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Matrix product state description and gaplessness of the Haldane-Rezayi state
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We derive an exact matrix product state representation of the Haldane-Rezayi state on both the cylinder and
torus geometry. Our derivation is based on the description of the Haldane-Rezayi state as a correlator in a
nonunitary logarithmic conformal field theory. This construction faithfully captures the 10 degenerate ground
states of this model state on the torus. Using the cylinder geometry, we probe the gapless nature of the phase
by extracting the correlation length, which diverges in the thermodynamic limit. The numerically extracted
topological entanglement entropies seem to only probe the Abelian part of the theory, which is reminiscent
of the Gaffnian state, another model state deriving from a nonunitary conformal field theory.
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I. INTRODUCTION

The success of the Laughlin ansatz [1] to describe a spin-
less fractional quantum Hall (FQH) system at filling ν = 1

3
lies both in its predictive power through the plasma analogy
[2] and its microscopic relevance. Indeed, it is the densest
zero-energy state of a hollow-core Hamiltonian, the shortest
repulsive interaction relevant for two spin-polarized fermions.
In the Haldane’s pseudopotential language [3], the interaction
corresponds to the pure V1 pseudopotential penalizing any two
fermions with angular momentum difference equal to one [4].
Because the Laughlin wave function (WF) completely screens
the largest pseudopotential component of the Coulomb inter-
action projected in the lowest Landau level (LL), it captures
most of the features of the ground state (GS) of a system with
repulsive Coulomb interactions.

Applying the same reasoning to a spinful FQH system at
filling ν = 5

2 , Haldane and Rezayi proposed to approximate
the Coulomb interaction with a pure V1 pseudopotential, irre-
spective of the spin of the particles [5]. Indeed, the contact
interaction V0, relevant for fermions with opposite spins, usu-
ally leads in magnitude in the lowest LL but is substantially
reduced in the first LL. They argued that the plateau at ν = 5

2
can thus be described as a spinful system of Ne electrons with
V1 SU(2)-symmetric interactions at filling ν = 1

2 . They ob-
tained the densest GS of this microscopic model, the so-called
Haldane-Rezayi (HR) state. Despite these physical insights,
the HR state shows some pathological behaviors. It exhibits a
surprising 10-fold GS degeneracy on the torus [6,7] and shows
signs of criticality [8]. However, numerical studies in finite
size with Ne = 8 particles could not demonstrate the gapped
or gapless nature of the phase [6].

The study of FQH model WFs greatly benefited from the
insight of Moore and Read who realized that many of them
could be written as conformal field theory (CFT) correlators
[9]. This description relies on some assumptions like the
gapped nature of the phase or the possibility to read off the
universality class of the FQH state, the braiding and fusion

properties of its low-energy excitations, from the bulk CFT.
Testing these hypotheses and extracting physical observables
such as the correlation length or the size of quasiparticles
in the bulk cannot be done analytically from the conformal
blocks and rely on numerical studies. A major progress to
overcome the numerical bottleneck of these two-dimensional
strongly interacting systems was made by Zaletel and Mong
[10]. Going beyond the continuous MPS of Refs. [11,12],
they realized that the CFT description of the states allows
for an exact translation-invariant and efficient matrix product
state (MPS) description of these strongly correlated phases of
matter. Combining the CFT construction with MPS algorith-
mic methods enables larger system sizes and predictions on
physical observables previously out of reach [13–17].

The HR state can be expressed as a correlator within
the c = −2 symplectic fermion CFT [7,18]. This nonunitary
theory has negative scaling dimension operators, which are
necessary to explain the 10-fold degeneracy of the GS mani-
fold [19]. Such a CFT cannot describe the edge physics of the
system since the latter would then host unstable excitations
with negative exponent correlations. Read provided strong
arguments to show that nonunitarity generically implies bulk
gaplessness [20]. The lack of large-scale numerical evidence
makes it hard to confirm or invalidate these theoretical predic-
tions on the HR phase or to directly probe the physics of the
hollow-core model.

In this paper, we use an exact mapping of the symplectic
fermion CFT to the c = 1 Dirac CFT [21,22] to derive an
easily implementable MPS describing the HR state and its
zero-energy quasihole excitations on the cylinder (Sec. II). We
first use the transfer matrix formalism to show that the HR
state has a diverging correlation length in the thermodynamic
limit, convincingly proving the gaplessness of the hollow-core
Hamiltonian (Sec. III). We adapt our MPS formulation to the
torus geometry (Sec. IV), where a careful treatment of the
zero modes allows us to recover the 10 degenerate GS of
the HR phase (Sec. V). They split into two groups. The first
one is made of eight GS related by Abelian bulk excitations.
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Their topological entanglement entropy seems to only capture
the Abelian part of the phase, tightly related to the Halperin
331 state. This feature is reminiscent of the Gaffnian state
[23], also built on a nonunitary CFT, as shown in Ref. [13].
The second group consists of two states which appear as a
Jordan block in the transfer matrix. They can be recovered
with a twist operator located at the end of the system, which
essentially plays the same role as the logarithmic operator in
Ref. [19]. Surprisingly, the topological entanglement entropy
for the two states in the second group seems to be zero, similar
to phases with trivial topological order such as the integer
quantum Hall effect.

II. HALDANE-REZAYI STATE AND
CONFORMAL FIELD THEORY

In this section, we give an overview of the HR state
and summarize its properties. We then motivate our CFT
description of the HR phase, and compare it to other works.

A. Overview of the HR state

The first quantized expression of the HR WF on genus zero
surfaces such as the disk, the sphere, or the cylinder is given
by [5]

�HR(z1, . . . , zN , z[1], . . . , z[N] )

= det

[
1

(zi − z[ j] )2

] 2N∏
i< j

(zi − z j )
2. (1)

Here, zi (respectively z[i]) denotes the position of the ith
spin-up (respectively -down) particle, bracketed indices are
identified as [i] = i + N in the last product. We omit the
LL Gaussian measure. As stated in the Introduction, the
HR state of Eq. (1) is the densest zero-energy state of a
system of Ne = 2N spin- 1

2 electrons in the lowest LL (LLL)
which, irrespective of the spin, interact through a V1 two-body
pseudopotential

V1(r = r1 − r2) = −∇2
r δ(2)(r), (2)

where r is the relative position of the two particles. On the
sphere, this unique densest zero-energy state occurs when
the number of flux quanta Nφ satisfies Nφ = 2Ne − 4. This
hollow-core interacting Hamiltonian hosts many more, albeit
less dense, zero-energy states corresponding to edge and bulk
quasihole excitations of Eq. (1). The different types of bulk
quasiparticles, their charge, and braiding properties encode
the topological content of the phase.

Decoupling of the spin and charge degrees of freedom,
expected for the system one-dimensional edge effective de-
scription [24], also occurs in the bulk as can be seen from
the factorization of the HR state into a determinant, encoding
the d-wave pairing of the electrons into a spin singlet [25],
and a Jastrow factor which is associated with the electric
charge [9]. The latter sets the filling fraction to ν = 1

2 and
describes the Laughlin-type e/2 Abelian quasiholes of the
system [26]. These excitations do not affect the pairing part
of the WF. The treatment of the spin degrees of freedom
requires a more careful treatment. It was shown in Ref. [6] that
there are 22n−3 linearly independent zero-energy states of the

hollow-core model Hamiltonian with 2n neutral quasiholes at
given positions. This exponential degeneracy often evidences
non-Abelian statistics [27,28]. However, the statistics can only
be inferred after identification of the distinct neutral quasihole
excitations.

For that purpose, it is useful to consider the system on a
torus. Indeed, on this geometry the GS degeneracy equals the
number of distinct bulk excitations that the Hall state admits.
The hollow-core Hamiltonian of Eq. (2) has 10 degenerate GS
on the torus [7], which split into two halves depending on the
e/2 quasihole parity [29]. Neutral excitations are thus respon-
sible for a fivefold degeneracy. The first quantized expressions
of the corresponding WFs on the torus were obtained in
Ref. [6]. Four of the GS are generalizations of Eq. (1) on
the torus. The fifth state has two unpaired electrons, and is
totally antisymmetric over all possible ways to choose these
two electrons. This introduces some long-range behaviors in
the WFs, as observed in Ref. [8]. The quasiparticle relating
any of the four first GS to the fifth one creates these long-
range correlations. Such a feature can be captured using the
nonunitary symplectic fermion CFT to describe the neutral
degrees of freedom [18], in which the negative conformal
dimension operators induces these nonlocal correlations. This
theory furthermore supports the non-Abelian nature of the
phase [19].

What are the physical consequences of this nonunitary neu-
tral CFT? Read provided compelling arguments in Ref. [20]
that FQH model WFs built on a nonunitary CFT generically
describe compressible states, and thus could not capture the
physics of a Hall quantized conductance plateau. For instance,
the Gaffnian [23], which relies on a nonunitary CFT, was
shown to be critical [13,30]. The HR state is suspected to
follow the same behavior [8,25]. At the edge of the system,
a negative scaling dimension leads to an unstable theory. It
is, however, possible that at the edge, some correction to the
symplectic fermions stress energy tensor stabilizes another
unitary theory [19]. The latter should have the same characters
as the nonunitary CFT, which are completely determined by
the construction of all zero-energy states of the hollow-core
model [18].

B. CFT description

The Jastrow factor of Eq. (1) is associated with the electric
charge whose degrees of freedom are described by a free
massless chiral boson ϕ(z) compactified on a circle of radius
R = √

2 (see Ref. [31] for a review). An important primary
field of the theory is the vertex operator

Vc(z) =: ei
√

2ϕ(z) : (3)

whose correlator reproduces the Jastrow factor

〈OBkgVc(z1) . . . Vc(z[N] )〉 =
2N∏
i=1

(zi − z j )
2. (4)

The neutralizing background charge OBkg =
exp (−i2

√
2Nϕ0), with ϕ0 the bosonic zero-point momentum,

is inserted to make the correlator nonvanishing [9,31]. This is
the usual treatment of Jastrow-type FQH model states [26]. It
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sets the filling fraction to ν = 1
2 and describes the bulk e/2

Abelian quasiholes of the system.
The neutral part of Eq. (1) can be reproduced as the 2N-

point correlator of a pair of free fields �↑ and �↓:

〈�↑(z1)�↓(z[1] ) . . . �↑(zN )�↓(z[N] )〉 = det

[
1

(zi − z[ j] )2

]
.

(5)

For Eq. (5) to hold, it is sufficient that the fields obey the
fermionic Wick theorem, and that their two-point correlation
function reads as 〈�σ (z)�ρ (0)〉 = ερσ /z2. These conditions
are for instance realized in the free-fermionic models of
Refs. [32] and [18] or in the nonunitary c = −2 symplectic
fermions CFT [19]. The latter uses logarithmic operators
to predict a 10-fold GS degeneracy on the torus, matching
the numerically observed number of GS using exact diag-
onalization (ED) [29]. The braiding statistics of quasiholes
inferred from this nonunitary theory substantiate the possible
non-Abelian nature of the HR phase. The construction of all
zero-energy states of the hollow-core Hamiltonian is enough
to specify the characters of the edge theory but it does not
fix the stress-energy tensor of the latter. Hence, we may find
other ways to describe the neutral degrees of freedom of the
HR phase. It is known [22] how to change the action of the
c = −2 symplectic fermions [equivalent to a (ξ, η) conformal
weight (0,1) fermionic ghost sysem [31]] to reach the unitary
Dirac fermion (ψ,ψ†) CFT [realized as conformal weight
( 1

2 , 1
2 ) fermionic ghosts [33]], without changing the characters

of the edge theory [21].
In this paper, we choose to represent the neutral

degrees of freedom of the HR state with a c = 1
Dirac CFT. Differentiation of the 2N-point correlator
〈ψ (z1)ψ†(z[1] ) . . . ψ (zN )ψ†(z[N] )〉 = det [(zi − z[ j] )−1] [34]
shows that the fields

�↑ = ψ† and �↓ = ∂ψ (6)

satisfy Eq. (5).
Combining the bosonic and fermionic parts, the full HR

bulk WF is obtained as the correlator of the following elec-
tronic operators:

V↑(z) = �↑(z) · Vc(z),

V↓(z) = �↓(z) · Vc(z). (7)

This construction is closely related to the CFT description
of the Halperin 331 state [35] via the bosonization identities
ψ† =: eiϕs : and ψ =: e−iϕs :, where ϕs is a chiral massless
boson with unit compactification radius, encoding the spin
degrees of freedom. Here, only the derivative in Eq. (6) differs
from the Halperin construction [36]. The writing of Eq. (7)
based on (ϕ, ϕs) exactly matches the CFT description of a
level-2 hierarchy state as given in Ref. [37]. The hierarchy
WF describes a spinful state at filling ν = 1

2 , which results
from quasielectron condensation [38]. In this context, the
derivatives emerge when regularizing the operator product
expansion (OPE) between electrons and quasiparticle opera-
tors [39]. We thus expect, as shown in Refs. [39,40], that the
hierarchy state is consistent with the K-matrix classification

[41], with

K =
(

3 1
1 3

)
, (8)

and where the derivative adds one unit to the conformal
spin of V↓. This connection might seem strange at first sight
because the hierarchy construction produces an Abelian phase
with | det K| = 8 degenerate GS on the torus [37]. We will
elucidate the difference between the two theories by a careful
treatment of the zero modes in Sec. V.

C. CFT Hilbert space

In the following, we will often rely on the cylinder ge-
ometry with coordinate w = x + iy obtained from the plane
through the conformal transformation z = exp [γ (x + iy)]
with γ = 2π

L . x denotes the coordinate along the cylinder
axis, y being that along the compact dimension. We assume
periodic boundary conditions for the electronic operators (7)
when they wind around the cylinder. The CFT thus splits into
two parts P and AP in which �↑, �↓, and Vc are, respectively,
periodic with integer modes and antiperiodic with half-integer
modes. As a consequence, the electronic modes V↑ and V↓
can be computed from Eqs. (6) and (7):

V↑
−λ =

∑
n

ψ†
n · Vc

−n−λ,

V↓
−λ =

∑
n

(−n) ψn · Vc
−n−λ,

(9)

where the boundary conditions require λ ∈ Z in both sec-
tors while n ∈ Z in P and n ∈ Z + 1/2 in AP. Here and
thereafter, we denote as φn the nth mode of a primary field
φ = ∑

n e−γ nw φn on the cylinder.
On this geometry, the free boson has the following mode

expansion:

ϕ(w) = ϕ0 − iγwa0 + i
∑
n∈Z∗

1

n
e−γ nw an. (10)

The U(1) Kac-Moody algebra satisfied by the bosonic mode
[an, am] = nδm+n,0 implies the electric charge conservation
through the conserved current J (z) = i∂ϕ(z). The U(1)
charge, measured in units of half the electron charge e/2 by
Ra0 = √

2a0, must be either integer in P or half-integer in AP.
The zero-point momentum ϕ0 is the canonical conjugate of a0,
i.e., [ϕ0, a0] = i. As such, the operator

Uc = e−(i/R)ϕ0 (11)

removes one unit of charge. Primary states of the bosonic
CFT Hilbert space, labeled by their U(1) charge, are obtained
as |q〉 = limy→−∞ e−(q/R)ϕ(w)|0〉 with |0〉 being the bosonic
CFT vacuum. The operator product expansion (OPE) between
vertex operators Vc(z)|q〉 ∼ zq|q + 2〉 + · · · [31] ensures the
correct boundary conditions for Vc thanks to the charge
selection rules in P and AP.

The fermionic modes (integer in P and half-integer in AP)
satisfy the anticommutation relations {ψn, ψ

†
m} = δm+n,0. In

the periodic sector, the zero modes anticommutation relations
lead to a set of degenerate highest-weight states {|σi〉}i [34].
They physically correspond to modes precisely at the Fermi
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energy which can either be occupied or nonoccupied. They
are obtained by acting with twist operators of dimension 1

8 on
the fermionic vacuum |I〉.

We can build the full CFT Hilbert space, which is also the
virtual (or auxiliary) space of our MPS description, from the
bosonic and fermionic ones. It is obtained by repeated action
of the creation operators a−n, ψ−n, and ψ

†
−n, with n > 0,

on the highest weight states compatible with the boundary
condition. These actions are encoded in one bosonic partition
μ and two fermionic ones (η, ν):

AP : |q, I, μ, η, ν〉 =
∏
i∈N

a−μiψ−ηiψ
†
−νi

(|q〉 ⊗ |I〉),

P : |q, σi, μ, η, ν〉 =
∏
i∈N

a−μiψ−ηiψ
†
−νi

(|q〉 ⊗ |σi〉). (12)

Here, (ηi, νi ) are positive integers in P and (ηi, νi ) ∈ N + 1
2 in

AP are the nonrepeated elements of the fermionic partitions η

and ν. The bosonic degrees of freedom are described with the
bosonic partition μ whose possibly repeated elements are the
positive integers μi, and a U(1) charge constrained to be q ∈ Z
in P and half-integer q ∈ Z + 1

2 in AP. The CFT space divides
into four charge sectors which are stable under the action
of the electronic operators [6,18]. We label them with a ∈
{0, 1

2 , 1, 3
2 }, each of these four sectors gathers all the states

with U(1) charge equal to a mod 2 (physically, modulo the
elementary charge e). The two sectors in P (a = 0 and 1) or
AP (a = 1

2 and 3
2 ) are related by a unit shift of the bosonic

charge, which corresponds to a center of mass translation on
the cylinder, and they thus share the same physical properties.
Each of the a sectors splits into two depending on the number
of fermions in Eq. (12) leading to the total eight hierarchylike
topological sectors discussed in Sec. II A [36].

D. Relation to other approaches

Our CFT description of the HR electronic operators (6)
agrees with that of Ref. [22]. As previously mentioned, a
more common approach [42–44] relies on the nonunitary
c = −2 CFT as first described in Ref. [19]. Using an exact
mapping between the c = −2 symplectic fermion theory and
the the Dirac CFT proposed by Guruswamy and Ludwig in
Ref. [21], we can recast the c = −2 electronic operators into
our notations:

V↑,GL
−λ =

∑
n

√
|n|ψ†

n · Vc
−n−λ,

V↓,GL
−λ =

∑
n

sign(−n)
√

|n|ψn · Vc
−n−λ. (13)

Compared to V↑
−λ and V↓

−λ, the contribution of the derivative
has been spread in a more symmetric way among the two spin
species. [Note that we could also split the sign(−n) at the
price of dealing with complex numbers.] The operators V↑,GL

−λ

and V↓,GL
−λ , or combinations of them, are also used in the free-

fermionic models of Refs. [18,32]. While the SU(2) symmetry
of the underlying microscopic model is more obvious in this
formalism, the electronic operators become nonlocal objects.
These long-distance behaviors are interpreted as indicators
of the HR phase criticality [25], although no rigorous proof
or convincing numerical evidence have been able to show

the bulk gaplessness yet. Once turned into an MPS, we
numerically found the exact same results with either of the
two representations (9) and (13). Nevertheless, all demanding
computations were only performed with the prescription of
Sec. II B, i.e., with the local electronic operators V↑ and V↓.

E. SU(2) invariance

We now investigate the spin-singlet nature of the HR state
within our formalism. First note that Eq. (1) only describes a
system of indistinguishable fermions after antisymmetrization
over both the electronic spin and position. This procedure
is accounted for in the CFT language by the commutation
relation and OPE between electronic operators, as shown
in Ref. [36]. To avoid any confusion with the CFT states
introduced in Sec. II, we use double angle brackets to denote
states in the spinful LLL and denote as |↑i〉〉 and |↓i〉〉 the two
spin states of the ith particle. Defining the electronic spinor
W (wi ) = V↑(wi)|↑i〉〉 + V↓(wi)|↓i〉〉, the HR WF, fully anti-
symmetric over both spin and position, reads as

|�HR(w1, . . . ,w2N )〉〉 =
〈
OBkg

2N∏
i=1

W (wi )

〉
. (14)

Showing that Eq. (14) describes a spin singlet can be achieved
as follows. We would like to find operators in the CFT whose
actions on Eq. (14) correspond to those of the total spin
operators Sz and S−. They will allow for a direct evaluation
of the quantities 〈〈�HR|Sσ |�HR〉〉 with σ ∈ {z,+,−}, which
should be zero for a spin singlet. In Appendix A, we exhibit
such CFT counterparts of the total spin operators. These op-
erators satisfy some Ward identities from which the equations
Sσ |�HR〉〉 = 0 are derived.

III. MPS ON THE INFINITE CYLINDER

A. Sketch of the derivation

We first briefly review the construction of exact MPS for
spinful FQH model states written as CFT correlator. We refer
the reader to Refs. [36,45] for detailed derivations. In the
Landau gauge, the cylinder LLL is spanned by the one-body
states

φ j (w) = e−(γ �B )2 j2/2√
L�B

√
π

e−γ jw, (15)

which are labeled by j ∈ Z which fixes both the single-
particle momentum k j = γ j along the compact dimension
and the orbital center on the cylinder axis x j = γ j�2

B (�B is
the magnetic length). Because they are plane wave φ j (w) ∝
e−γ jw, expanding all the electronic operators in the CFT
correlator [see Eq. (14)] into modes can be seen as inserting
a Vσ

−λ operator for each orbital λ occupied with a spin σ

electron. Recall that we use double angle brackets to denote
many-body states in the LLL, the second quantized many-
body occupation basis reads as |(n↑

k , n↓
k )k∈Z〉〉. Reordering the

various terms thanks to the electronic operator anticommuta-
tion relations, we get the site-dependent MPS form

〈〈(n↑
k , n↓

k )k∈Z|�HR〉〉 =
〈
OBkg

∏
k∈Z

A(n↑
k ,n↓

k )[k]

〉
, (16)
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where the matrices read as

A(n↑,n↓ )[k] = 1√
n↑!n↓!

(
1

φk (0)
V↑

−k

)n↑(
1

φk (0)
V↓

−k

)n↓

. (17)

The background charge for a system with No orbitals (i.e.,
No − 1 flux quanta) is OBkg = U No

c . It can spread equally
between orbitals using the relation UcVσ

−k = Vσ
−(k−1)Uc, σ ∈

{↑,↓}. The geometrical factors φk (0) in Eq. (17) can be
accounted for by the insertion of

Ug = e−(γ �B )2L0 (18)

between each orbital [10,45], where L0 is the zeroth Virasoro
mode of the total CFT. Collecting the pieces, we obtain the
orbital-independent form

〈〈(n↑
k , n↓

k )k∈Z|�HR〉〉 =
〈∏

k∈Z
B(n↑

k ,n↓
k )

〉
, (19)

with the following iMPS matrices:

B(n↑,n↓ ) = 1√
n↑!n↓!

(V↑
0 )n↑

(V↓
0 )n↓

UcUg. (20)

The matrix elements of the iMPS matrices B(n↑
k ,n↓

k ) on the CFT
basis given in Eq. (12) can be evaluated analytically using the
commutation relations of the bosonic and fermionic modes.
However, the CFT Hilbert space is infinite and it must be
truncated for any numerical simulations. The appended op-
erator Ug exponentially suppresses the contributions of highly
excited CFT states. It thus seems natural to keep all states of
conformal dimension no greater than a truncation parameter
Pmax. The truncated iMPS matrices can be used to perform
simulation on the infinite cylinder. At a fixed perimeter, we
require the numerical convergence of the computed quantities
with respect to Pmax. The truncation of the auxiliary space is
constrained by the entanglement area law [46], namely, the
bond dimension should grow exponentially with the cylinder
perimeter L to accurately describe the model WF (at least for
a gapped bulk) [10].

B. HR state is gapless

Using the MPS formulation of the HR state (20), we can
now probe its gapless nature. We first detail the transfer matrix
formalism, which allows to test thermodynamic properties
of FQH systems [13], and then numerically extract the bulk
correlation lengths of the HR phase.

1. Transfer matrix formalism

A crucial object for iMPS calculation is the transfer matrix

E =
∑
n↑,n↓

B(n↑,n↓ ) ⊗ (B(n↑,n↓ ) )∗, (21)

where the complex conjugation is implicitly taken with re-
spect to the CFT Hilbert space basis of Eq. (12). The transfer
matrix is in general not Hermitian and might contain non-
trivial Jordan blocks. It is, however, known that its largest
eigenvalue in modulus is real and positive, and that the corre-
sponding right and left eigenvectors can be chosen to be pos-
itive matrices [47]. The transfer matrix is particularly useful

when computing expectation values of operators with finite
support. We exemplify how such calculation is performed
with the standard example of scalar products between MPS.
Consider the MPS obtained for a finite number of orbitals No

with boundary conditions (αL, αR) in the CFT Hilbert space:∣∣�αL
αR

〉〉 = ∑
cαR,αL |(n↑

1 , n↓
1 ) . . . (n↑

No
, n↓

No
)〉〉,

cαR,αL = 〈αL|B(n↑
1 ,n↓

1 ) . . . B(n↑
No

,n↓
No

)|αR〉. (22)

The overlap between any two of these MPS is given by〈〈
�

βL
βR

∣∣�αL
αR

〉〉 = 〈αL, β∗
L |ENo |αR, β∗

R〉. (23)

In the limit of infinite cylinder No → ∞, the overlaps of
Eq. (23) are dominated by the largest eigenvectors of the trans-
fer matrix. Note that the positivity of the largest eigenvector
of E is coherent with its interpretation as an overlap matrix.
Generically, most of the relevant physical information lies in
the first leading eigenvalues and eigenvectors of the transfer
matrix, making it a powerful numerical tool to extract physical
properties of an infinite system.

As another example, consider a generic local operator
O(x). At finite perimeter L, the MPS form obtained at trun-
cation Pmax necessarily leads to an exponential decay of its
correlation function [48]:

〈O(x)O(0)〉 − 〈O(x)〉〈O(0)〉 ∝ e−|x|/ξ (L,Pmax ). (24)

The correlation length ξ (L, Pmax) is related to the ratio of
the two largest eigenvalues λ1(L, Pmax) and λ2(L, Pmax) of the
transfer matrix [49]

ξ (L, Pmax) = 2π�2
B

L log
∣∣ λ1(L,Pmax )
λ2(L,Pmax )

∣∣ . (25)

It converges to a finite value in the thermodynamic limit,
obtained for Pmax → ∞ and L/�B → ∞ (in that order), for
a gapped phase.

2. Correlation lengths

For topologically ordered phases of matter, the GS degen-
eracy leads to multiplicities in the transfer matrix eigenvalues,
which can be resolved by splitting the CFT Hilbert space into
topological sectors. Each of these sectors contains a single
leading eigenvector of the transfer matrix and is stable under
the action of the electronic operators. They are connected to
each other by the deconfined anyonic excitations which leave
the GS manifold stable [28]. We can thus benefit from the
structure of the CFT Hilbert space in numerical simulation.
As discussed in Sec. II C, the four charge sectors are stable
under the action of the electronic operators and Uc shifts the
U(1) charge by one unit. It is therefore better suited for our
calculation to consider the transfer matrix over two orbitals

E2 =
∑
n↑,n↓

B(n↑,n↓ ) ⊗ (B(n↑,n↓ ) )∗, (26)

with B(n↑,n↓ ) = B(m↑
1 ,m↓

1 )B(m↑
2 ,m↓

2 ). The bold indices stand for
the occupation numbers of two consecutive sites: n↑ =
(m↑

1 , m↑
2 ) and n↓ = (m↓

1 , m↓
2 ). The B matrices are block di-

agonal with respect to the four charge sectors, giving to E2

a similar block structure. We can thus target a specific block
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FIG. 1. Inverse correlation length 1/ξ a(L, Pmax) in the charge sectors (a) a = 0 and (b) a = 1
2 as a function of the inverse cylinder perimeter

�B/L. To extract the thermodynamic values, we only keep the points that have converged to better than 2% with respect to Pmax. At truncation
parameter Pmax = 13 it corresponds to L/�B ∈ [15, 25]. Affine and linear fit equally well capture our data, hinting toward an infinite bulk

correlation of the HR state in the thermodynamic limit: 1/ξ 0
∞ → 0 and 1/ξ

1
2∞ → 0.

during the diagonalization of the transfer matrix, improving
the numerical efficiency.

We observe that E2 has eight degenerate leading eigenvec-
tors, two in each charge sector a ∈ {0, 1

2 , 1, 3
2 }. The twofold

degeneracy in each sector can be further resolved by focusing
on the hierarchylike topological sectors of the HR phase
(see Sec. II C). Related by a center-of-mass translation on
the cylinder or by a spin symmetry [36], the four sectors
in a = 0 and 1 (respectively a = 1

2 and 3
2 ) share the same

correlation length that we denote as ξ 0 (respectively ξ
1
2 ).

We have numerically extracted these correlation lengths as
a function of the truncation parameter Pmax and the cylinder
perimeter L. The results depicted in Fig. 1 show that the
different correlation lengths grow linearly with the cylinder
perimeter. The thermodynamic values are extracted by affine
extrapolation at �B/L → 0 (over the points that have con-
verged with respect to the bond dimension, i.e. L � 25�B). We
find 1/ξ a

∞ � 0 in all sectors, and observe that affine and linear
functions fit equally well our data. This diverging correlation
length of the HR state in the thermodynamic limit reveals its
gapless nature in all the sectors. Such a feature prevents the
HR to describe a quantized Hall plateau at half-filling of a
given Landau level. Still, the HR state could remain relevant
at a two-dimensional critical point such as the weak to strong
d-wave phase transition [25].

We would like to make a few remarks. First, our results
show that, although it stabilizes the gapped Laughlin phase in
the spin-polarized case [4] and despite its physical motivations
[5], the SU(2)-symmetric hollow-core model Hamiltonian is
gapless. Microscopically, this nontrivial result hints that the
contact interaction between electrons with opposite spins is
necessary to make the model FQH state incompressible. The
addition of a V0 pseudopotential was considered numerically
[50–52], and shown to energetically favor Jain’s spin-singlet
state when V0 ∼ V1. Finally, we remark that the transfer matrix
only has 8 degenerate leading eigenvectors and not 10, as
would be expected from the HR GS degeneracy on the torus.
We will elaborate on this issue in Sec. V C, but already state

that the missing information is contained in a Jordan block
which is not resolved during the numerical diagonalization of
the transfer matrix.

C. Entanglement entropy

Discussing about adiabatic braiding of excitations in the
HR phase might not be meaningful because of its gapless
nature. Consequently, statements about the underlying topo-
logical order or the universality of long-range entanglement
in the HR phase should be done with caution. However, iMPS
calculation set a natural cutoff through the finite perimeter L.
It is thus relevant to investigate the consequences of criticality
for the eight GS that we have obtained on the infinite cylinder
thanks to entropic measurements. Because the correlation
length is proportional to the cylinder perimeter (see Fig. 1),
our numerical results are plagued with large finite-size effects,
making it difficult to extract thermodynamic features of the
HR phase.

We exemplify our study on the GS obtained on the in-
finite cylinder in the topological sector a = 1 with even
fermionic parity (see Sec. II C). We consider a bipartition
of the cylinder A − B into two halves, with A = {w =
x + iy | x < 0 , y ∈ [0, L]}, and compute the corresponding
real-space entanglement entropy (RSEE) [53,54] SA(L) with
the techniques developed in Ref. [55]. For a topologi-
cally ordered fully gapped bulk GS, it follows an area
law

SA(L) = αL − γ , (27)

where α is a nonuniversal parameters and γ , the topological
entanglement entropy (TEE), characterizes the topological
order [56,57]. With the reachable system sizes, we have not
detected any deviations to Eq. (27) (see the inset of Fig. 2).
We also extracted the first correction to the area law with
finite differences as γ (L) = L∂LSA − SA, and the results are
displayed in Fig. 2. As stated above, the strong finite-size
effects impose to consider large perimeters where conver-
gence with respect to the truncation Pmax is hard to reach,
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FIG. 2. Numerical extraction of the entanglement entropy SA for
a half-infinite cylinder in the topological sector a = 1 with even
fermionic parity. Main figure: Correction to the area law γ (L),
numerically extracted with finite differences, as a function of the
cylinder perimeter L. Due to the critical nature of the HR state, the
results are plagued with finite-size effects and we often cannot reach
convergence as a function of the truncation parameter Pmax. However,
the numerically extracted points seem to oscillate around the value
log

√
8 (solid line, gray shaded area shows a 5% uncertainty around

this value) and are hardly consistent with log
√

10 (dashed line).
Inset: No deviation of the entanglement entropy SA from the area
law is detected within the considered range of perimeters.

especially for subleading quantities such as γ (L). The results
for L � 14�B, however, seem to show that γ (L) reaches a
plateau around log

√
8 when L increases. Using a slightly

different extrapolation method which filters out the small
system sizes, the presence of the plateau at log

√
8 is even

more convincing as shown in Appendix F. This is the expected
theoretical value for a topological phase governed by the K
matrix given by Eq. (8). Although we can not rule out the
possibility of unnoticed logarithmic corrections to the RSEE,
these results are reminiscent of those of the Gaffnian state
[23]. Both states are non-Abelian and built from nonunitary
CFT. In both cases, the TEE seems to only capture the Abelian
part of the phase [13].

As a last remark, we note that the two topological sectors
arising from the Jordan block structure (see Sec. V C) do
not seem to contribute to the total quantum dimension D of
the phase. Indeed, we would have D � 10 if they did, with
equality if all sectors were Abelian. Our results for any of the
eight hierarchylike states displayed in Fig. 2 are not consistent
with values above log

√
10 � 1.15.

IV. CFT MODEL STATES ON THE TORUS

For pedagogical purposes, we focus in this section on
spinless fermionic systems to illustrate the construction of
exact MPS for FQH model state on the torus geometry. The
results derived can be straightforwardly extended to spinful
and/or bosonic systems.

A. Particles in a magnetic field

1. Boundary conditions on torus

We first consider the problem of a single particle in a
magnetic field, using the Landau gauge A = �−2

B (0, x). The
particle is free to move on the torus, with Hamiltonian HL =
(p − A)2/2, which imposes some constraints on the dynamics
that we now derive. The torus is mathematically obtained as
the quotient of the complex plane by a two-dimensional lattice
generated by L1 = (0, L1) and L2 = (−L2 sin θ, L2 cos θ ):

T 2 = C/(iL1Z + ieiθ L2Z). (28)

That is, we work on the complex plane and identify w =
w + iL1 = w + ieiθL2. The unusual factors “i” are rather con-
ventional and are included for consistency with the cylinder
C/iL1Z. The torus is characterized by its aspect ratio

τ = L2

L1
eiθ , Im τ > 0. (29)

The torus geometry imposes the constraints |φ(w)| = |φ(w +
iL1)| = |φ(w + ieiθ L2)| on any torus one-body WF φ. The
equation only involves the magnitude of φ because the differ-
ent points of the quotient lattice are related by nontrivial gauge
transformations [58]. This may be understood considering the
translation operator by l in presence of a magnetic field

t (l) = exp
[
l · (∇ − iA) − i�−2

B l × r
]
, (30)

a × b = a1b2 − a2b1 denotes the cross products of the vec-
tors a = (a1, a2) and b = (b1, b2). We assume that no net
fluxes pass through the torus’ noncontractible loops, such
that the torus boundary conditions (TBC) are t (L1)|φ〉〉 =
t (L2)|φ〉〉 = |φ〉〉 [6]. Evaluating these equations at position
w = x + iy gives

φ(w + iL1) = φ(w),

φ(w + ieiθ L2) = exp

[
−i

L1L2 sin θ

�2
B

(
Re τ

2
+ y

L1

)]
φ(w).

(31)

These quasiperiodic boundary conditions simply transcribe
that A cannot be globally defined on T 2, as this would lead
to
∫
T 2 B d2w = 0. In a more geometric language, the WF is a

section of a nontrivial line bundle over the torus.

2. Discrete magnetic translations

Consistency of the TBC implies restrictions on the mag-
netic field and on the physically allowed magnetic transla-
tions. Contrary to the plane geometry, infinitesimal trans-
lations are not consistent with the TBC of the WF. They
change the physical properties of the system by adding fluxes
through the torus’ noncontractible loops. It is well known that
consistency with respect to the TBC leads to a discrete set of
physically acceptable magnetic translation operators.

Magnetic translations satisfy the Girvin-MacDonald-
Platzman algebra [59,60]

[t (l1), t (l2)] = 2i sin

(
l1 × l2

2�2
B

)
t (l1 + l2). (32)

Going around the torus’ principal region should give the
identity, requiring that t (L1) and t (L2) commute. Hence,
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using Eq. (32), the magnetic flux threading the torus should
be a multiple integer Nφ ∈ N of the flux quantum, i.e.,

Nφ = |L1 × L2|
2π�2

B

. (33)

Similarly, the physically allowed magnetic translations pre-
serve the TBC and should commute with t (L1) and t (L2). This
discrete set of allowed magnetic translations can be obtained
from Eq. (32) and are generated by the two translations

t1 = t (L1/Nφ ), t2 = t (L2/Nφ ), (34)

which satisfy t1t2 = exp(2iπ/Nφ )t2t1.

3. Landau problem

The Landau problem on the torus still retains the usual
harmonic oscillator structure [61]. In particular with our gauge
choice, we have

HL = h̄ωc

(
a†a + 1

2

)
, a = 1√

2�B

(
2�2

B ∂ + x
)
. (35)

Sending the cyclotron energy h̄ωc to infinity projects the
system to the LLL. The latter consists of all the states φ which
are annihilated by a and obey the proper TBC. They are of the
form

φ(w) = exp

(
− x2

2�2
B

)
f (w), (36)

where f (w) is a holomorphic function satisfying the boundary
conditions f (w + iL2eiθ ) = e−2iπNφ ( w

iL1
+ τ

2 ) f (w) and f (w +
iL1) = f (w) as inferred from Eq. (31). In Appendix B, we
show that the LLL hosts Nφ orbitals. Because t1 commutes
with HL, we choose a LLL basis made of t1 eigenvectors:

fky (w) = 1√
L1�B

√
π

ϑ

[
ky/Nφ

0

](
Nφ

iL1
w

∣∣∣Nφτ

)
, (37)

with ky = 0, . . . , Nφ − 1 and where t1 fky = exp(2iπky/Nφ ) fky

comes out of the properties of the Jacobi theta function ϑ .
The other primitive translation acts as t2 fky = fky+1. Amongst
other things, this implies that the chosen LLL orbitals share
the same norm, which is of importance for the expression
of the MPS (see Sec. IV C). Expanding fky gives a intuitive
understanding of Eq. (37) as the periodic counterpart of the
cylinder orbitals [compare with Eq. (15)]:

fky (w) = 1√
L1�B

√
π

∑
j∈ky+NφZ

e
iπτ

j2

Nφ e
2π
L1

jw
. (38)

B. Model WFs as conformal blocks

In the last paragraph, we saw that the LLL enjoys a
holomorphic structure which, in the Landau gauge, has strict
periodic conditions in the L1 direction [see Eq. (31)]. We can
thus picture the torus as a finite cylinder of perimeter L1 whose
ends have been glued together with a twist which depend
on τ [31,62]. We will thus continue to use CFTs defined on
the cylinder, as in Sec. II, and impose that the physical WFs
satisfy the TBC. We recall for that purpose the conformal
mapping from the cylinder coordinate w = x + iy to the plane
z = exp ( 2π

L1
w). The translation w → w + iL2eiθ becomes a

rotation dilation z → qz with q = e2iπτ .

We now consider a system of Ne fermions and Nφ flux
quanta, thus at filling fraction ν = Ne/Nφ . We focus on model
FQH WFs whose underlying CFT separates the neutral and
charge degrees of freedom [45]. The electronic operator
generically reads as V = �· : eiRϕ : where � only acts on
the neutral CFT, and ϕ is a chiral massless bosonic field
with compactification radius R = ν−1/2. We assume that the
electronic operator at different positions anticommutes as we
are interested in fermionic systems in this paper. The results
can be readily extended to bosonic and/or spinful cases. The
model WF in a given topological sector a on the torus takes
the form

�a
(
w1, . . . ,wNe

) = Tr a[XV (w1) . . .V (wNe )], (39)

with X = XARXPXBkg and where Tr a(. . . ) = Tr (Pa . . . ) de-
notes the trace in sector a (Pa being the projector on topo-
logical sector a). It assumes prior knowledge of the different
existing topological sectors, and numerical simulations fur-
thermore require a way to delineate the sectors within the
chosen computational CFT basis in order to represent Pa. The
operators XBkg and XAR, respectively, account for the charge
neutrality in the CFT correlator and the anticommutation re-
lation of the fermions, while their interplay with XP produces
the phase factors arising from the TBC. They read as

XBkg = e−i
√

νNφϕ0 , (40a)

XAR = e−iπ (Ne−1)
√

νa0 , (40b)

XP = qL0+ Nφ

2

√
νa0 , (40c)

with q = exp(2iπτ ). We show in Appendix C that that the
many-body WFs of Eq. (39) indeed satisfy the TBC.

C. MPS on the torus

The MPS representation of Eq. (39) follows from expand-
ing all the electronic operators into modes. Thanks to Eq. (C4)
derived in Appendix C, we can rearrange the different sums
into

�a(w1, . . . ,wNe )

=
Nφ−1∑
si=0

Tr a
[
XV−s1 . . .V−sNe

] Ne∏
i=1

e
−iπτ

s2
i

Nφ fsi (wi). (41)

The electronic operator anticommutation relation allows us to
order the (si)i to get

�a(w1, . . . ,wNe ) =
∑

Nφ>s1>···>sNe�0

Tr a

[
X

Ne∏
i=1

e
−iπτ

s2
i

Nφ V−si

]

×
⎛⎝∑

σ∈Se

ε(σ )
Ne∏

i=1

fsσ (i) (wi)

⎞⎠, (42)

where we have used partitions σ ∈ Se to treat all possible
orderings and denoted as ε(σ ) their signature. The fully
antisymmetric product of lowest-LL WFs is the first quantized
form of the many-body occupation basis

|m0, . . . , mNφ−1〉〉 = c†
s1

. . . c†
sNe

|�〉〉, (43)
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with Nφ > s1 > · · · > sNe � 0 and where c†
s creates a particle

on orbital s above the Fock vacuum |�〉〉. We thus have a site-
dependent MPS form for the model WFs on the torus:

〈〈m0, . . . , mNφ−1|�a〉〉 = Tr a

⎡⎣X
Nφ−1∏
j=0

A
(mj )
T [ j]

⎤⎦,

A(m)
T [ j] = 1√

m!

(
e
−iπτ

j2

Nφ V− j
)m

. (44)

As we previously did on the cylinder, we can turn this
MPS into a site-independent formulation by spreading XPXBkg

equally between orbitals. More precisely, we finally reach

〈〈m0, . . . , mNφ−1|�a〉〉 = Tr a

⎡⎣XAR

Nφ−1∏
j=0

B
(mj )
T

⎤⎦,

B(m)
T = 1√

m!
UT (V0)m, (45)

UT = q
L0
Nφ e−i

√
νϕ0 .

As can be seen, the expressions of both BT and UT are similar
to their counterparts on the cylinder.

V. HR ON THE TORUS: ZERO MODES AND DEGENERACY

A. Exact diagonalizations

The system consists of Ne = 2N spin- 1
2 fermions on a torus

pierced with Nφ = 4N flux quanta, thus at filling fraction
ν = 1

2 . They occupy the lowest LL spanned by Eq. (37)
and interact, irrespective of their spin, through a V1 two-
body pseudopotential [see Eq. (2)]. Many-body translation
operators on the torus factorize into the product of relative
and center-of-mass translations [63]. The latter are generated
by

T c.m.
1 =

Ne∏
i=1

t i
1 and T c.m.

2 =
Ne∏

i=1

t i
2. (46)

At filling factor ν = 1
2 , T c.m.

1 and (T c.m.
2 )2 commute with

one another and with the hollow-core Hamiltonian [60,63].
These many-body conservation laws make ED studies more
efficient and allow to reach large system sizes. For the sake
of clarity, we now focus on a rectangular torus (θ = π/2),
although the construction of Sec. IV applies to any other
aspect ratio. The many-body eigenstates |�(K)〉〉 carry the
associated momentum quantum number K and satisfy

T c.m.
1 |�(K)〉〉 = eiKy/2|�(K)〉〉, (47a)(

T c.m.
2

)2|�(K)〉〉 = eiKx |�(K)〉〉, (47b)

where the momentum K belongs to the Brillouin zone [60]{
K =

(
Kx

L2
,

Ky

L1

) ∣∣∣∣, Kx = 0, . . . , (Ne − 1)
2π

Ne
;

× Ky = 0, . . . , (Ne − 1)
4π

Ne

}
. (48)

Because T c.m.
1 and T c.m.

2 anticommute, T c.m.
2 relates an eigen-

state at any eigenstate at (Kx, Ky) to an eigenstate at (Kx, Ky +

FIG. 3. (a) Structure of the HR 10-fold-degenerate GS manifold
on the torus. (Kx, Ky ) indicate the many-body momenta along the
two directions of the torus. With center-of-mass translations, all the
different GS can be obtained from the five states lying in the reduced
Brillouin zone BZred (gray shaded region). (b) Scaling of the gap
on the torus (blue) and sphere (orange) geometries as a function
of the inverse particle number. The dashed lines are linear fits to
the data whose intercepts provide extrapolation of the gap in the
thermodynamic limit Ne → ∞. While the gap seems to close in the
thermodynamic limit on the sphere, the reachable systems size are
too small to see any strong signatures of the gapless nature of the HR
phase in ED on the torus.

2π ) with the same energy. We can thus restrict our study to
the reduced Brillouin zone

BZred =
{

K =
(

Kx

L2
,

Ky

L1

) ∣∣∣∣
× Kx, Ky = 0,

2π

Ne
, . . . , (Ne − 1)

2π

Ne

}
, (49)

depicted in Fig. 3.
The ED of the hollow-core Hamiltonian shows that it has

5 zero-energy states in BZred, and thus 10 zero-energy states
on the torus. As depicted in Fig. 3(a), three of them are
located, respectively, at (π, 0), (0, π ), and (π, π ) while the
momentum (0,0) hosts two degenerate zero-energy states. We
also considered the neutral gap of HR phase for the model
interaction, as shown in Fig. 3(b) for a square torus (τ = i) and
on the sphere. We have considered systems of up to Ne = 12
particles on both geometries. While the gap on the sphere
seems to converge to zero in the thermodynamic limit, in
agreement with the MPS results of Sec. III B, its closing on
the torus is not so clear. This apparent lack of gap closing is
most probably due to the few reachable system sizes rather
than an actual feature. Indeed, there is no reason why the
gapless excitations on the sphere should disappear on the
torus. In both cases, the MPS transfer matrix is essentially
the same, comparing Eq. (20) to (45). Hence, we expect them
to host similar low-lying excitations, which are within the
single-mode approximation tightly connected to the excited
states of the transfer matrix.

In the following, we show that our construction accurately
captures the whole HR physics and that the 10 zero-energy
states of the model Hamiltonian can be written in our MPS
formalism. There are a few obstacles that we should over-
come. We shall first relate the many-body momentum K and
the parameters of our MPS Ansatz. This allows to reproduce
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the four hierarchylike ground states of BZred. The last zero-
energy state in BZred requires a careful treatment of the zero
modes, inspired by the “unpaired electron” idea of Ref. [6].

B. Fixing the momentum

1. Ky momentum

The demonstration of Sec. IV can be extended to the
spinful case straightforwardly [36]. The charge sectors a ∈
{0, 1

2 , 1, 3
2 } are invariant under action of the spin-up and -down

electronic operators, we can thus define

�HR
a (w1, . . . ,wN ,w[1], . . . ,w[N] )

= Tr a[XV↑(w1)V↓(w[1]) . . .V↑(wN )V↓(w[N] )], (50)

where Pa projects on the states of Eq. (12) with U(1) charge
q = a (mod 2) and the operator X has the form given in
Eq. (40). As in Sec. IV, we use the dilatation V (w + αL1) =
e2iπαL0V (w)e−2iπαL0 and the bosonic commutation relations to
derive the effect of T c.m.

1 :

�HR
a

(
w1 + L1

Nφ

, . . . ,w[N] + L1

Nφ

)
= Tr a[e2iπ

√
νa0 XV↑(w1) . . .V↓(w[N] )]. (51)

The operator e2iπ
√

νa0 is constant on the charge sector a
selected by the projector, which leads to the simple action

T c.m.
1 |�a〉〉 = e2iπνa|�a〉〉. (52)

This proves that specifying the charge sector a corresponds to
a many-body quantum number Ky = 2aπ in the full Brillouin
zone.

2. Kx momentum

The derivation of a MPS version of Eq. (50) follows
straightforwardly from the study of Sec. IV:

∣∣�HR,π
a

〉〉 = ∑
{(m↑

j ,m
↓
j )}0� j<Nφ

Tr a

⎡⎣XAR

Nφ−1∏
j=0

B
(m↑

j ,m
↓
j )

T

⎤⎦
× |(m↑

0 , m↓
0 ), . . . , (m↑

Nφ−1, m↓
Nφ−1)〉〉, (53)

with

B(m↑,m↓ )
T = 1√

m↑!m↓!
U (V↑

0 )m↑
(V↓

0 )m↓
, (54)

and where U and XAR were defined in Eqs. (39) and (40).
However, it can be seen that this form only produces Kx = π

eigenvectors. Indeed, consider first the effect of a many-body

translation (T c.m.
2 )2 on a many-body state:(

T c.m.
2

)2|{(m↑
j , m↓

j )}0� j<Nφ
〉〉

= ε
∣∣(m↑

Nφ−2, m↓
Nφ−2

)
,
(
m↑

Nφ−1, m↓
Nφ−1

)
,

(m↑
0 , m↓

0 ), . . . ,
(
m↑

Nφ−3, m↓
Nφ−3

)〉〉
, (55)

which is inferred from the lowest-LL WF properties [see
Eq. (37)] and where ε is a sign accounting for the reordering
of the many-body state. We can use the invariance of the trace
under cyclic permutations and the commutation properties of
BT with XAR and Pa to rearrange the MPS matrices in Eq. (53)
in the same order. The commutation of the electronic zero
modes cancels out the sign factor ε and Pa is left unchanged by
U 2, as explained previously. The only nontrivial phase comes
from the commutation of U 2 with XAR and leads to a factor
(eiπ (Ne−1)/2)2 = −1. We finally obtain(

T c.m.
2

)2∣∣�HR,π
a

〉〉 = eiπ
∣∣�HR,π

a

〉〉
. (56)

To obtain the Kx = 0 eigenstates, we should note that XAR

is not the only way to account for the fermionic anticommu-
tation relations. We could have also used

XF = e2iπ (Ne−1)Gz
0 , (57)

where 2Gz
0 = ∑

s �=0 ψ
†
−sψs − ψ−sψ

†
s counts the number of

Dirac fermions (recall that the fermionic modes are integer
in P and half-integer in AP, see Sec. II C). XF is the Dirac
fermion parity which anticommutes with the electronic oper-
ators V↑ and V↓. It accomplishes the same purpose as XAR but
commutes with U 2. The reasoning above applies to the MPS
state

〈{(m↑
j , m↓

j )}0� j<Nφ

∣∣�HR,0
a

〉〉 = Tr a

⎡⎣XF

Nφ−1∏
j=0

B
(m↑

j ,m
↓
j )

T

⎤⎦, (58)

which is nothing but Eq. (53) with XAF replaced by XF, and
shows that it is a Kx = 0 eigenstate, i.e., (T c.m.

2 )2|�HR,0
a 〉〉 =

|�HR,0
a 〉〉.

3. Hierarchy ground states

The four MPS Ansätze built on the HR electronic operators
{�HR,0

0 , �HR,π
0 , �HR,0

1/2 , �HR,π
1/2 } appear at the position of the

zero-energy states in BZred. They exactly match (up to numer-
ical accuracy) the ED zero-energy states for system sizes up
to Ne = 10 particles, which strongly support our derivation.
These four WFs were expressed in terms of Weierstrass’s
elliptic functions in Ref. [6]. The latter are essentially deter-
mined by the singular part of their behavior near the poles,
which are specified by our electronic operators (see Sec. II),
and by the periodicities which we tuned with the operators
Pa, XAR, and XF. It gives a more intuitive way to understand
our derivation. The topological sectors are identified by the
projectors onto states with an even or odd number of fermions
P± = 1

2 (XAR ± XF) [36], and the minimally entangled states
(MES) [64] are obtained as linear superpositions of �HR,0

a and
�HR,π

a .
The eight zero-energy states that we have constructed in

the full Brillouin zone (four in the reduced Brillouin zone)
are the ones which are expected from a level-2 hierarchy state
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with electronic operators V↑ and V↓. The role of zero modes
is irrelevant for them, as they can be obtained with the GL
representation (13) too, i.e., the “small algebra” of Kausch
[65]. We now proceed to a careful treatment of the zero modes
to obtain the two remaining elements of the HR ground-state
manifold.

C. 10-fold degeneracy and zero modes

1. Construction

We now focus on the K = (0, 0) momentum where the
fifth zero-energy state �̃HR of the hollow-core Hamiltonian
within BZred lies. As shown in the last section, it requires to
pick the charge sector a = 0 in the torus conformal blocks
[see Eq. (39)] and to use the operator XF to encode for the
fermionic anticommutation relations. This last zero-energy
state is somehow peculiar as it exhibits some long-range
behaviors [8]. Its first quantized form was derived in Ref. [6]
and can be recast as follows. Let us denote the pairing (or
neutral) part of |�HR,0

0 〉〉 for a system of Ne = 2N particles as
�N ({zi}i=1...Ne ). As in Sec. II, we will use bracketed indices
[i] = N + i to shorten the notations. We have [6]

�̃HR
({wi}i=1...Ne

)
=
∏
i< j

θ1

(
wi − w j

iL1

∣∣∣τ)2

×
N∑

k=1

∑
σ∈SN

ε(σ )�N−1({wi}i \ {wσ (1),w[k]}). (59)

The product of Jacobi’s theta function θ1 (see Appendix D)
is nothing but the usual Jastrow factor on the torus [66]. The
neutral part of Eq. (59) can be physically pictured as hosting
two unpaired electrons, one spin up at position wσ (1) and
one spin down at w[k] which obey 〈�σ�ρ〉 = ερσ instead of
〈�σ (z)�ρ (0)〉 = ερσ /z2 (see Sec. II B). The sums over k and
σ antisymmetrize the WF over all possible ways to remove
the two electrons at wσ (1) and w[k] from the pairing function,
which thus only acts on the reduced set {wi}i \ {wσ (1),w[k]}.

To reproduce Eq. (59), it is crucial to carefully account
for the fermionic zero modes [19]. Indeed, they were dis-
carded from the discussion about the mapping of the c = −2
symplectic fermion CFT to the unitary c = 1 Dirac CFT in
Ref. [22], which lead to identify the HR theory with that of an
Abelian level-2 hierarchy state with eight degenerate ground
states on the torus. Such a crude approximation contradicts
both analytical results on the exponential number of distinct
2n quasiholes states [6] and the numerically observed 10-fold
GS degeneracy on genus-one surfaces [29] (see Sec. II A).
We now show how we can incorporate the zero modes �

↑
0

and �
↓
0 in our formalism to exactly reproduce the last GS

of the hollow-core model. We note that a nonzero �
↓
0 in

Eq. (7) implies logarithmic terms in the mode expansion
of the fermionic field ψ . These corrections are necessary
to complete the operator correspondence of the logarithmic
c = −2 theory [33] to the c = 1 theory that we use.

The first consequence of introducing such zero modes is
the somehow unusual highest-weight degeneracy in the P
sector of the CFT (see Sec. II C). We have four highest-weight

states {|σ1〉, |σ2〉, |σ3〉, |σ4〉} inherited from the symplectic
fermion theory [67], which split the CFT Hilbert space into
four blocks. As shown by the chosen computational basis
(12), the action of the fermionic modes �σ

n with n �= 0 and
σ ∈ {↑,↓} is block diagonal. We can represent the zero modes
and account for their anticommutation relation as

�
↑
0 =

|σ1〉 |σ2〉 |σ3〉 |σ4〉
|σ1〉
|σ2〉
|σ3〉
|σ4〉
|σ5〉

⎡⎢⎢⎢⎣
0 0 0 0

1 0 0 0
0 0 0 0

0 0 1 0

⎤⎥⎥⎥⎦ ,

(60)

�
↓
0 =

|σ1〉 |σ2〉 |σ3〉 |σ4〉
|σ1〉
|σ2〉
|σ3〉
|σ4〉
|σ5〉

⎡⎢⎢⎢⎣
0 0 0 0

0 0 0 0
1 0 0 0

0 −1 0 0

⎤⎥⎥⎥⎦ .

We can understand these expressions thanks to the unpaired
electron picture. Starting in the sector of the highest weight
|σ1〉, we end up in |σ4〉 once we have chosen one and exactly
one pair of electrons with opposite spins and have left them
unpaired since the zero modes act as the identity. All other
fermionic modes act identically on the different {|σi〉}i sectors
of the CFT Hilbert space [see Eq. (12)], and all other electrons
combine to form the factor �N−1 in Eq. (59).

Introducing the shift operator

P14 =
∑

q,μ,η,ν

|q, σ1, μ, η, ν〉〈q, σ4, μ, η, ν|, (61)

the fifth GS of the hollow-core Hamiltonian in BZred may be
written in a MPS form as

〈{(m↑
j , m↓

j )}0� j<Nφ
|�̃HR〉〉 = Tr 0

⎡⎣P14XF

Nφ−1∏
j=0

B
(m↑

j ,m
↓
j )

T

⎤⎦.

(62)

We numerically checked that, up to machine precision, the
MPS |�̃HR〉〉 and |�HR,0

0 〉〉 span the whole GS manifold at
K = (0, 0) for up to Ne = 10 particles, which provide a
stringent test of our construction. Because of the shift operator
P14, the state (62) should be extracted from a nontrivial Jordan
block of the transfer matrix. This nontrivial Jordan block
makes the transfer matrix nondiagonalizable, which prevents
iterative eigensolvers such as the Lanczos’ algorithm that we
use to resolve the state (62). This explains the eight degen-
erate leading eigenvectors of the transfer matrix observed in
Sec. III.

2. Characterization

To summarize the previous construction, we inherit the
highest-weight fourfold degeneracy in P from the logarithmic
c = −2 theory. Only the zero modes connect the different
module of the CFT Hilbert space, as described by Eq. (60).
Their action simply transcribes in the MPS language the
different ways to choose two electrons in an antisymmetric

125128-11



CRÉPEL, REGNAULT, AND ESTIENNE PHYSICAL REVIEW B 100, 125128 (2019)

FIG. 4. Numerical extraction of the entanglement entropy SA for
a finite cylinder of length ∼120�b cut into two halves for the state
�̃HR which we could not resolve when diagonalizing the transfer
matrix. As in Fig. 2, the numerical results are plagued with large
finite-size effects, and the finiteness of the cylinder also introduces
another systematic uncertainty. However, the numerically extracted
points seem to oscillate around the value γ = 0.

fashion, and resembles long-range matrix product operators.
The effect of logarithmic terms in the fermionic mode expan-
sion is manifest in a Jordan block for the largest eigenvalue of
the transfer matrix.

On the torus, the shift operator P14 allows to probe the
fifth and last representative of the HR GS manifold in BZred.
These states are not specific to the torus and also appear
on zero-genus surfaces, such as the cylinder or the sphere,
albeit as quasihole excitations of the densest ground state at
magnetic flux Nφ = 2N − 2. To obtain them in finite size,
we simply replace the trace of Eq. (62) by left and right
MPS boundary states |0, σ1, 0, 0, 0〉 (or |1, σ1, 0, 0, 0〉 for
its partner in the full Brillouin zone). On the cylinder, we
checked that they indeed appear in the zero-energy subspace
of the hollow-core Hamiltonian at the indicated shift, and are
necessary to reproduce all the observed quasihole states.

This MPS expression allows to characterize the states
which we could not resolve when diagonalizing the transfer
matrix in Sec. III. We considered a long but finite cylinder, of
length ∼120�B, and computed the RSEE SFin.

A of the state �̃HR

for a cut into two halves. The results are depicted in Fig. 4.
We checked that the finite-size calculations agree with the
iMPS results for the eight GS of studied in Sec. III (see
Appendix F). As in our iMPS calculations, no deviation to the
area could be detected over the perimeter range considered.
Intriguingly, the first correction to the area law seems to
converge toward zero in the thermodynamic limit. Using a
different extraction method, we obtain a value slightly away
from but still consistent with zero (�0.04, see Appendix F).
This behavior is usually encountered in phases with trivial
topological order. As a comparison, the same type of calcula-
tion for the integer quantum Hall for which the TEE should
be strictly equal to zero typically gives a numerical value
of the order of 0.01 for similar perimeter range and RSEE
convergence.

At this stage we do not know how to interpret the appar-
ent lack of constant correction to the area law in the state
�̃HR. Indeed, its usual interpretation in the usual language of
quantum dimensions and universal TEE seems moot. The log-
arithmic nature of the underlying CFT [65,67] prevents the
identification of a topological charge/sector associated to this
state. The potential connection between logarithmic CFTs and
topological quantum field theories goes beyond the scope of
this paper.

VI. CONCLUSION

In this paper, we have used the nonunitary CFT description
of the Haldane-Rezayi FQH state to derive an exact MPS
representation of the latter. A careful treatment of the zero
modes enables us to perfectly reproduce the 10 ground states
of the Haldane-Rezayi phase on the torus obtained with
ED, for sufficiently large MPS bond dimensions. There, the
nonunitarity of the CFT manifests itself in a Jordan block for
the leading eigenvalue of the transfer matrix. Using the MPS
techniques, we have shown that the Haldane-Rezayi state has
a diverging correlation length in the thermodynamic limit,
proving that it does not describe a gapped phase.

We have also considered the entanglement properties of
the Haldane-Rezayi state. For a cylinder with a finite perime-
ter, we do not see any obvious deviation to the area law.
More interestingly, the topological entanglement entropy in
all topological sectors seems to only depend on the quantum
dimensions of the Abelian excitations. This was already ob-
served for the Gaffnian state, hinting toward a possible generic
feature of FQH model states built from nonunitary CFTs.
Even more remarkable, the sectors arising from the Jordan
block structure do not exhibit any constant corrections, like
a topologically trivial state. Future works will try to provide
some understanding of this nonunitary state strange behavior.
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APPENDIX A: SU(2) SYMMETRY OF THE HR STATE

For the sake of simplicity, we will avoid the treatment of all
special cases coming from the fermionic zero modes and focus
on the AP sector. To show the spin-singlet nature of the HR
state, it is sufficient to prove that S−|�HR〉〉 = Sz|�HR〉〉 = 0.

Within the bosonized picture, ψ† =: eiϕs : and ψ =: e−iϕs :
with ϕs a chiral massless boson with unit compactification
radius, it is simple to see why we have Sz|�HR〉〉 = 0. Indeed,
neutrality within the CFT correlator of Eq. (14) with respect to
the U(1) charge of ϕs ensures that only the spin configurations
with equal number of spin up and spin down have nonvanish-
ing MPS coefficients. We will nevertheless exemplify another
method to prove this result, which can be generalized to other
situations [36]. We introduce the current

Gz(x) = 1

2
: ψ†ψ : (x) = i

2
∂ϕs(x). (A1)
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From its OPEs with the electronic operators, we see that its
zero mode measures the spin of the electronic operators(

Gz
0V↑)(w) = 1

2V
↑(w),

(
Gz

0V↓)(w) = − 1
2V

↓(w). (A2)

As a consequence, the action of Sz of the HR state of Eq. (14)
can be described as

Sz|�HR〉〉 =
2N∑
i=1

〈
OBkgW (w1) . . .

(
Gz

0W
)
(wi) . . .W (w2N )

〉
, .

(A3)
We evaluate this last formula as follows. Since Gz has con-
formal dimension one, the correlator 〈OBkgGz(x)

∏
i W (wi )〉

decays as 1/x2 at large distances |x| → ∞. The OPEs with
the electronic operators furthermore inform us that〈

OBkgGz(x)
2N∏
i=1

W (wi )

〉

=
2N∑
i=1

1

x − wi

〈
OBkgW (w1) . . .

(
Gz

0W
)
(wi ) . . .W (w2N )

〉
+

2N∑
i=1

1

(x − wi )2

× 〈OBkgW (w1) . . .
(
Gz

1W
)
(wi ) . . .W (w2N )

〉
, (A4)

with (Gz
1ψ )(w) = 0 and (Gz

1∂ψ )(w) = −(1/2)ψ are the
other singular contributions arising in the OPEs. The 1/x
contribution to Eq. (A4) must be zero because of its long-
distance behavior. We conclude that Sz|�HR〉 = 0.

We use a similar argument for the spin-lowering operator.
We consider the spin-2 field

G−(x) = − 1
2 : ψ ∂ψ := 1

2 : e−2iϕs (x) :, (A5)

whose OPEs with the electronic operators read as

G−(x)V↓(w) = reg, (A6a)

G−(x)V↑(w) = 1

2

ψ (w) · Vc(w)

(x − w)2
+ V↓(w)

x − w
+ reg, (A6b)

where “reg” denotes nonsingular terms. The least singular
terms of Eq. (A6) lead to

(G−
1 V↑)(w) = V↓(w), (G−

1 V↓)(w) = 0, (A7)

and allow to map the action of S− in the CFT as

S−|�HR〉〉 =
2N∑
i=1

〈OBkgW (w1) . . . (G−
1 W )(wi) . . .W (w2N )〉.

(A8)
Although G−(x) is not a usual current, it has confor-
mal dimension two. As a consequence, the correlator
〈OBkgG−(x)

∏
i W (wi )〉 decays as 1/x4 at large distances. Its

1/x3 contribution which exactly matches Eq. (A8) must be
zero, which shows that S−|�HR〉〉 = 0.

APPENDIX B: HOLOMORPHIC STRUCTURE OF
THE LOWEST LL ON TORUS

We derived the form of the LLL one-body WFs φ(z) =
e−x2/(2�2

B ) f (w) in Eq. (36), where f is a holomorphic function.

In this Appendix, we look more closely at the properties of
these holomorphic sections on the torus pierced by Nφ flux
quanta.

We first show that the LLL has dimension Nφ . Consider
the auxiliary function g = (log ◦ f )′ = f ′/ f . It has a simple
pole for each zero of f , each with residue equal to one. The
contour integral of g around the torus is thus equal to the
number of zeros of f in the torus’ principal region. Thanks
to the boundary conditions satisfied by g,

g(w + iL1) = g(w), g(w + ieiθL2) = g(w) − 2π
Nφ

L1
, (B1)

we can compute the contour integral directly and get that
the number of zeros of f is Nφ . Once the zeros are set to
given positions {w j | j = 1, . . . , Nφ}, the function f is almost
completely specified:

f (w) = ekw

Nφ∏
j=1

θ1

(
w − w j

iL1

∣∣∣τ), (B2)

with the following constraints deriving from the TBC:

eikL1 = e
2π
L1

∑
j w j+ikL1τ = (−1)Nφ . (B3)

The Riemann-Roch theorem states that there are Nφ lin-
early independent solutions to these conditions, which form
a basis of the LLL. In the main text, we give a LLL basis
made of t1 eigenvectors. It is obtained by placing the zeros
equally spaced on a vertical line. More precisely, for ky =
0, . . . , Nφ − 1 we choose

w j (ky) = w0(ky) + i jL1/Nφ, j = 1, . . . , Nφ − 1 (B4)

with
Nφ

iL1
w0(ky) = 1

2
+ Nφτ

(
1

2
− ky

Nφ

)
. (B5)

One can check that this choice is consistent with the TBC and
satisfy Eq. (B3) with kL1 = −πNφ + 2πky. The function

fky (w) = e(2πky−πNφ )w/L1

Nφ∏
j=1

θ1

(
w − w j (ky)

iL1

∣∣∣τ)
thus satisfies the TBC and possesses the same zeros as the
function of Eq. (37) (see Appendix E). They can be identified
up to an irrelevant constant factor

fky (w) = 1√
L1�B

√
π

ϑ

[
ky/Nφ

0

](
Nφ

iL1
w

∣∣∣Nφτ

)
. (B6)

APPENDIX C: CONFORMAL BLOCKS SATISFY THE TBC

We now prove that the choice (39) indeed leads to the
correct quasiperiodic conditions on the torus. We start with
�a(w1 + iL2eiθ ,w2 . . . ,wNe ). Using the fermionic anticom-
mutation relations, we bring V (w1 + iL2eiθ ) to the rightmost
part of the trace. Using the invariance of the trace under cyclic
permutations and the fact that topological sectors are stable by
action of the electronic operator, we get

�a(w1 + iL2eiθ ,w2, . . . ,wNe )

= (−1)Ne−1Tr a[V (w1 + iL2eiθ )XARXPXBkgV (w2)

. . .V (wNe )]. (C1)
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Since eα
√

νa0V (w) = eαV (w)eα
√

νa0 , the sign factor cancels
out when V (w1 + iL2eiθ ) commutes with XAR. Dilatations on
the plane are generated by L0, and the commutation with
XP can be inferred from qL0V (w)q−L0 = V (w + iL2eiθ ) with
q = exp(2iπτ ). We already treated the case of the back-
ground operator XBkg in Sec. III, thanks to e−i

√
νϕ0V (w) =

zV (w)e−i
√

νϕ0 . Combining the different pieces, we end up with

�a(w1 + iL2eiθ ,w2, . . . ,wNe )

= exp

[
−2iπNφ

(
w1

iL1
+ τ

2

)]
�a(w1, . . . ,wNe ), (C2)

which is the result expected from the TBC [see Eqs. (31) and
(36)].

To prepare for the derivation of the MPS representation, we
note that a similar derivation can be used to get the following
identity:

Tr a
[
XARXPXBkgV−λ1 . . .V−λi−nNφ

. . .V−λNe

]
= qnλ1+n2Nφ/2Tr a

[
XARXPXBkgV−λ1 . . .V−λi . . .V−λNe

]
. (C3)

We have used the mode expansion V (w) = ∑
λ zλV−λ where

we recall the mapping z = exp( 2π
L1

w). Summing the last equa-
tion over n ∈ Z brings out the torus lowest-LL WF of Eq. (37):∑

λi∈s+NφZ

Tr a
[
XARXPXBkgV−λ1 . . .V−λNe

]
w

λi
i

= Tr a
[
XARXPXBkgV−λ1 . . .V−s . . .V−λNe

]
e−iπτ s2/Nφ fs(wi).

(C4)

APPENDIX D: LAUGHLIN WFS ON THE TORUS

In this Appendix, we show that our construction of Eq. (39)
can exactly reproduce the m degenerate GS of the Laugh-
lin phase at filling factor ν = 1/m, m ∈ N∗. Their explicit
real-space expression was derived by Haldane and Rezayi in
Ref. [58]:

�Lgh
a = ϑ

[
a/m + t

−mt

](
mW

iL1

∣∣∣mτ

)∏
i< j

θ1

(
wi − w j

iL1

∣∣∣τ)m

.

(D1)

The first ϑ function only depends on the center-of-mass
coordinate W = ∑

i wi, and distinguishes the different GS
by their momentum quantum number Ky = 2aπ/m through
the parameter a = 0, . . . , m − 1. We have also introduced
t = (Ne − 1)/2. The product of θ1 is the usual Jastrow factor
which provides the correct vanishing properties to �

Lgh
a when

two electrons get close to one another.
The underlying CFT for the Laughlin phase does not have

any neutral component, and the electronic operator reads as

V (w) =: ei
√

mϕ(w) : (D2)

in which the free chiral boson ϕ is compactified on a circle
of radius R = √

m. Its two-point correlation function is the
Green’s function of the Laplacian 〈ϕ(w)ϕ(0)〉 = − log z. The
different topological sectors for the Laughlin state are simply
charge sectors a gathering all states with U(1) charge q = a
(mod m) (see Sec. II C).

We want to show that the conformal block of Eq. (39),
that we denote as �CB

a , reproduces Eq. (D1). Using the

identity [31]
Ne∏

i=1

V (wi ) =
∏
i< j

(zi − z j )
m : ei

√
m
∑

i ϕ(wi ) :, (D3)

we can focus on the trace of the normal ordered operator

Tr a

[
X : exp

(
i
√

m
∑

i

ϕ(wi )

)
:

]
= Qa

∏
n∈N∗

Pn, (D4)

which naturally decouples the contribution of the different
bosonic modes as

Qa = Tr Q
a

[
XARq

a2
0
2 + Nφ

2
√

m
a0 e

2π
L1

√
mWa0

]
, (D5a)

Pn = Tr n
[
qa−nan e

√
m

n a−n
∑

i zn
i e−

√
m

n an
∑

i z−n
i
]
. (D5b)

Here, the notations Tr Q
a and Tr n, respectively, mean a trace

over the possible U(1) charges in topological sector a and the
degrees of freedom associated with the nth creation a−n and
annihilation an bosonic modes.

For all n ∈ N∗, the operators b† = a−n/
√

n and b = an/
√

n
are the creation and annihilation operators of a harmonic
oscillator. Using a coherent state basis, we can derive

Tr [qnb†beγ b†
eδb] = 1

1 − qn
exp

(
γ δqn

1 − qn

)
, (D6)

which allows us to evaluate all the Pn’s. This leads us to

�CB
a = Qa

η(τ )
e

2π
L1

mW t
∏
i< j

Aux

(
wi − w j

iL1

)m

, (D7)

where we have introduced the Dedekind function η(q). Up
to an inconsequential multiplicative prefactor, the auxiliary
function reads as

Aux

(
w

iL1

)
(D8)

= z1/2 − z−1/2

2iπ

∏
p∈N∗

exp

(
−qp(zp − z−p − 2)

p(1 − qp)

)
(D9)

= αθ1

(
w

iL1

∣∣∣τ), (D10)

with z = exp(2πw/L1) and α = 1/∂wθ1(0|τ ) (see
Appendix E). Hence, the Jastrow part of the Laughlin
state (D1) is reproduced by the product of Pn. What remains
to be computed in the model WF �CB

a is the zero mode
contribution Qa which only depends on the center-of-mass
position.

For the fermionic Laughlin states that we consider, we have
m odd. In that case, XAR acts as a real phase factor on the
charge basis states (12) and it can be replaced by (XAR)m in Qa

without changing the state [see Eq. (D5a)]. Summing over the
allowed charges in topological sector a gives, up to a global
phase factor,

Qae
2π
L1

mW t =
∑

k∈a/m+Z

q
m
2 (k2+Nek)e2iπ (k+t )( mW

iL1
−mt )

= ϑ

[
a/m + t

−mt

](
mW

iL1
+ mτ

2

∣∣∣mτ

)
. (D11)
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Equations (D7)–(D10) and (D11) proves that our approach
indeed reproduces the Laughlin states of Eq. (D1) on the torus,
with a slight difference in the choice of the origin.

APPENDIX E: ELLIPTIC FUNCTIONS

The generalized theta function, specified by two real pa-
rameters a and b, depends on two complex variables z and τ

as

ϑ

[
a
b

]
(w|τ ) =

∑
k∈a+Z

eiπτk2
e2iπk(w+b). (E1)

Using the Jacobi’s triple product identity [31, Chap. 10], we
can see that the zeros are located at

w = (
1
2 − b + m1

)+ τ
(

1
2 − a + m2

)
(E2)

with m1, m2 ∈ Z. This was important when deriving the ex-
plicit form of the LLL basis in Appendix B.

Other useful formulas when considering the TBC are

ϑ

[
a + 1

b

]
(w|τ ) = ϑ

[
a
b

]
(w|τ ), (E3a)

ϑ

[
a
b

]
(w + 1|τ ) = e2iπaϑ

[
a
b

]
(w|τ ), (E3b)

ϑ

[
a
b

]
(w + τ |τ ) = e−2iπ (w+b)−iπτϑ

[
a + 1

b

]
(w|τ ). (E3c)

They allow to check that the LLL basis (37) satisfies the
TBC and to compute the effect of t1 and t2 on the latter.

Finally, the last function used in the paper is the θ1 function
[see Eq. (59)], which is conveniently expressed as

θ1(w|τ ) = −ϑ

[
1/2
1/2

]
(w|τ ). (E4)

This function is necessary to describe the Jastrow factors
on the torus. However, it requires some work to recast it in
the form encountered in Appendix D. Using Jacobi’s triple
product identity, we first have [31]

θ1(w|τ ) = −iy1/2q1/8
∏

n∈N∗
(1 − qn)

×
∏
n∈N

(1 − yqn+1)(1 − y−1qn), (E5)

with y = e2iπw and q = e2iπτ . We can use this expression and
the series expansion log(1 − z) = −∑p�1 zp/p to get

θ1(w|τ )

∂wθ1(0|τ )
(E6)

= y1/2 − y−1/2

2iπ

∏
n∈N∗

(1 − yqn)(1 − y−1qn)

(1 − qn)(1 − qn)
(E7)

= y1/2 − y−1/2

2iπ
exp

⎛⎝−
∑
p∈N∗

qp(yp/2 − y−p/2)2

p(1 − qp)

⎞⎠ (E8)

= Aux(w). (E9)

FIG. 5. Numerical extraction of the OEE for (a) a half-infinite
cylinder in the topological sector a = 1 with even fermionic parity
and (b) a finite cylinder of length ∼120�b cut into two halves for
the state �̃HR. They should, respectively, be compared to the RSEE
results of Figs. 2 and 4. The OEE and RSEE results agree, up to few
percent discrepancies.

APPENDIX F: ADDITIONAL NUMERICAL RESULTS

In this Appendix, we provide additional numerical evi-
dence about the anomalous topological entanglement entropy
values for the Haldane-Rezayi state.

1. Orbital entanglement entropy

The topological entanglement entropy for the Gaffnian
state was extracted in Ref. [13] with an orbital cut. Rigorously,

FIG. 6. Numerical extraction of the topological entanglement
entropy for a finite cylinder of length ∼120�B (diamond symbols) cut
into two halves in the topological sector a = 0 with even fermionic
parity. The results perfectly agree with the iMPS calculations of
Fig. 2 (performed on a finer grid), which we are also shown here
(× symbols). This supports our finite-size calculations of Sec. V C.
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FIG. 7. Topological entanglement entropy γ (L) =
αFitL − SA(L) with αFit extracted from a fit on SA(L) (obtained in
topological sector a = 1 with even fermionic parity on an infinite
cylinder, as in Fig. 2). The fit is performed over all the points
converged with respect to the truncation parameter Pmax but discards
some points at small L to avoid finite-size effects. This introduces a
selection bias which we exemplify by showing the results for a fit
with (diamonds) and without (× symbols) the points at L = 11�B.
All results nevertheless agree with the value of log

√
8 given in the

main text.

theoretical results on the area law and its first universal
correction only hold true for a real-space cut. Indeed, it is not
clear whether other corrections appear for orbital cuts, even
though it is believed that both cuts should lead to the same
topological entanglement entropy in the thermodynamic limit.
To compare both approaches, we have computed the orbital
entanglement entropy (OEE) of the states investigated in the
paper, namely, the eight GS accessible in iMPS calculations
[see Fig. 5(a)] and the other two described in Sec. V C [see
Fig. 5(b)]. For this latter, we have considered a long, but finite,
cylinder. As in Ref. [36], we observe that the OEE has a
similar behavior as the RSEE although the extracted constant
corrections are slightly off by a few percent.

2. Finite-size RSEE

We tested the finite-size RSEE calculations of Sec. V C
with the hierarchy GS, for which we can assess quantitatively
the cylinder finite-size effects thanks to the iMPS results
of Sec. III C. The two methods, compared in Fig. 6, agree
to less than a percent for the subleading correction γ (L).

FIG. 8. Topological entanglement entropy γ (L) =
αFitL − SA(L) with αFit extracted from a fit on SA(L) (obtained for
the state �̃HR on an finite cylinder, as in Fig. 2). The fit is performed
over all the points converged with respect to the truncation parameter
Pmax but discards the points at L < 12�B to avoid finite-size effects.

This consistency check validates our finite-size calculations
of Sec. V C for the non-Abelian states.

3. Another extraction of the TEE

Using finite differences on the RSEE data is not the only
way to extract the TEE. We also performed linear fits on
the RSEE to determine the linear coefficient α to the area
law (27) and subtracted it subsequently (as was used for the
Gaffnian state in Ref. [13]). Figure 7 displays the results of
such a procedure for the topological sector a = 1 with even
fermionic parity. We find this approach to average the errors
on the extensive part of the RSEE, and thus to give more
precise results for the TEE (all equal to log

√
8 within a few

percent). This method is less sensitive to truncation effects
but at the same time introduces a selection bias in the points
chosen to perform the fit. For instance, we show in Fig. 7
how the extracted TEE changes when the point at L = 11�B

is either in or out the selected points for the fit. We have
decided to only display the finite-difference results in the main
text, which seem less precise but already show the correct
convergence behaviors.

We performed a similar analysis for the GS arising from
the Jordan block of the transfer matrix, described in Sec. V C.
The results are displayed in Fig. 8. They are slightly away
from but still consistent with zero, the value extracted from
Fig. 4 in the main text.
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