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We present a quantum Monte Carlo algorithm for computing the perturbative expansion in power of the
coupling constant U of the out-of-equilibrium Green’s functions of interacting Hamiltonians of fermions. The
algorithm extends the one presented in Profumo et al. [Phys. Rev. B 91, 245154 (2015)], and inherits its main
property: it can reach the infinite time (steady state) limit since the computational cost to compute order U n

is uniform versus time; the computing time increases as 2n. The algorithm is based on the Schwinger-Keldysh
formalism and can be used for both equilibrium and out-of-equilibrium calculations. It is stable at both small
and long real times including in the stationary regime, because of its automatic cancellation of the disconnected
Feynman diagrams. We apply this technique to the Anderson quantum impurity model in the quantum dot
geometry to obtain the Green’s function and self-energy expansion up to order U 10 at very low temperature. We
benchmark our results at weak and intermediate coupling with high precision numerical renormalization-group
computations as well as analytical results.
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I. INTRODUCTION

The study of the out-of-equilibrium regime of strongly cor-
related many-body quantum problems is a subject of growing
interest in theoretical condensed-matter physics, in particular
due to a rapid progress in experiments with, e.g., the ability
to control light-matter interaction on the ultrafast time scale
[1], light-induced superconductivity [2–6], or metal-insulator
transition driven by electric field [7]. The development of high
precision and controlled computational methods for nonequi-
librium models in strongly correlated regimes is therefore very
important. Even within an approximated framework such as
dynamical mean-field theory [8–10] (DMFT), which reduces
the bulk lattice problem to the solution of a self-consistent
quantum impurity model, efficient numerically exact real time
out-of-equilibrium quantum impurity solver algorithms are
still lacking.

The long-time steady state of nonequilibrium strongly
interacting quantum systems is especially difficult to access
within high-precision numerical methods. Until recently, most
approaches were severely limited in reaching long times, e.g.,
the density matrix renormalization group (DMRG) [11–13]
faces entanglement growth at long times. Early attempts of
real time quantum Monte Carlo [14–18] also experienced an
exponential sign problem at long times and large interaction.
Within Monte Carlo methods, two main routes are currently
explored to resolve this issue: the inchworm algorithm
[19–23] and the so-called “diagrammatic” quantum Monte
Carlo [24] (QMC). Diagrammatic QMC [25–40] computes
the perturbative expansion of physical quantities in power
of the interaction U , using an importance sampling Monte
Carlo. In Ref. [24], some of us have shown that, when
properly generalized to the Schwinger-Keldysh formalism,

this approach yields the perturbative expansion in the steady
state, i.e., at infinite time. We showed that, by regrouping the
Feynman diagrams into determinants and summing explicitly
on the Keldysh indices of the times of the vertices of the
expansion, we eliminate the vacuum diagrams and obtain
a clusterization property allowing us to take the long-time
limit. The sum over the Keldysh indices implies a minimal
cost of O(2n) to compute the order n, but uniformly in time,
at any temperature. We refer to this class of algorithms as
“diagrammatic” for historical reasons, as their first versions
(in imaginary time) were using an explicit Markov chain in
the space of Feynman diagrams. However, modern versions
of the algorithms regroup diagrams with only an exponential
number of determinants (instead of sampling the n! diagrams),
eliminating the vacuum diagrams, both in real time [24]
and in imaginary time [41,42], which leads to much higher
performance.

In this paper, we generalize the algorithm presented in
Ref. [24] to the calculations of Green’s functions. Indeed,
in its initial formulation it only permits the calculation of
physical observables at equal time such as the density or
current, and the full Green’s function requires the computation
of each time one by one, which is not technically viable. Here,
we show how to use a kernel technique in order to obtain
efficiently the perturbative expansion of the Green’s func-
tion and the self-energy, as a function of time or frequency.
Computing the Green’s function is an important extension
of the technique. First, it is the first step towards building
a DMFT real time nonequilibrium impurity solver. Second,
even in the simple context of a quantum dot, each computation
provides much more information than the original algorithm
(from which only a single number, e.g., the current, could be
computed).
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The central issue of the “diagrammatic” QMC family is
to properly sum the perturbative expansion away from the
weak-coupling regime, especially given the fact that one has
access to a limited number of orders (about ten in the present
case) due to the exponential cost with the order n. Some of
us will address this issue in a separate paper [43], using the
building blocks introduced here. In this paper, we present the
formalism and first benchmark our approach in the weak-
coupling regime.

This paper is organized as follows: In Sec. II, we introduce
the necessary formalism and derive the basic equations that
will be used to formulate the method. Section III discusses our
sampling strategy for the QMC algorithm, as well as relations
with previous work. Section IV shows our numerical data and
the detailed comparison with our benchmarks in the weak-
coupling regime.

II. WICK DETERMINANT FORMALISM

This section is devoted to the derivation of the main
formula needed to set up the QMC technique. We introduce
a systematic formalism that uses what we call “Wick deter-
minants”. Although the formalism is nothing but the usual
diagrammatic expansion (in Keldysh space), its Wick determi-
nant formulation provides a route for deriving standard results
(such as equation of motions) in a self-contained manner that
does not require us to introduce Feynman diagrams. We find
this approach useful for discussing numerical algorithms.

A. Notations and main expansion formula

We consider a generic class of system given by a time-
dependent Hamiltonian of the form

Ĥ(t ) = Ĥ0(t ) + U Ĥint (t ), (1)

Ĥ0(t ) =
∑

xy

H0
xy(t )ĉ†

x ĉy, (2)

Ĥint (t ) =
∑

xy

Vxy(t )(ĉ†
x ĉx − αx )(ĉ†

y ĉy − αy), (3)

where Ĥ0(t ) is a quadratic unperturbed Hamiltonian. The
operators ĉ†

x (ĉx) are the usual creation (destruction) operators
on site x. x and y index all discrete degrees of freedom such
as sites, orbitals, spin, and/or electron-hole (Nambu) degrees
of freedom and will simply be called orbital indices. Ĥint (t )
is the, possibly, time-dependent, electron-electron interaction
perturbation which is assumed to be switched on at t = 0.
Without loss of generality we assume Vxy = Vyx. We empha-
size that the method described in this paper is not restricted
to this form of interaction (as shown in Ref. [24]) and can be
generalized straightforwardly to arbitrary interactions. How-
ever, to improve readability, we will restrict hereafter our
presentation to the case of density-density interactions. We
also add the quadratic shift α, which has been introduced in
previous works [24,44,45]. In particular, we have shown in
Ref. [24] that, in the context of real time QMC, it can strongly
affect the radius of convergence of the perturbative series. The
noninteracting Hamiltonian is assumed to be already solved,
i.e., one has calculated all the one-particle noninteracting

Green’s functions. Such calculations can be done even out of
equilibrium using, e.g., the formalism discussed in Ref. [46].

Our starting point is a formula for the systematic expansion
of interacting Green’s function in powers of the parameter
U . We use the Schwinger-Keldysh formalism to produce this
expansion. The Green’s functions acquire additional Keldysh
indices a, a′ ∈ {0, 1} which provides the Green’s function
with a 2 × 2 structure,

Gaa′
xx′ (t, t ′) =

(
GT

xx′ (t, t ′) G<
xx′ (t, t ′)

G>
xx′ (t, t ′) GT̄

xx′ (t, t ′)

)
, (4)

where GT
xx′ (t, t ′), G<

xx′ (t, t ′), G>
xx′ (t, t ′), and GT̄

xx′ (t, t ′) are re-
spectively the standard time ordered, lesser, greater, and an-
titime ordered Green’s functions. We use a similar definition
for the (known) noninteracting Green’s function gaa′

xx′ (t, t ′). We
introduce the Keldysh points X that gather an orbital index x, a
time t , and a Keldysh index a to form the tuple X ≡ (x, t, a).
Using Keldysh points, we can rewrite the above definitions
using the standard conventions of Keldysh formalism,

Gaa′
xx′ (t, t ′) ≡ −i〈Tcĉ(x, t, a)ĉ†(x′, t ′, a′)〉, (5)

where the creation [ĉ†(X ′)] and annihilation operators [ĉ(X )
or ĉ(x, t, a)], here in Heisenberg representation, are ordered
using the contour time-ordering operator Tc. Tc orders first by
Keldysh index (a) before ordering by increasing time within
the forward branch (a = 0), and by decreasing time within the
backward branch (a = 1) eventually multiplying the result by
the usual fermionic (−1) factor whenever an odd number of
permutations have been performed. In several places, we will
use the alternative notation for the Green’s function,

G(X, X ′) ≡ G[(x, t, a), (x′, t ′, a′)] ≡ Gaa′
xx′ (t, t ′), (6)

and we will also note the δ function on the Keldysh contour as

δc[(x, t, a), (x′, t ′, a′)] ≡ δ(t − t ′)δaa′δxx′ . (7)

Using the above notations (with h̄ = 1), one can derive the
usual expansion in power of U using Wick’s theorem. We first
assume αx = 0 at all orbital indices x. We will explain at the
end of this paragraph how to extend this formula to the general
case αx �= 0. We obtain [24]

Gaa′
xx′ (t, t ′)

=
∑
n�0

inU n

n!

∫ n∏
k=1

duk

∑
{xk ,yk}

∑
{ak}

×
(

n∏
k=1

(−1)akVxkyk (uk )

)�
(x, t, a),U1, . . . ,U2n

(x′, t ′, a′),U1, . . . ,U2n

�
, (8)

which forms the starting point of this work. Here, we have
noted for 1 � k � n

U2k−1 = (xk, uk, ak ), (9a)

U2k = (yk, uk, ak ) (9b)

and introduced the Wick matrix:

�
A1, . . . , Am

B1, . . . , Bm

�
i j

≡

⎛
⎜⎝

g(A1, B1) . . . g(A1, Bm)
...

. . .
...

g(Am, B1) . . . g(Am, Bm)

⎞
⎟⎠

i j

, (10)
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where Ai and Bj are two sets of m points on the Keldysh
contour. We refer to the determinant of the Wick matrix as
the Wick determinant. For notation simplicity, the determinant
is assumed in the absence of indices,�

A1, . . . , Am

B1, . . . , Bm

�
≡ det

�
A1, . . . , Am

B1, . . . , Bm

�
i j

. (11)

In Eq. (8), we start at t < 0 with a noninteracting state and
switch on the interaction for t � 0. Hence the time integrals
in Eq. (8) run over the segment [0, tM], where tM = max(t, t ′).
The lower boundary simply arises from Vxy(u < 0) = 0. The
upper boundary can be extended to any value larger than tM
without changing the integral’s value (standard property of the
Keldysh formalism). For the practical applications shown in
Sec. III, we will use a fixed large value of tM . We emphasize
that the complexity of the algorithm does not grow with
tM . Equation (8) is formally very appealing: it reduces the
problem of calculating the contributions of the expansion to
a combination of linear algebra and quadrature.

The definition Eq. (10) contains an ambiguity that needs
to be clarified: the ordering at equal times of terms like
g(U2k,U2k ) is ill defined. For these terms, one must keep the
same ordering of the creation and destruction operators as in
the original definition of the interacting Hamiltonian Eq. (1),
i.e.,

g(U2k,U2k ) = g<
ykyk

(uk, uk ), (12a)

g(U2k−1,U2k−1) = g<
xkxk

(uk, uk ), (12b)

g(U2k−1,U2k ) = g>
xkyk

(uk, uk ), (12c)

g(U2k,U2k−1) = g<
ykxk

(uk, uk ). (12d)

To proceed to the general case αx �= 0, one only needs to
shift the diagonal terms of the Wick matrix using the follow-
ing replacement rules, as shown in Ref. [24], Appendix A:

g(U2k,U2k ) → g(U2k,U2k ) − iαyk , (13a)

g(U2k−1,U2k−1) → g(U2k−1,U2k−1) − iαxk . (13b)

As a result, all derivations in this paper can be done by
first ignoring αx, then replacing the noninteracting Green’s
functions with these rules. For this reason and for readability,
we will keep these replacements implicit in Wick matrices,
but explicit otherwise.

Finally, Eq. (8) can be extended to the calculations of ar-
bitrary Green’s functions. The rule for doing so is as follows:
whenever one introduces a product −iĉ(Y )ĉ†(Y ′) under the
time-ordering operator in Eq. (5), one must add the corre-
sponding Keldysh points in the Wick determinant of Eq. (8):

�
X,U1, . . . ,U2n

X ′,U1, . . . ,U2n

�
→

�
X,Y,U1, . . . ,U2n

X ′,Y ′,U1, . . . ,U2n

�
. (14)

If Y and Y ′ share the same time and orbital index y, we have
the possibility to introduce terms of the form −i[ĉ(Y )ĉ†(Y ′) +
αy] in the definition of the Green’s function. In that case, one
must replace g(Y,Y ′) → g(Y,Y ′) − iαy in the diagonal of the
Wick matrix. Again, to improve readability, we will keep this
replacement implicit in Wick matrices, but explicit otherwise.

B. A few properties of Wick determinants

Wick determinants have the general properties of determi-
nants: exchanging two Keldysh points on either the first or the
second line of the left-hand side of Eq. (10) leaves the Wick
determinant unchanged up to a factor (−1). An important
property of the formalism, as already shown in Ref. [24], is
that for n > 0:

∑
{ak}

(−1)
∑n

k=1 ak

�
U1, . . . ,U2n

U1, . . . ,U2n

�
= 0, (15)

for any times u1, . . . , un and orbital indices x1, . . . , xn and
y1, . . . , yn. This relation expresses the fact that vacuum dia-
grams are automatically canceled by the sum over the Keldysh
indices, even before any integration over time. It is proven in
the usual way in the Keldysh formalism, by considering the
largest uk time, say k = p. From the properties of the bare
Green’s functions, one can show that the elements of the Wick
matrix, hence the determinant, are in fact all independent of
ap (reflecting the fact that the largest time can be on the upper
or the lower part of the contour). Therefore the sum over ap

cancels the sum.
We will use the usual expansion of a determinant along one

row or one column in terms of the cofactor matrix. It takes the
form

�
A1, . . . , Am

B1, . . . , Bm

�
=

m∑
k=1

(−1)k+1g(Ak, B1)

�
A1, . . .��Ak . . . , Am

��B1, B2, . . . , Bm

�

(16)

for the expansion along the first column and

�
A1, . . . , Am

B1, . . . , Bm

�
=

m∑
k=1

(−1)k+1g(A1, Bk )

�
��A1, . . . . . . , Am

B1,��Bk, . . . , Bm

�

(17)

for the expansion along the first row. The notation ��Ak (��Bk)
stands for the fact that the corresponding row or column must
be removed from the Wick matrix.

Last, we will also make a systematic use of the fact that the
cofactor matrix is directly related to the inverse of the matrix,

(−1)i+ j

�
A1 . . .��Ai, . . . . . . , Am

B1, . . .��Bj, . . . , Bm

�

=
�

A1, . . . , Am

B1, . . . , Bm

�−1

ji

�
A1, . . . , Am

B1, . . . , Bm

�
. (18)

C. Definition of the kernel K for the one-body Green’s function

In Ref. [24], a QMC scheme was defined directly on
Eq. (8) so that a single QMC run could provide the value
of Gaa′

xx′ (t, t ′) for a single pair of times t and t ′. In or-
der to extend the technique and obtain a full curve (as a
function of t) in a single run, a different form must be
used. Performing the expansion of Eq. (17) on Eq. (8),
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we obtain

Gaa′
xx′ (t, t ′) = gaa′

xx′ (t, t ′) +
∑
n�1

inU n

n!

∫ n∏
k=1

duk

∑
{xk ,yk}

∑
{ak}

(
n∏

k=1

(−1)akVxkyk (uk )

)

×
⎛
⎝ 2n∑

p=1

(−1)pg[(x, t, a),Up]

�
U1, . . . ,U2n

(x′, t ′, a′),U1, . . . ,��Up, . . . ,U2n

�
+ g[(x, t, a), (x′, t ′, a′)]

�
U1, . . . ,U2n

U1, . . . ,U2n

�⎞
⎠. (19)

The last term of the sum vanishes for n > 0 due to Eq. (15). Factorizing the g from the sum, we arrive at

Gaa′
xx′ (t, t ′) = gaa′

xx′ (t, t ′) +
∫

du
∑
b,y

(−1)bgab
xy(t, u)Kba′

yx′ (u, t ′), (20)

where the kernel Kba′
yx′ (u, t ′) = K (Y, X ′) with Y = (y, u, b) is defined by

K (Y, X ′) ≡ (−1)b
∑
n�1

inU n

n!

∫ n∏
k=1

duk

∑
{xk ,yk}

∑
{ak}

(
n∏

k=1

(−1)akVxkyk (uk )

)
2n∑

p=1

(−1)pδc(Y,Up)

�
U1, . . . ,U2n

X ′,U1, . . . ,��Up, . . . ,U2n

�
. (21)

Equations (20) and (21) will be the basis of one of the methods developed in this paper. Equation (21) will provide the means to
get a full t curve in a single calculation and Eq. (20) to relate the corresponding kernel to the Green’s function G, the target of
the calculation.

A symmetric kernel K̄ may be derived following the exact same route but now expanding the Wick determinant along the first
column using Eq. (16). We find

Gaa′
xx′ (t, t ′) = gaa′

xx′ (t, t ′) +
∫

du
∑
b,y

(−1)bK̄ab
xy (t, u)gba′

yx′ (u, t ′), (22)

where the kernel K̄ is defined by

K̄ (X,Y ) ≡ (−1)b
∑
n�1

inU n

n!

∫ n∏
k=1

duk

∑
{xk ,yk}

∑
{ak}

(
n∏

k=1

(−1)akVxkyk (uk )

)
2n∑

p=1

(−1)pδc(Y,Up)

�
X,U1, . . . ,��Up, . . . ,U2n

U1, . . . ,U2n

�
. (23)

D. Definition of the kernel L of the F Green’s function

Let us define a new Green’s function with four operators, the F function. As we shall see, the F Green’s function can also
be represented in terms of a kernel so that we will be able to design a direct QMC method to calculate it. Its interest stems from
the fact that it can be used to reconstruct G while the corresponding QMC technique will be more precise at high frequency. It is
defined as

F aa′
xx′z(t, t ′) ≡ (−i)2〈Tcĉ(x, t, a)ĉ†(x′, t ′, a′)[ĉ†(z, t ′, a′)ĉ(z, t ′, a′) − αz]〉. (24)

In the next paragraph, we shall prove that F is essentially equal to K̄ (up to interacting matrix elements). The function F
is known to provide a better estimate of the Green’s function. It has been used in the context of the numerical renormalization
group (NRG) [47] as well as in imaginary time QMC methods as an improved estimator [48].

The expansion of F reads

F aa′
xx′z(t, t ′) = −

∑
n�0

inU n

n!

∫ n∏
k=1

duk

∑
{xk ,yk}

∑
{ak}

(
n∏

k=1

(−1)akVxkyk (uk )

)�
(x, t, a), (z, t ′, a′),U1, . . . ,U2n

(x′, t ′, a′), (z, t ′, a′),U1, . . . ,U2n

�
. (25)

To obtain the kernel of F , we expand the determinant along its first row using Eq. (17),

F aa′
xx′z(t, t ′) = −

∑
n�0

inU n

n!

∫ n∏
k=1

duk

∑
{xk ,yk}

∑
{ak}

(
n∏

k=1

(−1)akVxkyk (uk )

)

×
⎛
⎝ 2n∑

p=1

(−1)p+1g((x, t, a),Up)

�
(z, t ′, a′),U1, . . . ,U2n

(x′, t ′, a′), (z, t ′, a′),U1, . . . ,��Up, . . . ,U2n

�

+ g((x, t, a), (x′, t ′, a′))
�

(z, t ′, a′),U1, . . . ,U2n

(z, t ′, a′),U1, . . . ,U2n

�
− g((x, t, a), (z, t ′, a′))

�
(z, t ′, a′),U1, . . . ,U2n

(x′, t ′, a′),U1, . . . ,U2n

�⎞
⎠. (26)
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Identifying the two last terms with the corresponding expansion of G, we arrive at

F aa′
xx′z(t, t ′) = −gaa′

xx′ (t, t ′)[G<
zz(t ′, t ′) − iαz] + gaa′

xz (t, t ′)G<
zx′ (t ′, t ′) −

∫
du

∑
b,y

(−1)bgab
xy(t, u)Lba′

yx′z(u, t ′), (27)

where the kernel L is defined by

Lba′
yx′z(u, t ′) ≡ (−1)b

∑
n�1

inU n

n!

∫ n∏
k=1

duk

∑
{xk ,yk}

∑
{ak}

(
n∏

k=1

(−1)akVxkyk (uk )

)

×
2n∑

p=1

(−1)p+1δc((y, u, b),Up)

�
(z, t ′, a′),U1, . . . ,U2n

(x′, t ′, a′), (z, t ′, a′),U1, . . . ,��Up, . . . ,U2n

�
. (28)

E. Relation between F, K̄, and G: Equations of motion

Here, we show that the expressions for the different kernels can be formally integrated to provide connections between the
different kernels and Green’s functions. We will arrive at expressions that are essentially what can be obtained directly using
equations of motion.

We start with the expression of K̄ , Eq. (23). The first step is to realize that the sum over the 2n determinants provides identical
contributions to the kernel. Indeed, odd p = 2k − 1 and even p = 2k values of p provide identical contributions due to the
symmetry of Vxy. Similarly, odd values p = 2k − 1 have the same contribution as p = 1 as can be shown by using the symmetry
properties of the determinant and exchanging the role of U1 ↔ U2k−1 and U2 ↔ U2k in the sums and integration. We arrive at

K̄ab
xy (t, u) = (−1)b

∑
n�1

inU n

n!

∫
du1

∑
x1,y1

∑
a1

(−1)a1Vx1,y1 (u1)
∫ n∏

k=2

duk

∑
{xk ,yk }

k�2

∑
{ak }
k�2

(
n∏

k=2

(−1)akVxkyk (uk )

)

× 2n δc(U1, (y, u, b))
�

(x, t, a),U2,U3, . . . ,U2n

U1,U2,U3, . . . ,U2n

�
. (29)

We can now perform explicitly the integral over u1 where the delta function yields, for u ∈ [0, tM] (K̄ is zero otherwise),

K̄ab
xy (t, u) = 2iU

∑
n�1

in−1U n−1

(n − 1)!

∑
y1

Vy,y1 (u)
∫ n∏

k=2

duk

∑
{xk ,yk }
{ak }
k�2

(
n∏

k=2

(−1)akVxkyk (uk )

)�
(x, t, a), (y1, u, b),U3, . . . ,U2n

(y, u, b), (y1, u, b),U3, . . . ,U2n

�
, (30)

K̄ab
xy (t, u) = 2iU

∑
z

Vy,z(u)
∑
n�0

inU n

n!

∫ n∏
k=1

duk

∑
{xk ,yk }
{ak }

(
n∏

k=1

(−1)akVxkyk (uk )

)�
(x, t, a), (z, u, b),U1, . . . ,U2n

(y, u, b), (z, u, b),U1, . . . ,U2n

�
, (31)

K̄ab
xy (t, u) = −2iU

∑
z

Vyz(u)F ab
xyz(t, u). (32)

This shows the kernel K̄ is no more than a sum of two-particle
Green’s functions. The relation between K̄ and G in Eq. (22)
can then be transformed into

Gaa′
xx′ (t, t ′) = gaa′

xx′ (t, t ′) − 2iU
∫

du
∑
b,y

(−1)b

×
∑

z

Vyz(u)F ab
xyz(t, u)gba′

yx′ (u, t ′), (33)

which can be used to reconstruct G from the knowledge of F .
This relation is the well-known equation of motion for G. It
also shows that F is essentially the convolution of G with the
self-energy.

As a side note, we show in Appendix B that the kernel L
can also be expressed in terms of Green’s functions by fol-
lowing the same formalism, in accordance with the equation
of motion for F .

F. Retarded and advanced kernels

As the retarded (or advanced) Green’s functions directly
give the spectral functions, they are of particular interest.
At equilibrium, they contain all information which can be
obtained from the Keldysh Green’s function. We show here
simple relations to compute them from the kernels K, K̄ ,
or L.

The retarded and advanced Green’s functions relate to the
lesser and greater Green’s functions as follows:

GR
xx′ (t, t ′) = θ (t − t ′)[G>

xx′ (t, t ′) − G<
xx′ (t, t ′)], (34)

GA
xx′ (t, t ′) = θ (t ′ − t )[G<

xx′ (t, t ′) − G>
xx′ (t, t ′)], (35)

where θ is the Heaviside function. From the definitions of the
time-ordered and time-antiordered Green’s functions, these

125129-5



CORENTIN BERTRAND et al. PHYSICAL REVIEW B 100, 125129 (2019)

can also be written as

GR
xx′ (t, t ′) = Ga0

xx′ (t, t ′) − Ga1
xx′ (t, t ′), (36)

GA
xx′ (t, t ′) = G0a

xx′ (t, t ′) − G1a
xx′ (t, t ′), (37)

where a can be any Keldysh index. These are also valid for the
noninteracting g. As K̄ is a sum of Green’s functions, one may
define in the same way a retarded version of K̄ , denoted K̄R.
We can see from Eq. (32) and the definition of F in Eq. (24)
that K̄R follows the same properties:

K̄R
xx′ (t, t ′) = K̄a0

xx′ (t, t ′) − K̄a1
xx′ (t, t ′). (38)

We now show a simple relation between GR, gR, and K̄R.
Plugging Eq. (22) into Eq. (36), one gets

GR
xx′ (t, t ′) = gR

xx′ (t, t ′) +
∫

du
∑

y

{
K̄00

xy (t, u)
[
g00

yx′ (u, t ′)

− g01
yx′ (u, t ′)

]−K̄01
xy (t, u)

[
g10

yx′ (u, t ′)−g11
yx′ (u, t ′)

]}
.

(39)

This simplifies into

GR
xx′ (t, t ′) = gR

xx′ (t, t ′) +
∫

du
∑

y

K̄R
xy(t, u)gR

yx′ (u, t ′). (40)

Similar relations may be derived with K, F , and L. In fact,
for any function from K, F , and L, which all depends on two
times and two Keldysh indices, we choose to define a retarded
and advanced function in the same way as Eqs. (34) and (35).
As all of them are sums of Green’s functions, one may show
that they all verify similar properties as in Eqs. (36) and (37).
Then from Eq. (20) follows

GA
xx′ (t, t ′) = gA

xx′ (t, t ′) +
∫

du
∑

y

gA
xy(t, u)KA

yx′ (u, t ′) (41)

and from Eq. (27) follows

F A
xx′z(t, t ′) = −gA

xx′ (t, t ′)[G<
zz(t ′, t ′)−iαz]+gA

xz(t, t ′)G<
zx′ (t ′, t )

−
∫

du
∑

y

gA
xy(t, u)LA

yx′z(u, t ′). (42)

III. QUANTUM MONTE CARLO TECHNIQUE

We now turn to the stochastic algorithms that will be used
for the actual evaluations of the multidimensional integrals
that define the expansion of the Green’s function. These
algorithms are direct extensions of the algorithm of Ref. [24]
and inherit of most of its properties. The main interest lies in
using kernels which permits the calculation of the full time
dependency of the Green’s function in a single QMC run.

A. Sampling of the kernel K

Let us first discuss the calculation of G using the kernel K ,
using Eqs. (20) and (21). We rewrite by explicitly separating
the sum over Keldysh indices (which will be summed explic-
itly) and the sum over space and integral over time (which will

be sampled using Monte Carlo). This separation was shown to
be extremely important in Ref. [24]. The kernel takes the form

K (Y, X ′) = (−1)b
∑
n�1

∫ n∏
k=1

duk

∑
{xk ,yk}

2n∑
p=1

∑
ap

(−1)ap

× δc(Y,Up)W n
p (X ′, {Uk}, ap), (43)

W n
p (X ′, {Uk}, ap)

≡ inU n

n!

(
n∏

k=1

Vxkyk (uk )

)∑
{ak }
k �=p

⎛
⎝∏

k �=p

(−1)ak

⎞
⎠(−1)p

×
�

U1, . . . ,U2n

(x′, t ′, a′),U1, . . . ,��Up, . . . ,U2n

�
. (44)

We define a configuration C as
(i) the order n,
(ii) a set of times {uk ∈ [0, tM]} for 1 � k � n,
(iii) two sets of indices {xk} and {yk} for 1 � k � n,

and the sum over all configurations as the integral over the uk

and the sum over the xk, yk . For practical purpose, the time
integrals run over a finite interval [0, tM]. In accordance with
the remark following Eq. (8), tM can be chosen to be any value
larger than t and t ′ of the target Green’s functions G(t, t ′).

The kernel takes the form

K (Y, X ′) = (−1)b

×
∑
C

⎛
⎝ 2n∑

p=1

∑
ap

(−1)apδc(Y,Up)W n
p (X ′, {Uk}, ap)

⎞
⎠,

(45)

where the sum over the configurations C is a compact notation
for the sum and integrals of Eq. (43). We observe that a single
configuration provides values of K for 2n different points Y
through the delta function in the preceding expression. To
sample the sum over configurations, we need to define a
positive function W (C) that will provide the (unnormalized)
probability for the configuration C to be visited by the QMC
algorithm. We define this weight as

W (C) =
2n∑

p=1

∑
a=0,1

∣∣W n
p (X ′, {Uk}, a)

∣∣. (46)

Noting ZQMC ≡ ∑
C W (C), the kernel can be rewritten as

K (Y, X ′) = (−1)bZQMC

〈
2n∑

p=1

∑
ap

(−1)ap

× W n
p (X ′, {Uk}, ap)

W (C)
δc((y, u, b),Up)

〉
, (47)

where the average is taken over the distribution W (C)/ZQMC.
ZQMC is an effective partition function associated to the QMC
algorithm. Note that by construction, the weight W (C) con-
trols the measurement, i.e., |W n

p (X ′, {Uk}, a)| � W (C). This
is an essential property for a reweighting technique since it
guarantees that the weight W n

p (X ′, {Uk}, a)/W (C) does not
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diverge (which can produce an infinite variance; for an exam-
ple of this effect in the context of determinantal Monte Carlo
see, e.g., Ref. [49]).

To sample W (C) and evaluate ZQMC, we use the continuous
time Monte Carlo technique that was discussed in detail in
Ref. [24]. We use moves that change the order n by ±1 so
that all orders (up to a maximum one) can be calculated in a
single run. The algorithm has very good ergodicity properties
since the order n = 0 configuration is visited regularly. Each
configuration C provides 2n values of Y = (y, u, b) which are
recorded by binning with the weight of Eq. (47).

The partial weights W n
p possess an essential clusterization

property, which generalizes the one discovered in Ref. [24]:
if one or several times uk goes to infinity (i.e., is far from t ′),
then all W n

p goes to 0. In other words the integrand is localized
around t ′. A detailed proof is provided in Appendix A. The
point X ′ = (x′, t ′, a′) is kept fixed during the calculation to an-
chor the integral around this point. An important consequence
of the clusterization property is that the computational cost
of the algorithm is uniform in tM . Indeed, as one increases
tM , one simply adds regions of the configuration space that
have a vanishingly small weight, hence do not contribute to
the integral and do not get sampled.

Last, in order to calculate the factors W n
p , we use the fact

that they are made of the cofactors of the original matrix,
hence can be rewritten as

W n
p (X ′, {Uk}, ap)

= − inU n

n!

(
n∏

k=1

Vxkyk (uk )

)∑
{ak }
k �=p

⎛
⎝∏

k �=p

(−1)ak

⎞
⎠

×
�

X,U1, . . . ,U2n

X ′,U1, . . . ,U2n

�−1

p1

�
X,U1, . . . ,U2n

X ′,U1, . . . ,U2n

�
. (48)

This last form is very convenient since a single Wick matrix
(and its inverse) needs to be stored and monitored during the
calculation.

B. Sampling of the kernel L

Following the same route for L as was done for K , we can
write

Lba′
yx′z(u, t ′) = (−1)b

∑
n�1

∫ n∏
k=1

duk

∑
{xk ,yk}

2n∑
p=1

∑
ap

(−1)ap

× δc((y, u, b),Up)W n
p+2(X ′, {Uk}, ap, z), (49)

W n
p+2(X ′, {Uk}, ap, z)

≡ inU n

n!

(
n∏

k=1

Vxkyk (uk )

) ∑
{ak }
k �=p

⎛
⎝∏

k �=p

(−1)ak

⎞
⎠(−1)p+1

×
�

(z, t ′, a′),U1, . . . ,U2n

(x′, t ′, a′), (z, t ′, a′),U1, . . . ,��Up, . . . ,U2n

�
(50)

thus defining W n
p for p = 3, 4, . . . , 2n + 2. We also define W n

1
and W n

2 in the following way:

W n
1 (X ′, {Uk}, z) ≡ − inU n

n!

∑
{ak}

(
n∏

k=1

(−1)akVxkyk (uk )

)

×
�

(z, t ′, a′),U1, . . . ,U2n

(z, t ′, a′),U1, . . . ,U2n

�
, (51)

W n
2 (X ′, {Uk}, z) ≡ inU n

n!

∑
{ak}

(
n∏

k=1

(−1)akVxkyk (uk )

)

×
�

(z, t ′, a′),U1, . . . ,U2n

(x′, t ′, a′),U1, . . . ,U2n

�
. (52)

These two extra values are necessary to compute G<
zz(t ′, t ′)

and G<
zx′ (t ′, t ′), which are needed to obtain F , as can be seen

in Eq. (27). Moreover, they do not require extra computation
time, as they are a direct by-product of the computation of
the W n

p for p > 2. Indeed, in the same spirit as Eq. (48), the
determinant within any W n

p (for p = 1, . . . , 2n + 2) can be
replaced by

(−1)p+1

�
X, (z, t ′, a′),U1, . . . ,U2n

X ′, (z, t ′, a′),U1, . . . ,U2n

�−1

p1

×
�

X, (z, t ′, a′),U1, . . . ,U2n

X ′, (z, t ′, a′),U1, . . . ,U2n

�
. (53)

Again, a single Wick matrix is needed to get contributions
to all W n

p (given a set of Keldysh indices), which is very
convenient.

Configurations are defined in the same way as in the
previous section, and the weight of a configuration C is now

W (C) = ∣∣W n
1 (X ′, {Uk}, z)

∣∣ + ∣∣W n
2 (X ′, {Uk}, z)

∣∣
+

2n∑
p=1

∑
a=0,1

∣∣W n
p+2(X ′, {Uk}, a, z)

∣∣. (54)

We define again ZQMC ≡ ∑
C W (C) (which however has a

different value than in the previous section). Finally, L can
be written as

Lba′
yx′z(u, t ′)= (−1)bZQMC

〈
2n∑

p=1

∑
ap

(−1)ap
W n

p+2(X ′, {Uk}, ap, z)

W (C)

×δc((y, u, b),Up)

〉
(55)

and, from Eq. (8), we get that the values of G<
zz(t ′, t ′) and

G<
zx′ (t ′, t ′) (needed to compute F ) are

G<
zz(t ′, t ′) = − ZQMC

〈
W n

1 (X ′, {Uk}, z)

W (C)

〉
, (56)

G<
zx′ (t ′, t ′) =ZQMC

〈
W n

2 (X ′, {Uk}, z)

W (C)

〉
. (57)

The Monte Carlo algorithm used to evaluate these averages
is the same as in the previous section, except for the weight
W (C).
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C. A discussion of the Werner et al. approach [16]

In this paragraph, we discuss the relation of this work with
a preceding work [15,16] that also implements an expansion
in powers of U within the Keldysh formalism. Although both
results are consistent, Ref. [16] has two important limitations
which are not present in the method presented here. First, it
suffers from a very large sign problem that increases drasti-
cally with time, while we do not experience a sign problem.
Typical data shown in Ref. [16] correspond to a maximum
time of tM ≈ 5/� between the switching of the interaction
and the measurement of the observable while we found that
tM ≈ 20/� is needed to enter the stationary result at order
n = 8 as shown in Fig. 1. A direct consequence of this issue
is that Ref. [16] cannot access the small bias regime where
the Kondo effect is present: since the Kondo temperature
TK is typically much smaller than �, long simulation times
tM � 1/TK are needed to capture the Kondo physics. Second,
the technique of Ref. [16] suffered from a very large sign
problem outside of the electron-hole symmetry point so that
only this point could be studied.

An interesting aspect of Ref. [16] is that some results could
be obtained in regimes where the “sign” of the Monte Carlo
calculation was very small, ∼10−3 (see for instance Fig. 5
of Ref. [15]). Such a small sign is usually associated with
very large error bars that prevent practical calculations from
being performed. In the rest of this section, we make a simple
technical remark that explains the origin of this behavior.

The main expansion formula used in the present work is
Eq. (8) which provides the expansion for the Keldysh Green’s
function Gaa′

xx′ (t, t ′). A similar formula [24] provides the sum
of vacuum diagrams, sometimes called the Keldysh “partition
function” Z ,

Z ≡
∑
n�0

inU n

n!

∫ n∏
k=1

duk

∑
{xk ,yk}

(
n∏

k=1

Vxkyk (uk )

)

×
∑
{ak}

n∏
k=1

(−1)ak

�
U1, . . . ,U2n

U1, . . . ,U2n

�
. (58)

We have Z = 1 in the Keldysh formalism, reflecting the uni-
tarity of quantum mechanics. We see that (15) indeed implies
Z = 1, and that the cancellation of vacuum diagrams is due
to the sum over Keldysh indices. The integrand is identically
zero.

Let’s note Z ({Ui}), the integrand of Eq. (58) (without the
sum over Keldysh indices):

Z ({Ui}) ≡ inU n

n!

(
n∏

k=1

(−1)akVxkyk (uk )

)�
U1, . . . ,U2n

U1, . . . ,U2n

�
. (59)

Reference [15] Monte Carlo samples the absolute value of this
integrand |Z ({Ui})| (the authors actually used auxiliary Ising
variables but that does not impact the present argument). We
also note G(X, X ′, {Ui}), the integrand of Eq. (8), and ZQMC,
the integral of |Z ({Ui})|:

ZQMC ≡
∑
n�0

∫ n∏
k=1

duk

∑
{xk ,yk}

∑
{ak}

|Z ({Ui})|. (60)
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FIG. 1. First nonzero orders of the retarded kernel in time (left
column), and corresponding retarded Green’s function in frequency
(right column), for the particle-hole symmetric model εd = 0. The
green dots in the left column correspond to the raw data of
the binning with apparent noise arising from high frequencies. The
purple lines are a fit of the kernel, shown for illustration purpose only,
where the high-frequency noise has been subtracted by smearing the
cumulative function of the kernel. Maximum time is tM = 20/�. One
can see (lower left panel) that at order n = 8 a lower integration time
would not capture the whole kernel, thus the steady state would not
be reached.

The weight of the QMC is |Z ({Ui})|/ZQMC. We have

Gaa′
xx′ (t, t ′) =

〈G(X,X ′,{Ui})
|Z ({Ui})|

〉
〈 Z ({Ui})
|Z ({Ui})|

〉 , (61)
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where the average is the Monte Carlo average. The de-
nominator of Eq. (61) is the QMC sign mentioned above.
From Z = 1, we find that this QMC sign is simply given by
〈Z ({Ui})/|Z ({Ui})|〉 = 1/ZQMC.

Now, we note that the probability to visit order 0 is also
|Z (∅)|/ZQMC = 1/ZQMC. Therefore the average sign in the
denominator of Eq. (61) is the probability to visit a config-
uration at zeroth order. This probability decreases when U is
increased, or at long time, when higher orders are sampled
which explains why the QMC sign was observed to decrease
drastically in Ref. [15]. However, this QMC sign is always
positive and could a priori be computed very efficiently as
an integral of a positive function using, e.g., the technique in
Ref. [24]. A genuine sign problem can however result from
the numerator of Eq. (61).

IV. APPLICATION TO THE ANDERSON
IMPURITY MODEL

We now turn to the illustration of our techniques with
calculations done on the Anderson impurity model. The
implementation of our technique was based on the TRIQS

package [50]. We only present here results that showcase
the technique and differ the exploration of the physics of the
model, in particular the Kondo physics out of equilibrium, to
the companion article of the present work [43]. We stress that
the QMC technique is not restricted to impurity models and
also applies to lattice models such as the Hubbard model.

A. Definition of the model

In the Anderson impurity model, the impurity is described
by the operators d̂†

σ (d̂σ ) that create (destroy) an electron on
the impurity with spin σ . The impurity is connected to two
noninteracting electrodes via a tunneling Hamiltonian. Instead
of providing explicitly this tunneling Hamiltonian and the
Hamiltonian of the electrodes, it is simpler to write directly the
noninteracting Green’s function of the impurity. We work with
its wide band form which is appropriate for the low-energy
physics of a regular impurity model. The retarded Green’s
function reads in the frequency domain

gR
σσ ′ (ω) = 1

ω − εd + i�
δσσ ′, (62)

where the parameter � sets the width of the resonance in
the absence of electron-electron interactions and the on-site
energy εd sets the resonance with respect to the Fermi level.
Equation (62) fully defines the model at equilibrium. The
model is made nontrivial through the interacting terms that
read

Ĥint = Uθ (t )
(
n̂↑ − 1

2

)(
n̂↓ − 1

2

)
, (63)

where n̂σ = d̂†
σ d̂σ is the impurity electronic density of spin

σ and the Heaviside function θ (t ) represents the fact that
the interaction is switched on at t = 0. The calculations are
performed up to large times tM so that the system has relaxed
to its stationary regime which corresponds to the interacting
system at the bath temperature. All calculations are performed
at very low temperature kBT = 10−4�, although the method
is suitable for finite temperature as well.

The main output of our calculations is the expansion for the
interacting retarded Green’s function. Restricting ourselves to
the stationary limit, it is a function of t − t ′ only and can be
studied in the frequency domain

GR
σσ ′ (t − t ′) = δσσ ′

+∞∑
n=0

Gn(t − t ′)U n (64)

from which one can obtain the corresponding quantity in the
frequency domain by fast Fourier transform,

GR
σσ ′ (ω) = δσσ ′

+∞∑
n=0

Gn(ω)U n. (65)

Our technique typically provides the first N = 10 terms of
this expansion as we show next. Last, we define the spectral
function (or interacting local density of state)

A(ω) = − 1

π
Im[GR(ω)] (66)

and the retarded self-energy 
R(ω),

GR(ω) = 1

ω − εd + i� − 
R(ω)
. (67)

B. Numerical results order by order

We now present the numerical data obtained by sampling
the kernel K . The left panels of Fig. 1 show an example
of the bare data for the retarded kernel KR(t ) as they come
out of the calculation for order U 2, U 4, U 6, and U 8 (top to
bottom). Note that the noise in these data is mostly apparent;
it corresponds to noise at very high frequency. This apparent
noise reflects the fact that we have binned the curve KR(t )
into a very fine grid (50 000 grid points in this calculation).
An even finer grid would show even more apparent noise
(since there would be even feweer Monte Carlo points per grid
point). The corresponding cumulative function

∫ t
0 KR(u)du is

however noiseless as can be seen from the example shown in
Fig. 2 for n = 8.

The next step is to make a fast Fourier transform of KR
n (t )

(not shown). The resulting KR
n (ω) is relatively noisy at high

frequency. Last, we obtain GR
n (ω) = gR(ω)KR

n (ω) for n � 1
[from Eq. (41)] as shown in the right panel of Fig. 1. The
factor gR(ω), which decays at high frequency, very efficiently
suppresses the high-frequency noise of the kernel data. The
same noise-reduction mechanism has been reported in, e.g.,
Ref. [51] in the context of auxiliary-field Monte Carlo. We
emphasize one aspect of these data which is rather remark-
able: even though the eighth-order contribution GR

8 (ω) is the
result of an eight-dimensional integral and is more than four
orders of magnitude smaller than the second-order contribu-
tion GR

2 (ω), it can be obtained with high precision (the error
bars are of the order of the thickness of the lines here). This
is due to the recursive way these integrals are calculated as
discussed in Ref. [24].

Using the definition Eq. (67) of the self-energy, we
can obtain a recursive expression for 
R

n in terms of the

125129-9



CORENTIN BERTRAND et al. PHYSICAL REVIEW B 100, 125129 (2019)

0 5 10 15 20
tΓ

−6

−4

−2

0

2

4
Γ

8
∫

K
R 8
(t

)d
t

×10−7

n = 8

FIG. 2. Cumulative function
∫ t

0 KR
8 (u)du obtained by integrating

the raw data of the lower left panel of Fig. 1. Taking the integral gets
rid of the apparent noise of the raw data whose origin is simply the
presence of the binning grid in time.

Green’s-function expansion:


R
n (ω) = [gR(ω)]−2GR

n (ω) −
n−1∑
k=1


R
k (ω)GR

n−k (ω)gR(ω)−1

(68)

for n > 1 with 
R
1 (ω) = [gR(ω)]−2GR

1 (ω). The corresponding
data are shown in Fig. 3 where we plot the coefficients 
R

n (ω)
for n = 2, 4, 6, 8, and 10. The error bars increase with the
order n which we attribute to the fact that, since the self-
energy only contains one-particle irreducible diagrams, it is
the subject of many cancellations of terms. Indeed, one finds
that the decay of 
R

n (ω) with n is rather rapid with seven
orders of magnitude between the first and the tenth order.

Our first benchmark uses a reference calculation made by
Yamada [52]. The result at order 2 is compared with the
result of Yamada in the left panel of Fig. 3 and found to
be in excellent agreement. In his seminal work Yamada also

provided analytical calculations at order 2 and 4 in the form
of a low-frequency expansion for the particle-hole symmetric
impurity,


R(U, ω) = �
∑
n,m

im+1sn,m

(ω

�

)m
(

U

�

)n

. (69)

Table I shows the results of Yamada (m = 1, 2 and n = 2, 4)
as well as ours (obtained by fitting our numerical data at low
frequency). We find a good quantitative agreement with the
Yamada results. Yamada also provided numerical results at
n = 4 which are almost featureless and in very poor agree-
ment with our data.

Our second method uses the kernel L in order to calcu-
late the Green’s-function expansion. The bare data are very
similar to the one obtained with the kernel K method. By
construction, the reconstruction of G with L involves Gn(ω) ∼
g(ω)2Ln−1(ω) so that the high-frequency noise is expected to
behave better with L than with K [the factor g(ω)2 effectively
suppresses the high frequency]. Figure 4 shows a comparison
of the errors obtained on 
R

4 (ω) using the two methods. We
find that the error using the L method is essentially frequency
independent while the error with the K method depends
strongly on frequency. In most cases the L method is preferred
but at small frequency, we have observed that the K method
can provide smaller error bars.

C. Numerical results for the spectral function

Once the Green’s function or self-energy has been obtained
up to a certain order, the last task is to extract the physics
information from this expansion. The most naive approach
is to compute the truncated series up to a certain maximum
order N ,


R(U, ω) ≈
N∑

n=1


R
n (ω)U n. (70)

We find that the series has a convergence radius Uc ≈ 6� at
the particle symmetry point εd = 0 while this convergence
radius decreases down to Uc ≈ 4� in the asymmetric case
εd = �. These convergence radii fix the maximum strength
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ω/Γ
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FIG. 3. First terms 
R
n (ω) of the development of the retarded self-energy in the particle-hole symmetric case (εd = 0) for n = 2, 4, 6, 8,

and 10 (plain lines, real part in blue and imaginary part in red). These curves are obtained in a single Monte Carlo run. Error bars are shown as
shaded areas. A previous result at order 2 from Yamada [52] is shown in dashed lines. Note the decreasing scale with n. Maximum integration
time is tM = 20/�.
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TABLE I. First coefficients sn,m (real) of the self-energy Taylor series 
(U, ω)/� = ∑
n,m im+1sn,m(U/�)n(ω/�)m on the equilibrium

symmetric model εd = 0. Coefficients in powers of ω have been obtained by fitting the bare data by a polynomial. We find a good agreement
with analytical calculations from Ref. [52] (second and fifth columns), as well as with Bethe ansatz exact calculations from Ref. [53] (third,
sixth and eighth columns).

m n = 2 (QMC) n = 2 (Yamada) n = 2 (Bethe) n = 4 (QMC) n = 4 (Yamada) n = 4 (Bethe) n = 6 (QMC) n = 6 (Bethe)

0 0 ± 1 × 10−5 0 0 ± 2 × 10−6 0 0 ± 1 × 10−7

1 5.39(4) × 10−2 5.3964 × 10−2 5.3964 × 10−2 5.7(0) × 10−4 5.6771 × 10−4 5.6482 × 10−4 2.(1) × 10−6 2.5119 × 10−6

2 5.03(6) × 10−2 5.0660 × 10−2 1.9(9) × 10−3 2.0079 × 10−3 3.(1) × 10−5

3 3.67(5) × 10−2 4.3(4) × 10−3 1.(5) × 10−4

4 2.17(2) × 10−2 6.2(4) × 10−3 4.7(1) × 10−4

of U that one can study using the naive truncated series
approach.

The data for the self-energy (second and fourth panels) and
corresponding spectral functions (first and third panels) are
shown in Fig. 5 for the symmetric case (upper two panels,
εd = 0 and U = 5�) and asymmetric case (lower two panels,
εd = � and U = 3�). For these values of interaction, the
error in our calculation is dominated by the finite truncation
of the series (negligible error due to the statistical Monte
Carlo sampling) and is of the order of the linewidth. Figure 5
also shows the NRG results that we use to benchmark our
calculations and that are in excellent agreement with our data.
The NRG calculation is the same as in the companion paper
[43], where it is described in details. Note that in order to
obtain this agreement, the precision of the NRG calculations
had to be pushed much further than what is typically done in
the field indicating that the QMC method is very competitive,
in particular at large frequencies.

Qualitatively, the strength of interaction that could be
reached using the truncated series corresponds to the onset of

0.2 0.4 0.6 0.8 1.0
number of Monte Carlo steps ×107

10−6

10−5

Δ
(Σ

4
)Γ

3

ω/Γ = 10

ω/Γ = 5

ω/Γ = 2.5

ω/Γ = 0.5

K method

L method

FIG. 4. Statistical error of 
4 in the symmetric model at equilib-
rium, with increasing number of Monte Carlo steps. The K kernel
method (dotted lines) and the L kernel method (plain line) are
compared for different frequencies (different symbols). The error
with the L method is constant with frequencies, whereas the K
method accuracy worsens with increasing ω. At large frequencies
(ω > �) the error is smaller when using the L method.

the Kondo effect: one observes in the upper panel of Fig. 5 that
the Kondo peak starts to form around ω = 0, its width is sig-
nificantly narrower than without interaction and the premisses
of the side peaks at ±U/2 can be seen. In order to observe
well established Kondo physics, one must therefore go beyond
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FIG. 5. Truncated series for the self-energy 
R(ω) at εd = 0 and
U = 5� (second panel) and εd = � and U = 3� (fourth panel) up to
N = 10 orders in perturbation theory. The first and third panels show
the corresponding spectral function. The Monte Carlo results (blue
plain lines) are consistent with nonperturbative NRG calculations
(dashed lines). The noninteracting situation is shown as dotted lines.
Maximum integration time is tM = 20/�.
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the convergence radius wall. This is in fact rather natural;
the convergence radius corresponds to poles or singularities
in the complex U plane which themselves correspond to the
characteristic energy scales of the system. Getting past this
“convergence radius wall” is crucial and is the subject of the
companion paper to the present paper.

V. CONCLUSION

In this paper, we have presented a quantum Monte Carlo
algorithm that allows one to calculate the out-of-equilibrium
Green’s functions of an interacting system, order by order in
powers of the interaction coupling constant U . We applied
it to the Anderson model in the quantum dot geometry and
obtained up to ten orders of the Green’s function and self-
energy. A detailed benchmark was also presented against
NRG computations, after a simple summation of the series
at weak coupling. Our results were obtained at almost zero
temperature, but we found that the method works equally well
at finite temperature or out of equilibrium. It works equally
well for transient response to an interaction quench or at long
time where a stationary regime has been reached.

The method presented here has the great advantage to pro-
duce the perturbative expansion at infinite time, i.e., directly
in the steady state. Its complexity is uniform in time: it does
not grow at long time, contrary to other QMC approaches. The
drawback, like any “diagrammatic” QMC, is that we have just
produced the perturbative series of, e.g., the Green’s function
and the self-energy. At weak coupling, we can simply sum it,
as shown earlier in the benchmark. However, at intermediate
coupling, simply summing the series with partial sums will
fail. Most quantities have a finite radius R of convergence in

U : for U > R, the series diverges. In Ref. [24], we showed
how to use well-known conformal transformation resumma-
tion technique to solve this problem and obtain density of
particle on the dot vs U up to U = ∞. How to generalize this
idea to make it work for real frequency Green’s functions and
also to control the amplification of stochastic noise due to such
resummation will be addressed in a separate publication [43].

ACKNOWLEDGMENTS

We thank L. Messio for discussions at the early stage of
this work. We thank S. Florens for interesting discussions
and for providing NRG calculations. The Flatiron Institute
is a division of the Simons Foundation. We acknowledge
financial support from the graphene Flagship (ANR FLagera
GRANSPORT), the French-US ANR PYRE, and the French-
Japan ANR QCONTROL.

APPENDIX A: PROOF OF THE CLUSTERIZATION
PROPERTY OF THE KERNEL K

In this Appendix, we extend the proof of the clusterization
property of Ref. [24] for the Kernel K, K̄ , and L. We want to
show that, if some of the times ui are sent to infinity in the
integral in Eqs. (8), (21), (23), and (28), the sum under the
integral vanishes (while each determinant taken individually
does not). We will not try to prove here the stronger property
that the integrals do indeed converge but we observe it empir-
ically in the numerical computations.

Let us restart from the clusterization proof of Ref. [24] for
Eq. (8) and examine the sum over the Keldysh indices:

S ≡
∑
{ak}

n∏
k=1

(−1)ak

�
(x, t, a),U1, . . . ,U2n

(x′, t ′, a′),U1, . . . ,U2n

�
=

∑
{ak}

n∏
k=1

(−1)ak

∣∣∣∣∣∣∣∣∣∣

g(X, X ′) g(X,U1) . . . g(X,U2n)

g(U1, X ′) g(U1,U1) . . . g(U1,U2n)
...

...
. . .

...

g(U2n, X ′) g(U2n,U1) . . . g(U2n,U2n)

∣∣∣∣∣∣∣∣∣∣
. (A1)

If some ui are sent to infinity, we can relabel them up+1, . . . , un. Since g vanishes at large time (due to the presence of the bath),
the determinants in the sum become diagonal by block,

S ≈
∑
{ak}

n∏
k=1

(−1)ak

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g(X, X ′) g(X,U1) . . . g(X,U2p) 0 . . . 0

g(U1, X ′) g(U1,U1) . . . g(U1,U2p) 0 . . . 0
...

...
. . .

...
...

. . .
...

g(U2p, X ′) g(U2p,U1) . . . g(U2p,U2p) 0 . . . 0

0 0 . . . 0 g(U2p+1,U2p+1) . . . g(U2p+1,U2n)
...

...
. . .

...
...

. . .
...

0 0 . . . 0 g(U2n,U2p+1) . . . g(U2n,U2n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (A2)

The upper-left determinant does not depend on ap+1, . . . , an, so we can apply Eq. (15) to the bottom-right determinant and the
sum S vanishes.
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Let us now turn to the kernel K defined in Eq. (21). The situation is slightly different. First, with a simple relabelling, we can
restrict ourselves to the case p = 1 in Eq. (21). Let us first split the U into two subsets:

S =
∑
{ak}

n∏
k=1

(−1)ak

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g(U1, X ′) g(U1,U2) . . . g(U1,U2p) g(U1,U2p+1) . . . g(U1,U2n)
...

...
. . .

...
...

. . .
...

g(U2p, X ′) g(U2p,U2) . . . g(U2p,U2p) g(U2p,U2p+1) . . . g(U2p,U2n)

g(U2p+1, X ′) g(U2p+1,U2) . . . g(U2p+1,U2p) g(U2p+1,U2p+1) . . . g(U2p+1,U2n)
...

...
. . .

...
...

. . .
...

g(U2n, X ′) g(U2n,U2) . . . g(U2n,U2p) g(U2n,U2p+1) . . . g(U2n,U2n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (A3)

Some ui go to infinity. We distinguish two cases:
(1) If u1 does not go to infinity, we can relabel the indices so that up+1, . . . , un go to infinity.
(2) If u1 goes to infinity, we can relabel the indices so that u1, . . . , up go to infinity.
In both cases, the upper-right part of the matrix vanishes and we get a block-trigonal determinant,

S ≈
∑
{ak}

n∏
k=1

(−1)ak

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

g(U1, X ′) g(U1,U2) . . . g(U1,U2p) 0 . . . 0
...

...
. . .

...
...

. . .
...

g(U2p, X ′) g(U2p,U2) . . . g(U2p,U2p) 0 . . . 0

g(U2p+1, X ′) g(U2p+1,U2) . . . g(U2p+1,U2p) g(U2p+1,U2p+1) . . . g(U2p+1,U2n)
...

...
. . .

...
...

. . .
...

g(U2n, X ′) g(U2n,U2) . . . g(U2n,U2p) g(U2n,U2p+1) . . . g(U2n,U2n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

⎛
⎝ ∑

a1,...,ap

p∏
k=1

(−1)ak

�
U1, . . . ,U2p

X ′,U2, . . . ,U2p

�⎞
⎠ ×

⎛
⎝ ∑

ap+1,...,an

n∏
k=p+1

(−1)ak

�
U2p+1, . . . ,U2n

U2p+1, . . . ,U2n

�⎞
⎠,

since the first determinant does not depend on ap+1, . . . , an. The second term cancels because of (15).

APPENDIX B: EXPRESSION OF THE KERNEL L AS A SUM OF GREEN’S FUNCTIONS

We show here that the kernel L can be expressed in terms of Green’s functions. Starting from its definition Eq. (28), we follow
the same steps as in Sec. II E. We first use the fact (due to determinant symmetry) that all terms of the sum over p have the same
contribution:

Lba′
yx′z(u, t ′) = (−1)b

∑
n�1

inU n

n!

∫ n∏
k=1

duk

∑
{xk ,yk}

∑
{ak}

(
n∏

k=1

(−1)akVxkyk (uk )

)

× 2n δc((y, u, b),U1)

�
(z, t ′, a′),U1,U2, . . . ,U2n

(x′, t ′, a′), (z, t ′, a′),U2, . . . ,U2n

�
. (B1)

Then we sum out the Dirac delta:

Lba′
yx′z(u, t ′) = 2iU

∑
z′

Vyz′ (u)
∑
n�0

inU n

n!

∫ n∏
k=1

duk

∑
{xk ,yk}

∑
{ak}

(
n∏

k=1

(−1)akVxkyk (uk )

)

×
�

(z, t ′, a′), (y, u, b), (z′, u, b),U1, . . . ,U2n

(x′, t ′, a′), (z, t ′, a′), (z′, u, b),U1, . . . ,U2n

�
. (B2)

The pattern of a three-particle Green’s function can be recognized:

Lba′
yx′z(u, t ′) = 2iU

∑
z′

Vyz′ (u)Eba′
yx′zz′ (u, t ′), (B3)

where E is defined as

Eba′
yx′zz′ (u, t ′) ≡ (−i)3〈Tcĉ(y, u, b)ĉ†(x′, t ′, a′)[ĉ†(z, t ′, a′)ĉ(z, t ′, a′) − αz][ĉ†(z′, u, b)ĉ(z′, u, b) − αz′]〉. (B4)
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