for translations along a certain direction
together with the internal symmetry G [70], and it can be
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classified [70] by the second cohomology class H2[Z ×
G,A] = H1[G,A] × H2[G,A], where A is the group of
Abelian anyons in the symmetric topological order. Here
H2[G,A] corresponds to the fractionalization of the G sym-
metry itself, and H1[G,A] describes ASOC.

For a concrete example, let us consider the ZN toric code
model on a square lattice [71]. The Hamiltonian is given by

H = −
∑

r

(Br + B†
r ) −

∑
r

(Ar + A†
r ), (1)

where the plaquette terms Br and vertex terms Ar are defined
as

Br =

Z†

Z

Z† Z

r

, Ar =

X

X†

X† X
r

. (2)

Here Z and X are ZN clock and shift operators acting on ZN

spins on the edges, which satisfy ZX = e
2π i
N XZ . It is useful to

view the ZN toric code as a ZN lattice gauge theory, where Ar
terms energetically enforce the ZN Gauss’s law.

One can identify two types of excitations of the Hamil-
tonian: the electric (magnetic) excitations corresponding to
violations of vertex (plaquette) terms. The elementary electric
(magnetic) particle is denoted by e (m). e excitations can be
created and moved around by a string of Z or Z† along a
certain path on the lattice. We adopt the convention that a
vertex violation with Ar eigenvalue e2π i/N is defined as the
elementary e excitation. For instance, the following string
operator,

W =
∏

xL�x<xR

Z†
(x,y),x̂, (3)

creates an e-ē pair at the two endpoints (xL, y) and (xR, y),
where the subscript {r, î} denotes the edge starting from site
r = (x, y) along the î axis.

Now we consider two global ZN symmetries generated by
the following operators:

Sx̂ =
∏

r

Xr,x̂, Sŷ =
∏

r

Xr,ŷ. (4)

The toric code Hamiltonian respects both of them. The two-
anyon state W |0〉 has a nonzero Sx̂ quantum number:

Sx̂W |0〉 = e
2π i
N (xR−xL )W |0〉. (5)

In a sense, Sx̂ measures the ZN dipole moment along the x̂
direction. Therefore, motions of the e anyon along x̂ change
the Sx̂ eigenvalue of the state. Consider moving an e anyon
by l units along x̂; whenever l is not a multiple of N the
process is not allowed if the Sx̂ symmetry is preserved. Thus
the symmetry demands that an e anyon can only move in steps
of length N along x̂. Similar discussion applies for the Sŷ

symmetry. On the contrary, the mobility of the m excitations
is not affected by these symmetries.

Since Sx̂ and Sŷ are unitary symmetries, we can promote
them to gauge symmetries [72–74]. After introducing the
dynamical gauge fields, only gauge-invariant operators are
physical. Let us write the gauged model explicitly. We intro-
duce additional ZN spins that serve as the gauge fields. We

FIG. 1. (a) Gauging Sx̂ and Sŷ symmetry in a ZN toric code
model. Solid circles are original spins. Squares are gauge field
spins, inside which the two dots represent gauge fields for Sx̂ and
Sŷ symmetries, respectively. (b) e charge configuration created by
Eq. (9). (c) e charge configuration created by Eq. (10). In (b) and
(c) the numbers denote the corresponding ZN gauge charge.

remark that only the spins on the r, x̂ links are acted upon by
Sx̂. These spins also form a square lattice. The new “gauge”
spins live on bonds of this square lattice, which correspond to
the sites and the plaquette centers of the original square lattice.
They are denoted by X̃/Z̃r,î and X̃/Z̃p,î, where r stands for
the sites, p stands for the plaquettes, and î = x̂, ŷ. We label a
plaquette by the coordinate of its center. The lattice geometry
is illustrated in Fig. 1(a).

Since the original spins are sources of gauge fields, we
impose Gauss’s law constraints:

Xr,x̂ X̃ †
r,x̂ X̃r+x̂,x̂ X̃ †

r+ x̂
2 − ŷ

2 ,x̂
X̃r+ x̂

2 + ŷ
2 ,x̂ = 1,

Xr,ŷX̃ †
r,ŷX̃r+ŷ,ŷX̃ †

r− x̂
2 + ŷ

2 ,ŷ
X̃r+ ŷ

2 + x̂
2 ,ŷ = 1,

(6)

for all r.
We also have to modify the plaquette term by the minimal

coupling,

B̃p = BpZ̃p,x̂ Z̃†
p,ŷ, (7)

The last step is to add plaquette interactions for the new
gauge fields:

−K ′ ∑
r

Z̃r,î Z̃r+ x̂
2 + ŷ

2 ,î Z̃
†
r+ŷ,î

Z̃†
r− x̂

2 + ŷ
2 ,î

+ H.c. (8)

To see the mobility of excitations, let us construct gauge-
invariant operators. Clearly, we may still apply strings of X
operators to create or move the m (plaquette) excitations, and
similarly for X̃ . For strings composed by Z’s or Z̃’s, Gauss’s
law constraints imply that they must be combined in certain
ways. The basic building blocks are

Z̃r,x̂Z†
r−x̂,x̂Zr,x̂ (9)

and

Z̃r+ x̂
2 + ŷ

2 ,x̂Zr+ŷ,x̂Z†
r,x̂. (10)

Both do not commute with nearby Ar operators and create
clusters of e charges. The patterns of e charge configuration
are illustrated in Figs. 1(b) and 1(c). They agree with the
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charge configuration pattern in the (1,1) scalar charge theory
discussed in Ref. [49]. In fact, one can show explicitly that
if projected to the subspace defined by B̃p = 1, the gauged
model can be mapped exactly to the Higgsed tensor gauge
theory with the (1,1) scalar charge [49].

In the language of anyon models, we have essentially cre-
ated three copies of ZN toric code: the original one generated
by e and m, and a new one for each of the gauged symmetries,
generated by ex and mx for Sx̂ gauge symmetry, and ey and my

for Sŷ. Under Tx̂ translation we have

Tx̂ : e → eex, mx → mxm̄, (11)

where m̄ is the antiparticle to m. To see the transformation of
mx, notice that mx is created by a dual string of X̃ . However,
it does not commute with the K term unless one attaches
additional X operators. Since the action of Tx̂ permutes the
e particle’s topological charge, there exists no local operator
that can move e by one step along x̂. Of course, one can
move an e anyon by N steps since e is invariant under T N

x̂ . A
similar analysis applies for Tŷ. Thus there are no true fractons
in this model. We also remark that the mobility of m and e′
excitations are not affected.

II. FRACTONIC U (1) GAUGE THEORY

In this section we focus on fractonic matter in 3D-
lattice U (1) gauge theories. We first present an example
of symmetry-enforced fractonic matter, and then discuss its
possible realizations in models of U (1) spin liquids. In the
end, we present a general classification of fractonic U (1)
gauge theories.

A. An example of fractonic global U (1) symmetry

In the above ZN gauge theory example, due to the global
symmetry involved in the ASOC being finite, excitations
could always move in some special long steps. It is then
natural to expect that a global U (1) symmetry with nontrivial
ASOC could prevent quasiparticle excitations from moving
completely. However, for particle excitations in a gapped
phase, this is impossible because H1[U (1),A] = Z1, for any
finite Abelian group A. Instead we consider a similar effect
in a gapless U (1) gauge theory (in a sense this is the N → ∞
limit of the ZN model).

First we review the U (1) lattice gauge theory. Consider a d-
dimensional cubic lattice, with one rotor on each bond, which
is described by a pair of conjugate variables Arr′ = −Ar′r,
Err′ = −Er′r. They satisfy the canonical commutation relation
[Arr′ , Err′ ] = i, and commute on different bonds. Here the
A’s are 2π periodic. In other words the U (1) gauge field
is compact. E ’s take integer eigenvalues. We denote Ar,μ̂ ≡
Ar,r+μ̂, and similarly Er,μ̂ ≡ Er,r+μ̂.

The Hamiltonian of the gauge theory is given by

H = −K
∑

p

cos(∇ × A) + U

2

∑
e

E2
e + �

∑
r

(∇ · E)2
r,

(12)

where (∇ · E)r = ∑
r′∈NN(r) Err′ is the lattice divergence, and

NN stands for nearest neighbors. (∇ × A)p = ∑
e∈p εe

pAe

denotes the lattice curl for a plaquette p, with εe
p being +1

if the orientation of edge e matches that of the boundary of
plaquette p, and −1 otherwise.

We remark that the last term in the Hamiltonian essen-
tially imposes Gauss’s law as an energetic constraint. Be-
cause it commutes with all other terms, we can divide the
Hilbert space into sectors labeled by different configurations
of charges:

(∇ · E)r = qr, qr ∈ Z. (13)

It is well known that a compact U (1) gauge theory has a
Coulomb phase in d � 3 for U/K < (U/K )c [75], with the
critical value (U/K )c ≈ 1. In the Coulomb phase, we can
effectively ignore the compactness of the gauge field and
take a continuum limit to obtain Maxwell electrodynamics.
The low-energy excitations include propagating photons and
gapped electric and magnetic charges. For d = 2, a compact
U (1) gauge theory generally becomes confined due to the
proliferation of monopoles [76]. Notice that in the “fixed-
point” Hamiltonian of Eq. (12), all charges are static because
every term commutes with the Gauss’s law constraint. How-
ever, under a generic perturbation the charges will become
dynamical.

We now turn to global symmetries of the U (1) gauge
theory that exhibit an analog of the ASOC phenomenon in the
ZN toric code model. If we view the U (1) gauge theory as a
limit of ZN gauge theory with N → ∞, then the analog of the
symmetries defined in Eq. (4) are U (1) symmetries generated
by the following conserved charges:

Sμ̂ =
∑

r

Er,μ̂, μ = x, y, z, (14)

where the sum is over all lattice sites r. It is straightforward
to check that the gauge theory Hamiltonian in Eq. (12) indeed
commutes with each Sμ̂.

Let us show that −Sμ̂ is the electric dipole moment
of the charge distribution projected onto the μ̂ axis,
Pμ̂ = ∑

r qr r · μ̂. As an example, consider a pair of charges,
+q and −q, where +q is at the origin (0,0,0) and −q is at
r = (x, y, z). One can compute Sμ̂ for an arbitrary configura-
tion of electric field lines consistent with Gauss’s law, and it
is easy to see that

Sμ̂ = qrμ̂. (15)

Mathematically, we can simply observe the following relation
[77]:

−
∑

r

Er =
∑

r

r (∇ · E)r =
∑

r

r qr. (16)

Therefore, −S = P. As observed in Ref. [40], the conser-
vation of electric dipole moment implies that no charges
can move. Thus the mobility of electric charges becomes
restricted if we impose the Sμ̂ symmetries.

The change of the total Sμ̂ quantum number caused by
the motion of a charged particle along the μ̂ direction is the
expected generalization of the “anyonic spin-orbit coupling”
phenomenon in U (1) gauge theory. In Ref. [78], it was shown
that U (1) gauge theories enriched by a global symmetry group
G can be classified by projective representations of G carried
by electric and magnetic charges. For simplicity, let us assume
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for now that G is unitary and does not transform charge
types. Then the projective representation on an electric or
magnetic charge is classified by the second group cohomology
H2[G,U (1)]. The ASOC requires both a global U (1) symme-
try (i.e., one of the Sμ̂’s) and lattice translation symmetries.
So we take G = Z × U (1), where Z is one of the translations,
and applying Künneth formula we find

H2[U (1) × Z,U (1)] = Z. (17)

The interpretation of Z is precisely the change of the global
U (1) charge as a particle is transported by one lattice unit.

To summarize, we have shown that electric charges in this
model are in fact fractonic matter, if a global U (1) symmetry
that enforces conservation of dipole moments is present. We
can gauge the global symmetry generated by Sμ̂ to make the
electric charges truly immobile. It is straightforward to write
lattice models following a similar procedure to that described
in Sec. I. It is natural to expect that the gauged model is closely
related to tensor gauge theories with scalar charge [40,41].
In Sec. III we explicitly carry out the gauging procedure and
demonstrate that a higher-rank tensor gauge theory with (1,1)
scalar charge indeed emerges in the gauged model [49].

B. Fractonic U (1) spin liquid

U (1) electrodynamics can emerge as a low-energy effec-
tive theory of physical spin systems [79]. For example, poten-
tial realizations of emergent electromagnetism were proposed
in the so-called quantum spin ice state of rare-earth pyrochlore
materials [80,81]. In this section, we extend the observations
made in Sec. II A to spin models which can give rise to
an emergent U (1) gauge theory [79]. We first consider the
U (1) spin liquid model on the cubic lattice, and then on the
pyrochlore lattice.

1. The cubic model

Consider a model of spin-1/2’s on the cubic lattice, where
the spins occupy the nearest-neighbor bonds and form a lattice
of corner-sharing octahedra. Let us focus on the following
Hamiltonian:

Hcub = Jz

∑
oct

(
Sz

oct

)2 − J
∑
�

(S+
1 S−

2 S+
3 S−

4 + H.c.), (18)

where Sz
oct = ∑

μ̂(Sz
r,μ̂ + Sz

r−μ̂,μ̂). The numbering in the sec-
ond term runs over the perimeter of each square plaquette.

To reveal the U (1) gauge structure, following Ref. [79]
we first soften the constraint that S = 1/2 on each site. We
introduce rotor variables nrr′ and φrr′ , where φrr′ ∈ [0, 2π ),
nrr′ ∈ Z, and [φrμ, nr′ν] = iδrr′δμν . We represent the spin
variables as Sz = n − 1/2 and S± = e±iφ . For this mapping to
be valid we must impose the hard-core constraint n = 0 or n =
1, which is achieved by including a repulsion U

∑
rr′ (nrr′ −

1/2)2 in the Hamiltonian. We now further define link variables

err′ = εrnrr′ , arr′ = εrφrr′ . (19)

Here we define εr = 1 or −1 when r lies in the A or B
sublattice. The Gauss law constraint is given by

(∇ · e)r = εr
(
Sz

oct + 3
)
. (20)

Notice that in the ground state Sz
oct = 0, so there is actually a

background of static charges ±3. We then obtain the following
Hamiltonian:

H = U

2

∑
〈rr′〉

(
err′ − εr

2

)2

− K
∑

p

cos(∇ × a). (21)

In the following we are interested in the Coulomb phase of
the model in Eq. (18), which is known to exist for all values
of U from Monte Carlo simulations [82,83].

Let us now discuss the global symmetries in this system.
The spin model has an O(2) symmetry, generated by spin
rotation around the z axis and π rotation around the x axis.
In particular, we find that

∑
r,μ̂

Sz
r,μ̂ =

∑
r,μ̂

(
εrer,μ̂ − 1

2

)

=
∑

r∈A,μ̂

er,μ̂ −
∑

r∈B,μ̂

er,μ̂ + const. (22)

The only constraint following from the conservation of total
Sz is that electric charges must move on the same sublattice,
which is a well-known fact [79].

The fractonic symmetry we considered actually maps to
the staggered magnetization:

Sμ̂ =
∑

r

εrSz
r,μ̂ =

∑
r

er,μ̂. (23)

Notice that there is a slight difference compared to the “un-
frustrated” model, Eq. (12); namely, the ground state already
has nonzero electric field lines emitting from sublattice A
to sublattice B (e.g., err′ = 1 for all r ∈ A and r′ being
the nearest-neighbor B sites). Again, one may show that Sμ̂

is completely determined by charge configurations, and the
change of Sμ̂ is equal to the change of the electric dipole
moment. Therefore, the U (1) gauge theory also exhibits
ASOC and the conservation of Sμ̂ forbids motion of electric
charges along μ̂. We emphasize that the ASOC phenomena,
and consequently the symmetry-enforced fractonic behavior,
are universal properties of the Coulomb phase of the U (1) spin
liquid model as long as the symmetry is preserved.

As pointed out in Ref. [79], the J ring-exchange term
can be generated from two-body spin exchange terms in the
limit of large Jz. Examples of such terms consistent with the
symmetry Sμ̂ in Eq. (23) are

−
∑
r,r′

(J±
rr′,μ̂S+

r,μ̂S−
r′,μ̂ + H.c.), (24)

where r, r′ belong to the same sublattice, or
J ′

rr′,μ̂S+
r,μ̂S+

r′,μ̂ + H.c., where r, r′ belong to different
sublattices. While the latter choice breaks the global Sz

conservation, it still preserves the staggered magnetization
symmetry Sμ̂. The U (1) spin liquid phase should extend to
small but finite values of J±/Jz. Since the gauge structure
remains the same, we expect that the electric charges exhibit
fractonic dynamics.

Alternatively, we may redefine the spin operators:

Sz
r,μ̂ → εrSz

r,μ̂, (25)
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which can be achieved by a unitary operator U = ∏
r∈B,μ̂ Sx

r,μ̂.
This transformation also sends

S±
r,μ̂ → S∓

r,μ̂+, r ∈ B. (26)

Then the fractonic symmetry Sμ̂ becomes the total Sz on edges
along the μ̂th direction. A general Hamiltonian then takes the
following form:

H = Jz

∑
r

⎛
⎝∑

μ̂

Sz
r,μ̂ −

∑
ν̂

Sz
r−ν̂,ν̂

⎞
⎠

2

−
∑

r,r′,μ̂

(
J μ̂

rr′S+
r,μ̂S−

r′,μ̂ + H.c.
)
. (27)

If we only preserve
∑

μ̂ Sμ̂ which is the total Sz, we can allow
almost any couplings S+S−.

We remark that these Hamiltonians can be effectively
simulated by quantum Monte Carlo algorithms without a sign
problem as long as the J μ̂

rr′ coefficients are positive [84].
It would be interesting to study the dynamics of fractonic
charges in the model using such numerical simulations.

2. The pyrochlore model

Similar results can be derived for XXZ-type models of
U (1) spin liquid on the pyrochlore lattice. For the pyrochlore
U (1) spin liquid [79], spins reside on the sites of corner-
sharing tetrahedrons. The dual lattice of the pyrochlore struc-
ture is a diamond lattice. The sublattice sites A and B of
the dual diamond lattice map to centers of the tetrahedrons
with different orientations, and spins reside on the links of the
dual diamond lattice. Let us consider the low-energy effective
theory of the XXZ model on the pyrochlore lattice. The
Hamiltonian is given by

Hpyro = Jz

∑
tetra

(
Sz

tetra

)2 − J
∑
�

(S+
1 S−

2 S+
3 S−

4 S+
5 S−

6 + H.c.).

(28)

On each link, we can define U (1) gauge variables in the same
way as in Eq. (19) and when written in these variables the
theory takes the same form as Eq. (12) (without the charging
energy � term).

We now introduce global symmetries similar to those
given in Eq. (23), which constrain the mobility of electrically
charged excitations in the pyrochlore model. The Sμ̂ operators
defined in Eq. (23) can be thought of pictorially as collections
of electric field lines along μ̂, which measure the total electric
dipole moment along μ̂. The diamond lattice structure is more
complicated than the cubic lattice. However, we can still find
three independent “fractonic” symmetries in this model. A
unit cell for the diamond lattice is shown in Fig. 2. We define
six types of staggered magnetization operators:

Sμν =
∑
r∈A

(
Sz

r,μ − Sz
r+eν ,−ν

) =
∑
r∈A

er,μ +
∑
r∈B

er,−ν, (29)

where μ, ν = 1, 2, 3, 4 and Sμν = −Sνμ. It is easy to check
that Sμν’s commute with the Hamiltonian. Hence, they are
symmetries of the U (1) spin liquid. The Sμν operator mea-
sures the number of electric field lines passing through the

FIG. 2. Examples of the definition of Sμν and Sμ. The unit cell
of the diamond lattice is depicted in (a) and (b). The operator Sμν

measures the electric field lines that go through the μν direction.
(a) As an example S12 is shown. (b) An example Sμ operator which
measures the electric dipole moment of the system along the eμ

direction.

μν direction. However, these symmetries are not independent.
They satisfy the following constraints:

Sμν + Sνλ + Sλμ = 0, (30)

where μ, ν, and λ are all different. There are three independent
constraints, so the number of independent symmetries is three,
as expected. We can organize them in the following way:

Sμ = 1

3

∑
ν �=μ

Sμν, (31)

where μ = 1, 2, 3, 4 and S4 is a linear combination of S1,2,3.
Sμ measures total electric dipole moment along the eμ

direction.
If one of the Sμ symmetries is preserved, then the elec-

tric particle can only move in the plane normal to the eμ

direction, which is a honeycomb lattice. In addition, since
the honeycomb lattice is rugged, the electric particle can only
hop among the same sublattice sites. If we require two Sμ

symmetries, then the electric particle can only hop along a
line. If all three Sμ’s are preserved in the system, the electric
particle is immobile. Again, these symmetries do not put
constraints on the mobility of the magnetic monopoles.

C. General classification

So far we have considered U (1) gauge theory where the
mobility of electric charges is restricted by a global U (1)
symmetry. More generally, we can have particle excitations
carrying both electric and magnetic charges, called dyons. In
the previous model, Eq. (12), because magnetic monopoles
are created and/or moved by superpositions of Err′ operators,
the global symmetries Sμ̂ do not have any effect on their
mobility. One natural question to ask: Is it possible for both
of them to have restricted mobility? What are the general
constraints on the mobility of dyonic excitations beyond any
specific models? Below we present partial results on a general
classification of U (1) gauge theories with fractonic matter, by
relating the mobility of excitations to translation symmetry
action.

125150-5



WILLIAMSON, BI, AND CHENG PHYSICAL REVIEW B 100, 125150 (2019)

1. Symmetry-enforced fractonic matter

Let us start from U (1) gauge theories with a global U (1)
symmetry and classify fractonic behavior of charged exci-
tations enforced by the symmetry. As we have emphasized,
the fractonic behavior of electric gauge charges can be un-
derstood in the framework of symmetry-enriched U (1) gauge
theories. We now consider the classification of U (1) gauge
theories enriched by U (1) × Z3 symmetry. Since H2[U (1) ×
Z3,U (1)] = Z3, we can characterize the symmetry-enriched
U (1) gauge theories by two integer vectors (ve, vm), where ve

(vm) labels the fractionalization class of electric (magnetic)
charges. To see the physical meaning, consider a generic
dyonic excitation in the U (1) gauge theory, labeled by the
electric and magnetic charges (qe, qm). As it is transported by
r, a global U (1) charge

r · (veqe + vmqm) (32)

is acquired. Thus a (qe, qm) dyon can only move in the plane
perpendicular to the vector qeve + qmvm. We have also con-
sidered the case of multiple U (1) symmetries in Appendix A.

The remaining question is whether there exists any ’t Hooft
anomaly associated with a given (ve, vm) fractionalization
class. If the anomaly does not vanish, it means that the
corresponding fractionalization class (and hence the fractonic
matter) cannot actually be realized physically in three dimen-
sions. We can compute the ’t Hooft anomaly explicitly using
the formalism developed in Ref. [85], and details can be found
in Appendix A. There is no ’t Hooft anomaly if and only if

ve × vm = 0. (33)

Thus either one of ve and vm vanishes, or they must be parallel
(or antiparallel) vectors. In the latter case, we can find two co-
prime integers p, q such that pve + qvm = 0, and then a (p, q)
dyon is free to move. The lattice models we have studied
so far realize ve �= 0, vm = 0. A physically distinct case is
ve = ±vm, where we can choose p = ∓q = 1, and thus the
free dyon is a fermion.

One may wonder how these other types of fractonic U (1)
gauge theories can be realized physically. We show below that
they can be systematically constructed as gauged layered SPT
phases.

2. Intrinsically fractonic matter

An important aspect of symmetry enrichment we have ne-
glected thus far is the permutation of topological quasiparticle
types by symmetries. For a U (1) gauge theory, all universal
properties of gapped quasiparticles are encoded in the charge
lattice, and the intrinsic symmetries of such a lattice are the
duality group D. For U (1) gauge theory with bosonic matter,
D is a subgroup of the modular group SL(2,Z), generated by
the following transformations:

T :

(
qe

qm

)
→

(
qe + qm

qm

)
,

S :

(
qe

qm

)
→

(−qm

qe

)
. (34)

Because T does not preserve the exchange statistics of dyons,
the actual duality group D is generated by T 2 and S. For
U (1) gauge theory with fermionic matter (i.e., the unit electric
charge is a fermion), then the symmetry is the full duality
group.

To describe the action of a global symmetry group G, we
need to specify a group homomorphism ρ : G → D from the
global symmetry group G to the duality group. In all previous
discussions, we have assumed that ρ maps G to the identity
element in D; i.e., no charges are permuted nontrivially.
We now relax this assumption. Because the duality group
is discrete, there are no nontrivial homomorphisms from the
continuous connected group to D, and we can focus on dis-
crete symmetries. Consider a translation symmetry G =Z. An
obvious homomorphism from Z to D is to map the generator
to T 2 (or ST −2S−1). To be concrete let us suppose

Tx̂ : e → e, m → me2. (35)

If this is the case, we expect that the magnetic monopole
cannot move in the x direction since it changes its topological
charge type under translation. In this case, the magnetic
charges are fractonic even in the absence of any global sym-
metry; thus we call them intrinsically fractonic. We should
stress that, while we assume translation invariance to facilitate
the argument, it should be considered as a mathematical
way to formulate the notion of mobility and the fractonic
behavior does not rely on a precise translation symmetry of
the Hamiltonian.

More generally, if Tx̂ maps to any element of D which has
infinite order, certain dyons become immobile (along x̂).

D. Gauged layered SPT phases

We now present a general construction that realizes all
kinds of fractonic U (1) gauge theories discussed so far, thus
providing a unified view of them.

We start from a 3D SPT phase consisting of layers of 2D
U (1)g × G SPT phases, where U (1)g will become a gauge
symmetry and G is the global symmetry. Without loss of
generality, let us assume that the layers are in the yz plane.
For simplicity we consider bosonic systems for now. Such
2D SPT phases are classified by H3[U (1)g × G,U (1)] =
Z × H1[G,U (1)] [86]. Here the first Z factor corresponds
to bosonic integer quantum Hall (BIQH) states [87,88], and
the H1[G,U (1)] factor describes the G charge (i.e., one-
dimensional representation) carried by a 2π U (1)g flux in-
sertion. We also consider weak-tunneling couplings between
layers to allow charges to move in three dimensions.

Now we gauge the global U (1)g symmetry. We expect
that the result is a deconfined 3D U (1) gauge theory because
before gauging the state is short-range entangled. The fun-
damental charged bosons become the e particles, which can
move freely in space, albeit with anisotropic dispersion. How-
ever, the layered SPT matter can affect the symmetry-enriched
order in the resulting gauge theory. In particular, we know
from previous studies of 3D topological insulating phases
[78,89–91] that symmetry properties of magnetic monopoles
directly reflect the SPT order of the underlying matter.

We start the analysis from gauged layers of BIQH
states. Suppose each layer has a Hall conductance σH = 2.
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FIG. 3. A monopole-antimonopole pair in a layered SPT phase.
A Dirac string penetrating layers of 2D SPT states is illustrated.

Physically, if we insert a U (1) monopole m in such a phase,
a Dirac string of 2π flux is attached to the monopole, which
penetrates the BIQH layers in the half space. Now suppose
we have a monopole-antimonopole configuration. Due to the
quantum Hall response, each 2π flux penetration contributes
two units of electric charge, and thus the configuration has a
total electric charge proportional to the distance between the
monopole and the antimonopole. Thus the monopole in this
layered SPT phase exhibits a kind of ASOC. This is illustrated
in Fig. 3.

Let us make this argument more precise. We start with a
charge-neutral monopole, and translate it by one step along x̂,
across one BIQH layer. Suppose this can be done using gauge-
invariant (i.e., charge-neutral) local operators. This process
can be viewed as an instanton tunneling event in the 2D BIQH
state. Due to the quantum Hall effect, the −2π flux acquires
a polarization charge −2. In order to conserve charge, a
local (gapped) boson excitation with +2 charge must also be
created, in accordance with the transformation in Eq. (35).
This is typical for fractonic excitations: moving them requires
the creation of additional excitations, and thus there is an en-
ergetic barrier. In the fully gauged theory, monopoles cannot
move between layers in the x̂ direction. We can see that this
construction precisely realizes the symmetry transformation
given in Eq. (35), and magnetic charges become intrinsically
immobile (thus far in one direction only, but we may stack
layers of BIQH states in three independent directions to make
monopoles completely immobile fractons).

One question that we have not addressed thus far is the
spectrum of the gauged layered SPT phase. Coupling to SPT
matter generates Chern-Simons terms in each layer, which
changes the photon spectrum. A very similar state was studied
in Ref. [92], and we adapt their results to the present setting
in Appendix B. We find that the photon remains gapless, but
its dispersion is softened in the direction perpendicular to the
SPT layers.

Now we consider other phases classified by H1[G,U (1)].
Similarly, as the magnetic monopole is transported, the global
G charge is modified. The magnetic monopole in the 3D
state becomes fractonic if the G charge has infinite order, for

example, when G = U (1). In this case, each 2D layer has a
“crossed” quantized Hall response between U (1)g and U (1).
This implies that, as we separate a pair of monopoles, the
Dirac string between them carries a growing U (1) charge.
This is essentially equivalent to the model discussed in Sec. II,
up to an S duality that swaps the electric and magnetic
charges.

We also consider U (1) gauge theories with fermionic mat-
ter (one can map a U (1) gauge theory with fermionic matter
to one with bosonic matter and a θ term with θ = 2π ). In this
case, the full dyon spectrum can be generated by a fermionic
excitation f with unit electric charge, and a neutral bosonic
monopole m with unit magnetic charge. Correspondingly,
we can construct translation-symmetry-enriched U (1) gauge
theories by gauging layered fermionic SPT phases. We do not
attempt a general classification here, opting instead to focus
on two examples.

First consider a 3D state made up of 2D layers given by
fermionic integer quantum Hall (IQH) states with σH = 1.
Gauging the U (1) symmetry turns the system into a U (1)
gauge theory with fermionic matter. The Hall response implies
the following transformation of charge types under transla-
tion:

Tx̂ : f → f , m → m f , (36)

which corresponds to the T element in D.
We can also take 2D U (1)g × U (1) fermionic SPT phases

as building blocks, characterized by a crossed Hall response.
We remark that although the crossed Hall conductance is
the same as the bosonic case, the charge-1 excitations are
fermions. After gauging, we find that the magnetic monopole
m becomes symmetry-enforced fractonic, while the fermionic
charge f remains free. If we instead label the charge lattice
with a bosonic charge e = m† f and m (corresponding to a T
duality), both of them are fractonic. This is exactly the state
we described in Sec. II C.

In this section we only considered translations along one
direction. It is rather straightforward to generalize the con-
struction to full three-dimensional translations, by stacking
2D SPT phases in all directions.

The construction also provides a new interpretation of the
anomaly-vanishing condition derived in Sec. II C: if ve and
vm were not parallel, all dyons become symmetry-enforced
fractons. It is not clear how one could realize such a state
from gauging layered 2D SPT phases. The anomaly-vanishing
condition guarantees that such a situation does not arise, and
one can realize any such symmetry-enforced fractonic matter
using the gauged layers construction.

III. GAUGING FRACTONIC SYMMETRIES

In this section we make a connection between our con-
struction of fractonic models and more familiar constructions
via higher-rank tensor gauge theory or gauging subsystem
symmetries. We provide an explicit mapping between the
gauged fractonic U (1) gauge theory in Sec. II A and a tensor
gauge theory with (1,1) scalar charge [40,41,49]. We also
demonstrate that the e particle in 3D toric code becomes
fractonic when a subsystem symmetry is enforced.
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A. Higher-rank tensor gauge theories

For simplicity we work with a “flat-band” version of a
U (1) gauge theory, where photons are dispersionless. This is
achieved by dropping the E2

e terms from the Hamiltonian in
Eq. (12). While the dynamics is fine tuned in such a limit,
this does not affect the structure of the gauge-invariant Hilbert
space that we are interested in.

We have three independent U (1) symmetries generated by
shifting all rotors on x̂, ŷ, and ẑ links, respectively. To gauge
these symmetries we introduce rotor variables representing
new U (1) gauge fields: three on each vertex labeled by x̂, ŷ, ẑ,
and a pair on each face; e.g., on an x̂ face we introduce a ŷ and
ẑ rotor. The rotor variables are denoted by Ẽ and Ã, as before.
Roughly speaking, the site gauge fields become identified with
the diagonal components of a tensor gauge field, while the
face gauge fields become the off-diagonal components. As we
will see, the symmetric condition on the tensor gauge field is
imposed energetically in our model.

Since the new gauge fields are sourced by electric fields
of the original U (1) gauge theory, for each edge we have a
Gauss’s law constraint

(∇î · E)r,î : = Er,î + Ẽr+î,î − Ẽr,î +
∑

p(r,r+î)

εr,î
p Ẽp,î

= 0, (37)

where εr,î
p = ±1 is 1 if p extends from (r, r + î) in a positive

direction, and −1 otherwise.
Additionally we follow the minimal coupling procedure to

obtain

−K
∑

p

cos[(∇ × A)p − Ãp,î + Ãp, ĵ], (38)

where î �= ĵ are the axes parallel to p, chosen such that {î, ĵ, p̂}
forms a right-handed basis.

We also introduce magnetic field terms to the Hamiltonian
that penalize nonzero flux for Ã:

−λ
∑

î

⎡
⎣∑

c

cos(∇î × Ã)c +
∑
r, ĵ �=î

cos(∇î × Ã)r, ĵ

⎤
⎦, (39)

where

(∇î × Ã)c : =
∑
p∈c

ε p,î
c Ãp,î, (40)

and ε
p,î
c = +1 if (p, î) sits in a positive direction relative to

the center of the cube c, −1 otherwise. Similarly,

(∇î × Ã)r, ĵ := Ãr+ĵ,î − Ãr,î −
∑

p(r,r+ĵ)

εr, ĵ
p Ãp,î. (41)

We would like to rewrite the model as a tensor gauge the-
ory. To this end, let us perform the following transformation:

∏
e

∏
v∈e

CE εv
e

e,(v,ê)

∏
�e

CE ε�e
e,(�,ê), (42)

where εv
e is † when v sits on the positive end of e and 1

otherwise, similarly ε�e is † when � extends from e in the

positive direction and 1 otherwise. The CE gate acting on two
rotors is defined by

CE1,2|A1, A2〉 = |A1, A1 + A2〉, (43)

CE1,2|E1, E2〉 = |E1 − E2, E2〉. (44)

The above transformation can be viewed as a change of
variables.

After this change of variables the newly introduced Gauss’s
law constraints become

(∇î · E)r,î = 0 �→ Er,î = 0, (45)

effectively fixing out the original rotor variables. Gauss’s law
of the original gauge fields (∇ · E)r in Eq. (12) maps to∑

î

−Ẽr+î,î + 2Ẽr,î − Ẽr−î,î +
∑
pr

εr
p(Ẽp,î + Ẽp, ĵ ), (46)

where we have imposed the new Gauss’s law strictly, by
setting Ẽr,î = 0.

We also find that the term in Eq. (38) becomes

−K
∑

p

cos(Ãp,î − Ãp, ĵ ), (47)

which gives an energy penalty to any state with fields on a face
that are not symmetric. After projecting into the zero-energy
subspace of this term, we have a symmetric tensor gauge field
with a single independent rotor on each face defined by

Ãp,î ∼ Ãp, ĵ �→ Ãp,
1
2 (Ẽp,î + Ẽp, ĵ ) �→ Ẽp. (48)

We remark that the factor of 1/2 above leads to the unusual
commutation relation

[Ãp, Ẽp] = i

2
, (49)

which was chosen to match the convention of Ref. [49].
Within the symmetric subspace, the original Gauss’s law

becomes ∑
î

−Ẽr+î,î + 2Ẽr,î − Ẽr−î,î + 2
∑
pr

εr
pẼp, (50)

as expected for the symmetric tensor gauge theory with
(1,1) scalar charge. Additionally the magnetic field terms in
Eqs. (39) and (40) become∑

p∈c

ε p,î
c Ãp, (51)

Ãr+ĵ,î − Ãr,î −
∑

p(r, ĵ)

εr, ĵ
p Ãp, (52)

matching those of the symmetric tensor gauge theory with
(1,1) scalar charge.

B. Type-I fracton models

We now discuss connections to type-I fracton spin models,
particularly the X-cube model [7]. We point out that U (1) hav-
ing an infinite number of irreducible representations, indexed
by integers, was essential in our constructions above. Another
class of examples with infinite symmetry groups are systems
with subsystem symmetries [7,17,56–63], which also possess
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an infinite number of irreducible representations in the ther-
modynamic limit. Let us consider a concrete example, namely,
a 3D Z2 toric code with planar subsystem symmetries. We
define the toric code following the standard convention, with
qubits on edges of a cubic lattice:

H = −
∑

r

∏
r′∈NN(r)

Xrr′ −
∑
�

∏
e∈�

Ze. (53)

There are two types of excitations: violations of the vertex
terms are particle excitations, denoted by e, and violations of
plaquette terms are loop excitations.

The Hamiltonian respects a spin-flip subsystem symmetry,
generated by X ⊗L×L, on each dual plane. For example, on an
xy plane we have

∏
x,y

X(x,y,z),ẑ. (54)

We notice that such a symmetry can actually be defined on
any closed surface on the dual lattice, which is an example of
a “1-form” symmetry in the Z2 gauge theory [65]; however,
we only make use of a subgroup defined on dual planes. Under
this subsystem symmetry the e particle becomes fractonic, as
the associated string operators are products of Z’s along lattice
paths and hence any motion of e changes one of the subsystem
symmetry charges.

We can then gauge all the subsystem symmetries [7,17,58].
To do so we introduce two gauge qubits onto every face,
one for each dual plane crossing the face. For example, we
associate qubits (�, x̂), (�, ẑ) to a face � in a ŷ plane. These
gauge variables come with a Gauss’s law constraint on each
edge, e.g.,

Xr,ẑ

∏
�(r,ẑ)

X�,ẑ. (55)

We also introduce Hamiltonian terms for every cube and dual
plane that penalize nonzero gauge flux on the faces of the cube
that intersect the dual plane, e.g.,

−
∏

(�,ẑ)∈c

Z�,ẑ, (56)

and similar terms for x̂ and ŷ. In the above c denotes a single
cube in the lattice; note the product involves four Z matrices.
The Z terms in the Hamiltonian are modified by minimal
coupling as

−Z�,x̂Z�,ẑ

∏
e∈�

Ze (57)

for a face in the ŷ plane, and similarly for x̂, ẑ.
It is possible to disentangle the original matter qubits and

gauge constraints from the newly introduced gauge qubits by
applying a circuit of controlled-X gates [73,74,93]

∏
e

∏
�e

CXe,(�,ê), (58)

where

CX1,2|i, j〉 := |i, i + j〉, (59)

in the Z basis. The CX1,2 gate commutes with Z1 and X2, while

CX1,2X1CX †
1,2 = X1X2, (60)

CX1,2Z2CX †
1,2 = Z1Z2. (61)

Under the transformation in Eq. (58) the Gauss’s law con-
straints are mapped to Xe. We focus on the sector where these
constraints are all satisfied, and hence all edge qubits are
projected into the |+〉 := (|0〉 + |1〉)/

√
2 state. The Z term of

the Hamiltonian in Eq. (57) is mapped to

−Z�,x̂Z�,ẑ (62)

for a ŷ plaquette, and similarly for x̂, ẑ. The X term in Eq. (53)
is mapped to

−
∏
�r

X�,îX�, ĵ, (63)

where î �= ĵ label the two qubits on each face. The flux
term for the new gauge fields in the Hamiltonian remains
unchanged.

Next we restrict to the sector where the Z�,îZ�, ĵ terms are
all satisfied; this leaves a single qubit degree of freedom on
each face defined by new operators:

Z�,î ∼ Z�, ĵ �→ Z�, X�,îX�, ĵ �→ X�. (64)

The Hamiltonian then becomes

Hgauged = −
∑

r

∏
�r

X� −
∑
c,î

∏
î∈�∈c

Z�, (65)

which is precisely the X-cube Hamiltonian on the dual cubic
lattice. The cube term can be traced back to the site stabilizer
in the (ungauged) toric code Hamiltonian. Thus the fracton in
the X-cube model is indeed the gauge charge of the toric code
model as expected.

IV. DISCUSSION

To conclude the paper we outline some open questions
and future directions: In the classification of U (1) gauge the-
ory enriched by translation symmetry, we only considered a
simple class of charge permutations, namely, those generated
by T . There are (infinitely) many other types of permutation
that are not conjugate to those generated by T . It would be
interesting to find out whether such symmetry actions could
be realized physically. In the most general classification, one
must consider twisted group cohomology corresponding to
fractionalization on charge excitations.

It would be interesting to generalize our construction to
non-Abelian gauge theories. It is well known that in (3+1)
dimensions pure non-Abelian gauge theories are in the con-
fined phase. They can become deconfined by coupling to
gapless matter. For example, an SU (Nc) gauge theory coupled
to Nf flavors of massless Dirac fermions in the fundamental
representation flows to the free fixed point when Nf � Nc and
realizes a non-Abelian Coulomb phase. We may add gapped
matter to the theory without affecting the RG flow. This
raises the possibility of constructing examples of fractonic
non-Abelian gauge theories in the presence of both gapless
and gapped matter. Another direction would be to generalize
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the gauged 3D stacked quantum Hall states to non-Abelian
symmetry, which could alter the infrared properties of the
gauge theory.

We discussed briefly how a Z2 gauge theory in three
dimensions can be enriched by planar subsystem symmetries,
the gauging of which produces the X-cube model (in a cer-
tain sector). We believe this example can also be described
using the symmetry fractionalization formalism, where the
fractonic behavior of e charges corresponds to a certain
cohomology class in H2[Zsub

2 � Z,Z2], where Zsub
2 is the

(extensively large) group of planar subsystem symmetries,
and Z is the translation symmetry group. Similarly, one can
classify symmetry fractionalization on loop excitations by
H3[Zsub

2 � Z,Z2]. We leave the investigation of properties
of such loop excitations to future work. It would also be
worthwhile understanding the relation between the ’t Hooft
anomalies for global U (1) × Z3 we have studied and those of
a higher form or subsystem U (1) times translation symmetry
[94].

It will be interesting to see whether similar ideas can be
useful for type-II fractons with fractal dynamics, such as those
in Haah’s cubic code [5], or analogous U (1) models [52,95].

Note added. Recently, several relevant works on symmetry-
enforced fractonic matter appeared [45,53,58,66].
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APPENDIX A: ’t HOOFT ANOMALY
IN U (1) GAUGE THEORY

In this Appendix we consider a U (1) gauge theory with
a global symmetry group G = U (1) × Z3, and assume that
symmetry transformations in G do not permute charge types.
G symmetry-enriched U (1) gauge theories are classified by
the projective representations carried by electric and magnetic
charges, denoted by [ωe] and [ωm], respectively, both of which
are in H2[G,U (1)]. For convenience we represent U (1) as
R/Z, with multiplication denoted additively. We also define
[nm] ∈ H3[G,Z], which is given by nm = δωm, where δ is the
boundary operator.

The ’t Hooft anomaly associated with G is characterized by
the following group 5-cocycle in H5[G,U (1)] [85]:

O5(g, h, k, l, m) = e2π iωe(g,h)nm (k,l,m). (A1)

Physically, if O5 is cohomologically nontrivial, the corre-
sponding symmetry-enriched U (1) gauge theory must live
on the boundary of a (4+1)-dimensional bosonic SPT phase
described by O5.

Before calculating O5 we need to understand possible
(4+1)-dimensional bosonic SPT phases with U (1) × Z3 sym-
metry. We could obtain the classification by directly com-
puting the group cohomology [70], but we instead take a
more intuitive approach. Since the elements of Z3 are actually

translations, such SPT phases can be represented using a layer
construction, i.e., as stacks of lower-dimensional SPTs with
only U (1) symmetry. We remark that nontrivial U (1) SPT
phases only exist in even spatial dimensions. In this case, the
only relevant option is to stack 2D U (1) SPT planes, along any
two of the directions (the other option is a four-dimensional
(4D) lattice of “points,” or zero-dimensional U (1) SPT states;
however, this state requires the full 4D translation Z4).

In Ref. [70] it was shown that the stacking corresponds
mathematically to the slant product for group cocycles. There-
fore, to extract the cohomology class, we can apply the
slant product to O5 with respect to two translations, and
define On1,n2

3 = iTn1
iTn2

O5, and then restrict On1,n2
3 to the U (1)

subgroup of G. The result must be a 3-cocycle classified by
H3[U (1),U (1)] = Z. So we can parametrize

On1,n2
3 (θ1, θ2, θ3) = Kn1,n2θ1

θ2 + θ3 − [θ2 + θ3]2π

2π
. (A2)

We also need explicit representatives of 2-cocycles in
H2[U (1) × Z3,R/Z]. We only consider those that corre-
spond to ASOC. Denote elements of U (1) × Z3 by (θ, n)
where θ ∈ [0, 2π ), n ∈ Z3. We have

ω((θ1, n1), (θ2, n2)) = θ1ve · n2

2π
, ve ∈ Z3. (A3)

The fact that this is a nontrivial cocycle for any v �= 0
follows from ω((θ, 0), (0, n)) − ω((0, n), (θ, 0)) = θv·n

2π
.

A direct calculation finds

n((θ1, n1), (θ2, n2), (θ3, n3)) = θ1 + θ2 − [θ1 + θ2]2π

2π
vm · n3.

(A4)

After taking the slant product (with respect to translations
along n1 and n2) and restricting to the U (1) subgroup, we get

Kn1,n2 = (vm · n1)(ve · n2) − (ve · n1)(vm · n2). (A5)

As expected we have Kn1,n2 = −Kn2,n1 . Considering all n1, n2,
the condition can be summarized as

ve × vm = 0. (A6)

We can generalize the above calculation to multiple U (1)
symmetries. We denote the group elements of U (1) × · · · ×
U (1) by a vector θ = (θ1, θ2, . . . ), and parametrize 3-cocycles
in U (1) × · · · × U (1) by

On1,n2
3 (θ1, θ2, θ3) =

∑
ab

Kabθ1a
θ2b + θ3b − [θ2b + θ3b]2π

2π
.

(A7)

Here one should notice that the 3-cocycles corresponding to
Kab and Kba for a �= b are in fact equivalent.

The expressions given above for 2- and 3-cocycles of
fractionalization classes are easily generalized:

ωe((θ1, n1), (θ2, n2)) =
∑
a,α

vaα
e θ1an2α

2π
,

nm((θ1, n1), (θ2, n2), (θ3, n3))

=
∑
a,α

vaα
m

θ1a + θ2a − [θ1a + θ2a]2π

2π
n3α. (A8)
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A straightforward calculation yields

Kab =
∑
αβ

(
vbα

e vaβ
m − vbβ

e vaα
m

)
n1αn2β. (A9)

The anomaly vanishes when Kab + Kba = 0.

APPENDIX B: SPECTRUM OF GAUGED
LAYERED SPT PHASES

In this Appendix we study the bulk spectrum of gauged lay-
ers of 2D SPT phases. We start from the simple case of layers
of 2D quantum Hall states stacked along the ẑ direction. We
describe the low-energy physics using the following effective
gauge theory after integrating out the matter:

L =
∑

z

n

4π
εμνλAz,μ∂νAz,λ

+
∑

z

1

2g3a
(∂0Az,3 − Az,0 + Az+1,0)2

−
∑

i

J3a(∂iAz,3 − Az,i + Az+1,i )
2, (B1)

where Azμ(x0, x1, x2) is the lattice gauge field, x0 is time,
x1, x2 are coordinates in the xy plane, z is the layer index, a
is the lattice spacing, and g3 and J3 are coupling constants.
We take n = 1 for fermionic IQH and n = 2 for bosonic
IQH states. We have ignored terms that are irrelevant at low
energies.

Let us try to understand the gapless gauge boson excita-
tions in greater detail. One can find the dispersion relation
for these gapless modes by going to Fourier space. For small
momentum k, we have

L = n

4πa
εμνλAμikνAλ + 1

2g3a
(k0A3 − k3A0)2

− J3a

2

∑
i

(kiA3 − k3Ai )
2. (B2)

The theory can now be diagonalized in the temporal gauge
A0 = 0. Following Ref. [92] we obtain the dispersion

ω2 = J3g3a2
(
k2

1 + k2
2

) + 4π2J2
3 a4

n2
k4

3 . (B3)

Hence the gauge bosons “soften” along the z direction.

[1] C. Chamon, Phys. Rev. Lett. 94, 040402 (2005).
[2] C. Castelnovo, C. Chamon, and D. Sherrington, Phys. Rev. B

81, 184303 (2010).
[3] S. Bravyi, B. Leemhuis, and B. M. Terhal, Ann. Phys. 326, 839

(2011).
[4] C. Castelnovo and C. Chamon, Philos. Mag. 92, 304 (2012).
[5] J. Haah, Phys. Rev. A 83, 042330 (2011).
[6] S. Vijay, J. Haah, and L. Fu, Phys. Rev. B 92, 235136 (2015).
[7] S. Vijay, J. Haah, and L. Fu, Phys. Rev. B 94, 235157 (2016).
[8] B. Yoshida, Phys. Rev. B 88, 125122 (2013).
[9] S. Bravyi and J. Haah, Phys. Rev. Lett. 107, 150504 (2011).

[10] S. Bravyi and J. Haah, Phys. Rev. Lett. 111, 200501 (2013).
[11] I. H. Kim, arXiv:1202.0052.
[12] J. Haah, Phys. Rev. B 89, 075119 (2014).
[13] I. H. Kim and J. Haah, Phys. Rev. Lett. 116, 027202 (2016).
[14] S. Vijay and L. Fu, arXiv:1706.07070.
[15] A. Prem, S.-J. Huang, H. Song, and M. Hermele, Phys. Rev. X

9, 021010 (2019).
[16] H. Song, A. Prem, S.-J. Huang, and M. A. Martin-Delgado,

Phys. Rev. B 99, 155118 (2019).
[17] Y. You, T. Devakul, F. J. Burnell, and S. L. Sondhi,

arXiv:1805.09800.
[18] J. Haah, arXiv:1305.6973.
[19] J. Haah, Commun. Math. Phys. 324, 351 (2013).
[20] J. Haah, Rev. Colombiana Mat. 50, 299 (2016).
[21] S. Vijay, arXiv:1701.00762.
[22] H. Ma, E. Lake, X. Chen, and M. Hermele, Phys. Rev. B 95,

245126 (2017).
[23] H. Ma, A. T. Schmitz, S. A. Parameswaran, M. Hermele, and

R. M. Nandkishore, Phys. Rev. B 97, 125101 (2018).
[24] H. He, Y. Zheng, B. A. Bernevig, and N. Regnault, Phys. Rev.

B 97, 125102 (2018).
[25] B. Shi and Y.-M. Lu, Phys. Rev. B 97, 144106 (2018).

[26] A. Prem, J. Haah, and R. Nandkishore, Phys. Rev. B 95, 155133
(2017).

[27] K. Slagle and Y. B. Kim, Phys. Rev. B 96, 195139 (2017).
[28] K. Slagle and Y. B. Kim, Phys. Rev. B 97, 165106 (2018).
[29] W. Shirley, K. Slagle, Z. Wang, and X. Chen, Phys. Rev. X 8,

031051 (2018).
[30] W. Shirley, K. Slagle, and X. Chen, SciPost Phys. 6, 015 (2019).
[31] W. Shirley, K. Slagle, and X. Chen, Ann. Phys. 410, 167922

(2019).
[32] W. Shirley, K. Slagle, and X. Chen, Phys. Rev. B 99, 115123

(2019).
[33] A. T. Schmitz, H. Ma, R. M. Nandkishore, and S. A.

Parameswaran, Phys. Rev. B 97, 134426 (2018).
[34] T. Devakul, Phys. Rev. B 97, 155111 (2018).
[35] T. Devakul, S. A. Parameswaran, and S. L. Sondhi, Phys. Rev.

B 97, 041110(R) (2018).
[36] T. H. Hsieh and G. B. Halász, Phys. Rev. B 96, 165105 (2017).
[37] G. B. Halász, T. H. Hsieh, and L. Balents, Phys. Rev. Lett. 119,

257202 (2017).
[38] C. Xu, Phys. Rev. B 74, 224433 (2006).
[39] A. Rasmussen, Y.-Z. You, and C. Xu, arXiv:1601.08235.
[40] M. Pretko, Phys. Rev. B 95, 115139 (2017).
[41] M. Pretko, Phys. Rev. B 96, 035119 (2017).
[42] M. Pretko, Phys. Rev. B 96, 115102 (2017).
[43] M. Pretko and L. Radzihovsky, Phys. Rev. Lett. 120, 195301

(2018).
[44] A. Prem, M. Pretko, and R. M. Nandkishore, Phys. Rev. B 97,

085116 (2018).
[45] M. Pretko and L. Radzihovsky, Phys. Rev. Lett. 121, 235301

(2018).
[46] M. Pretko, Phys. Rev. B 96, 125151 (2017).
[47] H. Ma and M. Pretko, Phys. Rev. B 98, 125105 (2018).
[48] M. Pretko, Phys. Rev. D 96, 024051 (2017).

125150-11

https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevLett.94.040402
https://doi.org/10.1103/PhysRevB.81.184303
https://doi.org/10.1103/PhysRevB.81.184303
https://doi.org/10.1103/PhysRevB.81.184303
https://doi.org/10.1103/PhysRevB.81.184303
https://doi.org/10.1016/j.aop.2010.11.002
https://doi.org/10.1016/j.aop.2010.11.002
https://doi.org/10.1016/j.aop.2010.11.002
https://doi.org/10.1016/j.aop.2010.11.002
https://doi.org/10.1080/14786435.2011.609152
https://doi.org/10.1080/14786435.2011.609152
https://doi.org/10.1080/14786435.2011.609152
https://doi.org/10.1080/14786435.2011.609152
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevA.83.042330
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.92.235136
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.94.235157
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevB.88.125122
https://doi.org/10.1103/PhysRevLett.107.150504
https://doi.org/10.1103/PhysRevLett.107.150504
https://doi.org/10.1103/PhysRevLett.107.150504
https://doi.org/10.1103/PhysRevLett.107.150504
https://doi.org/10.1103/PhysRevLett.111.200501
https://doi.org/10.1103/PhysRevLett.111.200501
https://doi.org/10.1103/PhysRevLett.111.200501
https://doi.org/10.1103/PhysRevLett.111.200501
http://arxiv.org/abs/arXiv:1202.0052
https://doi.org/10.1103/PhysRevB.89.075119
https://doi.org/10.1103/PhysRevB.89.075119
https://doi.org/10.1103/PhysRevB.89.075119
https://doi.org/10.1103/PhysRevB.89.075119
https://doi.org/10.1103/PhysRevLett.116.027202
https://doi.org/10.1103/PhysRevLett.116.027202
https://doi.org/10.1103/PhysRevLett.116.027202
https://doi.org/10.1103/PhysRevLett.116.027202
http://arxiv.org/abs/arXiv:1706.07070
https://doi.org/10.1103/PhysRevX.9.021010
https://doi.org/10.1103/PhysRevX.9.021010
https://doi.org/10.1103/PhysRevX.9.021010
https://doi.org/10.1103/PhysRevX.9.021010
https://doi.org/10.1103/PhysRevB.99.155118
https://doi.org/10.1103/PhysRevB.99.155118
https://doi.org/10.1103/PhysRevB.99.155118
https://doi.org/10.1103/PhysRevB.99.155118
http://arxiv.org/abs/arXiv:1805.09800
http://arxiv.org/abs/arXiv:1305.6973
https://doi.org/10.1007/s00220-013-1810-2
https://doi.org/10.1007/s00220-013-1810-2
https://doi.org/10.1007/s00220-013-1810-2
https://doi.org/10.1007/s00220-013-1810-2
https://doi.org/10.15446/recolma.v50n2.62214
https://doi.org/10.15446/recolma.v50n2.62214
https://doi.org/10.15446/recolma.v50n2.62214
https://doi.org/10.15446/recolma.v50n2.62214
http://arxiv.org/abs/arXiv:1701.00762
https://doi.org/10.1103/PhysRevB.95.245126
https://doi.org/10.1103/PhysRevB.95.245126
https://doi.org/10.1103/PhysRevB.95.245126
https://doi.org/10.1103/PhysRevB.95.245126
https://doi.org/10.1103/PhysRevB.97.125101
https://doi.org/10.1103/PhysRevB.97.125101
https://doi.org/10.1103/PhysRevB.97.125101
https://doi.org/10.1103/PhysRevB.97.125101
https://doi.org/10.1103/PhysRevB.97.125102
https://doi.org/10.1103/PhysRevB.97.125102
https://doi.org/10.1103/PhysRevB.97.125102
https://doi.org/10.1103/PhysRevB.97.125102
https://doi.org/10.1103/PhysRevB.97.144106
https://doi.org/10.1103/PhysRevB.97.144106
https://doi.org/10.1103/PhysRevB.97.144106
https://doi.org/10.1103/PhysRevB.97.144106
https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/10.1103/PhysRevB.95.155133
https://doi.org/10.1103/PhysRevB.96.195139
https://doi.org/10.1103/PhysRevB.96.195139
https://doi.org/10.1103/PhysRevB.96.195139
https://doi.org/10.1103/PhysRevB.96.195139
https://doi.org/10.1103/PhysRevB.97.165106
https://doi.org/10.1103/PhysRevB.97.165106
https://doi.org/10.1103/PhysRevB.97.165106
https://doi.org/10.1103/PhysRevB.97.165106
https://doi.org/10.1103/PhysRevX.8.031051
https://doi.org/10.1103/PhysRevX.8.031051
https://doi.org/10.1103/PhysRevX.8.031051
https://doi.org/10.1103/PhysRevX.8.031051
https://doi.org/10.21468/SciPostPhys.6.1.015
https://doi.org/10.21468/SciPostPhys.6.1.015
https://doi.org/10.21468/SciPostPhys.6.1.015
https://doi.org/10.21468/SciPostPhys.6.1.015
https://doi.org/10.1016/j.aop.2019.167922
https://doi.org/10.1016/j.aop.2019.167922
https://doi.org/10.1016/j.aop.2019.167922
https://doi.org/10.1016/j.aop.2019.167922
https://doi.org/10.1103/PhysRevB.99.115123
https://doi.org/10.1103/PhysRevB.99.115123
https://doi.org/10.1103/PhysRevB.99.115123
https://doi.org/10.1103/PhysRevB.99.115123
https://doi.org/10.1103/PhysRevB.97.134426
https://doi.org/10.1103/PhysRevB.97.134426
https://doi.org/10.1103/PhysRevB.97.134426
https://doi.org/10.1103/PhysRevB.97.134426
https://doi.org/10.1103/PhysRevB.97.155111
https://doi.org/10.1103/PhysRevB.97.155111
https://doi.org/10.1103/PhysRevB.97.155111
https://doi.org/10.1103/PhysRevB.97.155111
https://doi.org/10.1103/PhysRevB.97.041110
https://doi.org/10.1103/PhysRevB.97.041110
https://doi.org/10.1103/PhysRevB.97.041110
https://doi.org/10.1103/PhysRevB.97.041110
https://doi.org/10.1103/PhysRevB.96.165105
https://doi.org/10.1103/PhysRevB.96.165105
https://doi.org/10.1103/PhysRevB.96.165105
https://doi.org/10.1103/PhysRevB.96.165105
https://doi.org/10.1103/PhysRevLett.119.257202
https://doi.org/10.1103/PhysRevLett.119.257202
https://doi.org/10.1103/PhysRevLett.119.257202
https://doi.org/10.1103/PhysRevLett.119.257202
https://doi.org/10.1103/PhysRevB.74.224433
https://doi.org/10.1103/PhysRevB.74.224433
https://doi.org/10.1103/PhysRevB.74.224433
https://doi.org/10.1103/PhysRevB.74.224433
http://arxiv.org/abs/arXiv:1601.08235
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.95.115139
https://doi.org/10.1103/PhysRevB.96.035119
https://doi.org/10.1103/PhysRevB.96.035119
https://doi.org/10.1103/PhysRevB.96.035119
https://doi.org/10.1103/PhysRevB.96.035119
https://doi.org/10.1103/PhysRevB.96.115102
https://doi.org/10.1103/PhysRevB.96.115102
https://doi.org/10.1103/PhysRevB.96.115102
https://doi.org/10.1103/PhysRevB.96.115102
https://doi.org/10.1103/PhysRevLett.120.195301
https://doi.org/10.1103/PhysRevLett.120.195301
https://doi.org/10.1103/PhysRevLett.120.195301
https://doi.org/10.1103/PhysRevLett.120.195301
https://doi.org/10.1103/PhysRevB.97.085116
https://doi.org/10.1103/PhysRevB.97.085116
https://doi.org/10.1103/PhysRevB.97.085116
https://doi.org/10.1103/PhysRevB.97.085116
https://doi.org/10.1103/PhysRevLett.121.235301
https://doi.org/10.1103/PhysRevLett.121.235301
https://doi.org/10.1103/PhysRevLett.121.235301
https://doi.org/10.1103/PhysRevLett.121.235301
https://doi.org/10.1103/PhysRevB.96.125151
https://doi.org/10.1103/PhysRevB.96.125151
https://doi.org/10.1103/PhysRevB.96.125151
https://doi.org/10.1103/PhysRevB.96.125151
https://doi.org/10.1103/PhysRevB.98.125105
https://doi.org/10.1103/PhysRevB.98.125105
https://doi.org/10.1103/PhysRevB.98.125105
https://doi.org/10.1103/PhysRevB.98.125105
https://doi.org/10.1103/PhysRevD.96.024051
https://doi.org/10.1103/PhysRevD.96.024051
https://doi.org/10.1103/PhysRevD.96.024051
https://doi.org/10.1103/PhysRevD.96.024051


WILLIAMSON, BI, AND CHENG PHYSICAL REVIEW B 100, 125150 (2019)

[49] D. Bulmash and M. Barkeshli, Phys. Rev. B 97, 235112 (2018).
[50] A. Gromov, Phys. Rev. Lett. 122, 076403 (2019).
[51] K. Slagle, A. Prem, and M. Pretko, Ann. Phys. 410, 167910

(2019).
[52] D. Bulmash and M. Barkeshli, arXiv:1806.01855.
[53] A. Kumar and A. C. Potter, Phys. Rev. B 100, 045119 (2018).
[54] H. Ma, M. Hermele, and X. Chen, Phys. Rev. B 98, 035111

(2018).
[55] R. M. Nandkishore and M. Hermele, Annu. Rev. Condens.

Matter Phys. 10, 295 (2019).
[56] D. J. Williamson, Phys. Rev. B 94, 155128 (2016).
[57] A. Kubica and B. Yoshida, arXiv:1805.01836.
[58] W. Shirley, K. Slagle, and X. Chen, SciPost Phys. 6, 041 (2019).
[59] T. Devakul, Y. You, F. J. Burnell, and S. L. Sondhi, SciPost

Phys. 6, 007 (2019).
[60] Y. You, T. Devakul, F. J. Burnell, and S. L. Sondhi, Phys. Rev.

B 98, 035112 (2018).
[61] T. Devakul and D. J. Williamson, Phys. Rev. A 98, 022332

(2018).
[62] T. Devakul, D. J. Williamson, and Y. You, Phys. Rev. B 98,

235121 (2018).
[63] D. J. Williamson, A. Dua, and M. Cheng, Phys. Rev. Lett. 122,

140506 (2019).
[64] Z. Nussinov and G. Ortiz, Ann. Phys. 324, 977 (2009).
[65] D. Gaiotto, A. Kapustin, N. Seiberg, and B. Willett, J. High

Energy Phys. 02 (2015) 172.
[66] M. Pretko, Phys. Rev. B 98, 115134 (2018).
[67] M. Barkeshli, P. Bonderson, M. Cheng, and Z. Wang,

arXiv:1410.4540.
[68] X. Chen, F. J. Burnell, A. Vishwanath, and L. Fidkowski,

Phys. Rev. X 5, 041013 (2015).
[69] N. Tarantino, N. H. Lindner, and L. Fidkowski, New J. Phys.

18, 035006 (2016).
[70] M. Cheng, M. Zaletel, M. Barkeshli, A. Vishwanath, and P.

Bonderson, Phys. Rev. X 6, 041068 (2016).
[71] A. Y. Kitaev, Ann. Phys. 303, 2 (2003).

[72] F. J. Wegner, J. Math. Phys. 12, 2259 (1971).
[73] J. Haegeman, K. Van Acoleyen, N. Schuch, J. Ignacio Cirac,

and F. Verstraete, Phys. Rev. X 5, 011024 (2015).
[74] D. J. Williamson, N. Bultinck, M. Mariën, M. B. Sahinoglu, J.

Haegeman, and F. Verstraete, Phys. Rev. B 94, 205150 (2016).
[75] J. B. Kogut, Rev. Mod. Phys. 51, 659 (1979).
[76] A. M. Polyakov, Nucl. Phys. B 120, 429 (1977).
[77] We thank Kevin Slagle for pointing this out.
[78] L. Zou, C. Wang, and T. Senthil, Phys. Rev. B 97, 195126

(2018).
[79] M. Hermele, M. P. A. Fisher, and L. Balents, Phys. Rev. B 69,

064404 (2004).
[80] L. Savary and L. Balents, Phys. Rev. Lett. 108, 037202 (2012).
[81] K. A. Ross, L. Savary, B. D. Gaulin, and L. Balents, Phys. Rev.

X 1, 021002 (2011).
[82] A. Banerjee, S. V. Isakov, K. Damle, and Y. B. Kim, Phys. Rev.

Lett. 100, 047208 (2008).
[83] N. Shannon, O. Sikora, F. Pollmann, K. Penc, and P. Fulde,

Phys. Rev. Lett. 108, 067204 (2012).
[84] C.-J. Huang, Y. Deng, Y. Wan, and Z. Y. Meng, Phys. Rev. Lett.

120, 167202 (2018).
[85] S.-Q. Ning, L. Zou, and M. Cheng, arXiv:1905.03276.
[86] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 87,

155114 (2013).
[87] Y.-M. Lu and A. Vishwanath, Phys. Rev. B 86, 125119 (2012).
[88] T. Senthil and M. Levin, Phys. Rev. Lett. 110, 046801 (2013).
[89] M. A. Metlitski, C. L. Kane, and M. P. A. Fisher, Phys. Rev. B

88, 035131 (2013).
[90] C. Wang, A. C. Potter, and T. Senthil, Science 343, 629 (2014).
[91] L. Zou, Phys. Rev. B 97, 045130 (2018).
[92] M. Levin and M. P. A. Fisher, Phys. Rev. B 79, 235315 (2009).
[93] D. J. Williamson, N. Bultinck, and F. Verstraete,

arXiv:1711.07982.
[94] R. Kobayashi, K. Shiozaki, Y. Kikuchi, and S. Ryu, Phys. Rev.

B 99, 014402 (2019).
[95] J. Haah (unpublished).

125150-12

https://doi.org/10.1103/PhysRevB.97.235112
https://doi.org/10.1103/PhysRevB.97.235112
https://doi.org/10.1103/PhysRevB.97.235112
https://doi.org/10.1103/PhysRevB.97.235112
https://doi.org/10.1103/PhysRevLett.122.076403
https://doi.org/10.1103/PhysRevLett.122.076403
https://doi.org/10.1103/PhysRevLett.122.076403
https://doi.org/10.1103/PhysRevLett.122.076403
https://doi.org/10.1016/j.aop.2019.167910
https://doi.org/10.1016/j.aop.2019.167910
https://doi.org/10.1016/j.aop.2019.167910
https://doi.org/10.1016/j.aop.2019.167910
http://arxiv.org/abs/arXiv:1806.01855
https://doi.org/10.1103/PhysRevB.100.045119
https://doi.org/10.1103/PhysRevB.100.045119
https://doi.org/10.1103/PhysRevB.100.045119
https://doi.org/10.1103/PhysRevB.100.045119
https://doi.org/10.1103/PhysRevB.98.035111
https://doi.org/10.1103/PhysRevB.98.035111
https://doi.org/10.1103/PhysRevB.98.035111
https://doi.org/10.1103/PhysRevB.98.035111
https://doi.org/10.1146/annurev-conmatphys-031218-013604
https://doi.org/10.1146/annurev-conmatphys-031218-013604
https://doi.org/10.1146/annurev-conmatphys-031218-013604
https://doi.org/10.1146/annurev-conmatphys-031218-013604
https://doi.org/10.1103/PhysRevB.94.155128
https://doi.org/10.1103/PhysRevB.94.155128
https://doi.org/10.1103/PhysRevB.94.155128
https://doi.org/10.1103/PhysRevB.94.155128
http://arxiv.org/abs/arXiv:1805.01836
https://doi.org/10.21468/SciPostPhys.6.4.041
https://doi.org/10.21468/SciPostPhys.6.4.041
https://doi.org/10.21468/SciPostPhys.6.4.041
https://doi.org/10.21468/SciPostPhys.6.4.041
https://doi.org/10.21468/SciPostPhys.6.1.007
https://doi.org/10.21468/SciPostPhys.6.1.007
https://doi.org/10.21468/SciPostPhys.6.1.007
https://doi.org/10.21468/SciPostPhys.6.1.007
https://doi.org/10.1103/PhysRevB.98.035112
https://doi.org/10.1103/PhysRevB.98.035112
https://doi.org/10.1103/PhysRevB.98.035112
https://doi.org/10.1103/PhysRevB.98.035112
https://doi.org/10.1103/PhysRevA.98.022332
https://doi.org/10.1103/PhysRevA.98.022332
https://doi.org/10.1103/PhysRevA.98.022332
https://doi.org/10.1103/PhysRevA.98.022332
https://doi.org/10.1103/PhysRevB.98.235121
https://doi.org/10.1103/PhysRevB.98.235121
https://doi.org/10.1103/PhysRevB.98.235121
https://doi.org/10.1103/PhysRevB.98.235121
https://doi.org/10.1103/PhysRevLett.122.140506
https://doi.org/10.1103/PhysRevLett.122.140506
https://doi.org/10.1103/PhysRevLett.122.140506
https://doi.org/10.1103/PhysRevLett.122.140506
https://doi.org/10.1016/j.aop.2008.11.002
https://doi.org/10.1016/j.aop.2008.11.002
https://doi.org/10.1016/j.aop.2008.11.002
https://doi.org/10.1016/j.aop.2008.11.002
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1007/JHEP02(2015)172
https://doi.org/10.1103/PhysRevB.98.115134
https://doi.org/10.1103/PhysRevB.98.115134
https://doi.org/10.1103/PhysRevB.98.115134
https://doi.org/10.1103/PhysRevB.98.115134
http://arxiv.org/abs/arXiv:1410.4540
https://doi.org/10.1103/PhysRevX.5.041013
https://doi.org/10.1103/PhysRevX.5.041013
https://doi.org/10.1103/PhysRevX.5.041013
https://doi.org/10.1103/PhysRevX.5.041013
https://doi.org/10.1088/1367-2630/18/3/035006
https://doi.org/10.1088/1367-2630/18/3/035006
https://doi.org/10.1088/1367-2630/18/3/035006
https://doi.org/10.1088/1367-2630/18/3/035006
https://doi.org/10.1103/PhysRevX.6.041068
https://doi.org/10.1103/PhysRevX.6.041068
https://doi.org/10.1103/PhysRevX.6.041068
https://doi.org/10.1103/PhysRevX.6.041068
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1063/1.1665530
https://doi.org/10.1063/1.1665530
https://doi.org/10.1063/1.1665530
https://doi.org/10.1063/1.1665530
https://doi.org/10.1103/PhysRevX.5.011024
https://doi.org/10.1103/PhysRevX.5.011024
https://doi.org/10.1103/PhysRevX.5.011024
https://doi.org/10.1103/PhysRevX.5.011024
https://doi.org/10.1103/PhysRevB.94.205150
https://doi.org/10.1103/PhysRevB.94.205150
https://doi.org/10.1103/PhysRevB.94.205150
https://doi.org/10.1103/PhysRevB.94.205150
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.1103/RevModPhys.51.659
https://doi.org/10.1016/0550-3213(77)90086-4
https://doi.org/10.1016/0550-3213(77)90086-4
https://doi.org/10.1016/0550-3213(77)90086-4
https://doi.org/10.1016/0550-3213(77)90086-4
https://doi.org/10.1103/PhysRevB.97.195126
https://doi.org/10.1103/PhysRevB.97.195126
https://doi.org/10.1103/PhysRevB.97.195126
https://doi.org/10.1103/PhysRevB.97.195126
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1103/PhysRevB.69.064404
https://doi.org/10.1103/PhysRevLett.108.037202
https://doi.org/10.1103/PhysRevLett.108.037202
https://doi.org/10.1103/PhysRevLett.108.037202
https://doi.org/10.1103/PhysRevLett.108.037202
https://doi.org/10.1103/PhysRevX.1.021002
https://doi.org/10.1103/PhysRevX.1.021002
https://doi.org/10.1103/PhysRevX.1.021002
https://doi.org/10.1103/PhysRevX.1.021002
https://doi.org/10.1103/PhysRevLett.100.047208
https://doi.org/10.1103/PhysRevLett.100.047208
https://doi.org/10.1103/PhysRevLett.100.047208
https://doi.org/10.1103/PhysRevLett.100.047208
https://doi.org/10.1103/PhysRevLett.108.067204
https://doi.org/10.1103/PhysRevLett.108.067204
https://doi.org/10.1103/PhysRevLett.108.067204
https://doi.org/10.1103/PhysRevLett.108.067204
https://doi.org/10.1103/PhysRevLett.120.167202
https://doi.org/10.1103/PhysRevLett.120.167202
https://doi.org/10.1103/PhysRevLett.120.167202
https://doi.org/10.1103/PhysRevLett.120.167202
http://arxiv.org/abs/arXiv:1905.03276
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.86.125119
https://doi.org/10.1103/PhysRevB.86.125119
https://doi.org/10.1103/PhysRevB.86.125119
https://doi.org/10.1103/PhysRevB.86.125119
https://doi.org/10.1103/PhysRevLett.110.046801
https://doi.org/10.1103/PhysRevLett.110.046801
https://doi.org/10.1103/PhysRevLett.110.046801
https://doi.org/10.1103/PhysRevLett.110.046801
https://doi.org/10.1103/PhysRevB.88.035131
https://doi.org/10.1103/PhysRevB.88.035131
https://doi.org/10.1103/PhysRevB.88.035131
https://doi.org/10.1103/PhysRevB.88.035131
https://doi.org/10.1126/science.1243326
https://doi.org/10.1126/science.1243326
https://doi.org/10.1126/science.1243326
https://doi.org/10.1126/science.1243326
https://doi.org/10.1103/PhysRevB.97.045130
https://doi.org/10.1103/PhysRevB.97.045130
https://doi.org/10.1103/PhysRevB.97.045130
https://doi.org/10.1103/PhysRevB.97.045130
https://doi.org/10.1103/PhysRevB.79.235315
https://doi.org/10.1103/PhysRevB.79.235315
https://doi.org/10.1103/PhysRevB.79.235315
https://doi.org/10.1103/PhysRevB.79.235315
http://arxiv.org/abs/arXiv:1711.07982
https://doi.org/10.1103/PhysRevB.99.014402
https://doi.org/10.1103/PhysRevB.99.014402
https://doi.org/10.1103/PhysRevB.99.014402
https://doi.org/10.1103/PhysRevB.99.014402

