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Mean field approach, although a generally reliable tool that captures major short-range correlations, often
fails in symmetric low dimensional strongly correlated electronic systems like those described by the Hubbard
model. In these situations a symmetry is almost broken. The problem is linked to the restoration of the symmetry
due to strong fluctuations (both quantum and thermal) on all scales. The restoration of symmetry in statistical
models of scalar order parameter fields was treated recently successfully on the Gaussian approximation level by
symmetrization of the correlators. Here the idea is extended to fermionic systems in which the order parameter is
composite. Furthermore, the precision of the correlators can be improved perturbatively. Such a scheme (based
on covariant Gaussian approximation) is demonstrated on the one dimensional (1D) and 2D one band Hubbard
models by comparison of the correlator with exact diagonalization and MC simulations, respectively.
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I. INTRODUCTION

Thermal and quantum fluctuations play a much larger role
in low dimensional condensed matter systems than in three
dimensional ones. As a consequence, phase transitions to
symmetry broken phases, exhibiting true long-range order
(LRO), like ferromagnet or antiferromagnet, are rare. In two
dimensions (2D) only systems possessing discrete symmetries
can undergo finite temperature spontaneous symmetry break-
ing, while in 1D they are forbidden altogether. The Mermin-
Wagner theorem [1,2] states that fluctuations for systems
that have a continuous symmetry like the SU(2) symmetric
Heisenberg model are strong enough to destroy LRO at any
nonzero temperature. The order parameter locally exists, but
averages out due to effective disordering of its phase over
the sample. To be specific, in Heisenberg ferromagnet, the
average of local order parameter, the spin density, 〈Si(r)〉 = 0.

The symmetry therefore is not spontaneously broken in
the low temperature phase (that strictly speaking there is
no symmetry breaking transition according to the Landau
paradigm), yet the strong short-range order (SRO) is crucial
for qualitative understanding of such systems ranging from
high Tc cuprate superconductors to quantum magnets. Despite
vanishing expectation value (VEV) order parameter, the cor-
relator of the order parameter, P(r) = 〈Si(r)S j (0)〉, still char-
acterizes well the short-range order. Generally it describes the
spin excitations in the system although there are no Goldstone
bosons demanded by the continuous symmetry breaking (via
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so called Ward identities). At least naively, the symmetry is
almost broken in a sense that the correlator typically decreases
slowly (local order extends to large sizes). This contrasts with
that in true LRO phase in which the correlator approaches a
constant at large separation.

An approximate mean field description of such systems
having almost long range order very often results in various
spurious broken phases. Within the Ginzburg-Landau-Wilson
approach on the classical level, phase diagrams contain a host
of broken symmetry solutions. Very often it is considered to
be a failure of the approximation scheme, be it the classical
approximation, perturbation theory, or a variational approach
like the mean field. One declares that the approximation is not
capable or fails to capture the restoration of symmetry due to
fluctuations and is abandoned. Sometimes however an attempt
was made to repair such an approximation by symmetrization
of the Green’s functions (GF) calculated starting with the
symmetry broken solution.

In 2D statistical field theory of scalar fields the idea was
attempted in the framework of the shifted field perturbation
theory [3]. It worked well in models with discrete symme-
tries, but immediately ran into a problem with continuous
symmetric SRO. Infrared divergencies appear at low dimen-
sions due to Goldstone modes. However, it was shown that
these spurious divergencies generally cancel [4]. In condensed
matter physics a similar problem was encountered in the
context of thermal fluctuations of the Abrikosov vortex lattice
that appears in type II superconductors in a strong magnetic
field. While calculating the spectrum of thermal excitations
of the 2D Abrikosov vortex lattice within the Ginzburg-
Landau theory, it was noticed [5] that the gapless mode is
softer than the usual Goldstone mode expected as a result of
spontaneous breaking of translational invariance. At small k
vectors the correlator of the superconducting order parameter
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field behaves as 1/k4. This unexpected additional softness
leads to infrared divergencies at higher orders. As a result, the
perturbation theory around the vortex state became doubtful
until it was realized that these divergencies are also spurious
[6]. After the cancellation was established, symmetrization of
the perturbative GF are a way to get reasonable results for
structure functions [7].

An interesting question is whether a similar approach can
be applied to strongly coupled electronic systems directly on
the microscopic level? The symmetry breaking in such models
(like the Hubbard, Heisenberg, etc.) is necessarily dynamical
in a sense that the order parameter like the spin density in
a ferromagnet mentioned above is quadratic in the electron
field (not linear as it appears in the Ginzburg-Landau bosonic
description). Physically it means that there is a condensation
of fermionic pairs (excitons, Copper pairs, etc.). Therefore,
generally these phases are not approachable perturbatively
and one has to either reexpress the theory in terms of a bosonic
field (bosonization) or use a nonperturbative method. The
simplest variational approach for which the (spurious) dynam-
ical symmetry breaking can be described is the Gaussian (or
Hartree-Fock) covariant approximation described in detail for
bosonic systems in Ref. [8] and fermionic many-body systems
in Ref. [9].

In this paper we propose a symmetrization method to study
strongly interacting electronic systems with strong LRO based
on previous experience with statistical physics expressed via
order parameter directly [8]. It is tested on the benchmark
models, the 1D and the 2D one band Hubbard models for
which exact diagonalization and Monte Carlo simulations are
performed. The symmetrization idea for almost broken phases
(sometimes qualitatively described as preformed correlated
domains of the low temperature phase or fluctuation domi-
nated situations) is not new in physics.

The paper is organized as follows. In Sec. II the problem
with the standard mean field type method in fermionic theories
(known under various names in different contexts as Hartree-
Fock, BCS, exciton condensation, etc.) is presented. The solu-
tion to the problem in the strong SRO case by symmetrization
is proposed in Sec. III. Section IV contains its application to
the half filled or not half filled Hubbard model in D = 1, 2.
One can further improve the results expanding the self-energy
around the Gaussian solution (so called Gaussian perturbation
theory). This is done in Sec. V. The results are compared
with MC simulations in Sec. VI. Results are summarized in
Sec. VII.

II. SPURIOUS MEAN FIELD SYMMETRY BREAKING IN
FERMIONIC MODELS

A. Matsubara action for an interacting electron system

Let us start with a general model of interacting fermions
described by the Hamiltonian

H =
∑
rr′

{
−T AB

rr′ aA†
r aB

r′ + 1

2
Vr−r′aA†

r aA
r aB†

r′ aB
r′

}
, (1)

where the band (valley) and spin are denoted collectively by
index A. Summation over repeated indices is assumed. The
hopping amplitudes Trr′ typically extend to several nearest

neighbors. The interaction V is assumed to be of the two-
body (four Fermi) density-density variety, appropriate to an
effective description of many-body electronic systems.

It is convenient for our purposes to describe it via path
integral over a large number of Grassmanian variables ψA

a .
To simplify notations, we initially lump position in space and
Matsubara time into a = {a ≡ r, a0 ≡ t}. Translation invari-
ance in a is assumed. The Matsubara action corresponding to
the Hamiltonian therefore is

A = ψ∗A
a T AB

a−bψ
B
b + 1

2ψA∗
a ψA

a V AB
a−bψ

B∗
b ψB

b . (2)

V is symmetric under A ↔ B, a ↔ b. In modeling strongly
interacting systems in real space one typically considers hop-
ping on a lattice with periodic boundary conditions in each
direction. For simplicity we take a hypercubic lattice with
lattice spacing defining the unit of length and coordinates
being integers 1, . . . , Ns, Matsubara time [discretized as t =
1, . . . , Nt with time step τ = (T Nt )−1] on the segment from
zero to T −1, where T is temperature. The fermionic field is
antiperiodic on the segment [10].

Symmetry group G (discrete or continuous) that might
be spontaneously broken consists of space-time independent
(unitary) linear transformations of the fermion field:

ψA
a → U ABψB

a . (3)

As mentioned in the Introduction, a general question arises.
What happens when fluctuations destroy the long range order,
but an approximation incorrectly restores the LRO? In a
fermionic system the fermionic field cannot have nonzero
expectation value, 〈ψA

a 〉 = 0, so to approach dynamical SRO
systems one can attempt to start with a mean field variational
solution of the order parameter quadratic in ψA

a . An approxi-
mate Green’s function, the expectation value,

GAB
a−b = 〈ψ∗A

a ψB
b

〉
, (4)

is generally not invariant under the symmetry transformation,
in the sense of

GAB
a−b 	= U ∗AXU BY GXY

a−b. (5)

It is considered as a failure of the approximation scheme:
the approximation is not capable or fails to capture the restora-
tion of symmetry due to fluctuations. We try to take another
shot at these cases. The simplest variational approach for
which the (spurious) dynamical symmetry breaking can be
described is the Gaussian (or Hartree-Fock) covariant approx-
imation described in detail for bosonic systems in Ref. [8] and
fermionic many-body systems in Ref. [9].

B. Gap equation and its symmetry broken solutions

The HF variational GF is determined by the gap equation,

−[G−1]BA
b−a = −T AB

a−b − δa−bδ
AB
∑
x,X

V XA
x−aGXX

0 + V AB
a−bGBA

b−a,

(6)
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where the Green’s function is a matrix with regard to indices
A, B and a, b. In momentum space, defined by

ψA
t,r =

√
T

ND
s

Ns∑
k1,...,kD=1

Nt∑
n=1

× exp

[
i

(
π

Nt
(2n + 1)t + 2π

Ns
k · r

)]
ψA

n,k, (7)

the correlator is written as

GAB
t−t ′,r−r′ = T

ND

∑
nk

exp

[
−i

(
π

Nt
(2n + 1)(t − t ′)

+ 2π

Ns
k·(r − r′)

)]
gAB

nk ,

GAB
a,b = T

ND

∑
χ

exp[−i(a − b) · χ ]gAB
χ , (8)

where, in the last line, shorthand space-time notations,
∑

χ ≡∑
nk and χ ≡ { 2π

Nt
(n + 1/2), 2π

Ns
k}, a = {t, r}, b = {t ′, r′}

were used, and a · χ = t × π
Nt

(2n + 1) + 2π
Ns

k · r. Similarly
it is convenient to define

T AB
a−b = 1

T N2
t ND

∑
χ

exp[i(a − b) · χ ]tBA
χ ,

(9)
V AB

a−b = 1

T N2
t ND

∑
χ

exp[i(a − b) · χ ]vAB
χ .

Consequently the Fourier transform of the gap equation reads

[
g−1

ω

]BA = −tBA
ω + T

ND
s

∑
χ

(
vAB

ω−χgBA
χ − δABvAX

λ=0gXX
χ

)
, (10)

where ω is also a shorthand space-time notation of the Fourier
indices like χ . As an example, let us consider the simplest
example of the quantum dot.

C. Spurious magnetic phase of the quantum dot

Let us consider the simplest Hamiltonian for a Pauli spinor
ψA, with spin projections A =↑ (up) and ↓ (down):

H = −μaA†aA + Ua↑†a↑a↓†a↓. (11)

This corresponds to the Matsubara action:

A =
Nt∑

t,s=1

{
ψA∗

t T AB
t−sψ

B
s + τUψ

�∗
t ψ

�
t ψ

↓∗
t ψ

↓
t

}
,

(12)
T AB

t−s = δAB(δt+1−s − δt−s − δtsτμ),

where τ = (T Nt )−1. Comparing the interaction term to that of
the general action, Eq. (2), one identifies

V AB
t−s = τUδt−s. (13)

The time translation symmetry is fully utilized by using the
Fourier transforms,

tAB
m = δABεm, εm = 1

τ

(
exp

[
i
2π

Nt
(m + 1/2)

]
− 1

)
− μ,

vAB
m = U . (14)

The gap equation takes a simple form,[
g−1

m

]BA = −tBA
m + 
BA, (15)

where the self energy,


BA = UT
∑
X,m

(
gBA

m − δABgXX
m

)
, (16)

is frequency independent. The equation for the self energy
thus becomes algebraic:


AB = U

(
δAB
∑

X

nXX − nAB

)
. (17)

The four density components, nAB = T
∑

m gAB
m , are varia-

tional parameters. We can narrow the search if the residual
U (1) symmetry of spin rotations around the z axis is assumed
(of course any other direction can be chosen). This ensures
that n↑↓ = n↓↑ = 0, and only two parameters are left: n↑↑ =
n↑ and n↓↓ = n↓. Therefore, one gets two equations

gAA
m = − 1

εm + UnA
, (18)

where the bar means the spin A reversal: ↑ =↓ and ↓ =↑.
The gap equation in terms of densities subsequently be-

comes algebraic:

nA = −T
∑

m

1

εm + UnA
= f (nA). (19)

The last lines are the case of infinite Nt in which

εm = iωm − μ,
(20)

ωm = πT (2m + 1),

and the summation results in the Fermi-Dirac distribution

f (nA) ≡ 1

exp[(UnA − μ)/T ] + 1
. (21)

The nonmagnetic solution, n↑ = n↓, is trivial at half filling, for
which the electron-hole symmetry ensures n↑ + n↓ = 1, μ =
U/2, and n↑ = 1/2. As a result, the HF GF is independent of
coupling U :

gAB
m = δAB i

ωm
. (22)

This (imaginary part is the horizontal green segment in Fig. 1)
deviates significantly from the exact value represented by the
red line.

The model at half filling has just one parameter u ≡
U/T . The magnetic solution with magnetization, M =
1
2 (n↑ − n↓) = n↑ − 1/2, of the gap equation,

exp[uM] = 1/2 + M

1/2 − M
, (23)

exists above the spurious second order transition point, uc =
4. We will use this toy model to exemplify the symmetrization
idea in the following section.
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(a) (b)

FIG. 1. Imaginary part of the correlator for quantum dot at half filling in a wide range of couplings u = U/T . Matsubara frequencies are
ω = πT and ω = 3πT with T = 1 in (a) and (b), respectively. The red line is the exact result, the green line is the Hartree Fock result, the
darker green line is the symmetrized Green function Eq. (32) for the magnetic phase, and the purple line is the perturbative correction to
Gaussian approximation (PCGA) Eqs. (57) and (58).

III. SYMMETRIZED GREEN’S FUNCTIONS APPROACH

A. Qualitative description of the symmetrization

It was shown [8] for the case of bosonic low dimensional
models that in the strong coupling regime, where within clas-
sical or Gaussian approximation the symmetry is spuriously
broken, the symmetrized nonsymmetric Green’s functions are
quite close to the exact or Monte Carlo calculated result. It
means that symmetrization of the GF effectively takes into
account highly correlated domains. Of course a more rigorous
approach would divide the degrees of freedom into two scales:
large distance correlations, LRO, and short distance corre-
lations, SRO. It can be performed for certain bosonic mod-
els using renormalization group ideas, especially when the
Berezinskii-Kosterlitz-Thouless transition is involved. How-
ever, such an approach is extremely complicated in fermionic
models in which the order parameter is quadratic in fermionic
operators (condensation of pairs). The simplistic symmetriza-
tion approach that does not involve the explicit separation
of scales, however, is still effective, as we demonstrate in
following sections. The symmetrization qualitatively takes
into account the largest available scale by averaging over the
global symmetry group.

Here we generalize the approach to a general interact-
ing fermionic model in which (on the mean field level) the
global (space and time independent) symmetry group G is
spontaneously broken down to its subgroup H. The half filled
quantum dot of the previous section can serve as a toy model
in which for U > Uc = 4T the symmetry group G = SU (2)
[all the spin rotations, Eq. (5)] is spontaneously broken to its
subgroup H = U (1) (rotations around an axis determined by
the breaking direction, in our case the z axis).

B. Formulation of the symmetrization approach

Generally an approximate GF is symmetrized using the so
called invariant Haar measure over the group G [11]:

〈
ψ∗A1

a1
. . . ψ∗An

an
ψ

B1
b1

. . . ψ
Bn
bn

〉
sym

=
∫

dU U ∗A1X1 . . .U ∗AnXnU B1Y1 . . .U BnYn

× 〈ψ∗X1
x1

. . . ψ∗Xn
xn

ψY1
y1

. . . ψYn
yn

〉
. (24)

The mathematical definition of the measure dU for compact
Lie groups is available in literature where it is shown that
it is unique. We provide here simple examples starting from
G = U (1). In this case, the group elements are described
by a 2D rotation angle θ , and Haar measure is just an-
gle average,

∫
dU f [U ] = 1

2π

∫ 2π

θ=0 dθ f [θ ]. In our case G =
SU (2), the integration over the group reduces to the follow-
ing integral over three Euler angles parametrizing rotations
of the spin [11]:

∫
dU f [U ] = 1

(2π )2

∫ π

0 dψ sin ψ
∫ π

0 dθ sin2 θ∫ 2π

0 dϕ f [ψ, θ, ϕ]. Actually the integration over the vacuum
manifold G/H only (just two angles) is sufficient for most
applications. For discrete groups the symmetrization becomes
a rather obvious summation over all the group elements.

We will need only the following basic G =SU (N ) integrals
[12] for the fundamental representation∫

U ∗AXU BY dU = 1

N
δABδXY (25)

and∫
U ∗A1X1U ∗A2X2U B1Y1U B2Y2 dU

= 1

N2 − 1

{
δA1B1δA2B2δX1Y1δX2Y2+δA1B2δA2B1δX1Y2δX2Y1

− 1
N (δA1B2δA2B1δX1Y1δX2Y2+δA1B1δA2B2δX1Y2δX2Y1 )

}
.

(26)

As an example, let us symmetrize the one-body electron and
the spin correlator that is a two-body correlator in the single
band Hubbard model. The symmetrized correlator reads〈

ψ∗A
a ψB

b

〉
sym =

∫
U ∗AXU BY dU

〈
ψ∗X

a ψY
b

〉
= 1

2
δABδXY

〈
ψ∗X

a ψY
b

〉
= 1

2
δAB(〈ψ∗↑

a ψ
↑
b 〉 + 〈ψ∗↓

a ψ
↓
b 〉). (27)

The spin correlator has the following symmetrized form:〈
Si

aS j
b

〉
sym = 1

4

〈
ψ∗A1

a σ
A1B1
i ψB1

a ψ
∗A2
b σ

A2B2
j ψ

B2
b

〉
sym

= 1

4
σ

A1B1
i σ

A2B2
j

∫
U ∗A1X1U B1Y1U ∗A2X2

×U B2Y2 dU
〈
ψ∗X1

a ψY1
a ψ

∗X2
b ψ

Y2
b

〉
. (28)
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Using the group integral of Eq. (26), one obtains〈
Si

aS j
b

〉
sym = 1

12σ AB
i σ BA

j

(〈
ψ∗X

a ψY
a ψ∗Y

b ψX
b

〉
− 1

2

〈
ψ∗X

a ψX
a ψ∗Y

b ψY
b

〉)
= 1

6δi j
(〈
ψ∗X

a ψY
a ψ∗Y

b ψX
b

〉− 1
2

〈
ψ∗X

a ψX
a ψ∗Y

b ψY
b

〉)
.

(29)

The density correlator on the other hand is already sym-
metrized:

〈nanb〉 = 〈
ψ∗A

a ψA
a ψ∗B

b ψB
b

〉
sym

=
∫

U ∗AX1U AY1U ∗BX2U BY2 dU
〈
ψ∗X1

a ψY1
a ψ

∗X2
b ψ

Y2
b

〉
= 〈

ψ∗X
a ψX

a ψ∗Y
b ψY

b

〉
. (30)

Sometimes this is expressed in the Wigner-Eckart form that
only symmetric quantities like 〈ψ∗↑ψ↑〉 + 〈ψ∗↓ψ↓〉 are the
ones that can be calculated using the symmetrization approach
[4].

Before applying the procedure to the Hubbard model, let
us exemplify advantages of the approach on the simplest
fermionic toy model in D = 0, where the symmetry restora-
tion phenomenon is expected to be the strongest.

C. Toy model example

The quantum dot at half filling of the previous section can
be exactly solved [9]. The correlator (all the energies like the
coupling U are in units of T )

gm = iπ (2m + 1)

π2(2m + 1)2 + u2/4
, (31)

where Matsubara frequency is 2m + 1 (T = 1 now). The
symmetric (paramagnetic) solution result of Eq. (22), gm =

i
π (2m+1) , is independent of u and thus pretty bad everywhere
but close to u = 0. The paramagnetic (green line) and the
exact (red line) correlators are given as functions of u in
Fig. 1 for m = 0, 1 [that is, for Matsubara frequencies, πT
and 3πT , on Figs. 1(a) and 1(b)], respectively. The correlator
grossly overestimates the exact one at the spurious critical
point uc = 4, marked in Fig. 1 by a dashed black line.

The magnetic solution of Eq. (23), symmetrized according
to Eq. (27) above, takes a form

gAB
m = δABgm,

gm = iπ (2m + 1)

π2(2m + 1)2 + u2(n↓ − 1/2)2
. (32)

The value of density n↓ here was calculated numerically by
solving Eq. (23). It is given in Fig. 1 as the dark green line.
One observes that, while the large u asymptotics is exact, at
intermediate couplings the agreement is on the 10% level.
The perturbative correction is also presented and in Sec. IV
we will discuss how one can perturbatively improve the
approximation (perturbative correction leading to the result
represented by the violet line). The almost broken phase
symmetrized HF, Eq. (32), becomes asymptotically correct
at large couplings. As Fig. 1(b) demonstrates, for higher
Matsubara frequencies the approximation very fast becomes

excellent in the whole range of parameters. Of course, the
large m asymptotics is guaranteed.

Now we apply this method to more complicated solvable
models of strongly interacting electron systems. The prime
example is the one band Hubbard model that describes qual-
itatively well several manufactured 2D quantum magnets and
1D and 2D BEC systems.

IV. APPLICATION TO THE ANTIFERROMAGNETIC SRO
IN THE HALF FILLED HUBBARD MODEL

A. Hubbard model

The single band Hubbard model for strongly interacting
electrons is defined on D dimensional hypercubic lattice
compactified in all directions into a circle of perimeter Ns.
The tunneling amplitude to the neighboring site is denoted
in literature by t . We chose it to be the unit of energy t =
1. Similarly the lattice spacing sets the unit of length a =
1 and h̄ = 1. The Hamiltonian is (restricting for notational
simplicity to one band and D = 1, although generalization to
arbitrary D and other types of lattices is straightforward)

H =
Ns∑

x=1

{− (aα†
x aα

x+1 + H.c.
)− μnx + Un�

xn↓
x

}
. (33)

The chemical potential μ and the on-site repulsion energy U
are therefore given in units of the hopping energy. The spin
index takes two values α =↑,↓. The density and its spin com-
ponents are nx = n�

x + n↓
x with nα

x ≡ aα†
x aα

x , respectively. It is
well known that at half filling μ = U

2 due to the particle-hole
symmetry [13]. Approximations we will use are covariant [9]
and thus respect this restriction.

The discretized Matsubara action is [10]

A = τ
∑
t,x

1

τ

(
ψα∗

t+1,xψ
α
t,x − ψα∗

t,x ψ
α
t,x

)

− 1

2

(
ψα∗

t,x ψ
α
t,x+1 + ψα∗

t,x ψ
α
t,x−1

)
−μnx − Uψ

�∗
t,xψ

↓∗
t,x ψ

�
t,xψ

↓
t,x, (34)

where nt,r ≡ ψσ∗
t,x ψσ

t,x. Generally for D � 2 and the
non-Abelian symmetry group symmetry fluctuations
(quantum and thermal) destroy numerous mean field broken
phases, although previously attempted variational approaches
like the CGA at large coupling start from a broken phase
solution of the minimization equations and sometimes
give a much better result upon symmetrization. They start
from recounting the well known HF gap equation and its
paramagnetic solution [14].

B. Paramagnetic Hartree-Fock solution

The hopping matrix and interaction in frequency-
momentum space of the corresponding Matsubara action is

tαβ

n,k = δαβtn,k, tn,k = εm − 2 cos

[
2π

Ns
k

]
,

v
αβ

n,k = U . (35)
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FIG. 2. Comparison of the exact correlator of a short Hubbard
chain at temperature T = 0.2 with approximations in a wide range of
couplings for ω = πT , k = 0. The approximations include the CGA
[green lines, the parasolution from Eq. (36); darker green lines from
Eq. (48)] that is symmetrized above the spurious transition at Uc =
1.33 and perturbative correction to Gaussian approximation (PCGA,
purple lines).

The gap equation in paramagnet simplifies to


 = −U
T

Ns

∑
m,k

gmk , (36)

and is solved numerically (for infinite Nt ) for T = 0.2. For
half filling, μ = U

2 , the solution of the above equation is

 = U

2 . The results for the imaginary part of the correlator
gmk are presented for Ns = 4 in Fig. 2 as the green line for
couplings not exceeding the spurious critical value of Uc ≈
1.3335. Frequency is the lowest, n = 0 corresponding to ω =
πT , while quasimomentum k = 0 in Fig. 2 and k = Ns/4 = 1
[k-vector π/(2a) in physical units] in Fig. 3 but post-Gaussian
correction, or the perturbative correction to Gaussian approx-
imation, PCGA, is good (PCGA theory will be presented in
Sec. V A). As for the quantum dot, it (case for Ns = 4) also
does not compare well with the exact diagonalization result
(red line) for coupling that is not very small. The real part of
the correlator on the Fermi surface for k = π/2 is zero.

Similar results are obtained for other physical quantities at
D = 1, while generalization to 2D gives results presented in
Fig. 8 that will be commented on below. The problem for U <

Uc is easily remedied by a perturbative correction described in
Sec. IV.

C. Symmetrized antiferromagnetic Green’s function

1. Spin rotation and translation spurious symmetry
breaking on the HF level

The spin SU (2) symmetry of the Hubbard model at half
filling and large U is spontaneously broken on the HF level
to its U (1) subgroup chosen here as rotation around the z
spin direction. Simultaneously the translation symmetry is
broken, so that two sublattices I = 1, 2 appear. Therefore,
translational symmetry becomes smaller with unit cell index
x′ = 1, . . . , N ′ with N ′ = Ns/2. The position for the sublattice
1 is x = 2x′ − 1, while for sublattice 2 it becomes x = 2x′.
The Matsubara action therefore is rearranged as a folded one:

A = τ
∑
t,x′

1

τ

(
ψ Iσ∗

t−1,x′ψ
Iσ
t,x′ − ψ Iσ∗

t,x′ ψ
Iσ
t,x′
)− ψ Iσ∗

t,x′ σ
IJ
x ψJσ

t,x′

− 1

2
ψ Iσ∗

t,x′
(
σ IJ

x + iσ IJ
y

)
ψJσ

t,x′−1 − 1

2
ψ Iσ∗

t,x′
(
σ IJ

x − iσ IJ
y

)
×ψJσ

t,x′+1 − U

2
nI

i + Uψ
I�∗
t,x′ ψ

I↓∗
t,x′ ψ

I�
t,x′ψ

I↓
t,x′ . (37)

Here summation over sublattice indices I, J is assumed. The
Fourier transform now takes a form

ψ Iσ∗
it =

√
T

N ′

N ′∑
k′=1

Nt∑
n=1

× exp

[
i

(
−2πk′

N ′ i − 2π (n + 1/2)

Nt
t

)]
ψ Iσ∗

k′n (38)

folded integer quasimomentum k′ = 1, . . . , N ′. The action
becomes that of Eq. (2) with

t−1
nk′ = δIJεn −

(
1 + cos

[
2π

N ′ k′
])

σ IJ
x − sin

[
2π

N ′ k′
]
σ IJ

y ,

v
JIαβ

nk′ = UδIJ , (39)

where εn was defined in Eq. (14).

(a) (b) (c)

FIG. 3. Comparison of the exact correlator of a short Hubbard chain at temperature T = 0.2 with approximations in a wide range of
couplings for ω = πT , k = π/2 at δμ = 0, 0.25, 1 from top to bottom. The approximations include the CGA [green lines, the parasolution
from Eq. (36); darker green lines from Eq. (48)] that is symmetrized above the spurious transition at Uc = 1.33, and perturbative correction
to Gaussian approximation in (a) (PCGA, purple lines). The inset of (a) is an enlarged figure near the “critical coupling” region. In (b) and
(c) (δμ = 0.25, 1, respectively), the results for the CGA (green lines for parasolution and darker green lines from the symmetrized correlator)
are present; the exact results are plotted as red lines.
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The gap equation, Eq. (6), now takes the following form:


IJαβ = TU

N ′ δIJ
∑
nk′

(
δαβgIIκκ

nk′ − gIIβα

nk′

)

= UδIJ (δαβnIIκκ − nIIβα ). (40)

As is well known, it is solved by the antiferromagnetic (AF)
ansatz

n11↑↑ = n22↓↓ = n1, n11↓↓ = n22↑↑ = n2,

n11↑↓ = n11↓↑ = n22↑↓ = n22↓↑ = 0. (41)

The resulting algebraic equations at infinite Nt are n1 + n2 =
1 and, defining magnetization, M = n1 − 1

2 ,

N ′∑
k′=1

1

ek′
tanh

[ ek′

2T

]
= Ns

U
,

e2
k′ = 4 cos2

[
2π

Ns
k′
]

+ (UM )2. (42)

The spurious critical coupling therefore is

Uc(T ) = 2Ns

{
N ′∑

k′=1

cos−1

[
2π

Ns
k′
]

tanh

[
2 cos

[
2π
Ns

k′]
2T

]}−1

.

(43)

For particular cases shown in Figs. 2, 3, and 5, we set Ns =
4 and 24, respectively. The values of the critical coupling at
temperature T = 0.2 are Uc = 1.3335 and Uc = 2.017 at half
filling, respectively.

The nonsymmetrized correlator is diagonal in spin, gIJ↑↓
nk′ =

gIJ↓↑
nk′ = 0, due to the residual U (1) symmetry, so we specify

the spin α once:

gIJα
nk′ = 1

e2
k′ + ω2

n

{(
1 + cos

[
2π

N ′ k′
])

σ IJ
x − sin

[
2π

N ′ k′
]
σ IJ

y

+ iωnδ
IJ − sgn[α]UMσ IJ

z

}
. (44)

Here sgn[α] = σαα
z , namely +1 for ↑ and −1 for ↓. Recall

that we have chosen the direction of magnetization at large
coupling in the spuriously broken phase to be parallel to the
z spin direction. This should be symmetrized over all the AF
ground states.

2. Symmetrization

Then the symmetry breaking pattern for the SU (2) →
U (1) for the paramagnet to AF involves simultane-
ous translation symmetry breaking resulting in sublat-
tices. Taking trace over spins and dividing by 2, the
symmetrized frequency-quasimomentum GF is 〈ψ∗↑

nx ψ↑
ny〉 ≈

1
2 〈ψ∗σ

nx ψσ
ny〉AF

= 1
2 (〈ψ∗↑

nx ψ↑
ny〉AF

+ 〈ψ∗↓
nx ψ↓

ny〉AF
) (n is the Mat-

subara frequency; x, y are the lattice coordinates),

gsym
nk = 1

Ns

Ns∑
x,y=1

exp

[
2iπk

Ns
(x − y)

]
〈ψ∗↑

nx ψ↑
ny〉 (45)

≈ 1

2Ns

Ns∑
x,y=1

exp

[
2iπk

Ns
(x − y)

]〈
ψσ∗

nx ψaσ
ny

〉
AF

. (46)

In sublattice notations this becomes 〈ψ∗↑
nx ψ↑

ny〉 ≈ 1
2 (〈ψ∗↑

nx ψ↑
ny〉AF

+ 〈ψ∗↑
nx+1ψ

↑
ny+1〉AF

),

gsym
nk = 1

4N ′

N ′∑
x′y′

exp

[
2iπk

N ′ (x′ − y′)
]{〈

ψ1σ∗
nx′ ψ1σ

ny′
〉+ exp

[− iπk
N ′
]〈
ψ1σ∗

nx′ ψ2σ
ny′
〉

+ exp
[

iπk
N ′
]〈
ψ2σ∗

nx′ ψ1σ
ny′
〉+ 〈ψ2σ∗

nx′ ψ2σ
ny′
〉
}

= 1

4

{ 〈
ψ1σ∗

n,mod[k]ψ
1σ
n,mod[k]

〉+ exp
[− iπk

N ′
]〈
ψ1σ∗

n,mod[k]ψ
2σ
n,mod[k]

〉
+ exp

[
iπk
N ′
]〈
ψ2σ∗

n, mod[k]ψ
1σ
n,mod[k]

〉+ 〈ψ2σ∗
n,mod[k]ψ

2σ
n,mod[k]

〉
}

= 1

4

{
g11σ

n,mod[k] + g22σ
n,mod[k] + exp

[
−2iπk

Ns

]
g12σ

n,mod[k] + exp

[
2iπk

Ns

]
g21σ

n,mod[k]

}
, (47)

where mod[k] = mod[k, N ′] = mod[k, Ns/2].
Substituting the solution of the gap equation, one finally

obtains, for half filling,

gsym
nk = iωn + 2 cos

[
2π
Ns

k
]

ω2
n + e2

mod[k]

. (48)

An example of results is compared with exact diagonalization
for Ns = 4, T = 0.2 for n = 0 and k = 0, Ns/4 (correspond-
ing to physical momentum π/2) in Figs. 2 and 3(a), respec-
tively. The symmetrized broken phase solution (the dark green
curve) for U > Uc(T ) provides a quite accurate approximant.
It approaches the exact result at large coupling although still
incorrectly indicates the second order transition (see the cusps
in insets of both Figs. 2 and 3). The most problematic values

of both the frequency, ω = πT , and the quasimomentum k =
0 and Ns/4 (Fermi surface) are chosen. The other physical
quantities are discussed in Sec. VI.

A question arises. Since qualitative features are captured
quite well by the symmetrized CGA except near the spurious
transition, can one improve upon this using the CGA as a
starting point of a perturbation? This is attempted next.

V. PERTURBATIVE IMPROVEMENT OF
THE GAUSSIAN THEORY

A. General construction of the series

The covariant Gaussian approximation can serve as a start-
ing point for a perturbation theory around the Hartree-Fock
solution. In bosonic models the method was proposed in the
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context of strong thermal fluctuations in the mixed state of
superconductor under magnetic field [15]. One considers the
quadratic form,

Ag = −ψA∗
a [G−1]BA

b−aψ
B
b , (49)

as a large part of the action, while the difference between
the models action Eq. (2) and it is small. The small part
is multiplied by a parameter α and the physical quantity is
expanded in α to a certain order. After the calculation is
completed one sets α = 1.

The Gaussian action for an interacting electron system is
(as before the space index combined with time)

A = Ag + α�A,

�A = 1
2ψA∗

a ψA
a V AB

a−bψ
B∗
b ψB

b + ψA∗
a

(
T AB

a−b + [G−1]BA
b−a

)
ψB

b .

(50)

Integrands in the path integral are expanded as

e−(Ag+α�A) = e−Ag
(
1 − α�A + 1

2α2(�A)2 + · · · ). (51)

The correlator therefore is expanded to α as

〈
ψA∗

a ψB
b

〉 =
∫

ψA∗
a ψB

b e−Ag
(
1 − α�A + 1

2α2(�A)2
)

∫
e−Ag

(
1 − α�A + 1

2α2(�A)2
)

≈ GAB
ab + α

〈
ψA∗

a ψB
b �A

〉
con + α2

2

〈
ψA∗

a ψB
b (�A)2〉

con

= GAB
ab + α2�GAB

ab . (52)

The 〈. . .〉con average is understood in a diagrammatic repre-
sentation of the Gaussian integrals as in perturbation theory
[10] (division by Z eliminates disconnected diagrams). Van-
ishing of the α term is tantamount to solution of the gap
equation, Eq. (6), as shown in Ref. [15] (no difference here
between bosonic and fermionic models). GAB

ab is the Green
function of Gaussian (Hartree-Fock) approximation.

The correction to the Gaussian correlator GAB
ab is (setting

α = 1 and simplifying by repeated use of the gap equation)

�GAB
ab = GAK

ak V KL
kl GNL

nl

(
GKN

kn GLM
lm − GKM

km GLN
ln

)
V MN

mn GMB
mb .

(53)

It is known that within Gaussian approximation the effective
action is calculated much more precisely compared to correla-
tors [16]. The cumulant (the inverse of the Green function that
is the second functional derivative of the effective action with
respect to field) within the first order is given by a simpler
formula:

[(Gpg)−1]AB
ab = [G−1]AB

ab + 
AB
ab ,


AB
ab = V AL

al GNL
nl

(
GAB

ab GLN
ln − GAN

an GLB
lb

)
V BN

bn . (54)

Here 
AB
ab is the self energy correction to the Gaussian cor-

relator and Gpg is the Green function of post- (perturbative
correction) Gauss approximation (PCGA). Diagrammatically
it can be represented as summation of all the setting sun
diagrams with lines representing the Gaussian correlators; see
Fig. 4.

As an example, we calculate the first correction (perturbed
or setting sun approximation) to the toy model of Sec. II.
For the QD model, substituting Eq. (13) into Eq. (54), one

FIG. 4. Setting sun diagrams that contribute to PCGA. The
directed lines are Gaussian correlators, while the vertices are
“perturbative.”

obtains [using the property of both the paramagnetic and the
ferromagnetic solutions that GAB is diagonal in spin due to the
residual U (1) symmetry]


AA
ab = τ 2U 2GAA

ba GAA
ab GAA

ab . (55)

Transforming to frequencies, one obtains


AA
n = T 2U 2

∑
k,l

gAA
−n+k+l g

AA
k gAA

l , (56)

so that in paramagnet, Eq. (31), for infinite Nt , [γ −1
CGA]

AB =
δABgCGA with

gCGA
n = i

⎧⎨
⎩ωn + U 2T 2

∞∑
k,l=−∞

1

ωk+l−nωkωl

⎫⎬
⎭

−1

. (57)

The sum can be performed resulting in the exact expression
given in Eq. (31). The calculation of the setting sun correction
in the magnetic phase is more complicated; however, the result
is simple (after symmetrization):

gpert
n = iωn

U 2/4 + ω2
n

(2UMωn)2 + (2U 2M2 − U 2/4 − ω2
n

)2 . (58)

Here magnetic moment M is determined by the gap equation
(23). The correlator of Eq. (58) is plotted as the purple line in
Fig. 1. The most difficult case of ω = πT is given in Fig. 1.
One observes that it significantly improves the symmetrized
CGA near the spurious transition at Uc (see inset), but is
not effective at higher couplings. If U < Uc, the perturbative
correction turns out to be exact. The asymptotics for large
coupling is correct and corrections are exponential. The im-
provement is dramatic for larger frequencies, as can be seen
from Fig. 1(b).

B. Perturbative correction to Gaussian approximation in the
Hubbard model

Applying the general formula for the setting sun corrected
self energy, Eq. (54) in the antiferromagnetic phase of the
Hubbard model, one obtains


�IJ
α = T 2U 2

N ′
∑
χ1,χ2

G�IJ
χ1

G↓IJ
χ2

G↓JI
χ1+χ2−α ,

(59)


↓IJ
α = T 2U 2

N ′
∑
χ1,χ2

G↓IJ
χ1

G�IJ
χ2

G�JI
χ1+χ2−α,
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where I, J are sublattice indices and α, χ indices are the
combined indices of frequency and wave vector. Substituting
the HF antiferromagnetic solution of Eq. (42) in the matrix
form the correlator is

Gσ
nk = 1

ω2
n + 4 cos2

[
2πk
Ns

]+ M2U 2

×
(

iωn + (−)σ MU 1 + exp [4iπk/Ns]
1 + exp [−4iπk/Ns] iωn − (−)σ MU

)
,

(60)

where σ is the spin index, and for spin up σ = 1 and
spin down σ = 2. Using Eq. (54), the PCGA correlators are
obtained and the symmetrization of the PCGA correlators
follows. The symmetrized PCGA correlators are plotted in
the different figures of the present paper using purple lines
or points. The generalization to higher dimensions, differ-
ent dispersion relations/lattices, beyond half filling, etc. is
straightforward.

These results are systematically compared with exact and
Monte Carlo simulations in the 1D Hubbard model in the next
section and with the 2D Hubbard model in Sec. V.

VI. COMPARISON WITH EXACT DIAGONALIZATION
AND THE MONTE CARLO SIMULATION OF THE

HUBBARD MODEL

Exact solutions of strongly interacting electron systems are
scarce. This especially true for Green’s function at finite tem-
perature. We use exact diagonalization [17] in 1D for small
lattice at any filling (standard and thus not described here)
and then utilize the determinant quantum Monte Carlo [18]
(DQMC, briefly described in the Appendix) for half filling
only. Although the methodology has been extended recently
to approach electronic systems beyond the half filling, for the
benchmarks purpose we stay with the well established half
filling domain for which the sign problem was shown to be
nonexistent.

A. Coupling and quasimomentum dependence of the Green’s
function of half filled Hubbard chain

In this subsection our analytic results are compared with
exact diagonalization of the 1D half filling in the most trou-
blesome case of half filling (appears as red lines in figures).
Results beyond half filling are in far better agreement with
exact even for deviation as small as δμ = μ − U/2 = 0.1.
At half filling, the imaginary part of the Green’s function
at quasimomentum in the � point, k = 0, and on the Fermi
surface k = 1 (corresponding to the physical wave vector
π/2) is shown on Figs. 2 and 3(a), respectively, for Ns = 4.
The results are for fixed temperature (in units of hopping
energy t = 1), Ns = 4, and at lowest Matsubara frequency
ωn=0 = πT (by far the most difficult case, as an example
of the simpler model demonstrates; see Fig. 1). The range
of couplings Uc < U < 12 is shown with inset magnifying
the region around the spurious critical value Uc = 1.3335
marked by the dashed line for T = 0.2 in Figs. 2 and 3(a)
for T = 0.2, Ns = 4. All the calculations here are for infinite

Nt . In Figs. 3(a), 3(b) and 3(c) the imaginary part of the
Green’s function at quasimomentum k = 1 (corresponding
to the physical wave vector π/2) is shown respectively for
δμ = 0, δμ = 0.25, and δμ = 1.

Below the spurious phase transition HF (green straight
segment) deviates significantly from the exact diagonalization
result (red curve), especially near Uc. However, well above
Uc the symmetrized CGA result (green curve) compares well
with the exact correlator. On the Fermi surface, k = π/2, the
perturbative improvement over the symmetrized CGA [the
purple curve in Figs. 2 and 3(a)] is significant not just near the
spurious transition at Uc, but all the way to the large U limit.
The leading large U asymptotic, g = 4πT

U 2 ( 2.51
U 2 for T = 0.2)

is captured correctly by both CGA and the perturbatively im-
proved CGA for both quasimomentum k = 0, π/2. However,
the coefficient c of the subleading, c/U 4, correction (powers
are even due to the particle-hole symmetry) is different. The
exact one for k = 0 is c = 40.6, while approximate are c =
−24.1 and c = −8.5 for CGA and the perturbatively corrected
CGA (PCGA), respectively. For k = π/2 the situation is
similar: exact c = 86.0, while CGA and PCGA give c = 29.8
and c = −27.8 correspondingly. The conclusion is that for a
very strong antiferromagnetic state the dominant correlation
is antiferromagnetic and the long range symmetrization is less
important. The perturbation thus is not helpful in this respect.
Its main advantage is at intermediate couplings. The most
important positive observation is that the symmetrized mean
field works better beyond half filling. However, in the case
of QD, the large U limit expansion (polynomial expansion
U −2k, k = 1, 2, . . .) of the correlator from Eq. (58) is the
same as the exact one, and the difference between them is an
exponential small factor (e−0.5U ).

For large Ns the exact diagonalization is impossible and
thus DQMC was used as a benchmark. We present the
next comparison of the quasimomentum distribution for large
enough chain, so that the continuum limit is reached.

B. Distribution of momenta in 1D Hubbard model

In Fig. 5 the coupling dependence of the distribution
function nk of the Ns = 24 Hubbard chain are compared
with determinant quantum Monte Carlo simulation (red line);
see the Appendix for details. Temperature is again fixed at
T = 0.2, while couplings are U = 1, 4, 6, 10. The spurious
transition occurs at Uc = 2.017 very close to the value mean
field transition point Uc = 2.0186 in the thermodynamic limit
Ns = ∞, so that it essentially represents the continuum limit.
We use the infinite Nt limit for the symmetrized HF (green
points) and PCGA (purple points).

One observes that at the weak coupling (U = 1) the agree-
ment is excellent and the perturbation improves significantly
the Gaussian result. The weak coupling limit comparison
means that the MC simulation time slice corresponding to
Nt = 40 is precise enough. For an intermediate coupling
above Uc (U = 4, 6) there are deviations of up to 10%
at certain momenta, that are only modestly corrected per-
turbatively. Finally at strong coupling (U = 10) the agree-
ment is good, but the perturbative correction does not help
much.
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FIG. 5. Quasimomentum distribution function nk =
2T
∑

m g(m, k) in a half filled 1D Hubbard model (Ns = 24).
Factor 2 is due to spin summation. Horizontal axis as k is
quasimomentum and quantized as in unit 2π/Ns, and the plot range
of k is from zero to π . The results for CGA (green dots) and PCGA
(purple dots) are plotted along with MC results (red lines).

C. Charge and spin correlators in 1D Hubbard model

In this subsection more complicated correlators of the
fermionic fields are compared with exact results on small
lattice and Monte Carlo simulations of the half filled model
on larger ones.

In Fig. 6 the coupling dependence of the charge density
correlator χ

ρ

n,k = 〈nn,kn−n,−k〉 of the Ns = 4 Hubbard chain at
half filling is compared with the exact diagonalization (red
line). The subindices n, k of nn,k correspond to Matsubara
frequency ωn = πT (2n + 1), k is the quasimomentum, and
nn,k is the Fourier transformation of the density nτ,x. Tem-
perature is fixed at T = 1, frequency at n = 0, and momen-
tum at k = 0, while the coupling range is U = 0–12. The
spurious transition occurs at Uc = 4.541. The symmetrized

FIG. 6. Charge density correlator χρ = χ
ρ

n,k dependence of U
at T = 1, for frequency n = 0 and momentum at k = 0. The green
curve is the Lindhard diagram result and the purple curve contains
in addition the next order correction to the Lindhard diagram. The
green curve and the purple curve in the inset are the ratios between
the Lindhard result and the result including the next order correction
to the exact value, respectively.

FIG. 7. Spin correlator χ s
n = 〈−→S n,x · −→

S −n,x〉 dependence of U
at T = 1 for frequency n = 0. The green curve is the Lindhard
diagram result and the purple curve contains in addition the next
order correction to the Lindhard diagram.

density correlator (the customary Lindhard diagram with
propagators given by the HF approximation, green lines)
deviates from the exact result near the spurious transition,
although it has a correct asymptotics at both weak and strong
couplings.

The one vertex corrected symmetrized density correlator
(purple points) does better. It is within 1% in the unbro-
ken phase (including the spurious transition point) and im-
proves the intermediate region. The inset demonstrates the
ration of an approximate and the exact correlator at large
coupling.

Another interesting correlator is the spin correlator χ s
n,k =

〈−→S n,k · −→
S −n,−k〉. The subindices n, k of

−→
S n,k correspond to

Matsubara frequency ωn = πT (2n + 1), k is the quasimo-
mentum, and

−→
S n,k is the Fourier transformation of the spin−→

S τ,x. Parameters Ns, T are the same as for the density corre-
lator, frequency still at n = 0, but instead of quasimomentum
we take the coincident point correlator χ s

n = 〈−→S n,x · −→
S −n,x〉

for n = 0. The results are presented in Fig. 7 as functions
of the coupling in the range U = 0–16. The approximation
quality is approximately (a little worse than density correlator)
the same as in the previous case of the density correlator.
For results of large Ns, we will present the results in future
works.

D. Comparison of MC simulation with CGA
in 2D Hubbard model

Calculations for the half filled Hubbard model in 2D are
completely analogous to those in 1D. In Fig. 8 the coupling
dependence of the Matsubara Green’s function at the point
k = (π, 0) on the Fermi surface is plotted as a function of
Matsubara time. As was demonstrated in the previous sub-
section, momenta on the Fermi surface are most difficult to
describe. The temperature is fixed at T = 1, and only half
of the period 0 < t < 1/(2T ) is shown since the other half
is dictated by the symmetry. The number of space points
was 144 with Ns = 12 in the DQMC simulation (red line),
while the time slice corresponds to Nt = 8; see more detailed
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FIG. 8. Imaginary part of the Green’s function G(τ, k) of a half
filled 2D Hubbard model at k = (π, 0). The results for CGA (green
dots) and PCGA (purple dots) are plotted along with MC results (red
lines).

description of the methodology in the Appendix. The cou-
plings, U = 1, 4, 6, 8, 12, were taken below and above the
spurious mean field transition at Uc = 4.90. We use the infi-
nite Nt limit for the symmetrized HF (green points) and PCGA
(purple points).

One observes that at the weak coupling (U = 1, 4) below
Uc the agreement is excellent only if the HF (the green vertical
line) is perturbatively corrected as in 1D. The weak coupling
limit comparison means that the MC simulation time slice
corresponding to Nt = 8 is precise enough. For an interme-
diate coupling just above Uc (U = 6) there are significant
deviations of up to 15% that are not corrected perturbatively.
Finally, at stronger couplings (U = 8, 12) the agreement is
good, but improvement (perturbative correction) does not help
much.

VII. DISCUSSION AND CONCLUSIONS

To summarize, a mean field (Hartree-Fock) type approach,
covariant Gaussian approximation, is adapted to include
strongly interacting low dimensional electronic systems in
which symmetry is restored due to long range correlations.
Instead of using a complicated (typically renormalization
group type) scale separation method, simple symmetrization
of correlators is employed to a covariant (preserving Ward-
Takahashi identities) variant of the mean field (Gaussian)
approximation. The short-range correlations captured by the
mean field are thus kept, while symmetry gets restored.
The solution can be systematically improved by addition of
corrections to cumulant that are based on expansion around
the Gaussian approximation. There are different variational
Hartree-Fock methods [19] which were applied to study the
strong correlated model, for example, the Hubbard model
with success. However, here we offered the traditional (simple
analytic) Hartree-Fock methods to calculate the correlators.

To test the scheme, it was applied to the correlator of the
1D and the 2D one band Hubbard models and compared to
exact diagonalization of relatively small systems (ED) and
MC simulations at the half filling, where they are known to
be reliable. The comparison demonstrates the typical mean

field precision of order 10% for all couplings. It is better
for weak and strong couplings (correct asymptotics) away
from the Fermi level and higher frequencies. It should be
noted that the method generalizes well beyond the half filling
Hubbard model. The 2D Hubbard model beyond the half
filling is being intensely studied recently in connection to
strange metals and high Tc superconductivity (including by
the determinantal quantum Monte Carlo [18] used here at
half filling only). Apart from straightforward generalizations
to different symmetry groups describing for example Ising
or XY quantum magnets, possible applications include mod-
els describing phonon induced interactions like the Holstein
model. For disordered matter, one can combine the replica
field theory method with the method used in the present paper.

A natural question arises whether the symmetrization
scheme can be applied to finer approximations beyond the
Gaussian. Recently, the covariant approximation method was
generalized to include higher cumulants beyond the quadratic
[9].
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APPENDIX: DETERMINANT QUANTUM
MONTE CARLO

The determinant quantum Monte Carlo (DQMC) method
is an exact numerical tool to treat the correlated system.
To apply DQMC simulations in a fermion system, a major
obstacle is the notorious sign problem, which prevents DQMC
simulations from achieving a good numerical precision at
low temperature and high interaction strength. However, in
the half-filled Hubbard model on a square lattice, the sign
problem disappears due to the particle hole symmetry and this
provides a wonderful opportunity to use the data of DQMC as
the benchmark for our method.

The DQMC method that we use is based on the
Blankenbecler-Scalapino-Sugar (BSS) algorithm [18]. In this
Appendix, we present a brief introduction following previous
work on the Hubbard model [20]. The Hamiltonian Eq. (33)
can be separated into H = H0 + HI , where H0 is the hopping
part and HI includes the rest of the terms in Eq. (33). In order
to calculate the grand partition function Z = Tr e−H/T , one
needs to use the Suzuki-Trotter decomposition scheme [21]
to cast the quartic term into a bilinear form and introduce a
small parameter τ = (T Nt )−1,

e−(H0+HI )/T = (eτH0+τHI )Nt = (eτH0 eτHI )Nt + O(τ 2U ).

(A1)
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Having separated the exponentials, we can decouple the
quartic terms in HI by the Hubbard-Stratonovich (HS) trans-
formation,

e−Uτn↑n↓ = 1

2
e− Uτ

2 n
∑
s=±1

e−sξ (n↑−n↓ )

= 1

2

∑
s=±1

∏
σ=↑,↓

e−(sgn[σ ]sξ+ Uτ
2 )nσ , (A2)

where n ≡ n↑ + n↓ and the parameter ξ = arccosh[e|U |τ/2].
One can notice that the quartic terms are decoupled at the
cost of introducing an auxiliary field at every site and time
slice. Upon replacing the on-site interaction on every site of
the space-time lattice by Eq. (A2), we obtain the sought after
form in which only bilinear terms appear in the exponential,

Z =
(

1

2

)ND
s Nt

Tr
{s}

Nt∏
t=1

∏
σ=↑,↓

exp [−τH0]

× exp

[
−τ
∑

i

cσ†
i V σ

i (t )cσ
i

]
, (A3)

where the traces are over auxiliary Ising fields and over
fermion occupancies on every site. The time-slice index t is
manifested in the HS field si(t ) by

V σ
i (t ) = sgn[σ ]

ξ

τ
si(t ) + μ − U

2
, (A4)

which are the elements of the Ns × Ns diagonal matrix V σ (t ).
With bilinear forms in the exponential, the fermions can be
traced out explicitly,

Z =
(

1

2

)ND
s Nt

Tr
{s}

∏
σ

det[1 + Bσ (Nt )Bσ (Nt − 1) . . . Bσ (1)],

(A5)

with Bσ (t ) ≡ e−τK e−τV σ (t ), in which the auxiliary Ising spins
are implicitly included. The hopping terms in the exponential

are represented by an Ns × Ns matrix K , with elements

Ki j =
{−1 if i and j are nearest neighbors,

0 otherwise. (A6)

The equal-time correlation function of the creation and the
annihilation operators is

〈
cσ

i cσ†
j

〉 = 1

Z Tr
{s}

T r

[
cσ

i cσ†
j

∏
t,σ

e−τK e−τV σ (t )

]
. (A7)

Considering the fact that the fermions only interact with the
auxiliary fields, it can be proved that Wick’s theorem [22]
holds for a fixed HS configuration [20,23,24]. Hence the
interesting physical expectations can be calculated in terms of
single-particle Green’s functions. In the Heisenberg picture,
the time-dependent c operator is defined as

c(t ) ≡ etτH c e−tτH , (A8)

with the initial time set to be t = τ and c†(t ) 	= [c(t )]†. Fur-
ther, the unequal-time Green’s function, for t1 > t2, is given
by [20]

Gσ
ij (t1; t2) ≡ 〈

cσ
i (t1)cσ†

j (t2)
〉
{s}

= [Bσ (t1)Bσ (t1 − 1) . . . Bσ (t2 + 1) gσ (t2 + 1)]ij,

(A9)

in which the Green’s function matrix at the t th time
slice is defined as gσ (t ) ≡ [1 + Aσ (t )]−1 with Aσ (t ) ≡
Bσ (t − 1)Bσ (t − 2) . . . Bσ (1)Bσ (Nt ) . . . Bσ (t ).

In our simulations, 8000 sweeps were used to equilibrate
the system. An additional 30000 sweeps were then made, each
of which generated a measurement. These measurements were
split into ten bins, which provide the basis of coarse-grain av-
erages and errors estimates based on standard deviations from
the average. In the determinant QMC method, a breakup of
the discretized imaginary time evolution operator introduces a
systematic error proportional to τ 2U [with τ = (T Nt )−1 being
the imaginary time step]. We have used τ = 0.125, which
leads to negligible systematic error (within a few percent).
One of the authors had succeeded in using this technology
to explore interesting physical properties in various electronic
systems [25].

[1] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[2] P. M. Chaikin and T. C. Lubensky, Principles of Condensed

Matter Physics (Cambridge University Press, Cambridge, UK,
1995).

[3] A. Jevicki, Phys. Lett. B 71, 327 (1977).
[4] F. David, Commun. Math. Phys. 81, 149 (1981); S. Elitzur,

Nucl. Phys. B 212, 501 (1983).
[5] K. Maki and H. Takayama, Prog. Theor. Phys. 46, 1651 (1971).
[6] B. Rosenstein, Phys. Rev. B 60, 4268 (1999); H. C. Kao, B.

Rosenstein, and J. C. Lee, ibid. 61, 12352 (2000).
[7] D. Li and B. Rosenstein, Phys. Rev. B 65, 024514 (2001).
[8] J. F. Wang, D. P. Li, H. C. Kao, and B. Rosenstein, Ann. Phys.

(NY) 380, 228 (2017).
[9] B. Rosenstein and A. Kovner, Phys. Rev. D 40, 523 (1989); B.

Rosenstein and D. Li, Phys. Rev. B 98, 155126 (2018).

[10] J. W. Negele and H. Orland, Quantum Many-particle Systems
(Perseus Books, New York, 1998).

[11] S. Steinberg, Group Theory and Physics (Cambridge Univer-
sity Press, Cambridge, UK, 1994); S. Aubert and C. S. Lam,
J. Math. Phys. 44, 6112 (2003).

[12] P. Rossi, M. Campostrini, and E. Vicari, Phys. Rep. 302, 143
(1998); Z. Puchała and J. A. Miszczak, Bull. Pol. Acad. Sci.:
Tech. Sci. 65, 21 (2017).

[13] V. E. Korepin and F. H. L. Essler, Exactly Solvable Models
of Strongly Correlated Electrons (World Scientific, Singapore,
1994).

[14] A. Auerbach, Interacting Electrons and Quantum Magnetism
(Springer Science & Business Media, New York, 2012).

[15] D. J. Thouless, Phys. Rev. Lett. 34, 946 (1975); G. J. Ruggeri
and D. J. Thouless, J. Phys. F 6, 2063 (1976); S. Hikami,

125140-12

https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1103/PhysRevLett.17.1133
https://doi.org/10.1016/0370-2693(77)90229-5
https://doi.org/10.1016/0370-2693(77)90229-5
https://doi.org/10.1016/0370-2693(77)90229-5
https://doi.org/10.1016/0370-2693(77)90229-5
https://doi.org/10.1007/BF01208892
https://doi.org/10.1007/BF01208892
https://doi.org/10.1007/BF01208892
https://doi.org/10.1007/BF01208892
https://doi.org/10.1016/0550-3213(83)90682-X
https://doi.org/10.1016/0550-3213(83)90682-X
https://doi.org/10.1016/0550-3213(83)90682-X
https://doi.org/10.1016/0550-3213(83)90682-X
https://doi.org/10.1143/PTP.46.1651
https://doi.org/10.1143/PTP.46.1651
https://doi.org/10.1143/PTP.46.1651
https://doi.org/10.1143/PTP.46.1651
https://doi.org/10.1103/PhysRevB.60.4268
https://doi.org/10.1103/PhysRevB.60.4268
https://doi.org/10.1103/PhysRevB.60.4268
https://doi.org/10.1103/PhysRevB.60.4268
https://doi.org/10.1103/PhysRevB.61.12352
https://doi.org/10.1103/PhysRevB.61.12352
https://doi.org/10.1103/PhysRevB.61.12352
https://doi.org/10.1103/PhysRevB.61.12352
https://doi.org/10.1103/PhysRevB.65.024514
https://doi.org/10.1103/PhysRevB.65.024514
https://doi.org/10.1103/PhysRevB.65.024514
https://doi.org/10.1103/PhysRevB.65.024514
https://doi.org/10.1016/j.aop.2017.03.015
https://doi.org/10.1016/j.aop.2017.03.015
https://doi.org/10.1016/j.aop.2017.03.015
https://doi.org/10.1016/j.aop.2017.03.015
https://doi.org/10.1103/PhysRevD.40.523
https://doi.org/10.1103/PhysRevD.40.523
https://doi.org/10.1103/PhysRevD.40.523
https://doi.org/10.1103/PhysRevD.40.523
https://doi.org/10.1103/PhysRevB.98.155126
https://doi.org/10.1103/PhysRevB.98.155126
https://doi.org/10.1103/PhysRevB.98.155126
https://doi.org/10.1103/PhysRevB.98.155126
https://doi.org/10.1063/1.1622448
https://doi.org/10.1063/1.1622448
https://doi.org/10.1063/1.1622448
https://doi.org/10.1063/1.1622448
https://doi.org/10.1016/S0370-1573(98)00003-9
https://doi.org/10.1016/S0370-1573(98)00003-9
https://doi.org/10.1016/S0370-1573(98)00003-9
https://doi.org/10.1016/S0370-1573(98)00003-9
https://doi.org/10.1515/bpasts-2017-0003
https://doi.org/10.1515/bpasts-2017-0003
https://doi.org/10.1515/bpasts-2017-0003
https://doi.org/10.1515/bpasts-2017-0003
https://doi.org/10.1103/PhysRevLett.34.946
https://doi.org/10.1103/PhysRevLett.34.946
https://doi.org/10.1103/PhysRevLett.34.946
https://doi.org/10.1103/PhysRevLett.34.946
https://doi.org/10.1088/0305-4608/6/11/006
https://doi.org/10.1088/0305-4608/6/11/006
https://doi.org/10.1088/0305-4608/6/11/006
https://doi.org/10.1088/0305-4608/6/11/006


MEAN FIELD THEORY OF SHORT-RANGE ORDER IN … PHYSICAL REVIEW B 100, 125140 (2019)

A. Fujita, and A. I. Larkin, Phys. Rev. B 44, 10400(R) (1991);
J. Hu, A. H. MacDonald, and B. D. McKay, ibid. 49, 15263
(1994); B. Rosenstein and D. Li, Rev. Mod. Phys. 82, 109
(2010).

[16] H. Kleinert, Path Integrals in Quantum Mechanics, Statis-
tics, and Polymer Physics (World Scientific, Singapore,
1995).

[17] A. Weisse and H. Fehske, Exact diagonalization techniques, in
Computational Many-Particle Physics, edited by H. Fehske, R.
Schneider, and A. Weisse (Springer, Berlin, 2008).

[18] R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev.
D 24, 2278 (1981).

[19] N. Tomita, Phys. Rev. B 69, 045110 (2004) and references
therein.

[20] J. E. Hirsch, Phys. Rev. B 31, 4403 (1985); R. R. dos Santos,
Braz. J. Phys. 33, 36 (2003); T. Ma, F. M. Hu, Z. B. Huang, and

H. Q. Lin, Horizons in World Physics (Nova Science Publishers,
Inc., Hauppauge, NY, 2011), Vol. 276, Chap. 8.

[21] Quantum Monte Carlo Methods, edited by M. Suzuki, Solid
State Sciences Vol. 74 (Springer, Berlin, 1986).

[22] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-
Particle Systems (McGraw-Hill, New York, 1971).

[23] W. von der Linden, Phys. Rep. 220, 53 (1992).
[24] E. Y. Loh and J. E. Gubernatis, in Electronic Phase Transitions,

edited by W. Hanke and Yu. V. Kopaev (Elsevier, Amsterdam,
1992).

[25] T. Ma, H. Q. Lin, and J. Hu, Phys. Rev. Lett. 110, 107002
(2013); S. Cheng, J. Yu, T. Ma, and N. M. R. Peres, Phys. Rev.
B 91, 075410 (2015); G. Yang, S. Xu, W. Zhang, T. Ma, and
C. Wu, ibid. 94, 075106 (2016); T. Ma, L. Zhang, C.-C. Chang,
H.-H. Hung, and R. T. Scalettar, Phys. Rev. Lett. 120, 116601
(2018).

125140-13

https://doi.org/10.1103/PhysRevB.44.10400
https://doi.org/10.1103/PhysRevB.44.10400
https://doi.org/10.1103/PhysRevB.44.10400
https://doi.org/10.1103/PhysRevB.44.10400
https://doi.org/10.1103/PhysRevB.49.15263
https://doi.org/10.1103/PhysRevB.49.15263
https://doi.org/10.1103/PhysRevB.49.15263
https://doi.org/10.1103/PhysRevB.49.15263
https://doi.org/10.1103/RevModPhys.82.109
https://doi.org/10.1103/RevModPhys.82.109
https://doi.org/10.1103/RevModPhys.82.109
https://doi.org/10.1103/RevModPhys.82.109
https://doi.org/10.1103/PhysRevD.24.2278
https://doi.org/10.1103/PhysRevD.24.2278
https://doi.org/10.1103/PhysRevD.24.2278
https://doi.org/10.1103/PhysRevD.24.2278
https://doi.org/10.1103/PhysRevB.69.045110
https://doi.org/10.1103/PhysRevB.69.045110
https://doi.org/10.1103/PhysRevB.69.045110
https://doi.org/10.1103/PhysRevB.69.045110
https://doi.org/10.1103/PhysRevB.31.4403
https://doi.org/10.1103/PhysRevB.31.4403
https://doi.org/10.1103/PhysRevB.31.4403
https://doi.org/10.1103/PhysRevB.31.4403
https://doi.org/10.1590/S0103-97332003000100003
https://doi.org/10.1590/S0103-97332003000100003
https://doi.org/10.1590/S0103-97332003000100003
https://doi.org/10.1590/S0103-97332003000100003
https://doi.org/10.1016/0370-1573(92)90029-Y
https://doi.org/10.1016/0370-1573(92)90029-Y
https://doi.org/10.1016/0370-1573(92)90029-Y
https://doi.org/10.1016/0370-1573(92)90029-Y
https://doi.org/10.1103/PhysRevLett.110.107002
https://doi.org/10.1103/PhysRevLett.110.107002
https://doi.org/10.1103/PhysRevLett.110.107002
https://doi.org/10.1103/PhysRevLett.110.107002
https://doi.org/10.1103/PhysRevB.91.075410
https://doi.org/10.1103/PhysRevB.91.075410
https://doi.org/10.1103/PhysRevB.91.075410
https://doi.org/10.1103/PhysRevB.91.075410
https://doi.org/10.1103/PhysRevB.94.075106
https://doi.org/10.1103/PhysRevB.94.075106
https://doi.org/10.1103/PhysRevB.94.075106
https://doi.org/10.1103/PhysRevB.94.075106
https://doi.org/10.1103/PhysRevLett.120.116601
https://doi.org/10.1103/PhysRevLett.120.116601
https://doi.org/10.1103/PhysRevLett.120.116601
https://doi.org/10.1103/PhysRevLett.120.116601

