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In this paper we use a close connection between the coupled-wire construction (CWC) of Abelian quantum
Hall states and the theory of composite bosons to extract the Laughlin wave function and the hydrodynamic
effective theory in the bulk, including the Wen-Zee topological action, directly from the CWC. We show how
rotational invariance can be recovered by fine tuning the interactions. A simple recipe is also given to construct
general Abelian quantum Hall states described by the multicomponent Wen-Zee action.
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I. INTRODUCTION

Topological order [1] is one of the most fundamental
concepts in modern condensed matter physics. The history
starts with the discovery of the ν = 1

3 fractional quantum Hall
effect (FQHE) in the 1980’s [2], which was essentially under-
stood after Laughlin proposed his famous wave function [3].
Since then, theorists have proposed a variety of topologically
ordered states in two and three dimensions. Examples in 2 + 1
dimensions are Abelian hierarchical quantum Hall (QH) states
[4–6], non-Abelian QH states [7,8], and various kinds of spin
liquids [9–14]. Some, but far from all, of these states have
strong experimental support.

Topologically ordered states are featureless and symmetric
in the bulk, and as such they defy the characterization of
phases by local order parameters in the manner of Landau.
Nevertheless, there are field-theoretic descriptions. It is be-
lived that the topological properties can be encoded in various
types of topological field theories, the most well-known ex-
amples being the Chern-Simons theories of the QHE [15,16].

Going beyond the topological scaling limit [17], but still in
the infrared region, there are hydrodynamical descriptions that
supplement the topological action with higher-order derivative
terms. These theories typically encode information about col-
lective excitations. Yet another type of field theories are those
based on statistical transmutation, or “flux attachment.” These
theories of “composite” fermions [18] or bosons [19], which
are closely related to various model wave functions, are in
principle microscopic, but can only be solved using various
kinds of mean-field approximations.

In addition to the various field theories, there are several
other ways to describe topologically ordered states in general,
and quantum Hall states in particular. Examples of the latter
are the approach based on the thin-torus limit [20], and the
coupled-wire construction (CWC) of Kane and co-workers
[21,22]. The aim of this paper is to make a rigorous connection
between this last approach and the Chern-Simons field theory
for composite bosons.

The CWC is quite general, and has been employed to con-
struct various two- and three-dimensional topological states.

The list includes the original work on Abelian and non-
Abelian fractional quantum Hall states [21–23], chiral spin-
liquid states [24], topological insulators and superconductors
in two and three dimensions [25–28], and the construction
of higher-dimensional Abelian topological phases [29]. A
rederivation of the periodic table of integer and fractional
fermionic topological phases was given in [30]. In this paper,
we shall only consider Abelian QH states, and in particular
the Laughlin states.

The essence of the CWC is to build interacting
fermion/boson systems by starting from a collection of par-
allel “wires” in a strong magnetic field, each one supporting
a Luttinger liquid. The wires are then coupled by tunneling
interactions, and there are also forward scattering interactions
on each wire that couple right- and left-moving electrons.
Keeping only the intrawire current-current interactions, the
system is in the so-called sliding Luttinger liquid phase
[31–35] and remains invariant under independent global U(1)
transformations and translations on each wire.

A key observation is that interwire interactions can be
used to freeze most of the above symmetry. Kane et al. [21],
showed that, in the limit of strong interwire coupling, and
at certain rational filling fractions, one retains various two-
dimensional ground states whose properties depend on the the
details of the construction. In the simplest case of the Laughlin
state, it is sufficient to couple neighboring wires, but in general
several wires have to be coupled.

The CWC gives an intuitive description of the chiral edge
states in a way resembling the occurrence of fractional spins
at the ends of the Affleck-Kennedy-Lieb-Tasaki chain [36], or
of Majorana modes at the ends of a Kitaev chain [37]. The
basic mechanism is that the right- and left-moving electrons
on neighboring chains pair, leaving a right-moving channel on
one side of the sample and a left-moving one on the other. One
can also show that the number of degenerate ground states
are as expected, and that the kink excitations on the wires
indeed are the fractionally charged anyons characteristic of
FQH liquids.

It is less clear how the CWC, which, by definition,
explicitly breaks rotational invariance, will describe other
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characteristics of the Laughlin states, such as its wave func-
tion and collective excitations. In this paper, we reformulate
the CWC in terms of gauge fields, in a way that makes
it clear how to reproduce the known bulk properties. Not
surprisingly, a fine tuning of a parameter is needed to get an
isotropic two-dimensional liquid, but we also show that the
topological properties do not depend on this. Concretely, we
shall use the bosonic fields in the CWC to define a gauge
field that can be identified with the statistical gauge field in
the Chern-Simons-Ginzburg-Landau (CSGL) theory of the
Laughlin states [19,38]. Using this, we derive the Laughlin
wave function, both in the isotropic and anisotropic cases, and
the hydrodynamic effective theory which contains the Wen-
Zee topological action [16] as its leading term in a derivative
expansion.

A comment is in order about an interesting recent paper
by Fuji and Furusaki [39]. In fact, there is an overlap in the
underlying idea between it and this work. Rather than directly
identifying the composite-boson field in the CWC, they ex-
plicitly carry out the flux attachment on the wires, and then
add an interaction term that stabilizes the superfluid phase of
the composite bosons. Finally, using a coupled-wire version
of the boson-vortex duality transformation [40], they arrive at
an action that couples the dual (vortex) fields, describing the
quasiparticles, to a hydrodynamic gauge field with a Chern-
Simons action. Despite similar looking, this theory differs
in some important respects from the hydrodynamic effective
theory we shall derive below. We comment on this in the end
of Sec. V. Also, fluctuations and the wave function, which are
main subjects of this paper, are not discussed in Ref. [39].

The paper is organized as follows. We begin by briefly
reviewing the CWC in Sec. II and show how to identify the
physically inequivalent ground states. In Sec. III, we define a
gauge field which can be interpreted as a statistical gauge field
and explain the connection to the CSGL theory. Section IV
contains the derivation of the Laughlin wave function starting
from our effective Hamiltonian, as well as a discussion of the
effects of the spatial anisotropy which is naturally present in
the coupled wires. In Sec. V, we derive the hydrodynamical
theory, that contains the topological Wen-Zee action, from the
effective action obtained in the previous section and show that
the Kohn mode is correctly reproduced. The generalization to
arbitrary Abelian states is given in Sec. VI, and we end with
a concluding section. Some technicalities are summarized in
two appendices.

II. LAUGHLIN STATE IN COUPLED-WIRE
CONSTRUCTION

The Laughlin state is the paradigmatic example of topo-
logical states of matter (see, e.g., Refs. [6,41] for reviews of
the Laughlin and other quantum Hall states). The defining
properties of the ν = 1/m state are encoded in the Wen-Zee
topological action which is a level-m U(1) Chern-Simons
gauge theory [15,18]. The corresponding edge theory is a
chiral Luttinger liquid, which is a chiral boson compactified
on a circle with radius

√
m [42]. We now review the CWC for

the Laughlin state following the original work by Kane et al.
[21].

FIG. 1. (a) An array of coupled wires in a perpendicular mag-
netic field. (b) The energy band structure of the coupled wires.
In the limit of decoupled wires, a perpendicular magnetic field in
the Landau gauge shifts the quadratic dispersion relations of the
individual wires (labeled by j) in a j-dependent manner: k → k + b j
(thick curves). When 2kF = |b| (ν = 1), the single-particle hopping
between the adjacent wires opens the gaps at Fermi points and the
anisotropic Landau levels are formed (thin blue curves).

A. From uncoupled to coupled wires

Consider a set of parallell one-dimensional wires running
along the x direction and stacked in the y direction with a
distance ly [see Fig. 1(a)]. We then apply a strong magnetic
field B (> 0) which is perpendicular to the xy plane and is
given by the gauge potential A = (−By, 0) (Landau gauge).
We consider nonrelativistic spinless fermions c j (x) (with
mass Me) moving on the wire j with the dispersion relation
Ej (kx ) = (kx + b j)2/2Me, where b = eBly/h̄ [see Fig. 1(b);
e < 0 for electrons]. When these bands are filled up to the
Fermi momentum kF [see Fig. 1(b)], the fermion density on
each wire is given by ρ̄1D = kF/π , and this gives the filling
fraction ν = 2kF/|b|. When ν = 1, the Fermi points are lo-
cated exactly at the lowest crossing points and the inclusion of
the single-particle hopping c†

j+1(x)c j (x) + (H.c.) among the
neighboring wires opens a band gap there, which is identified
with one of the gaps separating the (quasi-one-dimensional)
Landau levels as is seen in the thin curves in Fig. 1(b).

At a filling fraction ν < 1, which is relative to the filled
Landau levels, the single-particle hopping never opens a
gap at the Fermi points and we need interactions to make
the system gapped. To develop a systematic approach, we
linearize the low-energy dispersion around the Fermi points
kR

x ( j) = −b j + kF and kL
x ( j) = −b j − kF to obtain two Dirac

fermions Rj and Lj , respectively, which are related to the
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original spinless fermion c j (x) as

c j (x) ≈ eikR
x ( j)xR j (x) + eikL

x ( j)xL j (x). (1)

The low-energy effective Hamiltonian for the jth wire is given
by that of massless Dirac fermion

H( j)
Dirac = v0

F

∫
dx[−iR†

j∂xR j + iL†
j ∂xL j], (2)

where the velocity v0
F = h̄kF/Me is common to all wires. (To

ease the notations, we set h̄ = 1 in what follows.)
By Abelian bosonization [43], the chiral spinless fermions

Rj and Lj on each wire ( j) are expressed, at low energies, in
terms of the chiral bosons φL/R

j as

Rj = κ j√
2πa0

: exp
(
2iφR

j

)
:, Lj = κ j√

2πa0
: exp

(
2iφL

j

)
:,

(3)

where {κ j} are the Klein factors necessary to guarantee the
anticommutation among the spinless fermions on different
wires. The symbol : · · · : denotes the normal ordering nec-
essary to regularize the operator products; to simplify the
notations, we suppress it hereafter. In terms of the bosonic
fields � j (compactified on a circle with radius 1) and their
duals 	 j

� j = φL
j + φR

j , 	 j = φL
j − φR

j , (4)

the low-energy effective Hamiltonian for the spinless fermion
is

H( j)
Dirac = vF

2π

∫
dx

Ny∑
j=1

{
1

Kj
: (∂x� j )

2 : +Kj : (∂x	 j )
2 :

}
,

(5)
where Ny is the number of wires in the stacking (y) direction.
The bosonic fields satisfy

[� j (x),� j′ (x
′)] = [	 j (x),	 j′ (x

′)] = 0,

[∂x� j (x),	 j′ (x
′)] = −iπδ j j′δ(x − x′), (6)

and the Luttinger liquid parameter Kj equals to 1 for free
fermions but, in general, Kj and vF are renormalized in the
presence of interactions. The field 	 j is related to the particle
density [measured from its average ρ̄1D = kF/π = ν|b|/(2π )]
on the jth wire:

ρ1D
j (x) = ρ̄1D + δρ1D

j (x) = ρ̄1D + ∂x	 j (x)/π. (7)

This relation will be used frequently in the following sections.
To introduce interactions, we consider an adjacent pair,

e.g., j and ( j + 1). In order to gap out most of the degrees of
freedom and leave gapless chiral Luttinger liquids only at the
edges, the authors of Refs. [21,22] introduced the following,
carefully designed, interwire interaction allowed by U(1) and
translation symmetries:

Hint = −g
∑

j

: (L†
j R j )

m−1
2 L†

j (L
†
j+1Rj+1)

m−1
2 Rj+1 :, (8)

where m is an odd integer for fermions.1

1At this stage, m must be integer as the number of backscat-
tered fermions must be integer: (m − 1)/2 ∈ Z. However, once the

)b()a(

FIG. 2. (a) Original wires (located at j) on which the original
bosons {� j, 	 j} are defined and (b) virtual wires (with positions
specified by j∗) corresponding to the on-strip fields {ϕ j∗ , ϑ j∗ }.
Dashed lines denote the new set of chiral bosons φ̃L/R

j∗ , with
which interwire interaction (9) looks like an ordinary backscattering
cos(2ϑ j∗ ).

This interaction is made up of two simultaneous m−1
2 -pled

(on-wire) backscattering processes on the adjacent wires and
interwire single-particle hopping (i.e., Hint consists of m-
particle processes). According to Eq. (1), the chiral fermions
Rj (x) and Lj (x) are accompanied, respectively, by the oscillat-
ing factors eikR

x ( j)x and eikL
x ( j)x. Therefore, if we construct the

interaction Hint from the original c j fermions, it must contain
the factor ei(−b+2mkF )x. Requiring Hint to be nonoscillatory
(i.e., translationally invariant) fixes the filling fraction ν =
2kF/|b| = 1/m.

In terms of the bosonic fields, Hint reads as2

Hint = −g
∑

j

∫
dx : cos[� j − � j+1 + m(	 j + 	 j+1)] :

≡ −g
∑

j

∫
dx : cos(2ϑ j∗ ) :, (9)

where ϑ j∗ lives on the “fictitious” wire (or strip) j∗ located in
the middle of the two wires j and j + 1 (see the dashed lines in
Fig. 2). Physically, the part � j+1 − � j comes from the single-
particle hopping between neighboring wires, and m(	 j+1 +
	 j ) from the tailored backscattering within individual chains
[21,22]. The new fields {ϑ j∗ } may be viewed as parts of a new
set of bosons on strips (see Fig. 2)

2ϕ j∗ = � j + � j+1 + m(	 j − 	 j+1),

2ϑ j∗ = � j − � j+1 + m(	 j + 	 j+1) (10)

that, from (6), obey the following commutation relation:

[ϕ j∗ (x), ∂xϑ j′∗ (x′)] = iπmδ j∗ j′∗δ(x − x′). (11)

interaction is given in terms of bosons � j and 	 j as in Eq. (9), we
can think of bosonic problem with even m.

2We were not precise about the ordering of the fermion operators
in (8); we assume that they are correctly ordered in such a way that,
when bosonized, they reproduce (9).
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They may be viewed as made up of the new set of “chiral
bosons”

φ̃L
j∗ = (� j + m	 j )/2, φ̃R

j∗ = (� j+1 − m	 j+1)/2 (12)

as ϕ j∗ = φ̃L
j∗ + φ̃R

j∗ and ϑ j∗ = φ̃L
j∗ − φ̃R

j∗ .
In the strong-coupling limit g → ∞, the bosonic fields are

pinned at one of the minima of the cosine potential,

2ϑ̄ j∗ = 2n j∗π ( j∗ = 0, . . . , Ny − 1), (13)

where n j ∈ Z. Any semiclassical ground state is then speci-
fied by a set of Ny integers {n j∗ }. However, all these states,
labeled by {n j∗ }, are not physically distinct since, as will be
shown in the next section, some of them must be identified up
to the periodicity of the bosonic fields � j and 	 j .

B. Ground-state degeneracy

One of the crucial signatures of a topologically ordered
state in 2 + 1 dimensions is the ground-state degeneracy
on higher-genus surfaces. The simplest nontrivial example
is the m-fold degeneracy in the ν = 1/m Laughlin states
[44,45]. In the strong-coupling limit, the (semiclassical) CWC
ground states are found by minimizing the potential −g

∑
j :

cos [2ϑ j∗ ] with respect to ϑ j∗ , and there seems to be infinitely
many of them labeled by the set of integers {n j∗ } in (13).
Reference [22] gave an argument about the ground-state
degeneracy based on the limit Ny → 1. Here, we count the
number of inequivalent ground states by taking into account
the periodic structure of the bosonic fields [46,47]. As the
derivation is straightforward but slightly involved, we just give
a sketch here and the details, for both fermions and bosons, are
given in Appendix A.

First, we assume that the system is defined on a torus
and impose periodic boundary condition both in the wire (x)
direction and in the stacking direction (Ny + 1 ≡ 1, ϑ0∗ ≡
ϑN∗

y
). One may think that the wires are infinitely long and

that the geometry of the system is cylindrical. However, the
argument (in Appendix A) relies essentially on the structure
of the zero modes which is peculiar to periodic systems (see,
e.g., Fig. 5), and we implicitly assume the periodicity in the x
direction as well.

Then, we use the expressions (3) expressing the Dirac
fermions in terms of the bosons to infer that states which differ
by a π shift of φ

L,R
j must be identified:

φ
L,R
j 
 φ

L,R
j + πZ. (14)

(Bosons have a different periodicity, as explained in
Appendix A.) Due to the periodicity, most of the would-be
ground states are equivalent. In fact, as proven in Appendix
A, any pair of ground states {ϑ̄ (1)

j∗ } and {ϑ̄ (2)
j∗ } are equivalent

and represent the same physical state if, and only if,

1

π

Ny∑
j∗=1

δϑ j∗ ≡ 1

π

Ny∑
j∗=1

(
ϑ̄

(1)
j∗ − ϑ̄

(2)
j∗

) = 0 (mod m). (15)

Thus, we conclude that in the coupled-wire system with strong
interwire interaction (9), there are precisely m distinct ground

states that are characterized by

1

π

Ny∑
j∗=1

ϑ̄ j∗ = 0, 1, . . . , m − 1. (16)

From the above, it follows that the eigenvalues of the
Wilson loop operator

Wy = exp

⎡⎣i
2

m

Ny∑
j∗=1

ϑ j∗ (x0)

⎤⎦ (x0 : fixed) (17)

distinguish the m different ground states. Then, by using
Eq. (11), we readily see that the operator

Tx = exp

[
i

m

∫ Lx

0
dx ∂xϕ j∗0 (x)

]
( j∗0 : fixed) (18)

changes the eigenvalue of Wy by ei 2π
m and creates a different

ground state. Since, according to the arguments in Ref. [22],
the operator Tx may be viewed as transporting a quasiparticle
along the wire j∗0 , this perfectly agrees with the well-known
picture that the insertion of fluxes, corresponding to quasipar-
ticle transport around nontrivial loops, generates topologically
different ground states [45].

III. FROM COUPLED WIRES
TO CHERN-SIMONS THEORY

The argument in Sec. II B already suggests us to identify
ϑ j∗ with a gaugelike degree of freedom. In this section, we
proceed along this line to identify the bosonic fields with the
statistical gauge field.

A. Introducing gauge fields

Since x-dependent local gauge transformations of fermions
ψ j → ψ jeiξ j (x) change the boson field as � j (x) → � j (x) +
ξ j (x), it is natural to identify

ax(x, jly) = −∂x� j (x) (19)

as the x component of a two-dimensional gauge field. To
obtain a bona fide two-dimensional gauge field, we also need
the y component, and to this end, we note that ϑ j transforms
as the y component of a lattice gauge field. To see this, recall
that a link variable transforms as3

U(x, j),(x, j+1) ≡ eilyay (x, jδ) → eiξ j (x)U(x, j),(x, j+1)e
−iξ j+1(x),

(20)

where the lattice spacing is the distance ly between the wires.
This implies

ay(x, jly) → ay(x, jly) + 1

ly
[ξ j (x) − ξ j+1(x)], (21)

which suggests us to identify 2ϑ j∗ (x) = lyay(x, jly) with
a proper choice of gauge. In the continuum where we put

3Note that the x dimension is continuous while the y dimension is
discrete. This can be thought of as an Euledian version of the Kogut-
Susskind formulation of lattice gauge theory [65].
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y = jly, the y component reads as

ay = −∂y� + 2m

ly
	. (22)

Combining (19) and (22), we obtain the following gauge field:

�a ≡ (ax, ay) = −�∇� + (0, 2m	/ly), (23)

which, by Eq. (6), satisfies the commutation relation

[ax(�r1), ay(�r2)] = i2πmδ2(�r1 − �r2). (24)

This can also be derived from a theory with a Chern-Simons
term

LCS = 1

2πm
ayȧx (25)

in the Lagrangian, which is precisely how the statistical gauge
field appears in the Chern-Simons-Ginzburg-Landau (CSGL)
theory [19]. That the normalization of �a is consistent with this
interpretation is seen by calculating the statistical magnetic
field

1

2π
ba = 1

2π
εi j∂ia j = m

ly
δρ1D = mδρ, (26)

where we have used Eq. (7) and that the two-dimensional
density (ρ) is related to the one-dimensional one by ρ1D =
lyρ. Equation (26) implies that m a fluxes are attached to each
electron, thereby confirming our interpretation.

An attentive reader should have noticed that in the above
argument, the normalization of �a was of central importance.
For instance, renormalizing the relation (23) by a factor m
would have given a coefficient m/2π in the CS Lagrangian
(25), and in that case it would have been tempting to identify
a with the hydrodynamical field in the Wen-Zee theory of
quantum Hall liquids [16]. However, in the next subsection
we show that our identification of �a as a statistical gauge field
is indeed the correct one.

A remark on the strong-coupling limit is in order. In the
usual treatment of the CWC, the strong-coupling limit is used
to simply gap out all the bulk degrees of freedom leaving the
gapless modes only at the boundaries. Here, as we shall see,
the strong-coupling limit enters via the consistency with the
continuum limit. In Ref. [26], an infinitely strong interwire
interaction locks an external electromagnetic field to ϑ . For
the external gauge field to be completely canceled by the
statistical gauge field, which is the essence of the mean-field
approximation in the CSGL theory, the coupling must be
strong. In the CSGL theory, the large energy scale is the
cyclotron energy in the uncancelled magnetic field, while in
our case it is the interwire coupling g.

B. Relation to the CSGL theory

So far, we have considered only the extreme strong-
coupling limit g → ∞ where ay is strictly pinned to the
minimum of the cosine potential. Relaxing this condition, and
also retaining the terms from the Luttinger Hamiltonian (5),
we get the effective Hamiltonian for the a field

Heff =
∫

d2r

{
ωc

4πm

(
1

K
a2

x + 2mβa2
y

)
+ Kωcπ

4m
l2
y (δρ)2

}
,

(27)

where we used the mean-field relation 2πmρ̄ = eB, with B
the external magnetic field and ρ̄ the mean area density,
to rewrite the Fermi velocity as vF = πρ̄1D/Me = ωclyν/2 =
ωcly/(2m). Here, ωc = eB/Me is the cyclotron energy (Me is
the electron band mass), and we introduced the dimensionless
coupling strength β by

g = ωc

π ly
β. (28)

In the last term in (27), which comes from the term ∼(∂x	)2 in
the Luttinger Hamiltonian (5), δρ denotes the deviation from
the average area density ρ̄ = eB/(2πm).

So far, K and β are free parameters but we shall now
impose the condition βK = 1/(2m) which ensures rotational
invariance in (27). It should be no surprise that fine tuning
is needed to retain rotational invariance; it is in fact more
surprising that rotational invariance can at all be recovered
in the CWC. In order for the continuum approximation to
make sense [for β = 1/(2mK ) = finite], we must take ly
to be small and thus g must be large g ∼ 1/ly, albeit not
infinite. The rotationally invariant effective Lagrangian now
reads as

LCWC = 1

4πm
εi jaiȧ j − β

2π
ωc

(
a2

x + a2
y

) − Kωcπ

4m
l2
y (δρ)2.

(29)
This is not a topological field theory since the leading term
(a2

i ) in a derivative expansion does depend on the metric.
Thus, we could not have interpreted a as the hydrodynamical
field even if we had changed the normalization to get the
“correct” CS term.

It is illuminating to compare this with the standard CSGL
theory given by the Lagrangian [19,38]

LCSGL = φ∗(i∂0 − α0)φ − 1

2Me
|(−i �∇ − e �A − �α)φ|2

− 1

2

∫
d�y |φ(�x)|2V (�x − �y)|φ(�y)|2

+ 1

4πm
εμνλαμ∂ναλ, (30)

where φ is a composite boson minimally coupled to the exter-
nal electromagnetic gauge field �A, (α0, �α) is a statistical gauge
field, and V (�r) is a repulsive two-body repulsive potential.

We proceed by first parametrizing the bosonic field φ as

φ(�x) =
√

ρ(�x)eiθ (�x), (31)

and then integrate out the nondynamical field α0 to get the
constraint ρ = 2πmbα , where bα = εi j∂iα j is the flux of
the statistical gauge field �α, and the chemical potential is
such that V has a minimum at ρ = ρ̄. Neglecting deriva-
tives of the density, making the mean-field approximation
�a = e �A + �α, and assuming a local potential V (�r) = V δ(�r),
we get

LCSGL = 1

4πm
εi jαiα̇ j − ρ̄

2Me
�α · �α − V

2
(δρ)2 (32)

with 2πmρ̄ = eB. To derive this result, we absorbed the
gradient of the phase �∇θ in the vector potential �α, which
amounts to picking a unitary gauge.
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Recalling that ρ̄/Me = ωc/(2πm), (29) and (32) become
identical if we take β = 1/(2m) (i.e., K = 1), identify �a in
(29) as the fluctuation in the statistical gauge field, and pick
V in the CSGL theory (32) to match the coefficient in front of
(δρ)2 in the CWC expression. In what follows, we fix K = 1
and β = 1/(2m) except in Sec. VI. This equivalence is a main
result of this paper, and it shows that, after introducing inter-
actions, the bosons on the wires become bona fide composite
bosons.

Having shown the equivalence between the CWC and the
CSGL theory, it is reasonable to expect that the results from
the latter can be derived also in the present context. In the next
two sections, we shall show that this is indeed the case. Before
doing so, however, we shall make some comment about the
edge modes.

The presence of chiral gapless edge modes is at the heart
of the CWC. The way the right- and left-moving modes on
the adjacent wires are coupled is designed in such a way that
the correct chiral modes are left at the wires at the edges of
the system. It is clearly of importance that our continuum
description in terms of gauge fields is able to describe these
modes as well. In fact, as we already advertised, we will
eventually derive the Wen-Zee theory, which is known to give
a correct description of the edge [48]. Turning to the inter-
mediate theory LCWC given by (29), one might naively expect
that there are no gapless modes because of the quadratic terms.

IV. LAUGHLIN WAVE FUNCTION
FROM COUPLED WIRES

In this section, we derive the Laughlin wave function
from the CWC. We do it first for the (fine-tuned) rotationally
invariant theory (29), and then for the general anisotropic case.

A. Isotropic case

In the standard derivation [38,49] of the wave function
from the CSLG theory, one uses the Coulomb gauge and
rewrites the Hamiltonian as a collection of harmonic oscil-
lators in the variables δρ and θ . One then finds the wave func-
tion for the composite bosons, by using the density represen-
tation of the wave functional. Finally, the full lowest-Landau-
level Laughlin wave function is regained by reintroducing the
phase factor that was taken out in the statistical transmuta-
tion from the original electrons to the composite bosons. In
the present context, the derivation of the norm of the wave
functions only differs from the standard CSGL procedure by
some technicalities, while that for the phase requires a careful
treatment, and provides a nontrivial consistency check of our
calculations.

Instead of the Coulomb gauge, we are implicitly using the
unitary gauge, where the phase fluctuations are absorbed in
the gauge field [see, e.g., Eq. (32)], and our treatment here
also differs from that in the standard CSLG treatment in that
the relation between �a and the density is anisotropic as is seen
in Eq. (26). With this in mind, we proceed by making the
following decomposition for �a:

ai = εi j∂ jχ + ∂iη (33)

so that ba = −∇2χ . Substituting (33) in the Lagrangian den-
sity (29) gives the Lagrangian

LCWC = 1

2πm

∫
d2r ηḃa − ωc

4πm

∫
d2r (−η∇2η − χ∇2χ )

− ωcπ

4m
l2
y

∫
d2r (δρ)2, (34)

where we have set β = 1/(2m) and used that, by partial
integration, the cross terms between η and χ vanish in the
Hamiltonian part while the diagonal terms vanish in the
kinetic term. Using ba = 2πmδρ, we see that δρ and η are
conjugate variables satisfying [δρ(�r1), η(�r2)] = iδ2(�r1 − �r2).
The Hamiltonian becomes

H = ωc

4πm

∫
d2r

{
−η∇2η − δρ

(2πm)2

∇2
δρ

}
, (35)

where we used β = 1/(2m) and only kept the leading terms in
a derivative expansion. In the density (δρ) representation, the
wave functional is that of an assembly of harmonic oscillators
labeled by r. Using the explicit nonrelativistic form of the
density operator, δρ(�r) = ρ(�r) − ρ̄ = ∑

i δ
2(�r − �ri ) − ρ̄ with

�ri being the position of the ith electron, and the mean density
ρ̄ which is related to the magnetic length �B by 2πmρ̄ = eB =
1/�2

B, the wave function reads as

�m({�ri}) ∼
∏
i< j

|zi − z j |me
− 1

4�2
B

∑
i |zi|2

. (36)

In the above, we have used the complex notaion zi = xi + iyi,
and we refer to Refs. [38,49] for details of the derivation.

The Laughlin wave function differs from (36) by the phase
factor ∏

i< j

(zi − z j )
m
2

/∏
i< j

(z̄i − z̄ j )
− m

2 , (37)

in which exchanging two electrons yields a phase angle mπ ,
while transporting one around another yields 2mπ . We now
show that we can reconstruct the additional phase factor (37)
within the CWC by carefully calculating the Berry phase
factor acquired when transporting an electron along the path
shown in Fig. 3. In doing so, we first calculate the phase
using Eq. (37). When moving along the paths I and III,
the transported electron exchanges its position with other
electrons sitting on the wires 0 and M thereby acquiring the
phase mπ each time (in the ν = 1/m Laughlin state). On the
segments II and IV, on the other hand, there are no exchanges.
Nevertheless, the full loop encircles all the electrons sitting
on the wires 1 to M − 1 and picks up the phase 2mπ from
each electron. If we define θ j (x) to denote the ground-state
expectation value of the operator 	 j (x), then, by Eq. (7), the
number of electrons in the interval x ∈ [0, a] of the wire j is
given by [θ j (a) − θ j (0)]/π . Combining all this, we expect the
total phase acquired by the electron:

γloop = m{θ0(a) − θ0(0) + θM (0) − θM (a)}

+ 2m
M−1∑
j=1

{θ j (a) − θ j (0)}. (38)
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I

II

III

IV

FIG. 3. Loop used to calculate the phase of the Laughlin wave
function. Particles on wires 1 to M − 1 are fully encircled and each
gives the phase 2mπ . Exchanging the positions with particles on
wires 1 or M amounts to replacing the straight lines with half-circles,
each one giving rise to a phase mπ .

To calculate the Berry phase related to transporting a right-
moving electron (we could equally well have considered a left
mover) within the CWC, we first define the states

|�r〉 = ei� j (x)−i	 j (x)|0〉 ≡ eiϕ(�r)|0〉, (39)

where �r = (x, j) and |0〉 is the ground state. We have also
introduced the notation ϕ(�r) = 2φR

j (x) to avoid clutter. The
Berry connection is defined by

�A(�r) = 〈�r|i∇�r |�r〉 = 〈0|e−iϕ(�r)i∇�r eiϕ(�r)|0〉
= 〈0|∂x	 j (x)|0〉, (40)

where we used that, because of reflection symmetry when
x → −x, there is no x component of the current in the
ground state: 〈0|∂x� j (x)|0〉 = 0, and properly regularized the
product e−iϕ(�r)eiϕ(�r). It is now easy to calculate the Berry phase
corresponding to the segment I:

ϒ(I) =
∫ a

0
dx Ax(x, 0) = −[θ0(0) − θ0(a)]. (41)

In the same way, we get for the segment III

ϒ(III) = θM (0) − θM (a). (42)

Along to the segment II, we shall return to the original
discretized formulation and define the the Berry phase factor
as we do in lattice field theories

eiϒ(II) = 〈(a, M )|(a, M − 1)〉〈(a, M − 1)|(a, M − 2)〉
. . . 〈(a, 1)|(a, 0)〉 (43)

with

〈(x, j + 1)|(x, j)〉 = 〈0|e−i[ϕ(x, j+1)−ϕ(x, j)]|0〉, (44)

where we used that ϕ(x, j) on different wires commute. The
next, and crucial, step is to rewrite the exponent in (44) as

ϕ( j + 1) − ϕ( j)

= � j+1 − � j − m(	 j+1 + 	 j )

+ (m − 1)	 j+1 + (m + 1)	 j

= −2ϑ j∗ + (m + 1)	 j + (m − 1)	 j+1, (45)

where we have suppressed the x dependence. We now recall,
from Sec. II A, that ϑ j∗ is pinned to a constant ϑ̄ j∗ , which we
take to be zero (as 2ϑ̄ j∗ ≡ 0 mod 2π , we arrive at the same
phase factor for any other choices; the important thing is that
it does not depend on the geometry of the loop). Adding the
contributions from all the wires ( j = 0, . . . , M − 1) together
and taking the expectation value, we are left with the phase

ϒ(II) = −{(m + 1)θ0(a) + 2m[θ1(a)

+ · · · + θM−1(a)] + (m − 1)θM (a)}. (46)

The segment IV gives a similar expression, now evaluated at
x = 0, and with an additional minus sign. Putting everything
together, and taking into account that the Berry phase differs
by a sign from the exchange phase calculated from the wave
function [50], we obtain precisely the phase (38) that was
derived from (36). Note that, only after carefully taking into
account both the phases mπ from the particle exchange on the
loop and 2mπ from the encircled charges inside, we obtained
the correct result.

Because of the close analogy to the CSGL theory, it is nat-
ural to expect that the above derivation can also be modified
to give the wave functions of the Laughlin holes. We shall not
elaborate on the details, but just make two observations. First,
adding a kink 	kink

jη (x) = π sgn(x − ηx )/(2m) on the wire jη
in the loop in Fig. 3, will, by exactly the same argument as
above, give the Berry phase (38) without m thereby leading to
an extra phase factor∏

i

(zi − η)
1
2

/∏
i

(z̄i − η̄)−
1
2 ,

where η = ηx + i jηly. Since it will also give a contribution
δ2(�r − �η)/m [�η = (ηx, jηly)] to the density operator ρ(�r), it
is easy to see that it will add the correct modulus

∏
i |zi − η|

which, together with the above phase factor, reproduces the
correct Laughlin hole factor

∏
i(zi − η).

The quasielectrons are harder to deal with. Although it
is straightforward to calculate the fractional charges and the
statistical phase factors for states with antikinks on the wires,
it is nontrivial to extract wave functions. This asymmetry
in the description of quasiholes and quasielectrons is well
known both in the CSGL theory, and in approaches based on
conformal field theory [41].

B. Anisotropic case

If we do not make the (fine-tuned) choice βK = 1/(2m),
that is necessary to get the isotropic theory (29), the Hamilto-
nian will depend on the combination

a2
x + α2a2

y

with α2 = 2mβK . Since ax = −∂x� and ay = −∂y� + 2m
�

	,
a rescaling (x, y) → (x′, y′) = (αx, y) implies

ax(x, y) → a′
x(x′, y′) = α−1ax(x, y),

ay(x, y) → a′
y(x′, y′) = ay(x, y). (47)

Alternatively, we could rescale (x, y) → (x′, y′) = (x, y/α)
and ly → l ′

y = ly/α. In both cases, the a2 terms change as

dx dy
(
a2

x + α2a2
y

) → α dx′ dy′ {(a′
x )2 + (a′

y)2}, (48)
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while dx dy axȧy remains invariant. Thus, if we use the primed
coordinates, the previous derivation of the Laughlin wave
function will go through without any changes, while the
complex coordinate will be redefined as z = x + iy/α. In
terms of the wave functions in the lowest Landau level, this
amounts to having coherent states which are not circular,
but deformed into ellipses. As has been stressed by Haldane
[51] and others [41,52], the Laughlin state is more general in
nature than its usual incarnation as a holomorphic polynomial∏

i< j (zi − z j )m in z = x + iy.

V. TOPOLOGICAL AND HYDRODYNAMIC ACTIONS

Here, we derive the effective hydrodynamical theory which
contains the Wen-Zee topological field theory as the leading
term in the infrared. From this, we extract the collective Kohn
mode and its dispersion. We also show how to couple the hy-
drodynamic theory to an external perturbing electromagnetic
field.

A. Topological action

When doing the gauge transformation

ai → ai + ∂iξ, (49)

the CS Lagrangian (25) picks up an extra piece ∼εi jai∂ j ξ̇ ,
and, using the notation a0 = ξ̇ , we can recast it into the
relativistic form

LCS(a) = 1

4πm
εμνλaμ∂νaλ. (50)

If we introduce a new gauge field b, the partition function for
this CS theory can be rewritten as follows:

Z =
∫

D[a]eiSCS[a] =
∫

D[a]D[b]eiSeff[a,b], (51)

where SCS[a] = ∫
d3r LCS(a) and Seff[a, b] = ∫

d3r Leff(a, b)
with

Leff(a, b) = − m

4π
εμνλbμ∂νbλ + 1

2π
εμνλaμ∂νbλ. (52)

Integrating out the statistical gauge field a in (52) yields
the constraint εμνλ∂νbλ = 0 (remember that the background
charge has been subtracted already) leaving only the first term
which is precisely the Wen-Zee topological action for the
ν = 1/m Laughlin state.

The Wen-Zee action is trivial on an infinite plane, but codes
for the mg-fold ground-state degeneracy on higher-genus (g)
surfaces, as well as giving the kinetic term for the chiral edge
modes [48]. The ground-state degeneracy is consistent with
the counting done in Sec. II B, and the presence of chiral edge
modes in the direction of the wires was a starting point of the
CWC [21].

The fact that the Wen-Zee action follows from the CWC
strongly suggests that there will be gapless edge modes also
in the perpendicular direction in the case of finite length wires
with open boundary conditions. However, we do not claim
to have proven this since the derivation of the topological
action did not incorporate open boundary conditions in the
x direction. Here, a comment on the edge Hamiltonian is in
order. From the CWC perspective, the edge modes parallel

to the wires are nothing but the decoupled chiral components
at the outermost wires. As such, they have a Hamiltonian
given explicitly by the chiral Luttinger theory which is at the
basis of the construction. In particular, the velocity depends
explicitly on the topological number m. There is no reason to
believe that this would give a good description of a real QH
edge, where the edge velocity is known to depend on the edge
potential. Thus, the edge velocity should be considered as an
extra phenomenological parameter, and the same holds for the
multicomponent case discussed in Sec. VI.

B. Hydrodynamical action and the Kohn mode

In the previous section, we only retained the topological
part (25) of the full action (29). We now show that, by
including the Hamiltonian part, we can complement the Wen-
Zee topological term with higher derivative contributions that
describe collective modes. To this end, we begin with the
low-energy effective Lagrangian (29):

LCWC = 1

4πm
εμνλaμ∂νaλ − a0δρ

− β

2π
ωc

(
a2

x + a2
y

) − ωcπ

4m
l2
y (δρ)2, (53)

where we have added the term a0δρ to retain the correct
constraint. Following the same logic as in the previous section,
but with LCS(a) replaced by the above expression, we first
integrate out the density fluctuations δρ to get a term ∼a2

0 in
the action

L = − m

4π
εμνλbμ∂νbλ + 1

2π
εμνλaμ∂νbλ

− ωc

4πm
�a · �a + mωc

πγ
a2

0, (54)

where we defined the dimensionless parameter γ = Kω2
c l2

y
and used the relation β = 1/(2m).

As above, we then proceed to integrate the a field to get the
desired effective hydrodynamic theory:

Lhydro = − m

4π
εμνλbμ∂νbλ + m

4π

1

ωc

�E2
b − γ

16πm

1

ωc
B2

b,

(55)

where �Eb = −�∇b0 − �̇b and Bb = εi j∂ib j are the field strengths
related to b.

It is now straightforward to extract the dispersion relation
for the collective mode described by the dynamics of this
effective theory,

ω(q) = ωc + γ

8m2

1

ωc
q2. (56)

This should be compared with the result from the CSGL
theory (30) [38,53]:

ω(q) = ωc + ρ̄

2B
V (q)q2, (57)

where V (q) is the Fourier transform of the two-body potential
V (�r). We see, as expected from (29) and (32), that the result
from the coupled-wire construction corresponds to having a
delta function potential.
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C. Coupling to an external electromagnetic field

So far, we did not include the coupling to electromag-
netism, except for the constant B field that determines the
ground-state density ρ̄. Minimal coupling of electromag-
netism to a phase field is implemented by the standard sub-
stitution

∂i� → ∂i� − eAi, (58)

and recalling the definition (23), this implies that �A is incorpo-
rated by the substitution �a → �a + e �A in the Hamiltonian, and
A0 is coupled by adding the term eA0ρ to (53). With this in
mind, the Lagrangian (54) generalizes to

L = − m

4π
εμνλbμ∂νbλ + 1

2π
εμνλaμ∂νbλ

− ωc

4πm
(�a + e �A) · (�a + e �A) + mωc

πγ
(a0 + eA0)2. (59)

[Note that the substitution (58), which amounts to a minimal
coupling, should be done only in the Hamiltonian; the CS
action, which encodes the proper commutation relations, is
not to be changed.] By a shift, a → ã − eA, the integration
over ã can be performed as in the previous section, and we
regain the result (55) with the extra term

LA = − e

2π
εμνλAμ∂νbλ, (60)

which is the desired coupling of the electromagnetic potential
to the conserved current jμ = e

2π
εμνλ∂νbλ.

At this point, it behooves us to clarify the relation to the
approach by Fuji and Furusaki in Ref. [39]. Our hydrody-
namic Lagrangian (55), supplemented by the electromagnetic
coupling (60), should be compared with their Eq. (52). They
use the notation α for our hydrodynamic gauge field b and
also consider couplings to a bosonic quasiparticle described
by �VCB. As they point out, their final expression contains
a term that may be obtained by discretizing the topological
part of (55). However, it crucially differs from (55) in that
the field α does not have any dynamics, and that Eq. (52)
has other terms that may eventually generate more relevant
contributions (e.g., α2) in a derivative expansion.

VI. GENERAL ABELIAN QH STATES

Having understood how a topological quantum field theory
emerges from the CWC in the simplest case of the Laughlin
states, we now ask what in the previous analysis will carry
over to general Abelian QH states which are described by the
Wen-Zee Lagrangian [16]

L = − 1

4π

nK∑
I,J=1

KIJε
μνρb(I )

μ ∂νb(J )
ρ − e

2π

n∑
I=1

qIε
μνρb(I )

μ ∂νAρ.

(61)

In the above, {b(I )
μ } are nK Chern-Simons gauge fields, and the

nK×nK “K matrix” K is symmetric and integer valued. The
integer-valued “charge vector” q = (q1, . . . , qn) determines
how the Ith component of the U(1) charge 1

2π
εμνρ∂μb(I )

ν

couples to the external electromagnetic field Aμ [48]. The
topological field theories of the form (61) are known to
describe not only genuine topological phases [16], but also

FIG. 4. Multilayer construction that reproduces the Abelian
Chern-Simons gauge theory (61).

symmetry-protected ones [54]. In Ref. [22], Teo and Kane
gave a construction for the simple case of a 2×2 K matrix.
Their method generalizes quite straightforwardly to a general
K matrix, and so does the extraction of the topological field
theory (61).

To closely follow the steps given in Sec. II A for the single-
component case, we prepare Nlayer = nK layers of coupled
wires and define the following bosons as in Eq. (12):

�̃φ
L

j∗ ≡ 1
2 ( �� j + K �	 j ), �̃φ

R

j∗ ≡ 1
2 ( �� j+1 − K �	 j+1), (62)

where we have introduced the vectorial notations, e.g.,

�� j ≡ (
�

(1)
j , . . . , �

(Nlayer )
j

)T
, �	 j ≡ (

	
(1)
j , . . . , 	

(Nlayer )
j

)T
.

(63)

Each pair of bosons (�(I )
j ,	

(I )
j ) obey the commutation rela-

tions (6) and describe a Luttinger liquid on the wire j of the
Ith layer (see Fig. 4) with the Luttinger parameter K . From
these fields, we define the following bosons living on the
strip j∗:

�ϑ j∗ ≡ �̃φ
L

j∗ − �̃φ
R

j∗ = 1
2 ( �� j − �� j+1) + 1

2K( �	 j + �	 j+1). (64)

Note that the on-strip fields ϑ
(I )
j∗ are not local in that they

contain 	(J ) on different layers as well as �(I ) on the same
layer.

Again in analogy with the single-component case, it is
clear that to reproduce the Wen-Zee action (61) we need the
following Nlayer interactions between the adjacent wires:

V =
Nlayer∑
I=1

Ny∑
j=1

gI cos
(
2ϑ

(I )
j∗

)
. (65)

Following the procedure given in Ref. [22], we find that, in
the strong-coupling limit of V , there are Nlayer gapless modes
at the lower edge j∗ = 0 described by the following edge
Hamiltonian:

Hedge( j∗ = 0)

= v0
F

2π

∫
dx

Nlayer∑
I,J=1

{1 + (K−1)2}IJ
(
∂xφ̃

R,(I )
0

)(
∂xφ̃

R,(J )
0

)
(66)
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and similarly for the upper edge j∗ = Ny. If we identify the
nonuniversal velocity matrix V as

V = 2v0
F{1 + (K−1)2}, (67)

the edge Hamiltonian (66) coincides with that predicted by
the hydrodynamic Chern-Simons action (61) [48]. As has
been remarked in Sec. V A, that the K matrix, which is of
purely topological origin, appears in the edge Hamiltonian
(66) through the nonuniversal velocity V is just an artifact of
using the special interwire interaction (65) to construct the QH
state.

Then, by properly identifying the statistical gauge fields
{a(I )}, we can derive the Wen-Zee action (61) with A = 0.
Since we follow almost the same steps as before, we just
sketch the derivation in Appendix B 2. Also, it is not hard to
use the method in Sec. V B to calculate the higher-derivative
corrections to the topological action (61) but we do not give
the details here. The construction here uses the multilayer
setting. However, as is described in Appendix B 3, we can
always recast the multilayer system into a single-layer one
with longer-range interactions as in Ref. [22].

It is straightforward to rewrite (65) in terms of suitably
ordered interactions among fermions or bosons that generalize
(8). In fact, as is shown in Appendix B 1, in order for the above
interactions to be written only in terms of local operators
of the original fermionic/bosonic theories, the Nlayer×Nlayer

matrix K must satisfy

KII = odd, KIJ = even (I �= J ) (for fermions),

KIJ = even ∀ I, J (for bosons). (68)

Recovering all the Klein factors (in the fermion case) and

combining (68) with the relation eiϑ (I )
j∗ eiϑ (J )

j∗−1 = (−1)KIJ

eiϑ (J )
j∗−1 eiϑ (I )

j∗ derived from the commutation relations, we see
that, for both fermions and bosons, all the terms in (65) are
commuting and can be minimized simultaneously.

By requiring translational invariance of the interwire in-
teractions, we can determine the filling at which these interac-
tions are allowed. The magnetic field b and the particle density
of each layer may be recovered by the following substitution
for all layers I and wires j:

�
(I )
j (x) → �

(I )
j (x) + b jx, 	

(I )
j (x) → 	

(I )
j (x) − πρ̄1D

(I ) x.

(69)

Then, the interwire interactions (65) acquire additional x
dependence (2π

∑
J KIJ ρ̄

1D
(I ) + b)x in the cosines. The transla-

tional invariance requires that these oscillating factors should
vanish:

ρ̄1D
(I ) = |b|

2π

∑
J

(K−1)IJ . (70)

From this, we can read off the corresponding filling fraction
as

ν = 2π

|b|
∑

I

ρ
(I )
0 ρ̄1D

(I ) =
∑
I,J

(K−1)IJ . (71)

Comparing this with the general expression from the Chern-
Simons theory ν = qTK−1q, we see that our construction
corresponds to the symmetric basis q = (1, 1, . . . , 1) [48].

Although it is rather straightforward, we will not derive the
ground-state degeneracy along the lines in Sec. II B4 since the
result also follows directly from the effective Wen-Zee theory
(61) to be derived in Appendix B 2 [55,56].

Regarding the wave functions, there is an important dis-
tinction between states formed by multicomponent states
where the particles are distinguishable by spin or some “layer”
index [57], and where they are indistinguishable, as in the
hierarchy of spin-polarized states in the lowest Landau level.
In the first case, which includes the Halperin (m, m, n) states
[58], one can derive the wave functions using the same tech-
nique as in Sec. IV. The hierarchy wave functions pose a much
more difficult problem. Here, the electrons in the layers (or ef-
fective Landau levels in the language of composite fermions)
are distinguished by their orbital spin. This is a topological
quantity that is most directly revealed by geometrical response
since it couples to external curvature [59], but it is also related
to the Hall viscosity which is a transport coefficient [60]. It is
a challenge to to incorporate the orbital spin in the CWC.

VII. SUMMARY AND OUTLOOK

In this paper we have considered the bulk properties in
the CWC, i.e., the (topological) ground-state degeneracy, the
wave function, the bulk effective theory, and the low-energy
excitations. In the limit of sufficiently strong interwire inter-
actions, the ground states are found by minimizing the inter-
action energy. We gave, for the Laughlin states, the precise
condition to identify physically inequivalent ground states and
showed that the CWC correctly reproduces the number of
degenerate ground states on a torus.

In order to describe the low-energy properties in the bulk,
we first identified the bosons on the wires as composite bosons
and found the expressions for the statistical gauge field in
the CSGL theory. These enabled us to obtain the low-energy
effective action for the statistical (Chern-Simons) gauge field,
from which we constructed the bulk Laughlin wave function
within the framework of the CWC. By integrating out the
statistical gauge field, we then derived the hydrodynamic
effective action (the Maxwell-Chern-Simons theory) in which
the leading term is the topological Wen-Zee action. We also
discussed the effects of anisotropy, which is inherent in the
CWC, on the bulk properties. The methods developed for the
simplest Laughlin states were readily generalized to give a
simple recipe for constructing general Abelian quantum Hall
states, characterized by a K matrix, and the corresponding
multicomponent Wen-Zee action.

Our work points at several directions that might be fruitful
to explore. In the CWC, it is by its nature quite easy to

4Now, the equivalence relation corresponding to (15) is

1

π

Ny∑
j∗=1

δ �ϑ j∗ =
Nlayer∑
I=1

nI e
(I ) (nI ∈ Z)

with a set of Nlayer vectors defined by (e(I ) )J = KJI = KIJ . That is, if
the difference {δ �ϑ j∗ } between any given pair of ground states is on
the lattice spanned by {e(I )}, they are equivalent. Then, the volume of
a unit cell of this lattice |det K| gives the ground-state degeneracy.
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find the gapless edge modes at the boundaries parallel to the
wires. Although we derived the bulk Wen-Zee action that
does encode the chiral edge states at any boundaries, it is
not at all clear how this will work microscopically at the
boundaries in the direction perpendicular to the wires (i.e., y
direction). To investigate this, one would have to impose box
boundary conditions on the wires, but we postpone this for
future studies.

We already mentioned that one can derive the Laughlin
quasihole wave functions in the CWC framework, but that it
is a harder problem to find the wave function for states with
quasielectrons, and even harder to find even the ground-state
wave functions for the hierarchical states. In particular, it is a
challenge to understand how the orbital spin, which couples
to the curvature of the manifold on which the QH liquid is
defined, could emerge from a CWC.

Another related and difficult, but very interesting, question
is whether one could use methods similar to those developed
in this paper to extract topological field theories for non-
Abelian states. The obvious first try would be the ν = 1
bosonic Moore-Read state for which Teo and Kane found a
reasonably simple CWC [22].

Note added. Recently, we noticed another very recent
related preprint [61], in which the effective theory similar
to ours has been derived directly without evoking composite
bosons. We, however, disagree on how the gauge constraint is
handled in this paper.
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APPENDIX A: GROUND-STATE DEGENERACIES

In Sec. II, we have claimed that the coupled-wire system
with the fine-tuned interaction (9) has exactly m different
ground states labeled by the value

Ny∑
j∗=1

ϑ̄ j∗/π (mod m)

(ϑ0 = ϑNy by periodic boundary condition) in the bulk. In this
Appendix we prove this proposition.

The key is that states that are equal up to the periodicity of
the bosonic fields must be identified [46,47]. The situation is
different for fermionic and bosonic cases as the two cases have
different periodic structures (see Fig. 5). The periodicity in the
fermionic case is defined with respect to the chiral bosons [the
periodicity of (� j,	 j ) differs in the fermionic and bosonic
sectors]:

φL
j ∼ φL

j + π, φR
j ∼ φR

j + π. (A1)

FIG. 5. Points (� j/π, 	 j/π ) identified by redundancy for
fermionic (left) and bosonic (right) cases. In the fermionic case, the
entire lattice splits into two sublattices corresponding to fermionic
(red) and bosonic (black) sectors.

The “lattice points” (� j,	 j ) identified with (0,0) up to this
periodicity are shown in the left panel of Fig. 5. In the bosonic
cases, on the other hand, the periodicity is defined as

� j ∼ � j + 2π, 	 j ∼ 	 j + π (A2)

and we have a different lattice (see the right panel of Fig. 5).
Let us begin with the fermion case. We take a pair of

ground states {ϑ̄ (1)
j∗ } and {ϑ̄ (2)

j∗ } and denote the difference of the

ϑ̄
(1)
j∗ − ϑ̄

(2)
j∗ , φ

(1),L/R
j − φ

(2),L/R
j , etc., in the two ground states

by δϑ j∗ , δφL/R
j , etc. As δϑ j∗ ≡ 0 (mod π ), it is convenient to

specify the difference of the two ground states {δϑ j∗ } by a set
of integers n j∗ ≡ δϑ j∗/π . Using the definitions

ϑ j∗ = 1

2
(� j − � j+1) + m

2
(	 j + 	 j+1) ( j = 1, . . . , Ny − 1),

ϑN∗
y

= 1

2
(�Ny − �1) + m

2
(	Ny + 	1) = ϑ0∗ (periodic),

� j = φL
j + φR

j , 	 j = φL
j − φR

j ,

we readily see that

Ny∑
j∗=1

δϑ j∗/π =
Ny∑

j∗=1

n j∗ = m
Ny∑
j=1

(
δφL

j − δφR
j

)/
π. (A3)

If the two ground states are equivalent, δφL
j /π, δφR

j /π ≡ 0

(mod 1), and hence
∑Ny

j∗=1 n j∗ ≡ 0 (mod m).
Now let us prove the converse, i.e., that if a given pair

of ground states satisfy
∑Ny

j∗=1 n j∗ ≡ 0 (mod m), then they
are equivalent. To this end, first we show that, by applying
a series of transformations to one of the two ground states,
we can reduce an arbitrary set {n1∗ , n2∗ , . . . nN∗

y
} to a simpler

one: {0, 0, . . . 0, M} with M = ∑Ny

i∗=1 ni∗ . If we perform the
transformation �2 → �2 + 2πn1∗ to the ground state “1,”
δϑ1∗ → 0 in the transformed state, leaving us with the new
configuration {0, n1∗ + n2∗ , n3∗ , . . . nN∗

y
}. In the next step, we

make the transformation �3 → �3 − 2π (n1∗ + n2∗ ) to obtain
{0, 0, n1∗ + n2∗ + n3∗ , . . . nN∗

y
}, and so on. After Ny − 1 steps,

we have got the configuration {0, 0, . . . 0, M}, where M =∑Ny

i∗=1 ni∗ ≡ mk + r with k ∈ Z and r = 0, 1, . . . m − 1. Since
� j → � j + 2πZ is realizable in both fermionic and bosonic
cases, the above procedure is applicable to both cases alike.

Now suppose that M ≡ 0 (mod m), i.e., we have
{0, 0, . . . , mk} after the steps described above. Then, the
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question is whether we can find a transformation that
eliminates mk in the last component or not. In fact, the
transformation depends on the parity of m. Consider the
following two transformations allowed for fermionic systems
[see Eq. (A1)]: (φL

Ny
, φR

Ny
) → (φL

Ny
− π, φR

Ny
) [(�Ny ,	Ny ) →

(�Ny − π,	Ny − π )] and (φL
Ny

, φR
Ny

) → (φL
Ny

, φR
Ny

− π )
[(�Ny ,	Ny ) → (�Ny − π,	Ny + π )]. They, respectively,
change {n1, n2, . . . nNy} by

{0, 0, . . . 0,−(m − 1)/2,−(m + 1)/2}
and {0, 0, . . . 0, (m + 1)/2, (m − 1)/2}. (A4)

When m is odd, the above transformations correctly shift the
set {nj} by integers. It is clear that if we repeat the first
and second transformation (m + 1)k/2 and (m − 1)k/2 times,
respectively, we can reduce {0, 0, . . . , mk} → {0, 0, . . . , 0}.
Note that the above procedure is allowed only when m is odd,
i.e., only for the fermionic Laughlin states. Thus, we have
proved that a given pair of ground states are equivalent if and
only if

∑Ny

j∗=1 δϑ j∗/π ≡ 0 (mod m).
In the bosonic case, the periodicity is defined by (A2).

Since we now have
Ny∑

j∗=1

δϑ j∗/π =
Ny∑

j∗=1

n j∗ = m
Ny∑
j=1

δ	 j/π (A5)

instead of (A3), any pair of equivalent ground states (δ	 j ≡
0 mod π ) must satisfy the same relation:

∑Ny

j∗=1 n j∗ ≡
0 (mod m). When this relation holds, we can again
deform the initial {n1∗ , n2∗ , . . . nN∗

y
} into {0, 0, . . . , mk}

by the series of transformations. Now, we consider the
two transformations (�Ny ,	Ny ) → (�Ny − 2π,	Ny ) and
(�Ny ,	Ny ) → (�Ny ,	Ny − π ), which shift {n1∗ , n2∗ , . . . nN∗

y
}

by {0, 0, . . . 0, 1,−1} and {0, 0, . . . 0,−m/2,−m/2}, respec-
tively. Then, we can eliminate mk by repeating the first
and second transformation mk/2 and k times, respectively.
Clearly, this construction requires m = even (m/2 must be in-
teger), which is expected also from the property of the bosonic
Laughlin states. Therefore, when m is odd (even), the coupled
fermionic (bosonic) wires with the interwire interaction (9)
exhibit precisely m degenerate ground states. A similar but
different approach to the ground-state counting based on the
edge states has been presented in Ref. [62].

APPENDIX B: CWC FOR GENERAL ABELIAN QH STATES

In this Appendix we provide details of the CWC for a
general K matrix discussed in Sec. VI, and the derivation of
the associated Wen-Zee topological field theory.

1. Constraints on K

So far, we have not assumed any particular statistics of
particles on the individual wires. However, in order for the
above interactions to be written as products of local oper-
ators (say, Rj and Lj) on the wires, the elements of the K
matrix are constrained. Any local operators of the wire (J, j)
(J = 1, . . . , Nlayer, j = 1, . . . , Ny) can be written as vertex
operators of the form

V (J )
j

(
M (J )

j , M (J )
j

) = exp
{
iM (J )

j �
(J )
j + i2N (J )

j 	
(J )
j

}
, (B1)

where the possible values of (M (J )
j , N (J )

j ) are restricted as
[63,64]

M (J )
j ∈ Z, 2N (J )

j ∈ Z, (−1)M (J )
j +2N (J )

j = 1 for bosons,

M (J )
j ∈ Z, N (J )

j ∈ Z for bosons. (B2)

The most general expression of the (nearest-neighbor) inter-
wire coupling is

Nlayer∏
J=1

V (J )
j

(
M (J )

j (I ), M (J )
j (I )

)
V (J )

j+1

(
M (J )

j+1(I ), M (J )
j+1(I )

)

= exp

⎧⎨⎩i

Nlayer∑
J=1

(
M (J )

j (I )�(J )
j + M (J )

j+1(I )�(J )
j

)

+ i

Nlayer∑
J=1

(
2N (J )

j (I )	(J )
j + 2N (J )

j+1(I )	(J )
j

)⎫⎬⎭. (B3)

Comparing this with the Ith interwire interaction cos (2ϑ
(I )
j∗ ),

we obtain

M (J )
j (I ) = −M (J )

j+1(I ) = δIJ ,

2N (J )
j (I ) = 2N (J )

j (I ) = KIJ (B4)

with the integers {M (J )
j (I ), N (J )

j (I )} satisfying the condition
(B2). Clearly, for bosonic wires, all the elements KIJ must
be even. On the other hand, for systems consisting of fermion
wires,

KII = odd, KIJ = even (I �= J ). (B5)

The above approach was was based on having many layers
and nearest-neighbor interactions between the wires. Alterna-
tively, as in Ref. [22], we can use a single layer at the expense
of having interactions with longer range. An example of this
is given in Appendix B 3 below.

One can ask if the CWC scheme allows for more general
possibilities. A natural extension of the above construction is
to allow for more than one interwire scattering. This can be
thought of as forming FQH states of composites of electrons,
and we provide some details in Appendix B 4.

2. Derivation of multilayer topological action

We now define a multicomponent statistical gauge field by

a(I )
x = −∂x�

(I )
j ,

a(I )
y = − 2

ly
ϑ

(I )
j∗

(B6)

and using the commutation relations for the fields �	 j and �� j

we get

[
a(I )

x (x, j), a(J )
y (x′, k)

] = −2π iKIJ

(
1

ly
δ jk

)
δ(x − x′)

→ −2π iKIJδ(�x − �x′). (B7)
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These commutation relations amounts to having an action
with the kinetic term

S = 1

2π

∫
d3x

∑
I,J

K−1
IJ εi ja(I )

i (x)ȧ(J )
j (x). (B8)

As in Sec. III B, the corresponding Hamiltonian is given by

H =
∑

I

[
βI

x

(
a(I )

x

)2 + βI
y

(
a(I )

y

)2]
, (B9)

where the coefficients βI
i are easily extracted from the Lut-

tinger Hamiltonians for the individual wires, and the expan-
sion of the interwire interactions (65). With (B8) and (B9) in
hand, we can step by step follow the derivation in Sec. V to
arrive at the Wen-Zee Lagrangian (61) with a charge vector
q = (1, 1, . . . 1) corresponding to the symmetric basis of the
K matrix using the terminology of Wen [48]. Using the above
charge vector q, we can write the filling fraction ν compactly
as ν = qTK−1q reproducing the well-known formula.

Integrating the statistical gauge fields aI
i in the presence

of the Hamiltonian (B9) will generate higher-derivative cor-
rections to to the topological action (61) and the resulting
hydrodynamical theory can be used to study collective modes,
just as in the single-component case.

3. Single-layer description

Above we gave the CWC for generic Abelian topological
states using the multilayer scheme, where we used Nlayer = n
sheets of coupled wires to realize topological states character-
ized by an n-dimensional K matrix. However, we can easily
transform the multilayer scheme to a single-layer one pro-
posed in, e.g., Ref. [22] by “crushing” the stack of layers. The
idea is to first relabel the jth wire on the Ith layer (I, j) (I =
1, . . . , n, j = 1, . . . , Ny) as the j′th one [ j′ = n( j − 1) + I]
on a single layer. Now, the interaction between the wires
(I, j) and (J, j + 1) is transformed to a long-range one [with
the range (n + J − I )] between the wires n( j − 1) + I and
n j + J . This way, we formally rewrite the original n-layer
system in terms of a single-layer system including at most
range-(2n − 1) interactions. However, this is not the end of
the story. In fact, there is a freedom of changing the boson
fields while preserving the commutation relations.

Let us demonstrate how the procedure described above
works in the Haldane-Halperin ν = 2

5 state [4,5] characterized
by the following K matrix (in the symmetric basis):

K =
(

3 2
2 3

)
. (B10)

According to the procedure described in Sec. VI [see
Eq. (62)], the modified chiral bosons are defined as

φ̃
L(1)
j = (�2 j−1 + 3	2 j−1 + 2	2 j )/2,

φ̃
R(1)
j = (�2 j−1 − 3	2 j−1 − 2	2 j )/2, (B11a)

φ̃
L(2)
j = (�2 j + 2	2 j−1 + 3	2 j )/2,

φ̃
R(2)
j = (�2 j − 2	2 j−1 − 3	2 j )/2, (B11b)

where we have made the replacement (�(1)
j ,	

(1)
j ,�

(2)
j ,	

(2)
j )

→ (�2 j−1,	2 j−1,�2 j,	2 j ) ( j = 1, . . . , Ny) on the

right-hand side. In terms of the new set of variables, the
original interwire interactions read as

cos
[
2ϑ

(1)
j∗

] = cos
[
2
(
φ̃

L(1)
j − φ̃

R(1)
j+1

)]
= cos{(�2 j−1 − �2 j+1) + 3	2 j−1 + 2	2 j

+ 3	2 j+1 + 2	2 j+2},
cos

[
2ϑ

(2)
j∗

] = cos
[
2
(
φ̃

L(2)
j − φ̃

R(2)
j+1

)]
= cos{(�2 j−1 − �2 j+1) + 2	2 j−1 + 3	2 j

+ 2	2 j+1 + 3	2 j+2)}, (B12)

which include backscattering processes on four wires (2 j −
1, 2 j, 2 j + 1, 2 j + 2) as well as single-particle hoppings
between second-neighbor wires. Therefore, if we squeeze
the double-layer systems to a single-layer one, interactions
involving four wires are introduced.

Now, we show that we can reduce the number of wires
involved in the interwire interactions by the redefinition of
the chiral bosons in Eqs. (B11a) and (B11b). In fact, we
can readily check that all the commutation relations among
{φ̃L/R(I )

j } are preserved even after we redefine the chiral bosons
as

φ̃
L/R(1)
j → φ̃

L/R(1)
j + 	

(2)
j , φ̃

L/R(2)
j → φ̃

L/R(2)
j −	

(1)
j . (B13)

Then, it is clear that all the arguments on the underlying
topological properties in Appendix B 2 carry over and that
the same topological phase is obtained for the new system as
well. With the new strip variables defined by ϑ

(I )
j∗ = φ̃

L/R(I )
j −

φ̃
L/R(I )
j+1 , the two interwire interactions now read as

cos
[
2ϑ

(1)
j∗

]
= cos

{(
�

(1)
j − �

(1)
j+1

) + 3
(
	

(1)
j + 	

(1)
j+1

) + 4	
(2)
j

}
,

cos
[
2ϑ

(2)
j∗

]
= cos

{(
�

(2)
j − �

(2)
j+1

) + 4	
(1)
j+1 + 3

(
	

(2)
j + 	

(2)
j+1

)}
.

(B14)

After relabeling the wires as before, we obtain the interactions
proposed in Ref. [22] containing only three-wire couplings.

4. FQHE of composite particles

So far, we have been discussing the case only with single-
particle (interwire) hopping where the coefficients of the �

fields appearing in the interwire interactions are always ±1.
However, we may think of the situations where multiparticle
hopping occurs or, more specifically, when we have the fol-
lowing interwire interactions:

Nlayer∑
I=1

Ny∑
j=1

gI cos
{
n
(
�

(I )
j − �

(I )
j+1

) +
∑

J

K̃IJ
(
	

(J )
j + 	

(J )
j+1

)}
.

In the above, K̃ is an invertible, symmetric integer-valued
matrix which is not necessarily the K matrix of the under-
lying Chern-Simons theory. As in the previous cases, we can
formally introduce the following chiral bosons:

�̃φ
L

j ≡ 1
2 (n �� j + K̃ �	 j ), �̃φ

R

j ≡ 1
2 (n �� j − K̃ �	 j ). (B15)
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Then, the on-strip fields defined by

�ϕ j∗ ≡ �̃φ
L

j + �̃φ
R

j+1 = n

2
( �� j + �� j+1) + 1

2
K̃( �	 j − �	 j+1),

�ϑ j∗ ≡ �̃φ
L

j − �̃φ
R

j+1 = n

2
( �� j − �� j+1) + 1

2
K̃( �	 j + �	 j+1)

(B16)

enable us to rewrite the above interwire interactions as

Nlayer∑
I=1

Ny∑
j=1

gI cos
(
2ϑ

(I )
j∗

)
. (B17)

The hidden symmetry now reads as

⎛⎝ �̃φ
L

j

�̃φ
R

j+1

⎞⎠ →
⎛⎝ �̃φ

L

j

�̃φ
R

j+1

⎞⎠ + n

2

(
K̃ �χ j∗

K̃ �χ j∗

)
, (B18)

with the Nlayer-dimensional vector �χ j∗ parametrizing the resid-
ual U(1)Nlayer symmetry:

a(I )
x (x, j) ≡

∑
J

(K̃−1)IJ∂x�
(J )
j (x),

a(I )
y (x, j) ≡ 2

n

1

ly
	

(I )
j (x). (B19)

Plugging these expressions into the Berry-phase part of the
Luttinger liquid action, we obtain

−
∫

d3x
1

4π

∑
I,J

(nK̃IJ )εi j ȧ(I )
i (x)a(J )

j (x), (B20)

which immediately implies that the underlying topological
field theory is the Wen-Zee action with the K matrix given
by nK̃:

ρ̃
(I )
j∗ (x) = 1

π

Nlayer∑
J=1

(K̃−1)IJ∂xϑ
(J )
j∗ (x)


 n

2π
ly
(
∂xa(I )

y − ∂ya(I )
x

)
. (B21)
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