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The use of artificial neural networks to represent quantum wave functions has recently attracted interest as
a way to solve complex many-body problems. The potential of these variational parametrizations has been
supported by analytical and numerical evidence in controlled benchmarks. While approaching the end of the
early research phase in this field, it becomes increasingly important to show how neural-network states perform
for models and physical problems that constitute a clear open challenge for other many-body computational
methods. In this paper, we start addressing this aspect, concentrating on a presently unsolved model describing
two-dimensional frustrated magnets. Using a fully convolutional neural network model as a variational ansätz,
we study the frustrated spin-1/2 J1-J2 Heisenberg model on the square lattice. We demonstrate that the resulting
predictions for both ground-state energies and properties are competitive with, and often improve upon, existing
state-of-the-art methods. In a relatively small region in the parameter space, corresponding to the maximally
frustrated regime, our ansätz exhibits comparatively good but not the best performance. The gap between the
complexity of the models adopted here and those routinely adopted in deep-learning applications is, however,
still substantial, such that further improvements in future generations of neural-network quantum states are likely
to be expected.
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I. INTRODUCTION

With ever-improving computational resources, techniques,
and data sets, machine learning has in recent years proven
itself to be an extremely versatile tool for solving tasks previ-
ously thought impossible for a computer in the near future [1].
Deep learning, a branch of machine learning based on the use
of deep artificial neural networks (ANNs) has played a very
important role in these developments and it is currently largely
believed that it will be an important computational method
for years to come. In the field of condensed-matter physics,
several machine-learning applications have been put forward
in recent years. For example, they have been used to success-
fully classify phases of matter [2–5], to perform quantum state
tomography [6–8], to simulate quantum computers [9], to
classify experimental data [10–12], to infer phase transitions
[13], and much more.

In the realm of computational quantum physics, the re-
stricted Boltzmann machine (RBM), a type of ANN, was
proposed as a variational ansätz [14] for many-body quantum
systems. Since then, there has been a burst of research inves-
tigating the viability of such an ansätz. It has been shown that
unlike other variational ansätze [15], wave functions based
on RBMs can potentially capture long-ranged and volume-
law scaling entanglement [16]. Its representation properties
have also been extensively characterized, and by now it is
known that RBM and related states can efficiently describe
the ground states of many physical Hamiltonians [17–20].
Motivated by these theoretical successes, the community has
pushed ahead and explored a wide variety of ANNs such
as feedforward neural networks [21–24], deep Boltzmann
machines [25,26], and a variety of other neural-network in-

spired ansätze [27,28]. These approaches have undergone an
extensive phase of benchmarks, and have been compared to
existing exact results, both in one and two dimensions, typ-
ically showing very good accuracy for ground- and excited-
state properties. While this phase of benchmark has overall
been important to assess the potential of this approach, the
method is yet to be fully deployed on manifestly open prob-
lems, for which the application of ANN states could prove
beneficial to resolve inconclusive results from other methods.

Here, we consider the case of the antiferromagnetic spin-
1/2 J1-J2 model on the square lattice, a prototypical frustrated
magnetic system for which no exact solution is known. De-
spite active research on the model for the past few decades,
one of the chiefly open questions is whether a spin-liquid
phase exists around the point of maximum frustration. Numer-
ous computational methods [29–46] have been used to study
this problem, often finding conflicting conclusions. The active
and long-lasting interest in the J1-J2 model makes it an espe-
cially useful and nontrivial benchmark for ANN techniques,
since the best of the currently available many-body techniques
have been used to study it.

In this paper, we demonstrate that ANNs are a viable and
competitive variational ansätz to study frustrated spin models
in two dimensions. Our wave function is parametrized as a
type of feedforward neural network known as a convolutional
neural network (CNN), routinely used in top applications
of deep learning in industry. We concentrate on the two-
dimensional J1-J2 model on the square lattice, providing
results for both the ground-state energy and spin correlation
functions. We benchmark our results on the 6 × 6 cluster with
exact diagonalization (ED) results [47] and on the 10 × 10
cluster with density matrix renormalization group (DMRG)
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calculations [41] as well as traditional variational Monte Carlo
(VMC) based on Gutzwiller-projected mean field Fermionic
wave functions [40]. We show that for several points in
the phase diagram, the CNN variational energies we obtain
improve upon those obtained by the other techniques. We also
find that there is a small window of frustration ratios for which
our method, while being competitive with the state of the art,
is not yet delivering cutting-edge results. Finally, we discuss
the origin of these limitations and some strategy to further
improve ANN-based methods in future works.

II. MODEL

The spin-1/2 J1-J2 Heisenberg model is defined by the
Hamiltonian

Ĥ = J1

∑
〈i j〉

Ŝi · Ŝ j + J2

∑
〈〈i j〉〉

Ŝi · Ŝ j, (1)

where Ŝi = (Ŝx
i , Ŝy

i , Ŝz
i ) here represents the spin operators at

site i of a square lattice with periodic boundary conditions.
The symbols 〈· · · 〉 and 〈〈· · · 〉〉 indicate pairs of nearest- and
next-nearest-neighbor sites, respectively. We are interested in
the case where both the nearest and next-nearest neighbor
interactions are antiferromagnetic, i.e., J1, J2 � 0, so the mag-
netic interactions are frustrated. For simplicity, we fix J1 = 1
throughout this paper. In addition, since total magnetization
is a conserved quantity in this model and it is expected
that the ground state is in the zero magnetization sector, we
shall restrict our analysis to this sector, denoting by σ spin
configurations belonging to it.

When J2 = 0, the system is unfrustrated and there is a well-
established Neel long-range order [48,49]. In the opposite
limit J2 � J1, the system is also magnetically ordered with
pitch vector Q = (π, 0) or (0, π ). However, in the interme-
diate regime, where J2/J1 ≈ 0.5, the system is highly frus-
trated. There have been numerous conflicting proposals for
the candidate ground state, such as the plaquette valence-bond
state [29–32], the columnar valence-bond state [33–35], or a
gapless spin liquid [36,37,39–42,46], but the correct answer is
still unknown.

While we make no claim about the nature of the physics
in the frustrated regime J2/J1 ≈ 0.5, we hope to present a
new and potentially viable ansätz for variational methods. We
shall compare our variational energies with other methods
such as DMRG and traditional VMC based on a projected
fermionic ansätz and show that there are regimes in parameter
space, where neural network states have the lowest variational
energies.

III. NEURAL NETWORK QUANTUM STATES

Neural network quantum states (NQSs) were first proposed
in Ref. [14], where a RBM was used as a variational ansätz
for the Heisenberg model on a square lattice, corresponding
to J2 = 0 in Eq. (1). Since neural networks are essentially
functions with a large number of parameters, the idea behind
NQSs is to interpret the output of a network as the complex
amplitudes of a wave function �(σ), where σ is a vector
representing a spin configuration of the system. In this paper,
we shall use a variational wave function that is expressed as

a deep feedforward CNN, which has been shown to be able
to support volume law entanglement more efficiently than
shallow networks such as the RBM [50].

A feedforward neural network has the most basic struc-
ture of a variational function composed of a series of trans-
formations called layers. It takes an input vector v(0) and
successively applies a sequence of layers to map it to the
output, i.e., v(0) → v(1) → · · · → v(L) for a L layer network.
A generic layer implements an affine transformation followed
by a nonlinear transformation, which is usually taken to be a
coefficient wise operation,

v
(n)
i = g

⎛
⎝∑

j

Wi jv
(n−1)
j + bi

⎞
⎠, (2)

where Wi j are the elements of a weight matrix, bi are the
elements of a bias vector, and g is some nonlinear function.
Since wave functions are in general complexvalued, we use
complex-valued weights and biases. The nonlinear function is
then a function over the complex numbers, i.e., g : C → C.
For the simulations done in this paper, g is either the rectified
linear unit (ReLU) generalized to complex numbers [51,52],

gReLU(z) =
{

z if 3π
4 > arg z � −π

4
0 otherwise,

(3)

or the logarithm of the hyperbolic cosine (LnCosh)
glncosh(z) = log[cosh(z)]. Although complex ReLU as defined
above is not continuous, in practice we do not notice any
convergence issues. On the other hand, we experienced some
optimization problems when using the LnCosh activation in
the deeper layers of the network, possibly due to divergences
in the LnCosh function. Hence, for the simulations done in
this paper, we use LnCosh activation only in the first layer
and the complex ReLU in all subsequent layers.

In a CNN, the layers have a spatially local structure and are
called convolutional layers. A convolutional layer is also an
affine transformation as in Eq. (2), but with certain constraints
being placed on the weights and biases: The transformation
is separated into several independent “channels” and each
channel is characterized by a “filter” matrix. A convolutional
layer indexed by n with Cn−1 input channels and Cn output
channels will perform the transformation

v
(n)
m, j = g

⎛
⎝Cn−1∑

l=1

K(n)∑
k=1

K (n)
m,kv

(n−1)
l,a jk

+ b(n)
m

⎞
⎠, (4)

where m, l are channel indices, K (n)
m,k are filter parameters

in channel m, and b(n)
m is bias in channel m. The index a jk

indicates the position of the input image to be acted on by the
k parameter of the filter so as to contribute to the j position
of the output vector. The complete structure of our CNN and
shape of the convolutional filters are shown in Fig. 1. In the
final layer, all outputs of all channels are summed over, consti-
tuting a so-called average pooling layer. The full network has
a total of 3838 complex-valued parameters, independent of the
system size that we will apply it to. Notice that, contrary to
a conventional CNN, we do not use pooling layers between
each convolutional layer. The rationale is that it has been
shown in Ref. [50] that the maximum entanglement entropy
in a CNN with pooling layers obeys an area law as opposed
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(b)(a) Sum

Channels: 12 10 8 6 4 2

σ

ΞCNN(σ)

FIG. 1. Network architecture. (a) Shape of the filter which we apply across the square lattice. (b) Full architecture of the convolutional
neural network used in this work. There are six convolutional layers followed by an output layer which simply sums the values of the
prenultimate layer. In the first layer, we use the logarithm of the hyperbolic cosine as the activation function glncosh(z) = log[cosh(z)], while
in all other layers the activation function is given by the complex generalization of the ReLU [51,52]. The total number of complex-valued
parameters in the network is 3838.

to the volume law scaling entanglement entropy in a CNN
without pooling. Since the ground states of the J1-J2 model
are potentially critical,with entanglement entropies exceeding
an area law, it is important that the expressibility of the
variational ansätz not be limited as such.

The complete CNN thus represents an explicitly transla-
tionally invariant function with zero momentum defined on
the configurations of the Hilbert space, i.e., �CNN : {σ} → C,
where σ refers to a computational basis of the Hilbert space.
The variational wave function represented by the CNN is then
given by

�CNN(σ) = exp [�CNN(σ)]. (5)

One of the advantages using such a fully convolutional struc-
ture resides in an intrinsically more efficient learning proce-
dure, as opposed to fully connected layers. For example, the
set of kernels optimized for a smaller system size provides a
good starting point for the optimization of a larger system size
such that relatively few iterations are needed for convergence.
We use the same network structure, with the same number of
variational parameters, for all system sizes studied.

A. Sign structure of the ground state

It is known that in the extremal limits (J1 = 0 or J2 = 0),
the ground-state wave function obeys a simple sign rule. In
those limits, the ground-state wave function takes the form

|GS〉 =
∑

σ

(−1)MA(σ )�(σ) |σ〉 , (6)

where MA(σ) is the total number of up spins on a subset A of
the sites and �(σ) � 0. When J2 = 0, the subset A is given
by one of the two bipartite components of the square lattice,
leading to the so-called Marshall-Peierls sign rule [53]. On the
other hand, when J1 = 0, A can be chosen either to be every
other row or every other column of spins on the square lattice.

These sign conventions can be exactly expressed by a
suitable choice of the variational parameters and can then
be in principle learned during the variational optimization.
However, we find in general that it’s more convenient to
initialize our ansätz in one of the two sign conventions, and
then optimize the resulting state. Our full variational ansätz
then takes the form

|�〉 =
∑

σ

(−1)MA(σ)�CNN(σ) |σ〉 =
∑

σ

�A
CNN(σ) |σ〉 , (7)

where �CNN(σ) is given by Eq. (5). Since �CNN(σ) is complex
valued, the sign structure can in principle be changed by the
network. However, the choice of the subset A does unavoid-
ably present a bias in the variational ansätz and we unfortu-
nately find that optimization is extremely challenging if an ap-
propriate sign structure is not imposed. In this paper, we per-
form an optimization with both of the limiting sign structures
and pick the one which gives the better variational energy.

B. Enforcing C4 Symmetry

In addition, as the model in Eq. (1) is defined on a square
lattice, we can expect that the ground state of the model trans-
forms within an irreducible representation of the symmetry.
However, while the CNN we use is explicitly translationally
invariant, it is not explicitly C4 symmetric, i.e., it does not
need to be an irreducible representation of the C4 group of
fourfold rotations. As the C4 group is Abelian, the irreducible
representations are one-dimensional.

To ensure that the variational wave function is C4 symmet-
ric, we symmetrize the wave function �CNN. This can be done
generically as follows: Denoting ĉ4 to be the generator of the
C4 group, the symmetrized wave function

�̃CNN(σ) =
3∑

r=0

ωr�A
CNN

(
ĉr

4σ
)
, (8)

transforms within an irreducible representation with character
ω. Here, �A

CNN is defined through Eq. (7). This symmetriza-
tion ensures that correlation functions have the correct spa-
tially symmetry, a circumstance especially important in the
striped order phase at large J2, where the a priori sign structure
we start from is not rotationally invariant.

IV. VARIATIONAL MONTE CARLO OPTIMISATION

To optimize the parameters of the variational ansätz
Eq. (8), we use the method known as stochastic reconfigu-
ration (SR) [54], which can can be seen as an imaginary time
evolution.

Consider a variational wave function �({α0
k }) ∈ C2n

which
depends on a set of variational parameters {α0

k }k=1,...,p. If we
have a small variation in the parameters αk = α0

k + δαk , then
the corresponding wave function can be written as

�({αk}) = �
({

α0
k

}) +
p∑

k=1

δαkOk�
({

α0
k

})
, (9)
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where Ok = ∂
∂αk

log [�({α0
k })] are the logarithmic derivatives.

The SR scheme is then essentially an imaginary time
evolution, which is given to first order by

� ′
exact = (1 − εĤ )�. (10)

The optimal coefficients {δα0
k }k=1,...,p that minimize the dis-

tance to the new wave function � ′ with respect to the Fubini-
Study metric,

γ (φ,�) = arccos

√
〈�|φ〉 〈φ|�〉
〈�|�〉 〈φ|φ〉 , (11)

are then given by the solution to the linear equation:∑
k′

[〈O†
kOk′ 〉 − 〈O†

k 〉〈Ok′ 〉]δαk′ = −ε[〈O†
k Ĥ〉 − 〈O†

k 〉〈Ĥ〉].

(12)

We update the parameters as αk = α0
k + δαk and repeat the

procedure until convergence is achieved.
Since each SR iteration requires solving the linear system,

the computational complexity of each step is O(N2
w ) (using

the iterative conjugate gradients algorithm to solve the linear
system), as compared to O(Nw ) for the stochastic gradient
descent (SGD) method, where Nw is the number of variational
parameters. However, the SR method is known to perform
better than SGD for variational optimization of small to
midsized networks.

The expectation values 〈· · · 〉 can be estimated using Monte
Carlo sampling. For instance, the energy can be estimated as

〈Ĥ〉 =
∑

σ,σ �∗(σ ′) 〈σ| Ĥ |σ ′〉 �(σ)∑
σ |�(σ)|2

=
∑

σ

(∑
σ ′

〈σ| Ĥ |σ ′〉 �(σ ′)
�(σ)

)
|�(σ)|2∑
σ ′ |�(σ ′)|2

≈
〈∑

σ ′
〈σ| Ĥ |σ ′〉 �(σ ′)

�(σ)

〉
M

, (13)

where 〈· · · 〉M denotes an average over a sample of configu-
ration {σ} drawn from the probability distribution given by
|�(σ)|2. The sample is easily obtained by the Metropolis
algorithm [55]. This average can be evaluated efficiently
when the matrix 〈σ| Ĥ |σ ′〉 is sparse, which is the case for
the Hamiltonian in Eq. (1) when the basis corresponds to a
tensor product of local spin degrees of freedom. Finally, the
linear system Eq. (12) is known to be highly ill conditioned,
especially for a network with numerous parameters. To al-
leviate this problem, we regularize the matrix by adding a
multiple of the identity. The details regarding the choice of the
optimization hyperparameters are provided in the Appendix.

V. RESULTS AND DISCUSSION

Using the variational ansätz presented in Eq. (8) together
with the SR method described above, we now discuss the
results obtained on the 6 × 6 as well as the 10 × 10 square
lattice with periodic boundary conditions.

A. Comparison with ED

In the case of the 6 × 6 square lattice with periodic bound-
ary conditions, the system is amenable to ED. In Fig. 2(a),
we compare our variational energies with that of the Lanczos
ED results found in Ref. [47]. We show also the relative error
defined by |E−Eexact

Eexact
|. While the relative error is of order 10−3

or lower for most of the parameter space, it is immediately
clear that the simulation is the most challenging close to the
point of maximum frustration J2 ≈ 0.5. In our simulations,
the largest relative error occurred at J2 = 0.55, which roughly
corresponds to the point where our prior sign structure is
maximally violated. This suggests that although the phases of
the wave functions can be changed by the network, the prior
sign structure presents a strong bias for the simulation.

To study the properties of the NQS beyond the energy
expectation value alone, we also measure the spin-spin cor-
relation structure factors defined by

S2( 
q) = 1

N (N + 2)

∑
i, j

〈Ŝi · Ŝ j〉ei 
q·(
ri−
r j ), (14)

where 
q is the pitch vector and N is the total number of spins in
the system. For J2 � 0.5, the system is Neel ordered with pitch
vector 
q = (π, π ), while for J2 � 0.5, the system has a stripe
order with 
q = (π, 0) or (0, π ). We plot these two structure
factors in Fig. 2(b) in comparison with the exact values. The
result is accurate for most of the parameter range apart from
the transition region where frustration is maximal.

Finally, we measure the total spin 〈Ŝ2〉 of our variational
wave function as shown in Fig. 2(c). The model has SU(2)
symmetry and the ground state is known to be in the singlet
sector where the total spin is zero. It is apparent from Fig. 2
that the spike in the total spin coincides with the spike in
relative error. As we have an even number of spin-1/2 degrees
of freedom, the eigenvalues of the Ŝ

2
are of the form s(s + 1)

with s = 0, 1, 2, . . . , N/2 such that the next lowest eigenvalue
is 2. Since the expectation value of the total spin of our
variational ansätz is much less than 2 we can be certain that
our wave function has a good overlap with the singlet sector.

B. Benchmarking with state-of-the-art methods

We now proceed to a system size which cannot be reached
by ED calculations. The purpose is to benchmark our an-
sätz with the more established ones such as matrix product
states and traditional VMC wave functions. In Fig. 3(a), we
compare our variational energies on the 10 × 10 cluster with
the DMRG results in Ref. [41] [where 8192 SU(2) states
or equivalently 32 000 U(1) states were kept] as well as the
Gutzwiller-projected mean-field fermionic ansätz, which is
closely related to that used in Ref. [40]. We see that the CNN
ansätz has competitive energies in all the range of J2/J1. With
the notable exception of the reported point at J2/J1 = 0.55,
NQS energies are very close or better than those reported in
the literature. This point is around the region where the prior
sign structures are most violated, and indicates a residual,
unoptimized sign structure as a likely source of systematic
error. Nevertheless, it is encouraging that by using a relatively
simple ansätz, without much prior input information about
the physics of the system, one is able to achieve variational
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(a) (c)(b)

FIG. 2. Simulation results on the 6 × 6 square lattice with periodic boundary conditions. (a) Energy comparison with ED results from
Ref. [47]. The CNN energies are indicated by the blue line while the black stars gives the exact values. The relative errors are plotted with
respect to the right axis. The blue dashed line shows the relative error for our CNN ansätz and the green dashed line corresponds the the
Gutzwiller-projected mean-field fermionic variational ansätz from Ref. [40]. (b) Spin-spin structure factor as defined in Eq. (14). (c) The total
spin 〈Ŝ2〉, an extensive quantity. In the exact case, this value should be zero since the ground state is in the singlet sector.

energies competitive with, and in most of the parameter space
better than, other state-of-the-art methods. In the Appendix,
we provide a table containing all the variational energies
obtained. A further possible origin for the nonoptimal per-
formance at J2/J1 = 0.55 can also be traced in symmetry
violations in our CNN ansätz. Most notably, whereas the
fermionic ansätz as well as the DMRG calculations preserve
SU(2) symmetry explicitly, the CNN does not. This can be
seen in Fig. 3(c), where the total spin of our variational form
is substantially different from zero, albeit still being less than
2 (the next lowest eigenvalue of the total spin operator Ŝ

2
)

and hence ensuring a decent overlap with the singlet sector.
Despite the mixing with other spin sectors, the features of
the Neel and striped magnetic orders can still be seen in the
spin-spin correlations in Fig. 3(b).

Additionally, we show some results using a RBM with
approximately the same number of parameters as the CNN.
We can see that the CNN indeed has better performance,
especially in the frustrated region, further corroborating the
point that deep networks can capture entanglement more
efficiently than shallower ones [50].

Before concluding the section, we would like to mention
also a previous work Ref. [24], which used a slightly different

CNN as a variational ansätz to study the same problem. On
the 10 × 10 cluster with J2 = 0.5, a variational energy per site
of −0.4736 was obtained as compared to our result −0.4952.
This differs significantly from other state-of-the-art methods
as can be seen from the scale on the energy axis of Fig. 3(a).
There are some qualitative differences between their ansätz
and ours: (1) Reference [24] used real parameters while ours
are complex-valued. (2) The nonlinearity in Ref. [24] is in-
troduced via max-pooling operations while we use nonlinear
activation functions. In addition, we symmetrize our ansätz
to have C4 rotation symmetry and also provided an initial
prior sign structure. (3) The optimization technique used in
Ref. [24] is different from the SR method we have employed.

VI. CONCLUSION

The results obtained in this paper provide tangible evi-
dence that NQSs are a competitive variational ansätz to study
challenging open problems such as frustrated magnets. While
we have provided here direct numerical evidence for their
suitability to study the stability of the spin-liquid phase in the
J1-J2 model, some open aspects have not been yet addressed
in this paper, and will be the focus of future research.

(a) (c)(b)

FIG. 3. Simulation results on the 10 × 10 square lattice with periodic boundary conditions. (a) Energy comparison with other state-of-the-
art methods. We plot the energy difference per site with respect to the energy obtained from our CNN variational ansätz. The red open circles
show the values for the DMRG results of Ref. [41] and the green triangles correspond to the the Gutzwiller-projected mean-field fermionic
variational ansätz. The black star shows the exact result from Green’s function quantum Monte Carlo for the sign-problem free point (J2 = 0).
The red stars show the results of a restricted Boltzmann machine with 3600 hidden units (3636 parameters). (b) Spin-spin structure factor as
defined in Eq. 14. (c) The total spin 〈Ŝ2〉. In the exact case, this value should be zero since the ground state is in the singlet sector.
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TABLE I. Comparison between Gutzwiller-projected mean-field fermionic wave functions VMC [40] (on the 10 × 10 case the energies
were provided by F. Ferrari and F. Becca), DMRG with 8192 SU(2) states, or equivalently 32 000 U(1) states [41] and the CNN used in this
paper. The exact energies on the 6 × 6 case were take from Ref. [47].

6 × 6 J2 = 0.0 J2 = 0.2 J2 = 0.4 J2 = 0.45 J2 = 0.5 J2 = 0.55 J2 = 0.6 J2 = 0.8 J2 = 1.0

Exact −0.678 872 −0.599 046 −0.529 745 – −0.503 810 −0.495 178 −0.493 239 −0.586 487 −0.714 360
VMC – – −0.52715(1) −0.51364(1) −0.50117(1) −0.48992(1) – – –
DMRG – – −0.529 744 −0.515 655 −0.503 805 −0.495 167 – – –
CNN −0.67882(1) −0.59895(1) −0.52936(1) −0.51452(1) −0.50185(1) −0.49067(2) −0.49023(1) −0.58590(1) −0.71351(1)

10×10 J2 = 0.0 J2 = 0.2 J2 = 0.4 J2 = 0.45 J2 = 0.5 J2 = 0.55 J2 = 0.6 J2 = 0.8 J2 = 1.0

VMC −0.66935(1) −0.59082(1) −0.52229(1) −0.50764(1) −0.49439(1) −0.48227(1) −0.47259(1) −0.56899(1) −0.69123(1)
DMRG – – −0.522 391 −0.507 976 −0.495 530 −0.485 434 – – –
CNN −0.67135(1) −0.59275(1) −0.52371(1) −0.50905(1) −0.49516(1) −0.48277(1) −0.47604(1) −0.57383(1) −0.69636(1)

First, since the system is gapless, finite size effects are large
such that accurate extrapolations to the thermodynamic limit
are necessary. A more computationally demanding simulation
campaign would be required to provide a firm finite-size
extrapolation of the magnetic correlations presented here.

Second, the networks we have used here are comparably
much smaller, in terms of depth and number of trainable
parameters, than state-of-the-art models used in modern deep-
learning applications. Our networks contain at least three
orders of magnitude less parameters than what is found in
typical deep CNNs routinely used for image recognition, and
the margin for future improvements therefore seems quite
substantial. To bridge this gap, more expressive models could
be adopted, for example, along the lines of the recently intro-
duced auto-regressive models [56] for quantum states. Finally,
it is rather clear from our simulations that the performance of
our ansätz is also linked to the sign structure of the many-body
state. This implies that “learning” the correct sign structure
within the parametrization we adopted presents a challenge
for the SR optimization we use. In this context, it would be
interesting to see how modern machine-learning techniques
such as reinforcement learning can help tackle this problem.
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APPENDIX A: VARIATIONAL ENERGIES

In the table below, we show the exact values (including
error bars) for the variational energies obtained in this paper.

APPENDIX B: OPTIMIZATION DETAILS

The optimization of a variational ansätz �({αk}) ∈ C2n
de-

pending on parameters {αk} is achieved using the SR scheme,
which involves solving the linear equation∑

k′
[〈O†

kOk′ 〉 − 〈O†
k 〉〈Ok′ 〉 + λδkk′ ]δαk′

= −ε[〈O†
k Ĥ〉 − 〈O†

k 〉〈Ĥ〉], (B1)

where Ok = ∂
∂αk

log [�({α0
k })] are the logarithmic derivatives,

ε is the the step size, and λ is the regularization parameter.
For the simulations done in this paper, we take ε = 0.01
and λ = 0.01. The expectation values 〈· · · 〉 are estimated
with Markov chain Monte Carlo sampling (using local spin
exchange moves to conserve the total magnetization) with a
sample size of 5000.

The CNN architecture used in this work is shown in Fig. 1.
There are six convolutional layers which are initialized from
0 mean random normal distributions with standard deviations
0.1, 0.03, 0.04, 0.05, 0.06, 0.07, respectively, starting from
the first layer.
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