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We study the quantum criticality of spinless fermions on a quasi-one-dimensional π -flux square lattice
in cylinder geometry, by using the infinite density matrix renormalization group and Abelian bosonization.
For a series of cylinder circumferences Ly = 4n + 2 = 2, 6, . . . with a periodic boundary condition, there are
quantum phase transitions from gapped Dirac fermion states to charge density wave (CDW) states. We find
that the quantum phase transitions for such circumferences are continuous and belong to the (1+1)-dimensional
Ising universality class. On the other hand, when Ly = 4n = 4, 8, . . ., there are gapless Dirac fermions at the
noninteracting point and the phase transition to the CDW state is Gaussian. Both of these criticalities are
described in a unified way by bosonization. We clarify their intimate relationship and demonstrate that a central
charge c = 1/2 Ising transition line arises as a critical state of an emergent Majorana fermion from the c = 2
Gaussian transition point.
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I. INTRODUCTION

Criticality associated with a phase transition is one of the
central issues in condensed matter physics. Various phase
transitions have been established mainly for insulators which
are well described by bosonic models such as Ising, XY,
and Heisenberg models. However, phase transitions in metals
where gapless fermions are coupled with bosons are rather
poorly understood compared to insulators only with bosons.
In such a system, fermions strongly affect the low-energy
behaviors of the bosonic order parameters and consequently
could change the criticality of the phase transition. The critical
bosonic fluctuations in turn influence the fermions, and the
resulting non-Fermi-liquid-like behaviors are often observed
in various systems [1–4].

The criticality depends on the structures of fermionic ex-
citations such as the dimensionality of the Fermi surface and
the number of fermion flavors (orbitals and spins). One of the
simplest examples is spinless fermions on a one-dimensional
(1D) chain at half filling with the nearest-neighbor repulsive
interaction V , where the classical ground states for V → ∞
are the charge density wave (CDW) states [5,6]. When one
introduces fermionic hopping t , there will be a Kosterlitz-
Thouless phase transition to a Tomonaga-Luttinger liquid,
which is distinct from the Ising transition in bosonic models.
Quantum criticalities in higher-dimensional systems are also
of great interest, and in this context, a semimetallic system is
an ideal platform to study the interplay between fermions and
bosons where the Fermi surface is a point. Indeed, the critical
behaviors of phase transitions in Dirac systems have been
extensively studied, and gapless Dirac excitations can lead
to new criticalities such as chiral Ising, chiral XY, and chiral
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Heisenberg universality classes [7–22]. The critical exponents
of these phase transitions have been evaluated accurately by
several methods, e.g., analytical calculations and unbiased
quantum Monte Carlo simulations. In these (semi)metallic
systems, the gapless fermions play essential roles and the
resulting quantum criticality is different from that in a cor-
responding purely bosonic system with gapped fermions.

These two criticalities are usually studied separately as
distinct properties of metals and insulators. For example, the
quantum phase transition from a gapless Dirac state to an
antiferromagnetic state in a honeycomb lattice is described
by the (2+1)D chiral Heisenberg universality class, while
the one from a spin-orbit coupled gapped Dirac state to the
antiferromagnetic state belongs to the 3D XY universality
class [13,23,24]. Similarly, one can separately discuss the two
criticalities of the phase transitions from a metal or a band in-
sulator to an ordered state in general. However, such separate
discussions would be somewhat subtle when the band gap is
very small, and there will be a crossover between fermionic
criticality and bosonic criticality in a narrow gap system.
Then, a natural question is how these two criticalities are
connected along the critical line of the phase transition in an
extended phase diagram including both metals and insulators
(Fig. 1). Experimentally, Dirac fermions can be found not only
in bulk materials but also in cold atoms [25,26]. Especially
in the latter systems, a Dirac band gap could be tuned by
changing the system geometry, and distinct critical behaviors
might be potentially observed.

In this paper, we consider quasi-1D half-filled spinless
fermions on a π -flux square lattice in cylinder geometry with
the circumference Ly, as a simple example of the quantum
phase transition of Z2 symmetry breaking. When the nearest-
neighbor repulsive interaction V is weak, there are Dirac
fermions with a mass m due to the finite system size Ly

for Ly = 2, 6, 10, . . . under the periodic boundary condition
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FIG. 1. A schematic phase diagram including both insulating and
(semi)metallic states. Generally, the blue and green phase transition
lines and the red transition point would be characterized by different
criticalities.

along the y direction, while there are gapless Dirac fermions
at V = 0 for Ly = 4n = 4, 8, . . .. The system exhibits a stag-
gered CDW ordered state for large V . The quantum phase
transition is studied with use of the infinite density matrix
renormalization group (iDMRG) [27–32] together with the
recently developed scaling analysis [16]. Then, we demon-
strate that the quantum phase transition at a critical V =
Vc > 0 between the gapped Dirac fermions and the CDW
state is continuous, and the corresponding criticality is simply
a (1+1)D Ising universality class. On the other hand, the
iDMRG results suggest that the phase transition from the
gapless Dirac state is smooth around V = 0, which turns out
to be Gaussian. These two behaviors are well described within
the bosonization approach in a unified manner, and a global
phase diagram in the V -m plane is discussed. We clarify
their intimate relationship and demonstrate that the central
charge c = 1/2 Ising transition line arises as a critical state
of an emergent Majorana fermion from the c = 2 Gaussian
transition point.

II. MODEL AND PHASE TRANSITION

A. Model

We consider spinless fermions on a π -flux square lattice at
half filling,

H = −
∑
〈i, j〉

ti jc
†
i c j + V

∑
〈i, j〉

nin j, (1)

where ti j = t (−t ) along the x direction at even (odd) yi and
ti j = t along the y direction. 〈i, j〉 represents a pair of nearest-
neighbor sites (Fig. 2). We use the energy unit t = 1. The
system size is Lx × Ly = ∞ × Ly with the periodic boundary
condition for the y direction otherwise specified. We consider
only even Ly’s in the present study, because the CDW order is
staggered. In 2D (Ly = ∞) at V = 0, this model has two Dirac
points and there is a continuous quantum phase transition to a
staggered CDW state at Vc � 1.30t [9–12]. The criticality of
the CDW phase transition belongs to the (2+1)D chiral Ising
universality class, whose critical exponents are evaluated as
β � 0.60 ± 0.07 and ν � 0.79–0.80 by the quantum Monte
Carlo calculations [9–12].

(a) (b)

FIG. 2. (a) An Ly = 4 π -flux square lattice with the periodic
boundary condition. The hopping on the black bonds is −t and
that on the red bonds is +t , which gives a π flux for each square
plaquette. (b) Schematic picture of the staggered CDW order. The
blue circles represent the fermion particle density.

For a finite Ly > 2, the single-particle dispersion under the
periodic boundary condition for the y direction is given by

ε(kx, ky) = ±
√

(2t cos kx )2 + (2t cos ky)2, (2)

where kx takes continuum values and ky = 2πn/Ly (n =
0, 1, . . . , Ly/2 − 1). Similarly, ε(kx ) = ±

√
(2t cos kx )2 + t2

for Ly = 2. Due to the discreteness of ky, the dispersion is
qualitatively different when Ly = 4n = 4, 8, 12, . . . and Ly =
4n + 2 = 2, 6, 10, . . .; the gapless Dirac points exist for Ly =
4n, while the Dirac fermions are massive with the gap size
m ∼ t/Ly for Ly = 4n + 2. ε(k) is shown in Fig. 3 for Ly = 8
and Ly = 10 as an example. Note that if the antiperiodic
boundary condition is imposed for the y direction, systems
with Ly = 4n + 2 become massless while those with Ly = 4n
are massive. This property will be used later in Sec. II C.

To discuss the effects of the interaction V , we use iDMRG
for a system of cylinder geometry and Abelian bosonization.
The iDMRG allows a highly accurate calculation, and has
been used extensively not only for one-dimensional systems
but also for two-dimensional systems. One can directly de-
scribe a quantum phase transition of discrete symmetry in
such an infinite length cylinder by using iDMRG. Later,
we also perform a bosonization analysis around V = 0 but
with a twisted boundary condition for the y direction, which
enables us to discuss the gapped and gapless fermions on
equal footing.

(a) (b)

FIG. 3. Single-particle dispersion relations (a) for Ly = 8 and
(b) for Ly = 10 under the periodic boundary condition in the y
direction.
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FIG. 4. The CDW order parameter � as a function of the inter-
action V calculated by iDMRG with the periodic boundary condition
for the y direction. (a) Ly = 4n + 2 = 6, 10, 14 with χ = 1000 (red),
1600 (blue). For Ly = 2, χ = 100 (red), 200 (blue). (b) Ly = 4n =
4, 8, 12 with χ = 1000 (red), 1600 (blue). Note that the data for
Ly = 2, 4 with the different values of χ almost coincide in the present
scale of the figures.

B. iDMRG calculations

1. Order parameter

In this section, the CDW quantum phase transition is inves-
tigated by iDMRG [27–30] with use of the open source code
TeNPy [31,32]. In this study, we consider different system
sizes Ly = 2–14 with Lx = ∞, and the discarded weights by
the truncation in iDMRG calculations are typically of order
10−10, 10−8, 10−8, 10−6, 10−5, 10−5, and 10−4 for Ly = 2,
4, 6, 8, 10, 12, and 14, respectively, when the largest bond
dimensions are used. First of all, we discuss the CDW order
parameter associated with the Z2 symmetry breaking,

� = 1

L′
xLy

∑
i

(−1)|i|ni, (3)

where L′
x is the unit period assumed in the iDMRG cal-

culation. The summation is over x = 1, 2, . . . , L′
x and y =

1, 2, . . . , Ly. We have performed calculations for various L′
x

and confirmed that the results are essentially independent of
L′

x. First, we show |�| for the massive case (Ly = 4n + 2)
and massless case (Ly = 4n), respectively, in Fig. 4. For the
massive case Ly = 2, 6, 10, 14, we find a clear quantum phase
transition from the gapped Dirac state to the CDW state at Ly-
dependent critical values V = Vc(Ly) > 0. The critical value
Vc(Ly) decreases as Ly increases for a fixed bond dimension χ ,
because the Dirac band mass m ∼ t/Ly is reduced for larger
Ly. We expect that Vc(Ly) is monotonically decreasing and ap-
proaches the 2D value Vc(∞) = 1.30, because a band gap will
usually suppress the effects of interactions. Indeed, Vc(Ly =
14) is larger than Vc(∞) = 1.30 since an extrapolated value
of �(Ly = 14,V = 1.3) to χ = ∞ is zero. On the other hand,
for the massless case with Ly = 4, 8, 12, the order parameter
� behaves smoothly as a function of V , where the gapless
Dirac states can be correctly described only when the bond
dimension χ in the iDMRG calculation is infinitely large,
χ → ∞. In this limit, we expect a Gaussian transition takes
place at V = 0, which is indeed described by the bosonization
in the latter section. In the next part, we focus on the massive
case Ly = 4n + 2 and discuss its criticality within iDMRG.

2. Finite correlation length scaling for Ly = 4n + 2

The criticality of the phase transition for Ly = 4n + 2 =
2, 6, 10, . . . is expected to be of the (1+1)D Ising universality
class if it is continuous, because the CDW state breaks Z2

translation symmetry and there is no gapless Dirac fermions
at V = 0 for these Ly. In order to examine the criticality
and confirm this expectation numerically, we use the scaling
ansatz recently developed for tensor network states in an
infinite projected entangled pair state (iPEPS) [16]. Since
the one-dimensional system size Lx is infinite in iDMRG,
finite-size effects of the criticality are controlled not by Lx =
∞ but by the correlation length ξχ in our calculations. The
correlation length ξχ is computed from the second largest
eigenvalue of the transfer matrix for a given bond dimension
χ , and ξχ characterizes finite bond dimension effects. One
would naively expect that the system may exhibit (2+1)D
chiral Ising criticality if ξχ 	 Ly, while it shows (1+1)D
bosonic Ising criticality if ξχ 
 Ly. In the following, we focus
only on the latter case with ξχ 
 Ly.

The scaling ansatz for the ground-state energy density is
written as

E
(
g, h, ξ−1

χ

) = b−2E
(
bygg, byh h, bξ−1

χ

)
, (4)

where g = [V − Vc(Ly)]/Vc(Ly) and h is the conjugate field
to � with the corresponding scaling dimensions yg and yh.
We have assumed the dynamical critical exponent is z = 1.
The correlation length ξχ determined by the bond dimension
χ characterizes finite-size effects in the present Lx = ∞ sys-
tem [16]. This finite correlation length scaling ansatz takes
the same form as the conventional finite-size scaling ansatz
often used in a Monte Carlo calculation for a system of size
L, E (g, h, L−1) = b−2E (bygg, byh h, bL−1). The Ly-dependent
critical points Vc(Ly) are determined so that a scaling be-
havior of the order parameters Eqs. (7) and (8) holds for
larger ξχ . We obtain Vc(Ly = 2) � 2.8678, Vc(6) � 1.624,
and Vc(10) � 1.5 as will be discussed in the following. Near
the critical point, the order parameter and correlation length ξ

at χ = ∞ behaves as

�(g) ∼ gβ (g � 0), (5)

ξ (g) ∼ |g|−ν . (6)

On the other hand, at the critical point g = 0, the CDW
order parameter for finite χ exhibits the scaling behaviors

�(g = 0) ∼ ξ−β/ν
χ , (7)

∂g�(g = 0)

�(0)
∼ ξ 1/ν

χ , (8)

which are derived from the scaling ansatz Eq. (4) similarly
to the conventional finite-size scaling [16]. From these two
equations, we can determine the critical exponents β and ν.
Table I summarizes the iDMRG results. The critical inter-
action Vc(Ly) and critical exponents are estimated from the
scaling relations (7) and (8), and the central charge c from the
entanglement entropy Eq. (10). These results clearly suggest
that the phase transition from the gapped Dirac insulator to
the CDW state indeed belongs to the Ising universality class,
as we have expected. It is noted that we have used only
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TABLE I. Summary of the iDMRG results. The corresponding
values for the (1+1)D Ising universality class are also listed for
comparison.

Ising1+1 Ly = 2 Ly = 6 Ly = 10

Vc 2.8678 1.624 1.5
β/ν 1/8 0.128(1) 0.123(1) 0.150(2)
1/ν 1 1.02(1) 1.07(1) 0.94(4)
c 1/2 0.510(3) 0.502(1)

the numerical data with ξχ > Ly, but the correlation length
for Ly = 10 is at most ξχ ∼ 20 even with the largest χ and
therefore the scaling analysis is not so reliable for this system
size. Especially, the calculated entanglement entropy for Ly =
10 is not well fitted by the scaling behavior [Eq. (10)], because
of the short correlation length for χ used in the calculation. In
the following, we discuss the scaling analysis in more detail.

In Fig. 5, we show the ξχ dependence of � and ∂g�/�

for Ly = 2, where the different ξχ corresponds to dif-
ferent bond dimensions χ . Equation (7) is approximated
as ∂g�/� = {V [�(V + δV ) − �(V − δV )]/2δV }/{[�(V +
δV ) + �(V − δV )]/2} with δV = 0.0001, and we have con-
firmed convergence of the results by using different δV . First
of all, the quantum phase transition is continuous since the
scaling behaviors hold up to large ξχ > 1000, although a
discontinuous transition was potentially possible. The critical
interaction strength is obtained as Vc(Ly = 2) = 2.8678 from
the figure, where the scaling behaviors hold in the widest
region of ξχ . When the system goes away from the critical
point, � starts to deviate from the scaling behaviors at a length
scale set by the interaction. The critical behaviors of � are in
good agreement with those of the (1+1)D Ising universality
class with β = 0.125, ν = 1, as we have expected. Similarly,
we show the ξχ dependence of � and ∂g�/� for Ly = 6 in
Fig. 6, where ∂g�/� is approximated in the same way as
in the Ly = 2 case. The critical interaction is evaluated as
Vc(Ly = 6) = 1.624, where the scaling behaviors are satisfied
up to ξχ ∼ 100–1000. Although there is some signature for a
dimensional crossover from the (2+1)D chiral Ising univer-
sality class for small ξχ � Ly, the true criticality close to the
critical point g = 0 belongs to the (1+1)D Ising universality

FIG. 5. The scaling plots of the CDW order parameter for Ly =
2. The correlation length ξχ is denoted as ξ for simplicity. (a) The
scaling plot Eq. (7), and the black line is � ∼ ξ−β/ν with β = 0.125,
ν = 1. (b) The scaling plot Eq. (8), and the black line is ∂g�/� ∼
ξ 1/ν with ν = 1. The g derivative is approximated by ∂g�(V ) =
Vc[�(V + δV ) − �(V − δV )]/2δV with δV = 0.0001. The bond
dimension is used up to χ � 200.

FIG. 6. The scaling plots of the CDW order parameter for Ly =
6. (a) The scaling plot Eq. (7) and (b) Eq. (8). The black lines are
the same as in Fig. 5, while the g derivative is approximated with
δV = 0.001. The bond dimension is used up to χ � 2800.

class. For Ly = 10, however, it is difficult to explicitly demon-
strate the critical behavior of the (1+1)D Ising universality
class as shown in Fig. 7, because of the heavy finite χ effects.
Here, we used χ up to 2400, and the critical interaction is
roughly estimated to be Vc(Ly = 10) � 1.5. We think that the
critical behavior of the (1+1)D Ising universality class will be
reproduced for sufficiently large χ similarly to the cases for
Ly = 2, 6.

To further confirm the critical behaviors of the (1+1)D
Ising universality class, in Fig. 8, we show the scaling plot

�ξβ/ν
χ = M

(
gξ 1/ν

χ

)
, (9)

where M is a scaling function [16]. It is noted that this
scaling behavior takes the same form as the conventional
one for a finite-size system, �Lβ/ν = M̃(gL1/ν ). Here, we
have used only the data for ξχ > Ly to avoid the effects of
the dimensional crossover, and simply employed the critical
exponents of the (1+1)D Ising universality class β = 1/8,
ν = 1 with the critical interactions obtained above Vc(Ly =
2) = 2.8678, Vc(6) = 1.624. Clearly, all the data collapse into
a single curve in each system size Ly = 2, 6, which gives a
cross-check for the Ising universality class of the CDW phase
transition.

Finally, we discuss the central charge c of the effective field
theory for the criticality. Figure 9 shows the entanglement
entropy S for bipartitioning the infinite one-dimensional chain
in the iDMRG calculation into two half-infinite chains. In
such bipartitioning, the entanglement entropy at the critical
point is characterized by the central charge c of the underlying

FIG. 7. The scaling plots of the CDW order parameter for Ly =
10. (a) The scaling plot Eq. (7) and (b) Eq. (8). The black lines are
the same as in Fig. 5, while the g derivative is approximated with
δV = 0.005. The bond dimension is used up to χ � 2400.
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FIG. 8. The scaling plot of the CDW order parameter � for
(a) Ly = 2 and (b) Ly = 6. The critical exponents used are those for
the (1+1)D Ising universality class β = 0.125, ν = 1.

conformal field theory and is given by

S = c

6
ln ξχ + S0, (10)

where S0 is a constant [31,33]. In the present system, the
calculated S at the critical point is well fitted by this formula
with c = 1/2, which means that the corresponding conformal
field theory is the c = 1/2 Ising theory in agreement with the
critical behaviors of the order parameter �.

In this section, we have discussed the CDW order param-
eter and did not directly examine the corresponding energy
gap. It is noted that when Ly = 4n + 2, the single-particle
excitation gap remains nonzero for all V through the phase
transition as seen in the previous study for a related model [24]
and the bosonization analysis of the present model in the next
section. On the other hand, the collective charge excitation gap
vanishes at the transition point with a power-law behavior. The
charge gap should show a universal behavior corresponding
to the Ising universality class, and therefore the gap will be
∼ξ−1 ∼ |g|ν with ν = 1, which can be explicitly shown in the
conventional transverse Ising model.

C. Bosonization and global phase diagram

In this section, we discuss the relationship between the
CDW phase transitions from gapless and gapped Dirac states
within the bosonization approach [5,6,34,35]. Our primary
purpose is to find an effective theory description for the
iDMRG calculation results. To discuss the gapless and gapped
states on equal footing, it is convenient to treat the band gap
as a continuous parameter rather than a discrete parameter
characterized only by Ly as m ∼ t/Ly. So, we introduce the
twisted boundary condition with the twist angle θ for the

FIG. 9. The entanglement entropy S for (a) Ly = 2 and (b) Ly =
6. The black lines are S = (c/6) ln ξ + S0 with the central charge
c = 1/2.

y direction, or equivalently insert a flux θ along the cylinder
with the vector potential Ai,i+ŷ = θ/Ly [36]. When θ = 0, the
periodic boundary condition is realized and the noninteracting
Dirac fermions are gapless for Ly = 4n. The band gap in
Eq. (2) is continuously tuned by the twisting angle θ since the
allowed discrete ky [=(2πn + θ )/Ly] points for given finite
Ly changes as θ is varied. For example, in the Ly = 4n case,
the band gap becomes maximum at θ = π , for which there
is a CDW phase transition from a gapped Dirac state whose
criticality is the (1+1)D Ising universality class. In this way,
one can smoothly connect the two extreme cases, the gapless
Dirac semimetal and maximally gapped Dirac band insulator
for a fixed system size Ly, while changing Ly for a fixed θ can
tune the Dirac band mass only discretely.

We consider the noninteracting excitation spectra in the π -
flux cylinder with a fixed Ly = 4n under the periodic boundary
condition as shown in Fig. 3(a), and focus only on the gapless
Dirac fermion branches and neglect other gapped bands. (A
system with Ly = 4n + 2 can be discussed in a similar way.)
There are two pairs of linear dispersions with positive and
negative velocities around kx = ±π/2. If we introduce a twist
angle 0 � θ � 2π , a band gap m(θ ) will be induced in the
preexisting gapless Dirac bands. The two branches can be
reproduced by an effective two-leg ladder model,

Heff =
∑
s=1,2

∑
i

−tsc
†
isci+1s − t⊥

∑
i

c†
i1ci2 + (H.c.)

+ Ũ
∑

i

ni1ni2 + Ṽ
∑
s=1,2

∑
i

nisni+1s, (11)

where ts = (−1)s+1t , t⊥ = 2t | cos(π/2 + θ/Ly)|, Ũ = 2V/Ly,
Ṽ = V/Ly for a fixed Ly = 4n. [In the case of a fixed Ly =
4n + 2, the interchain hopping is t⊥ = 2t | cos(π/2 + θ/Ly −
π/Ly)|.] It is easy to see that this effective model indeed repro-
duces the low-energy spectra of the original model Eq. (1) at
V = 0, and also correctly describes the interaction within this
low-energy subspace. A similar effective model was studied
before in the context of carbon nanotubes [34]. By using the
transformation ci1 → ci1, ci2 → (−1)ici2, the Hamiltonian is
rewritten into the familiar form with an additional staggered
hybridization term (−1)it⊥,

Heff →
∑
s=1,2

∑
i

−tc†
isci+1s − t⊥

∑
i

(−1)ic†
i1ci2 + (H.c.)

+ Ũ
∑

i

ni1ni2 + Ṽ
∑
s=1,2

∑
i

nisni+1s, (12)

where hopping along the chain is t for both s = 1, 2.
The fermion operators are approximated around the Fermi

point kF = ±π/2a as ψs(x) = e−ikF xψLs(x) + eikF xψRs(x)
with ψrs(x) = ηrse−i(rφs−θs )/

√
2πa, where a is the lattice con-

stant and ηrs is the Klein factor [5,6]. The bosonic phase
operators satisfy the commutation relation

[φs(x), ∂x′θs′ (x′)] = iπδss′δ(x − x′). (13)

Furthermore, we introduce new fields φ0,π = (φ1 ± φ2)/
√

2
for convenience. Then the Hamiltonian is bosonized
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into

Heff = Hkin + Hint,

Hkin =
∑

k=0,π

vk

2π

∫
dx[K−1

k (∂φk )2 + Kk (∂θk )2],

Hint =
∫

dx
[
g1 cos

√
8φ0 + g2 cos

√
8φπ

+ g3 cos
√

8φ0 cos
√

8φπ + g4 cos
√

2φ0 sin
√

2θπ

]
,

(14)

where g1 = −Ũ/2π2a, g2 = Ũ/2π2a, g3 = Ṽ /π2a, g4 =
2t⊥/πa. For small Ũ , Ṽ , the parameters are given by v0 =
vF /K0, vπ = vF /Kπ , and

K−1
0 =

√
1 + a

πvF

(
Ũ + 4Ṽ

) � 1 + a

2πvF

(
Ũ + 4Ṽ

)
,

(15a)

K−1
π =

√
1 + a

πvF

(−Ũ + 4Ṽ
) � 1 + a

2πvF

(−Ũ + 4Ṽ
)
,

(15b)

where vF = 2t is the Fermi velocity of the noninteracting
model. The scaling dimensions of the operators are easily read
off as

[g1] = 2K0 � 2 − a

πvF
(Ũ + 4Ṽ ), (16a)

[g2] = 2Kπ � 2 − a

πvF
(−Ũ + 4Ṽ ), (16b)

[g3] = 2K0 + 2Kπ � 4 − 8a

πvF
Ṽ , (16c)

[g4] = K0

2
+ 1

2Kπ

� 1 − a

2πvF
Ũ . (16d)

We first consider the case with t⊥ = 0, or equivalently
g4 = 0. Then, the most relevant term is the g1 term, and the φ0

field gets pinned to 〈φ0〉 = 0 because of the strong coupling
g1 → −∞. The remaining g2, g3 terms will have the same
functional form, cos

√
8φπ , and be renormalized to g2, g3 →

∞. Therefore, both of the fields φ0, φπ become gapped as
long as V > 0, and the phase transition is a Gaussian tran-
sition from the c = 2 two-flavor gapless Dirac state to the
fully gapped CDW state. This is consistent with the iDMRG
calculation where the CDW order parameter is nonzero for
very small V when Ly = 4n = 4, 8, . . . under the periodic
boundary condition.

Next, we consider a very small 0 < t⊥ 	 V , for which
the renormalized parameters still satisfy |g4| 	 |g1| down to
some energy scale under the renormalization group. In this
energy scale, the φ0 field is nearly locked as 〈φ0〉 � 0 and the
low-energy physics is described by the φπ field only,

Heff � vπ

2π

∫
dx

[
K−1

π (∂φπ )2 + Kπ (∂θπ )2
]

+
∫

dx
[
g23 cos

√
8φπ + g4 sin

√
2θπ

]
, (17)

where g23 = g2 + g3 and we have used the approximation
〈cos

√
8φ0〉 � 〈cos

√
2φ0〉 � 1. Note that the parameters in

Eq. (17) should be regarded as renormalized ones under the
renormalization group flow down to the above-mentioned
energy scale. In this Hamiltonian, the g23 term favors the
CDW state while the g4 term leads to the band insulator,
and this competition can lead to a gapless state when these
two perturbations cancel each other. The resulting gapless
state is described by the c = 1/2 Majorana fermions, which
corresponds to the criticality of the CDW phase transition
from the band gapped Dirac state discussed in the previous
section. To see this, we focus on a fine-tuned state where the
two perturbation terms are maximally competing having the
same scaling dimensions, [g23] = [g4], namely,

2Kπ = 1

2Kπ

⇒ Kπ = 1

2
. (18)

By redefining the boson fields as φ′
π = φπ/

√
Kπ , θ ′

π =√
Kπθπ − π/4 with Kπ = 1/2, the Hamiltonian is rewritten

as

Heff = vπ

2π

∫
dx

[(
∂φ′

π

)2 + (
∂θ ′

π

)2
]

+
∫

dx
[
g23 cos 2φ′

π + g4 cos 2θ ′
π

]
. (19)

This Hamiltonian is called the self-dual sine-Gordon model
and has been studied extensively [6,37–40]. Since the scaling
dimensions of both g23, g4 terms are 1, one can refermion-
ize them by using a spinless fermion operator ψr (x) �
ηre−i(rφ′

π −θ ′
π )/

√
2πa as

cos 2φ′
π = −iπa

[
ψ

†
RψL − ψ

†
LψR

]
, (20a)

cos 2θ ′
π = −iπa

[
ψ

†
Rψ

†
L − ψLψR

]
. (20b)

Therefore the self-dual sine-Gordon model is mapped to a free
spinless fermion model with mass terms,

Heff =
∫

dx − ivπ [ψ†
R∂ψR − ψ

†
L∂ψL]

− im23[ψ†
RψL − ψ

†
LψR] − im4[ψ†

Rψ
†
L − ψLψR],

(21)

where m23 = πag23, m4 = πag4 Then we introduce Majorana
fermions γ 1 = (ψ + ψ†)/

√
2, γ 2 = (ψ − ψ†)/

√
2i to write

the Hamiltonian in the Majorana basis,

Heff =
∑

a=1,2

∫
dx − i

vπ

2

[
γ a

R ∂γ a
R − γ a

L ∂γ a
L

] − imγ aγ
a
R γ a

L ,

(22)

where mγ 1 = m23 + m4, mγ 2 = m23 − m4. Clearly, only one
Majorana fermion γ2 is gapless and the other one γ1 is gapped
along the special line given by m23 = m4 in the V -t⊥ plane.
(Note that we have assumed t⊥ > 0 and thus mγ 1 �= 0 in this
study.) This emergent gapless Majorana fermions describe the
c = 1/2 conformal field theory which is the critical theory
for the CDW phase transition from the band gapped Dirac
state studied in the previous section. Physically, the Majorana
fermions correspond to domain walls of the CDW oder.
Finally, it is noted that the fermion single-particle gap stays
nonzero at the Ising critical point since the φ0-boson field
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FIG. 10. (a) Schematic global phase diagram in the V -t⊥ plane
in (1+1)D. The red point at the origin is the c = 2 Gaussian tran-
sition point, and the green curve is the c = 1/2 Ising transition line
separating the band insulator and CDW state. The arrows correspond
to the renormalization group flow in the effective low-energy model.
(b) Expected phase diagram in (2+1)D. t ′ is an additional hopping
which induces a band gap.

which is a part of the fermion is gapped [5,6], as pointed out
in the last paragraph of Sec. II B 2.

We have shown within the bosonization how the fermionic
criticality at the Gaussian transition is connected to the
bosonic criticality at the Ising transition. These discussions
are summarized in the global phase diagram shown in Fig. 10.
For example, a Dirac band insulator with a mass m ∼ t/Ly

is realized for small V in a system with Ly = 4n + 2(4n)
with the periodic (antiperiodic) boundary condition, while
the system is gapless at V = 0 in a system with Ly = 4n +
2(4n) with the antiperiodic (periodic) boundary condition.
Correspondingly, the band insulator exhibits the Ising phase
transition to a CDW state, while the semimetal shows the
CDW order for all V > 0. These behaviors are consistent with
the iDMRG results in the previous section. We expect that
competition between the band gap and interaction would be
important also for higher dimensions. For example, in spinless
fermions on the two-dimensional π -flux square lattice, there
is a CDW quantum phase transition with (2+1)D chiral Ising
criticality at V = Vc > 0 from the gapless Dirac semimetal
[9–12], while a transition from the gapped Dirac insulator is
expected to show 3D Ising criticality if it is continuous. The
two phase transitions would be connected in a nontrivial way,
and the familiar 3D Ising criticality might be understood as
a critical state of an emergent object from the (2+1)D chiral

Ising critical point. Further studies are necessary to develop a
theoretical understanding of these issues.

III. SUMMARY AND DISCUSSION

We have studied the CDW quantum phase transition and
its criticality in spinless fermions on a quasi-one-dimensional
π -flux square lattice, by using iDMRG and bosonization. We
find that the phase transition from a Dirac band insulator is
continuous and its universality class is (1+1)D Ising with the
central charge c = 1/2 when Ly = 4n + 2 = 2, 6, . . . under
the periodic boundary condition, while that from a Dirac
semimetal is Gaussian with c = 2 when Ly = 4n = 4, 8, . . ..
By introducing the twisted boundary condition, we discussed
how the fermionic criticality of the Gaussian transition in the
gapless Dirac semimetal is connected to the bosonic criticality
of the Ising transition in the gapped Dirac band insulator.
The global phase diagram was discussed, where the c = 2
critical point is connected to the c = 1/2 critical line. The
resulting c = 1/2 critical line arises from the competition
between the band mass and the density interaction leading
to the CDW gap, and is described by the emergent Majorana
fermions which are regarded as a fractionalized object. This
could give insight for a comprehensive understanding of phase
transitions in both metals and insulators. Our results could
provide a basis to understand higher-dimensional systems, and
also may be directly relevant for artificially created π -flux
systems in cold atoms with a synthetic magnetic field [25,26].

Note added. Recently, we became aware of work which
studies phase transitions between an anisotropic Dirac semi-
mental and a band insulator [41].
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