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Scanning tunneling shot-noise spectroscopy in Kondo systems
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Using a large-N theory in combination with the Keldysh nonequilibrium Green’s function formalism, we
investigate the current, differential conductance, zero-frequency shot noise, and Fano factor as measured by
scanning tunneling shot-noise spectroscopy (STSNS) using a scanning tunneling microscope (STM) near single
Kondo impurities and in Kondo lattices. We show that the Fano factor F exhibits a characteristic bias dependence
arising from Kondo screening that is similar to the Kondo resonance observed in the differential conductance.
Moreover, the line shape of F is strongly dependent on the ratio of the tunneling amplitudes for electron tunneling
from the STM tip into the conduction band and electronic levels of the magnetic adatoms. We demonstrate that
the Fano factor can be enhanced or suppressed due to interference effects and as such, is not only a sensitive probe
for the correlation effects arising from Kondo screening, but also for quantum interference between tunneling
electrons. We identify a correlation between the form of the differential conductance and the Fano factor that
could be tested in future STSNS experiments.
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I. INTRODUCTION

The Kondo screening of a magnetic impurity by con-
duction electrons is one of the most fascinating phenomena
in condensed-matter physics [1]. Its local spectroscopic sig-
nature, the Kondo resonance, has been well studied using
scanning tunneling spectroscopy (STS) experiments [2–6]. By
measuring the local differential conductance near magnetic
adatoms such as a Co atom located on metallic Cu(111) or
Au(111) surfaces, it was observed that the Kondo resonance
exhibits a line shape (i.e., a bias dependence) with a charac-
teristic asymmetry that can be well described phenomenolog-
ically using the Fano formula [7]. A microscopic derivation
of the Fano formula [7–9] has shown that the asymmetry of
the Kondo resonance arises not only from the particle-hole
asymmetry of the underlying conduction band, but also from
quantum interference between electrons tunneling from the
STM tip either into the conduction band or the electronic
levels of the magnetic adatoms [10] as schematically shown
in Fig. 1.

The recent progress [11–15] in the development of scan-
ning tunneling shot-noise spectroscopy (STSNS) [16–18] us-
ing a scanning tunneling microscope (STM) in which an
STM tip is used to simultaneously measure the IV curves
as well as the zero-frequency shot noise—the current-current
correlation function—has raised the question of whether such
a characteristic signature as the Kondo resonance can also be
found in the bias dependence of the shot noise, or of the Fano
factor, defined as

F = S(ω = 0)

2e|I| , (1)

where I is the current flowing from the tip into the system, and
S(ω = 0) is the associated zero-frequency shot noise. Indeed,
recent STSNS experiments have found a strong suppression
of the Fano factor from its Poissonian value of unity around

magnetic and nonmagnetic adatoms on a Au(111) surface
[11], and observed an enhanced current noise near defects in
cuprate superconductors [14,15]. Furthermore, it was argued
that the observation of shot noise via STSNS could pro-
vide insight into the local spin susceptibility associated with
unscreened magnetic adatoms [19], and that measurements
of conductance-conductance correlations using an STM tip
could provide insight into the local spin structure of the Kondo
screening cloud [20].

Shot noise and the Fano factor have been extensively
studied in mesoscopic systems [21–23], in particular in the
context of the Kondo effect on a quantum dot [24–33] or in
carbon nanotubes [34], in a setup that is qualitatively different
from that of STSNS experiments. While it was shown that
the Fano factor in quantum dot systems is suppressed by
Kondo correlations [25], it was also predicted [29] that in
the unitary limit, the Fano factor associated solely with the
backscattered current can exceed the Poissonian limit of unity.
An enhancement in this modified Fano factor was subse-
quently observed experimentally [30,32]. We note that the
screening of a magnetic moment on a quantum dot arises from
its coupling to the leads, while in STSNS experiments, the
screening of an adatom’s moment on a Cu(111) or Au(111)
surface arises from the surface bands. As a result, in the latter
case the screening takes place even in the absence of the STM
tip, i.e., the lead.

In this paper, we will investigate the relation between the
bias dependence of the current, the differential conductance,
the zero-frequency shot noise, and the Fano factor around
magnetic adatoms located on metallic surfaces, exhibiting a
Kondo effect, as well as in Kondo lattices, as observed by
scanning tunneling shot-noise spectroscopy. We will show
that the Fano factor exhibits a characteristic line shape that
reflects not only the strong correlations arising from Kondo
screening, but also quantum interference effects due to multi-
ple tunneling paths. This characteristic line shape of F is not
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unlike the Kondo resonance observed in the differential con-
ductance, and presents an additional test for our understanding
of the Kondo effect.

The rest of the paper is organized as follows. In Sec. II
we present our theoretical model and derive the form of the
current and shot noise measured by an STM tip. This model
was previously employed to successfully describe the Kondo
resonance of a Co adatom located on a Au(111) surface. In
Sec. III we discuss our results for the shot noise around a
single magnetic adatom, the relation between the differential
conductance and the shot-noise line shape, and the effects of
tunneling interference. In Sec. IV we discuss the form of the
shot noise and Fano factor in Kondo lattice systems. Finally,
in Sec. V we present our conclusions.

II. THEORETICAL MODEL

We begin by discussing the model for the current and shot
noise measured by STSNS around a single Kondo impurity,
and will subsequently extend it to the Kondo lattice. To study
the properties of a single Kondo impurity, we employ the
theoretical model of Ref. [8] which was used to successfully
describe the line shape of the Kondo resonance in the differen-
tial conductance, dI/dV , measured around a single magnetic
Co adatom located on a metallic Au(111) surface [2]. Such a
system is described by the Hamiltonian [1]

Ĥ =
∑
r,r′,σ

(−tr,r′ − μδr,r′ )c†
r,σ cr′,σ + JSK

R · sc
R, (2)

where c†
r,σ (cr,σ ) creates (annihilates) a conduction electron

with spin σ at site r on the Au(111) surface. Here, trr′ =
1.3 eV is the fermionic hopping element between nearest-
neighbor sites in the triangular Au(111) surface lattice, and
μ = −7.34 eV is its chemical potential. These parameters de-
scribe the dispersion of the experimentally observed Au(111)
surface state [35] that takes part in the Kondo screening of the
Co adatom. Moreover, J > 0 is the Kondo coupling, and SK

R
and sc

R are the spin operators of the magnetic Co adatom and
the conduction electron at site R, respectively.

To describe the Kondo screening of the Co adatom by the
two-dimensional Au(111) surface state, we employ a large-N
expansion [36–42]. Here, SK

R is generalized to SU(N ) and
represented via Abrikosov pseudofermions f †

m, fm which obey
the constraint

∑
m=1...N f †

m fm = 1 with N = 2S + 1 being the
spin degeneracy of the magnetic adatom. This constraint is
enforced by means of a Lagrange multiplier ε f , while the
exchange interaction in Eq. (2) is decoupled via the hy-
bridization field s. The hybridization represents the hopping
between the conduction electron states and the pseudofermion
f -electron states with the resulting Kondo temperature scaling
as [37] TK ∼ s2. For fixed J , ε f and s are obtained on the
saddle-point level by minimizing the effective action [40].
Finally, the tunneling of electrons from the STM tip into the
system is described by the Hamiltonian

Ĥ =
∑

σ

tcc†
R,σ dσ + t f f †

R,σ dσ + H.c., (3)

where tc (t f ) are the amplitudes for tunneling of electrons from
the tip into the Au(111) surface band (the magnetic f level),

FIG. 1. Paths of electrons tunneling from the STM tip either into
the conduction-band sites (grey spheres) or into the magnetic level of
the Kondo impurity (green sphere), with tunneling amplitudes tc and
t f , respectively.

as schematically shown in Fig. 1, and dσ annihilates a fermion
in the STM tip.

To compute the current and associated shot noise measured
by the STM tip, we employ the nonequilibrium Keldysh
Greens function formalism [43,44]. Unless otherwise stated,
all results presented in Secs. III and IV were obtained at
zero temperature. When the STM tip is positioned above the
magnetic adatom at site R, the current flowing from the STM
tip into the system is given by [45]

IR(V ) = −2e

h̄
Re

∫ V

0

dω

2π
[tc Ĝ<

12(ω) + t f Ĝ<
13(ω)], (4)

with the full lesser Green’s-function matrix given by

Ĝ<(ω) = [1̂ − ĝr (ω)t̂]−1ĝ<(ω)[1̂ − t̂ ĝa(ω)]−1;

ĝ<(ω) = −2in̂F (ω)Im[ĝr (ω)];

ĝr (ω) =

⎛
⎜⎝

gr
t (ω) 0 0

0 gr
cc(R, R, ω) gr

c f (R, R, ω)

0 gr
f c(R, r, ω) gr

f f (R, R, ω)

⎞
⎟⎠. (5)

Here, t̂ is the symmetric hopping matrix with nonzero ele-
ments t̂12 = tc, t̂13 = t f . n̂F is a diagonal matrix containing the
Fermi-distribution functions of the tip, nt

F (ω), and of the f -
and c-electron states, nF (ω). gr

t is the retarded Greens function
of the tip, and gαβ (r′, r, τ ) = −〈Tτ αr′ (τ )β†

r (0)〉 (α, β = c, f )
describes the many-body effects arising from the hybridiza-
tion of the conduction band with the f -electron level, and the
concomitant screening of the magnetic moment, with

gr
f f (R, R, ω) = [

ω − ε f − s2gr
0(R, R, ω)

]−1
;

gr
cc(R, R, ω) =

{[
gr

0(R, R, ω)
]−1 − s2

ω − ε f + iδ

}−1

;

gr
c f (R, R, ω) = gr

0(R, R, ω)sgr
f f (R, R, ω), (6)

where gr
0 is the retarded Green’s function of the unhybridized

conduction electron band. For a more in-depth discussion, see
Ref. [9].
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It is instructive to consider the weak-tunneling limit
(tc, t f → 0) of the current by expanding Eq. (4) up to second
order in the tunneling amplitudes, in which case one obtains
from Eq. (4)

IR(V ) = −4πe

h̄
πNt

∫ ∞

−∞

dε

2π

[
nt

F (ε) − nF (ε)
]

× [
t2
c Imgr

cc(ε) + 2tct f Imgr
c f (ε) + t2

f Imgr
f f (ε)

]
, (7)

where all gr
α,β (α, β = c, f ) are the local retarded Green’s

functions at the site of the magnetic adatom, and Nt is the
density of states of the tip. We previously demonstrated [8]
that the experimental dI/dV line shape measured at the site
of a Co adatom on a Au(111) surface [2] can be described by
computing the differential conductance from Eq. (7) using the
parameters J = 1.39 eV, t f /tc = −0.066, and N = 4. Note
that due to a different sign convention for the hybridization s
in Ref. [8], t f /tc also changes sign, such that t f /tc = +0.066
was used in Ref. [8]. These two simultaneous sign changes,
however, do not affect the asymmetry of the dI/dV curves
shown below.

We next consider the shot noise which is defined as the
current-current correlation function [21,22],

S(t, t ′) = 〈{δI (t ), δI (t ′)}〉 = 〈{I (t ), I (t ′)}〉 − 2〈I〉2. (8)

We then obtain for the zero-frequency noise S0 = S(ω = 0) at
the site of the adatom,

S0 = 2

(
ie

h̄

)2 ∫ ∞

−∞

dε

2π
t2
c {2G>

dc(ε)G<
dc(ε) − G>

dd (ε)G<
cc(ε)

− G<
dd (ε)G>

cc(ε)} + 2tct f {G>
df (ε)G<

dc(ε) + G<
df (ε)G>

dc(ε)

− G>
dd (ε)G<

f c(ε) − G<
dd (ε)G>

f c(ε)} + t2
f {2G>

df (ε)G<
df (ε)

− G>
dd (ε)G<

f f (ε) − G<
dd (ε)G>

f f (ε)}, (9)

where G> are the greater Green’s functions and all Green’s
functions in Eq. (9) are local Green’s function at the site of
the adatom.

Considering again the weak-tunneling limit tc, t f → 0, the
expression for the shot noise in Eq. (9) up to second order in
the tunneling amplitudes simplifies to

S0 = −8π

(
e

h̄

)2

NT

∫ ∞

−∞

dε

2π

× {[
1 − nT

F (ε)
]
nF (ε) + [1 − nF (ε)]nT

F (ε)
}

× [
t2
c Imgr

cc(ε) + 2tct f Imgr
c f (ε) + t2

f Imgr
f f (ε)

]
. (10)

By comparing the expressions for the current, Eq. (7), and
shot noise, Eq. (10), in the weak-tunneling limit, i.e., up to
second order in the tunneling amplitudes, we find that at zero
temperature the Fano factor, Eq. (1), is given by F = 1, im-
plying that the noise is Poissonian. However, the inclusion of
higher-order tunneling terms in the calculation of the current
and shot noise using Eqs. (4) and (9), respectively, yields not
only deviations of F from the Poissonian limit, but also a
characteristic bias dependence that, similar to the differential
conductance, reflects the Kondo screening process, as shown
below. Finally, we note that the definition of the Fano factor
given in Eq. (1) differs from that used in Refs. [29,32], as
Eq. (1) involves the total current and noise measured by the
STM tip.

To study the shot noise in Kondo lattice systems, we
generalize the Hamiltonian in Eq. (2) to

Ĥ =
∑
r,r′,σ

(−tr,r′ − μδr,r′ )c†
r,σ cr′,σ

+ J
∑

r

SK
r · sc

r +
∑
〈r,r′〉

Ir,r′SK
r SK

r′ , (11)

where the sums run over all sites r of the conduction electron
lattice. The last term represents the antiferromagnetic inter-
action between the magnetic moments where we assume that
Ir,r′ > 0 is nonzero for nearest-neighbor sites only. Introduc-
ing again an Abrikosov pseudofermion representation of SK

r ,
the antiferromagnetic interaction term can be decoupled using
χ0 = I〈 f †

r,α fr′,α〉, which is a measure for the strength of the
magnetic correlations in the system. With this decoupling, the
full Green’s functions in momentum space, which describe
the hybridization between the c- and f -electron bands,
are given by

g f f (k, α, ω) = [(
g0

f f (k, α, ω)
)−1 − s2g0

cc(k, α, ω)
]−1

;

gcc(k, α, ω) = [(
g0

cc(k, α, ω)
)−1 − s2g0

f f (k, α, ω)
]−1

;

gc f (k, α, ω) = −g0
cc(k, α, ω)sg f f (k, α, ω), (12)

where

g0
cc = 1

ω + iδ − εc
k

,

g0
f f = 1

ω + iδ − ε
f
k

,

ε
f
k = −2χ0(cos kx + cos ky) + ε f ,

εc
k = −2t (cos kx + cos ky) − μc. (13)

Here, ε
f
k and εc

k are the dispersions of the unhybridized
conduction electron and f -electron bands, respectively. The
dispersions of the hybridized conduction and f -electron bands
are then given by

E±
k = εc

k + ε
f
k

2
±

√√√√(
εc

k − ε
f
k

2

)2

+ s2. (14)

Finally, we note that the formal expressions for the current and
the shot noise in the Kondo lattice are the same as given in
Eqs. (4) and (9), respectively, with the local Green’s functions
in Eq. (6) being computed via Fourier transform from their
momentum space form in Eq. (12).

III. SHOT NOISE AROUND A KONDO IMPURITY

We begin by considering the current and shot noise around
a single Kondo impurity, using the parameters previously
employed to explain the differential conductance of a Kondo-
screened Co adatom located on a Au(111) surface [2,8]. While
the Fano factor is unity in the weak tunneling limit, i.e., up to
second order in the tunneling amplitudes, it deviates from this
result with increasing tunneling amplitude tc, t f , exhibiting a
characteristic line shape that sensitively depends on the ratio
of the tunneling amplitudes t f /tc. Thus, in order to be able
to measure experimentally a characteristic Fano factor, it is
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FIG. 2. (a) dI/dV , (b) current I , (c) noise S0, and (d) Fano factor
F for two different values of t f /tc = −0.066 and t f /tc = 0.01, as
well as away from the Kondo impurity at r = ∞. Results are shown
for zero temperature.

desirable to have large tunneling amplitudes, corresponding
to small distances between STM tip and sample, and hence
sufficiently large currents. While the ratio t f /tc can be deter-
mined by fitting the experimental dI/dV line shape, as was
done for the case of a Co adatom on a Au(111) surface in
Ref. [8], it is difficult to extract the absolute values of the tun-
neling amplitudes. Therefore, in order to determine whether
deviations of F from unity can be observed experimentally, it
is necessary to treat tc, t f as implicit parameters, and correlate
the IV curves that result from given values for tc, t f with
the form of the Fano factor. We therefore present below the
current, differential conductance, and noise in absolute units
for different sets of tc, t f . We note that increasing tc with
constant t f /tc leads to an increase in the current between the
tip and the system, and thus corresponds to decreasing the
distance between the STM tip and the sample in experiments.
Current state-of-the-art STS experiments can achieve currents
in the tunneling regime of hundreds of nA for a bias of a
few mV [46,47], rendering all theoretical results shown below
within the experimental accessible region.

Using the same set of parameters as previously employed
in Ref. [8], we present in Fig. 2(a) the differential conductance
at the site of a single Kondo impurity for tc = 0.1 eV and
two values of t f /tc. For t f /tc = −0.066, we obtain the dI/dV
line shape (black line) that was previously employed to fit the
experimental line shape measured above a Co adatom on a
Au(111) surface. For comparison, we also present (i) dI/dV
for t f /tc = +0.01 (red dashed line), whose line shape exhibits
an asymmetry that is reversed from that obtained for t f /tc =
−0.066, and (ii) dI/dV away from the adatom at r = ∞ (blue
dotted-dashed line) which is that of the unhybridized conduc-
tion band. To understand the difference in the asymmetry of
the dI/dV line shapes, we consider the IV curves for these
three cases in Fig. 2(b). We find that the Kondo correlations
lead to a suppression of the current for t f /tc = −0.066 from
its value at r = ∞, but to an enhancement for t f /tc = +0.01.

FIG. 3. The three contributions to the total current from the
weak-tunneling limit of Eq. (7) which are proportional to t2

c , t2
f , and

2tct f for (a) t f /tc = −0.066, and (b) t f /tc = +0.01.

This in turn accounts for the change in the asymmetry of
the differential conductance curves between t f /tc = −0.066
and +0.01. The origin of this enhancement/suppression can
be understood from the weak tunneling limit of the current,
Eq. (7), as it lies in the interference term ∼tct f . For t f /tc < 0,
this interference term leads to a backflow of current from
the system into the tip, reducing the overall magnitude of
the current, as shown in Fig. 3(a) where we present the
contributions to the total current arising from the three terms
proportional to t2

c , t2
f and 2tct f in Eq. (7). In contrast, for

t f /tc > 0, the interference term leads to an additional current
flowing from the tip into the system as shown in Fig. 3(b), thus
increasing the total current. It also follows from the IV curves
that the magnitude of the current for bias of a few mV falls
within the experimentally accessible range, implying that the
value of tc = 0.1 eV is experimentally achievable.

In Fig. 2(c) we present the zero-frequency shot noise, S0,
for the cases t f /tc = −0.066, +0.01, and r = ∞. Similar
to the current, we find that the Kondo correlations either
suppress (for t f /tc = −0.066) or enhance (for t f /tc = +0.01)
the shot noise with respect to its form at r = ∞. The reason
for this suppression or enhancement is similar to that for the
current: due to the backflow of the current from the system
into the tip arising from the interference term for t f /tc < 0,
the contribution to the noise arising from the current-current
correlation between the current flowing directly from the tip
into the system, and the backflow is negative, thus reducing
the overall noise. In contrast, for t f /tc > 0 the contribution to
the noise ∼tct f is positive, leading to an enhanced noise in the
vicinity of the Kondo resonance.

Finally, in Fig. 2(d) we present the Fano factor for all
three cases, which exhibits a peak near the Kondo resonance
for t f /tc = −0.066, and a dip for t f /tc = 0.01. Moreover, the
Fano factor for t f /tc = −0.066 near the Kondo resonance is
enhanced over its value for r = ∞, while it is suppressed for
t f /tc = 0.01. To understand this difference in the Fano factor
near V = 0, we consider the Landauer formula [48] for the
current,

I = e2

π h̄
V Teff (15)

where Teff is the effective transmission coefficient between the
tip and the system. A comparison with the weak-tunneling
expression for the current, Eq. (7), shows that to leading
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FIG. 4. Evolution of the Fano factor F with increasing tc for
(a) t f /tc = −0.066, and (b) t f /tc = 0.01.

order in V

Teff = −2πNt
[
t2
c Imgr

cc(εF ) + 2tct f Imgr
c f (εF ) + t2

f Imgr
f f (εF )

]
= π h̄

e2

dI

dV

∣∣∣∣
V =0

. (16)

It follows from Fig. 2(a) that Teff ∼ dI
dV |

V =0 is smaller for
t f /tc = −0.066 than for t f /tc = 0.01. Similarly, the shot noise
can be written in terms of Teff as [49]

S0 = 2e3

π h̄
|V |Teff(1 − Teff ). (17)

A comparison of Eq. (17) with the weak tunneling limit for
S0 in Eq. (10) yields the same Teff as in Eq. (16) to leading
order in tc, t f . We note that the term ∼T 2

eff in Eq. (17) scales as
the hopping amplitudes to the fourth power, and is therefore
not contained in the weak-tunneling limit of S0 in Eq. (10).
By combining Eqs. (15) and (17), we obtain for the Fano
factor near V = 0, F = (1 − Teff ), which is thus larger for
t f /tc = −0.066 than for t f /tc = 0.01, in agreement with our
numerical results shown in Fig. 2(d). We thus conclude that
there exists an interesting correlation between the line shape
of the Kondo resonance (as determined by t f /tc) and the
enhancement or suppression of the Fano factor with respect
to the r = ∞ result.

A unique feature of the Fano factor is that its overall line
shape, i.e., its bias dependence, is essentially independent of
tc, varying only with t f /tc. To demonstrate this, we present
in Fig. 4 the Fano factor F for several values of tc with
constant t f /tc. While the overall line shape of the Fano factor
does not change with increasing tc (for constant t f /tc), its
overall variation increases, thus becoming easier to observe
experimentally. It is interesting to note that the maximum of
the Fano factor for t f /tc = −0.066 remains close to unity
near the Kondo resonance, implying that the transmission
amplitude Teff remains approximately zero. On the other hand,
for t f /tc = +0.01, the suppression of the Fano factor near the
Kondo resonance increases, implying that Teff increases with
increasing tc.

The Fano factor exhibits spatial oscillations, as shown in
Fig. 5, where we present a line cut of the Fano factor through
the magnetic adatom [Fig. 5(a)] as well as a spatial plot
of F (r) [Fig. 5(b)]. The spatial plot of F (r) reveals nearly
isotropic oscillations whose wavelength is given by λ ≈ 6.5a0

which is half of the Fermi wavelength. We can therefore
conclude that the spatial oscillations of the Fano factor are
2kF r oscillations, arising from scattering of the surface con-

FIG. 5. (a) Line cut of F through the site the magnetic adatom
for tc = 0.1 eV, V = 5 mV, and t f /tc = −0.066. (b) Spatial plot
of F .

duction electrons from the magnetic adatom. Similar spatial
oscillations in the conductance fluctuations were interpreted
as a signature of the Kondo screening cloud [20].

Finally, we briefly comment on the temperature depen-
dence of the Fano factor. For any nonzero temperature, there
are thermal contributions to the zero-frequency noise which
are nonzero even at V = 0, as shown in Figs. 6(a) and 6(b)
for t f /tc = −0.066 and 0.01, respectively (note the different
x- and y-axis scales). On the other hand, the current vanishes
for V = 0, independent of temperature. This implies that for
any nonzero temperature, the Fano factor exhibits a diver-
gence at V = 0, as shown in Figs. 6(c) and 6(d). We note
that the bias range over which the Fano factor at T = 4 K is
enhanced over its T = 0 value varies significantly with t f /tc.

IV. SHOT NOISE IN A KONDO LATTICE

We next study the form of the current and shot noise in a
Kondo lattice. To this end, we consider two different sets of
parameters for the Kondo lattice model of Eq. (11) previously
considered in Ref. [8]: one in which the antiferromagnetic
interaction is sufficiently small [I/J = 0.001, Kondo lattice 1

FIG. 6. Comparison of the zero-frequency noise, S(ω = 0), at
T = 0 and T = 4 K for tc = 0.1 eV and (a) t f /tc = −0.066, and
(b) t f /tc = 0.01 (note the different x- and y-axis scales). Temper-
ature evolution of the Fano factor for tc = 0.1 eV and (c) t f /tc =
−0.066, and (d) t f /tc = 0.01.
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FIG. 7. The dispersions E±
k from Eq. (14) along (0, 0) →

(π, π ) with t = 500 meV, μ = −3.618t , N = 2, J = 500 meV,
Nt = 1 eV−1, for (a) Kondo lattice 1 with I/J = 0.001 yielding
s = 48.5 meV, ε f = 1.2 meV, and χ0 = 0.17 meV, and (b) Kondo
lattice 2 with I/J = 0.015 yielding s = 48.0 meV, ε f = 0.94 meV,
and χ0 = 2.59 meV.

(KL1)], such that the system exhibits a hard hybridization gap
[see Figs. 7(a) and 8(a)], and one in which the antiferromag-
netic interaction is strong enough [I/J = 0.015, Kondo lattice
2 (KL2)] such that the system’s dispersion does not any longer
exhibit an indirect gap [see Fig. 7(b)] and the hybridization
gap is seen as a suppression in dI/dV rather than hard gap
[see Fig. 10(a); for a more in-depth review, see Ref. [9]].

We begin by considering the form of the noise and Fano
factor for Kondo lattice 1 and present in Fig. 8(a) the differen-
tial conductance for two different values of t f /tc = ±0.015.
As expected, dI/dV exhibits a hard hybridization gap, and
very different asymmetries for the two values of t f /tc, similar
to the case of a single Kondo impurity shown in Fig. 2.
In Figs. 8(b) and 8(c), we present the resulting current and
shot noise. Both the current and the shot noise are bias
independent inside the hybridization gap, but overall show
a bias dependence very similar to that of the single Kondo
impurity. Finally, in Fig. 8(d) we show the resulting Fano
factor. Similar to the single Kondo impurity, the Fano factor is
correlated with the asymmetry of the differential conductance.
For t f /tc = −0.015, the Fano factor is close to unity in the
hybridization gap, implying that the transmission coefficient

FIG. 8. For Kondo lattice 1, (a) dI/dV , (b) current, (c) noise, and
(d) Fano factor with tc = 0.1 eV and two different values of t f /tc.

FIG. 9. Evolution of the Fano factor F with increasing tc in
Kondo lattice 1 for (a) t f /tc = −0.015, and (b) t f /tc = 0.015.

is small. In contrast, for t f /tc = +0.015, the Fano factor is
strongly suppressed near the hybridization gap, implying a
much larger transmission coefficient. Comparing the Fano
factor with that of an uncorrelated metal shows that the strong
correlations arising from Kondo screening lead to an overall
suppression of the Fano factor independent of the value of
t f /tc, except for the immediate vicinity of the hybridization
gap for t f /tc = −0.015, where the Fano factor is slightly
larger than that of the metallic systems.

Similar to the case of the single impurity, we find that
the overall shape of the Fano factor is independent of the
tunneling amplitudes tc, t f (for fixed t f /tc), as shown in Fig. 9,
and that only the overall variation of the Fano factor increases
with increasing tunneling amplitudes.

We next consider the form of the noise and Fano fac-
tor in Kondo lattice 2, and present in Fig. 10(a) the re-
sulting differential conductance for two different values of
t f /tc = −0.03, 0.01. The larger antiferromagnetic interaction
(in comparison to KL1) and the resulting larger value of χ0

give rise to two interesting effects: (a) dI/dV does not any
longer show a hard hybridization gap, but only a suppression,
and (b) the Van Hove singularity of the heavy f -electron
band has been moved inside the hybridization gap, as partic-
ularly evident for t f /tc = 0.01. Both features are qualitatively

FIG. 10. For Kondo lattice 2, (a) dI/dV , (b) current, (c) noise,
and (d) Fano factor with tc = 0.1 eV and two different values of t f /tc.
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similar to the ones found in the differential conductance of the
heavy fermion material URu2Si2 [50,51].

Similar to the dI/dV , the current and shot noise shown
in Figs. 10(b) and 10(c) differ significantly for negative bias
V < 0, while being quite similar for positive bias V > 0. In
Fig. 10(d) we present the resulting Fano factor. For t f /tc =
−0.03 where the suppression of dI/dV is more pronounced,
the Fano factor is close to unity, implying a vanishing Teff.
Interestingly enough, the Van Hove singularity inside the hy-
bridization gap leads to a strong suppression of the Fano factor
for t f /tc = 0.015. This strong correlation between the form of
the differential conductance and the Fano factor represents an
important test for future STSNS experiments.

V. CONCLUSIONS

In conclusion, we have investigated the relation between
the differential conductance, current, shot noise, and the re-
sulting Fano factor measured via shot-noise scanning tun-
neling spectroscopy around a single Kondo impurity as well
as in Kondo lattices. We demonstrated that Kondo screening
leads to a characteristic line shape of the Fano factor, that is
similar to the Kondo resonance observed in the differential
conductance. Moreover, the line shape of F is strongly de-
pendent on the ratio of the tunneling amplitudes t f /tc and can

be enhanced or suppressed due to interference effects arising
from tunneling into the conduction and f -electron levels. As
such, it is not only a sensitive probe for the correlation effects
arising from Kondo screening, but also for quantum inter-
ference between tunneling electrons. Moreover, we showed
that near the Fermi energy, there exists a correlation between
the form of dI/dV and F through the effective transmission
coefficient Teff, such that a suppression in dI/dV leads to
a value of F near unity, while a peak in dI/dV gives rise
to a strong suppression in F . We also predicted that around
a single Kondo impurity, the Fano factor exhibits spatial
oscillations whose wavelength arises from 2kF r oscillations
of the scattered conduction electrons. In Kondo lattices, we
find that the Fano factor possesses a correlation with the
differential conductance that is similar to that in the single
Kondo impurity case. This correlation represents a prediction
for the effects of quantum interference arising from multi-
ple tunneling paths that could be tested in future STSNS
experiments.
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