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Enhanced localization and protection of topological edge states due to geometric frustration

L. Madail ,1 S. Flannigan,2 A. M. Marques,1 A. J. Daley,2 and R. G. Dias1

1Department of Physics & I3N, University of Aveiro, 3810-193 Aveiro, Portugal
2Department of Physics & SUPA, University of Strathclyde, Glasgow G4 0NG, United Kingdom

(Received 26 March 2019; published 11 September 2019)

Topologically nontrivial phases are linked to the appearance of localized modes in the boundaries of an open
insulator. On the other hand, the existence of geometric frustration gives rise to degenerate localized bulk
states. The interplay of these two phenomena may, in principle, result in an enhanced protection/localization
of edge states. In this paper, we study a two-dimensional Lieb-based topological insulator with staggered
hopping parameters and diagonal open boundary conditions. This system belongs to the C2v class and sustains
one-dimensional (1D) boundary modes except at the topological transition point, where the C4v symmetry allows
for the existence of localized (0D) corner states. Our analysis reveals that, while a large set of boundary states
have a common well-defined topological phase transition, other edge states reflect a topological nontrivial phase
for any finite value of the hopping parameters, are completely localized (compact) due to destructive interference,
and evolve into corner states when reaching the higher symmetry point. We consider the robustness of these
compact edge states with respect to time-dependent perturbations and indicate ways that these states could be
prepared and measured in experiments with ultracold atoms.
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I. INTRODUCTION

Recently, the charge polarization theory based on topo-
logical invariants has been extended to include new symme-
try protected topological phases in crystalline insulators of
dimension dD characterized by the existence of quantized
n-order moments that reflect the presence of surface modes of
dimension (d − n)D [1–3]. For example, in two-dimensional
(2D) systems with open boundary conditions (OBCs) such
that C4v symmetry is present, quantized quadrupole moments
underly the presence of corner states in the band gaps [1–3].
If OBCs lead to lower symmetries (C2v for instance), one
expects to observe typical weak topological insulator behav-
ior with vertical and horizontally localized boundary modes.
Ultimately, geometric frustration in 2D lattices may enrich
this topological description by allowing an enhancement of
the edge states localization [4,5].

In this paper, we study a Lieb-type system with staggered
hopping terms (t1 and t2). This model exhibits a noncentered
rotation axis within the unit cell, which is responsible for
nonquantized topological indexes [6]. When the choice of
OBC generates a lattice with C4 symmetry, the nontrivial
topological regime reveals corner localized states. Our work
focuses on a different type of boundary under which the
model has C2 rotational symmetry in the lattice when t1 �= t2
and a singular C4 rotational symmetry for identical hopping
parameters. In this model, a particular boundary mode arises
displaying complete localization due to wave-function de-
structive interference, similar to compact localized flat band
bulk states [7]. Since this state has support in more than
one sublattice it will acquire nonzero energy without the
introduction of local potentials. This automatically implies
that the symmetry that protects these states is not usual chiral
symmetry associated with bipartite lattices. In fact, one can

show that this state is related to the square-root topological
insulator [8–12] and the protecting symmetry is a sublattice
chiral-like hidden symmetry. To our knowledge, topological
characterization of a weak topological insulator with compact
edge states has not been addressed in the literature where geo-
metrically frustrated lattices are studied [13–15]. In our paper,
we show that these compact localized states reflect a different
topological transition point (the atomic limit in our case)
and consequently they remain completely localized (in the
system boundaries, edge or corner) even at the usual transition
point t1 = t2 where the remaining edge states converge. Our
topological characterization follows the approach of Ref. [6],
which agrees with other methods to address topological in-
variants that protect finite energy edge states in the case of
noncommensurate OBCs or noncentered I axis in the unit cell
such as the modified approaches of splitting the Zak’s phase
into intracell and intercell contributions [16–20], the squaring
of the Hamiltonian [8–12] and synthetic dimensions [21–25].
The robustness of this compact state is probed when applying
a time-dependent perturbation to the hopping amplitudes in
order to examine its protection against mixing with the bulk
states and test the viability of its preparation in a cold atom
experiment.

II. STAGGERED HOPPING TERMS IN THE LIEB LATTICE

The Lieb lattice is a decorated line-centered square lat-
tice characterized by three species of atoms (A, B,C) per
unit cell where electrons can hop between nearest-neighbor
atoms [26,27]. This system will have two types of states
according to the degree of localization of the wave function
in the system: bulk states, which span through all possible k
values and plaquette localized states of zero energy. In order
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FIG. 1. (a) Plot of the energy spectrum for the Lieb lattice with
conventional OBC and integer number of plaquettes as a function
of the ratio t1/t2. (b) Schematic illustration of corner states present in
the Lieb lattice according to the choice of hopping amplitudes: t1 = 0
(red), t2 = 0 (purple), and t1 > t2 (blue).

to observe topological phase transitions with the emergence
of edge states, staggered hopping terms are required and
therefore we have to consider a larger unit cell of six sites
(in the original lattice these will correspond to two A, B,
and C sites). Using OBCs such that we have a system with
integer number of plaquettes will result in the creation of two
distinct topological regimes. In one of these, when t1 > t2,
four isolated degenerate states appear in the band gap and
are localized in the corners of the lattice [see blue curves
of Fig. 1(a)]. These degenerate states reflect all the possible
combinations of parity values in both x and y directions. Note
that C4 symmetry is preserved in the lattice independently of
the values {t1, t2}. The localization of this state in the corner
depends on the ratio t = t1/t2 and will be less extended in
the lattice the greater the value of t . Specifically, in the limit
t1 = 0 the corner site can host a zero-energy localized state.
On the other hand, if t2 = 0 we get a three-site cluster in the
corner with energies ε = {0,±√

2t1} [see Fig. 1(b)].
We now consider OBCs that diagonally cross the Lieb

plaquettes [see Figs. 2(b), 2(c)], resulting in the unit cell
of Fig. 2(a). In this case, corner sites share both t1 and t2
hopping terms. This means that whenever one of the hop-
ping terms vanishes we will have three-site clusters in the
vertical/horizontal boundaries hosting finite energy compact
edge states and the corner states will only be seen when the
Hamiltonian has C4-rotation symmetry (t1 = t2).

The tight-binding Hamiltonian for this system is given by

HTB =
∑
m,n

t1a†
m,n(bm,n + cm,n + dm−1,n + em−1,n)

+ t2 f †
m,n(bm,n + dm,n + cm,n+1 + em,n+1) + H.c., (1)

where α†
m,n is the fermionic creation operator acting at site

α = (a, b, c, d, e, f ) of unit cell index (m, n). In order to
obtain the dispersion relation of the Lieb lattice assuming
periodic boundary conditions we proceed by performing the
Fourier transform on the operators of Eq. (1) using

αkx,ky = 1√
MN

∑
m,n

αm,nei(kxm+kyn), (2)

where αξ = (aξ , bξ , cξ , dξ , eξ , fξ )T , ξ labels the 2D coordi-
nates {m, n} or the momentum space {kx, ky}, M and N are
the number of unit cells in the (x, y) directions, respectively.

FIG. 2. Boundary states of the Lieb rotated lattice. In the top left,
we schematize the creation of the rotated lattice with unit cell of
(a) from the two-dimensional Lieb model (b) where the boundaries
belong to a π/4 rotated x-y reference frame (c). The energy spectrum
as a function of the hopping parameters is plotted for the rotated Lieb
lattice with 5 × 5 plaquettes and t2 = 1 (only the positive energy
range of the particle-hole symmetric spectrum is shown). We identify
the different types of states according to their localization in the
lattice: bulk (black line), vertical (purple line), horizontal (blue line),
and corner (red dot) states. This last state appears only for t1 = t2,
when C4 rotation symmetry is restored.

The k-space Hamiltonian can be found by transforming the
tight-binding Hamiltonian by

HTB =
∑
kx,ky

(
α†

kx,ky

)T
Hkαkx,ky , (3)

with

Hk =

⎛
⎜⎜⎜⎜⎜⎝

0 t1 t1 t1e−ikx t1e−ikx 0
t1 0 0 0 0 t2
t1 0 0 0 0 t2e−iky

t1eikx 0 0 0 0 t2
t1eikx 0 0 0 0 t2e−iky

0 t2 t2eiky t2 t2eiky 0

⎞
⎟⎟⎟⎟⎟⎠,

(4)

where kx(ky) = 2π p/M(N ) for p = 1, . . . , M(N ). The spec-
trum of Hk is the set of eigenvalues of this 6 × 6 matrix,
giving the general expression for the dispersion relation with
the following six distinct bands:

E±±(kx, ky) = ±
√

2
√

(1+ t2) ±
√

t4 +1+ t2
(−1+ �kx,ky

)
,

E0(kx, ky) = 0 (5)

with �kx,ky = cos ky + cos kx(1 + cos ky) and t = t2/t1 [note
that E0(kx, ky) is 2× degenerate]. The band structure for
this system is similar to that of the usual Lieb system for
equal hopping parameters [Fig. 3(a)], displaying electron-hole
symmetry and a Dirac cone at the high symmetry point � =
(π, π ). When t2 �= t1 [Fig. 3(b)], two band gaps are created in
the top and bottom bands where boundary modes may emerge.

Considering the system with OBCs shown in Fig. 2(c), the
resulting Lieb cluster with integer number of plaquettes holds
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FIG. 3. Dispersion relation of the Lieb rotated lattice for t2 = 1
and (a) t1 = t2; (b) t1 = 1.67t2.

C2 rotational symmetry for any choice of the hopping terms
except when t1 = t2, where C4v symmetry is restored. As a
result, this system behaves as a weak topological insulator
[28] since it carries horizontal or vertically localized states
whenever t1 �= t2. In fact, due to the absence of magnetic
flux, the time-reversal symmetry is preserved and the Chern
number is zero [29]. The band of edge states disappears at
the gap closing point except for one particular state, which
does not participate in the level crossing at the topological
transition point. The latter leads to the appearance of the
corner state when t1 = t2 marking the evolution of maximally
localized horizontal to vertical edge modes (see Fig. 2).

III. LOWER-DIMENSIONAL SYSTEMS

In this section we will address lower-dimensional systems
based on the Lieb unit cell. Since they maintain {Mx, My}
reflection symmetries, they will be similar to the square
rotated Lieb lattice from the symmetry point of view and
thus studying its topology will allow us to comprehend the
different types of edge states previously identified. Through
this analysis we make use of the vertical mapping, a basis
rotation that combines Wannier states (|wi,m〉) of sites indices
(i, m) that intersect the same vertical axis (γi). We define the
orthonormal basis space Bγi = {|ψi,1〉 , . . . , |ψi,Nγi

〉} for each
set Sγi of all (i, m) sites in the γi-vertical axis with dim Sγi =
Nγi , with the following conditions (where we dropped the i
index in order to simplify the notation):

|ψ j〉 = 1√
β

Nγ∑
m=1

a j,m|wm〉, for j = 1, . . . , Nγ

〈ψp | ψq〉 = 0, p �= q.

(6)

Specifically when Nγ is even, we get β = Nγ and a∗
j,maj,m = 1

for all m = 1, . . . , Nγ . As an example, a vertical axis with
Nγ = 4 sites requires a set with dim Sγ = 4 vectors, each
with unitary amplitude components aj,m = ±1 such that all
four vectors of the basis for that γ axis are orthogonal. For an
odd number of vertical sites in the set Sγ , the components
are chosen to be the smallest integer amplitudes possible,

respecting the vertical reflection symmetry and the orthogo-
nality rule.

The topological characterization follows the generalization
of the Zak’s phase in Ref. [6] for systems with a noncentered
symmetry point. For the determination of this topological
invariant we rely on the inversion symmetry present in the
system. In such case, the well-quantized Zak’s phase is given
by the parity of the occupied Bloch wave functions at the
inversion invariant points in the Brillouin zone [30] plus a
correction accounting for the displacement of the inversion
center with respect to the midpoint of the unit cell.

A. Lieb rhombi chain

The Lieb rhombi chain is a quasi-1D system consisting of
Lieb rotated plaquettes connected at the vertices with seven
sites per unit cell [see Fig. 4(a)]. The bulk Hamiltonian is
followed by

Hk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 t1 t1 e−ikt1 e−ikt1 0 0
t1 0 0 0 0 t2 0
t1 0 0 0 0 0 t2

eikt1 0 0 0 0 t2 0
eikt1 0 0 0 0 0 t2

0 t2 0 t2 0 0 0
0 0 t2 0 t2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where we write the energy dispersion relation as

E±±(k) = ±
√(

2t2
1 + t2

2

) ±
√

4t2
1 t2

2 cos(k) + 4t4
1 + t4

2 ,

Et2 (k) = ±
√

2t2, (8)

E0(k) = 0.

When t1 = t2, the band structure shows three flat bands εk =
{0,±√

2} and four dispersive bands touching at k = {0, π}
[see Fig. 4(c)]. For the particular case of k = 0 [see Fig. 4(e)],
this gap closing point is robust against perturbations that
preserve the inversion symmetry. The same is not seen in
Fig. 4(d) for k = π . In this case, gaps open at t1 � t2/

√
2 and

edge states may appear depending on the choice of boundary
conditions.

Making use of the vertical combination mapping [see
Fig. 4(b)] of Eq. (6) (which, in this case, corresponds to a
bonding and antibonding combination since all Nγ � 2) [31],
the system can be rewritten as a

√
2t1t2t2

√
2t1 chain and a

chain of decoupled three-site clusters with a single hopping
parameter dependence t2, responsible for the flat bands Et2 of
Eq. (8). Since the topological transition of the t1t2t2t1 chain
occurs at t1 = t2 [6], our top mapped chain of Fig. 4(b) holds
a topological transition point at t1 = t2/

√
2. The chain of

decoupled clusters may as well be interpreted as a t1t2t2t1
chain, adding fictional Ao sites connected to the clusters by
a t1 = 0 hopping term, implying a topological transition at the
atomic limit t2 = 0.

One may choose appropriate OBCs such that both indepen-
dent systems host edge states localized at least in one of their
boundaries [see Fig. 4(f)]. In such case, the top chain requires
left and/or right Ae ending sites in the regime

√
2t1 > t2 and

left and/or right Fe ending sites for
√

2t1 < t2 in order for the
localized edge states to be observed. On the other hand, the
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a b
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FIG. 4. Lieb rhombi chain with seven sites per unit cell. (a) original model; (b) mapped version of the vertical bonding (blue) and
antibonding (red) combination basis with a continuous chain of even states (e) and decoupled chains of odd states (o). (c), (d), (e) plot
the dependence of the band structure with the hopping parameters. In (c) we plot the band structure for t1 = t2 = 1 and in (d) and (e) we show
the dependence with t1/t2 of the k = π and k = 0 levels, respectively. The plot in (f) represents the eigenstates of each (blue and red) chains as
a function of the hopping parameters for an open chain (a) with left-A and right-F endings. The edge states in the band gaps evolve from the
topological transition t1 = √

2t2 (blue line) and from the atomic limit (red line).

decoupled three-site cluster chain will display edge states with
energy ε = ±t2 when OBCs are such that a two-site cluster is
generated at least in one end of the chain (i.e., the chain should
end with a left and/or right Fo site). Moreover, when a single
site cluster is constructed, we will also have an edge state with
zero energy, albeit not protected against perturbations since it
overlaps with zero-energy flat bands present in the system.

Although our model is a quasi-1D chain, the Zak’s phase
can still be calculated using the method of Ref. [6] for 1D
chains with noncentered inversion point if additional consid-
erations are followed. Given the eigenstate of the k-space bulk
Hamiltonian |u j (k)〉, the inversion symmetry operator acting
on the internal Hilbert space at the inversion symmetric points
yield well-defined parity values

π̂ |u(0)〉 = p0 |u(0)〉 π̂ |u(π )〉 = pπ |u(π )〉 (9)

with {p0, pπ } = ±1. Figure 5 specifies the inversion center
rc = a(1/2 + m/2Nx ) with Nx = 4 being the number of sites
encountered in the x direction of the

√
2t1t2t2

√
2t1 mapped

chain and m the displacement of the inversion axis with
respect to the center of the unit cell. We may choose one of
the two axis (rc1 or rc2 ) with respective m = 1 and m = −3
(the Zak’s phases for the two inversion axis suffer a shift of
Z̃ j,rc2

− Z̃ j,rc1
= π ). The corrected Zak’s phase for the Lieb

rhombi chain reads

Z̃ j =
{

arg(p0 p†
π ) + ∑N

s=N−m′+1

∫ π

0 dk|u j,s(k)|2, m < 0,

arg(p0 p†
π ) − ∑m′

s=1

∫ π

0 dk|u j,s(k)|2, m > 0,

(10)

for each band j where m′ is the evaluated number
of k-dependent terms in the inversion operator for each

displacement m (see Ref. [6]) and N = 7 the number of sites
in the unit cell of the Lieb chain. We gather the results for the
Zak’s phase of each band in Table I for rc1 taking into account
the two topological regimes previously mentioned.

From one regime to the other, we see a π shift of the
Zak’s phase of the dispersive bands and this is consistent
with the results achieved for a t1t1t2t2 chain in Ref. [6].
Furthermore, since there is no gap opening or closing for
k = 0, the parity values p0 for each band remain constant
for the two topological regimes. For the flat bands arising

TABLE I. Calculation of the corrected Zak’s phase (Z̃ j) and
parity values {p0, pπ } for each band j of Fig. 4(c) and for the two
topological regimes using the inversion center rc1.

rc1

Band Z̃ j p0 pπ

1 0 1 1
2 0 1 1
3 π 1 −1

t1 < t2/
√

2 4 0 −1 −1
5 0 −1 −1
6 0 1 1
7 0 1 1

1 π 1 −1
2 0 1 1
3 0 1 1

t1 > t2/
√

2 4 0 −1 −1
5 π −1 1
6 0 1 1
7 π 1 −1
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FIG. 5. Determination of index m′ for the calculation of the Zak’s
phase. We specify the unit cell center (blue line) as well as the two
possible inversion center axis (red line) for both the original (a) and
mapped (b) rhombi chain.

from the three dangling sites in the unit cell, the two different
regimes will not introduce a π shift because the respective flat
bands remain gapped. This reflects the fact that the topological
transition for this chain of clusters occurs when t2 = 0. If
we choose a different unit cell, which does not contain three
connected dangling sites the Zak’s phase is shifted by π .

It can be shown that, through an appropriate rotation of the
BCo and DCo sites, the chain of decoupled three-site clusters
at the bottom of Fig. 4(b) becomes a diamond chain with a
single renormalized hopping parameter, t2/

√
2, and a π flux

per plaquette [32]. Recently, this model was found to fall into
a new category of topological insulators labeled square-root
topological insulators (

√
TIs) [8,9]. The nontrivial topological

features of these
√

TIs are linked to their squared-Hamiltonian
(H2) [10,33]. Since

√
TIs are bipartite, their H2 can be put into

a block diagonal form, that is, the squared model is a system
of two independent chains, one of which being topologically
nontrivial. Under the square-root operation, the topological
states of the squared model are then mapped into the corre-
sponding states of the original

√
TI model. Through the basis

rotation mentioned above, our three-site cluster model directly
inherits the same topological nature as that of the diamond
chain with π flux per plaquette.

B. Lieb rhombi ribbon with single-direction PBC

In the Lieb rhombi chain, we showed the existence of two
topological transitions, one of which occurs at the atomic limit
and leads to a state exclusively in the topological nontrivial
regime. We will now study a more complex system, the Lieb

FIG. 6. Plot of the energy spectrum for the rotated Lieb ribbon
with OBC in the x direction and PBC in the y direction as a function
of the ratio t1/t2. (a) and (b) schematically illustrate the PBC in the
y and x direction, respectively (the colors in the boundaries of the
cylinders represent the type of edge states energies of Fig. 2 sup-
ported by each system). The plot was computed for system in (a) with
five plaquettes in the x direction where we overlap the analytical
form of the edge states for ky = 0 (purple line) and ky = π (red line).
Due to the chosen terminations for the numerical evaluation, we will
not see the ky = 0 edge state level in regime t1 < t2 (dashed line).
The colored dots correspond to those of Fig. 7. In (c) we represent
the particular case of ky = π state with total localization in the left
boundary and no bulk decay.

rhombi ribbon composed by several rhombi chains connected
at the F sites (see Fig. 6), and show that similar behavior is
also present.

Let us first consider a horizontal cylinder where PBCs
are applied in the y direction and OBCs in the x direction
preserving an integer number of plaquettes [see Fig. 6(a)]. The
y momentum is a good quantum number and one can interpret
this system as a set of 1D chains indexed by ky. Using the unit
cell indexation of Fig. 2(a), we write the Hamiltonian of each
m chain as

HTB(m, ky) =
∑
m,ky

t1a†
m,ky

(
bm,ky + cm,ky + dm−1,ky + em−1,ky

)

+ t2 f †
m,ky

(
bm,ky + dm,ky + e−iky cm,ky

+ e−iky em,ky

) + H.c. (11)

The effective unit cell of each of these 1D chains is now
composed by two diamond plaquettes connected at F sites
[see Fig. 7(i)]. Similarly to the system addressed by Kremer
et al. [9], we encounter a Peierls phase factor [34] in one of
the hopping terms of each diamond plaquette which translates
into a magnetic flux inside each loop. In this case, however,
consecutive plaquettes have opposite flux directions. Using
bonding and antibonding combinations of B (D) and C (E )
states, we arrive at a bonding t̃1t̃2t̃2t̃1 chain [t̃1 = √

2t1 and
t̃2 = √

2t2 cos(ky/2)] with additional antibonding sites con-
nected to the F sites by an effective t̃3 = √

2t2 sin(ky/2) [see
Fig. 7(ii)]. In the particular case of ky = 0, the system falls into
the topological behavior of a t1t2t2t1 chain [see Fig. 7(ii1)].
For ky = π the effective hopping t̃2 = 0 leads to two chains of
decoupled three-site clusters with t̃1 and t̃3 hopping terms, re-
spectively [see Fig. 7(ii2)]. We encounter the same description
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FIG. 7. Effective 1D chains categorized by ky values. The Lieb rhombi ribbon after Fourier transforming in the periodic y direction maps
into a diamond chain (i) with opposite magnetic flux in consecutive plaquettes, yielding ky-dependent hopping terms between F and both C
and E sites. A basis rotation via bonding and antibonding linear combination of B (D) and C (E ) states gives chain (ii) with effective hopping
terms t̃2(ky ) and t̃3(ky ). At the inversion-invariant momenta ky = {0, π} we arrive at a

√
2t1

√
2t2

√
2t2

√
2t1 chain (ii1) and a set of

√
2t1

√
2t1 and√

2t2

√
2t2 clusters (ii2), respectively. The right figures plot the energy spectra as a function of ky (and respective corrected Zak’s band phase

[6]) for a system (i) with ten diamond plaquettes, spanning different t = t1/t2 values. We identify the band of edge states (thick black line),
which becomes present in the nontrivial topological regime, the ky = π flat band states (purple and blue dots) for each cluster of (ii2) and the
ky = π edge state (red dot), which will not converge to the band gap closing point at the topological transition t = 1.

as in the Lieb rhombi chain, where the topological transition
point occurs at the atomic limit. Therefore, three flat bands are
created for each hopping parameter and edge states emerge
every time OBCs are such that break these clusters into two-
site boundaries. As expected, an edge band of all possible ky

values appears in the band gap for t = t1/t2 > 1, when the
system ends at A sites. These edge states have the same energy
at the transition point t = 1, except for the ky = π edge state
that will instead cross the bulk band at t = √

2. This behavior
is observed in Fig. 6 where we plot the energy spectrum of the
ribbon considering PBCs in the y-direction and a unit cell with
five plaquettes in the x-direction. The appearance of energy
levels in the middle of the band gap is only seen for the case
where t1 outgrows t2. These edge states are confined to the
open vertical boundaries of the ribbon and we show below
that they are approximately the vertical edge states observed
for the square Lieb cluster of Fig. 2.

In the case of a 2D Lieb system, the general form of
edgelike states should include two independent decaying be-
haviors {cx, cy} such that the components of the edge state in a
unit cell are given by |ul, j〉 = cl

xc j
y (ψA, ψB, ψC, ψD, ψE , ψF )T

with indexes (l, j) denoting the unit cell of six sites [see
Fig. 2(a)]. Imposing PBC in the y direction implies cy = eiky

and ky = {0, π} will define the top and bottom levels of the
edge states band (see Fig. 6).

The OBCs of the horizontal Lieb cylinder of Fig. 6(a)
imply {B,C} and {D, E} virtual sites of zero amplitude [35]
at the left and right ends, respectively. The solutions for
the decaying behaviors are obtained by solving the eigen-
value relations and setting the amplitudes in these sublattices
to zero. For ky = {0, π}, the set of solutions is shown in
Table II with βt

0 = √
2
√

t2 + 1, βt
1 = √

2/(t
√

1 + t2) and
βt

2 = √
t2 + 1/

√
2. Note that we have neglected solutions

with energies that fall into the bulk bands. A ky = 0 (cy = 1)
state will have two possible decaying behaviors in the x direc-
tion cx = {−t2,−1/t2} depending on the hopping constants.
In the t > 1 regime, a cx = −t2 (cx = −1/t2) decaying factor

will give a right (left) edge state in which the degree of
localization will increase with t (1/t).

For a nonzero cx, the eigenfunctions will always have
dependence with both t1 and t2 and hence the respective
topological transition occurs at a finite value of t = t1/t2
where the edge states become extended. The same will not be
seen for ky = π (cy = −1) where the only possible edgelike
states have decay cx = 0 (it is implicit that l = 0, 1, . . . N −
1), which implies that the state is completely localized in
the first column of Lieb plaquettes [see Fig. 6(c)]. All these
conclusions are intuitively found in the plot of Fig. 6, where
we show the exact overlap of the eigenvalue solutions for
ky = {0, π} edge states (purple and red curves, respectively)
onto the numerical calculations of the Lieb rhombi ribbon
with 5 × 5 plaquettes and PBC in the y direction.

This procedure can be replicated for the system of
Fig. 6(b), where PBCs are applied in the x direction. Indeed,
since the open boundaries in this case end with t2 hopping
terms, both the top and bottom edge states appear when t1 <

t2. Thus, the analytical results can be inferred by simply taking

TABLE II. Edgelike behavior of |ul, j〉 assuming PBC in the y
direction and decaying behavior from either ends of the open x
direction [cx < (>) 1 for left (right) edge localization]. These states
are only present when the virtual sites at the respective edge coincide
with the zeros of amplitude of |ul, j〉.

ky cy cx ε |ε〉
−βt

0 (βt
1, 0, 0, −βt

1, 1, 1)T

−t2

βt
0 (−βt

1, 0, 0, βt
1, 1, 1)T

0 1
−βt

0 (t,−βt
2,−βt

2, 1, 0, 0)T

−1/t2

βt
0 (t, βt

2, β
t
2, 1, 0, 0)T

−√
2t (−√

2, 1, 1, 0, 0, 0)T

π −1 0 √
2t (

√
2, 1, 1, 0, 0, 0)T
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the transformation t1 ↔ t2, yielding cy ∈ {(−t2,−1/t2), 0}
for kx ∈ {0, π}.

IV. ROTATED LIEB SQUARE LATTICE

So far, we have studied the rotated Lieb square lattice with
the application of PBCs to one of the boundaries of the system
and found the edgelike states in the open direction. Since the
square lattice has t1 (t2) terminations in the y (x) direction (see
Fig. 2), the above analysis allows us to predict the behavior
of the square lattice for both t1 < t2 and t1 > t2 regimes. In
Fig. 2, the top and bottom levels of the edge states band
correspond to kx/y ≈ {0, π} states that have similar behavior
to those obtained for the Lieb ribbon. When t1 > t2 (t1 <

t2), they are localized in the vertical (horizontal) boundaries.
In the specific case of k ≈ 0, when t1 > t2, these vertical
boundary modes have a bulk oriented decay cx = −t2 for a
right localized state and cx = −1/t2 for a left localized state.
Analogously, for t1 < t2, we find horizontal edge states with
decay cy = −t2 (cy = −1/t2) for a top (bottom) localization.

The kx/y ≈ π states of Fig. 2 drift away from the remaining
levels of the edge states band as t1/t2 approaches the topo-
logical transition (t1/t2 = 1), since the latter levels converge
to the band closing point (this is more clearly observed for
larger cluster sizes). From the previous results, we identify
this state to have a decaying behavior c = 0 for both topo-
logical regimes, meaning it is entirely localized in a single
boundary (or unit cell if PBCs are considered in the perpen-
dicular direction of maximum localization). For the limiting
cases t1 � t2 and t1 � t2, the energy eigenvalues found using
periodic conditions εa = ±√

2t1 and εb = ±√
2t2 are good

approximations for this boundary mode in the square lattice.
Nevertheless, around point t1 = t2, the energy curve will, in
principle, be ruled by a function f (εa, εb). At this point,
corner states are generated due to the increase in symmetry
(the square lattice holds a fourfold rotational symmetry when
both hopping terms are equal) and reflect the evolution of
maximum localized horizontal kx ≈ π to vertical ky ≈ π edge
states, which do not fall into a topological transition point. In
all, these corner states are a manifestation of the emergence of
a higher C4v symmetry between topological phases ruled by
C2v class.

V. TIME-DEPENDENT ANALYSIS

A striking feature of the kx/y ≈ π edge state is its complete
localization for any finite value of the hopping amplitudes.
This may lead to an enhanced protection of the state when
time-dependent perturbations are introduced in the system.
Let us consider the square Lieb lattice of Fig. 2(c) and time
dependently vary the dimerization to adiabatically transform
this edge eigenstate to a corner eigenstate (moving along the
ky ≈ π line in Fig. 2). We see from Fig. 8(a) that the projection
onto the corner eigenstates, �, can be made arbitrarily close to
1 by increasing the time of the adiabatic ramp of the hopping
elements. This indicates that this evolution is not affected
by the other energy levels and there are no avoided level
crossings when this state goes through the bulk band as usual
for an adiabatic time-evolution, (with the exception of the
transition point). For small lattice sizes the scheme benefits
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FIG. 8. Time-dependent adiabatic transformation of an edge
eigenstate into a corner eigenstate for the square rotated Lieb lattice
with open boundary conditions. We begin in the positive energy
ky = π eigenstate highlighted in red in Fig. 6, and adiabatically ramp
the hopping amplitudes from t1/t2 = 2 to t1/t2 = 1. (a) Projection
of the final produced state onto all corner eigenstates of the final
Hamiltonian (t1/t2 = 1) as a function of the adiabatic ramp time
and for a variety of system sizes. (b) Projection of time-dependent
state onto the other eigenstates for a fast ramp time (T = 5t2) on a
lattice with 5 × 5 plaquettes. (c) Projections displayed on the energy
spectrum, color coded to match (b). All calculations carried out with
exact diagonalization and for a time step of dt = 0.01t2.

from the finite difference in the energy levels, thus increasing
the robustness of the state for each ramp. Nevertheless, this
effect saturates when the size of the lattice is increased beyond
15 × 15 plaquettes. This leads us to suggest that these edge
states are greatly protected from mixing with the bulk eigen-
states, irrespective of the size of the lattice, by the destructive
interference effect that generates a mismatch of the probability
density distribution with the bulk eigenstates.

When we apply a fast ramping process [see Fig. 8(b)] some
mixing with the other eigenstates occurs. However, the mixing
only happens with states that have a large density overlap with
the edge states and we can see from Fig. 8(c) that even for fast
ramps there is a protection against mixing with a large class of
states, resulting in nonavoided energy crossings with the time-
dependent target state. This illustrates that these edge states
are partially protected against mixing with the bulk states
even for large time-dependent perturbations to the hopping
amplitudes. However, it should be noted that if we apply a
random disorder to either the on-site energies or the hopping
terms, then this protection is lost. This leads us to suggest that
these states are only protected against perturbations that do
not break the destructive interference condition.

These time-dependent manipulations of the Hamiltonian
can be easily implemented in an experimental realization with
cold atoms in an optical lattice [36]. In this experimental con-
text varying the hopping amplitudes throughout the adiabatic
ramps is straightforwardly performed by changing the depth
of the lattice, which involves controlling the laser power with
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an acousto-optic modulator (AOM). For appropriate choices
of atoms, the interaction strength can also be precisely tuned
through Feshbach resonances [37] by varying an applied
magnetic field. The ability to manipulate the potential or
remove atoms in order to begin with an atom on a specific
site enables the preparation of multiple atoms in eigenstates
of the system including the initial ky ≈ π edge state for t > 1,
using similar manipulations of the Hamiltonian and beginning
with the particle localized on a single site on the edge. Note
that this preparation scheme can be applied to more than a
single particle (either bosons or fermions) as long as they are
noninteracting. Furthermore, we have shown that, in certain
conditions, we can time dependently map the k = π edge state
into a corner eigenstate, offering us a way to also prepare the
corner states. With this, we have the tools to experimentally
probe and/or verify the stated topological properties of the
boundary states for these Lieb-type systems, with or without
interactions between particles.

VI. CONCLUSION

In this paper, we have addressed the Lieb lattice with
staggered hopping terms and a particular choice of open
boundary conditions, which reduces its symmetry to C2v class
generating weak topological behavior. We demonstrated the
existence of unusual boundary states that reflect the interplay
of topological protection and geometrical frustration. These
states display extreme localization at the vertical or horizontal
boundaries (with momentum ky ≈ π or kx ≈ π , respectively)
and do not converge into the band gap closing point at
the topological transition point, reflecting the existence of
a topological nontrivial phase for any value of the hopping
parameters. This is in contrast to the usual boundary modes

that exhibit a common topological phase transition at the
gap closing point with a clear distinction between nontrivial
and trivial phases. The former are, in good approximation,
the boundary modes ky = π and kx = π of the Lieb ribbons
with PBC in the x direction for t1 > t2 and in the y direction
for t1 < t2. The density mismatch of these states and bulk
states confers the former protection against time-dependent
perturbations that change the hopping amplitudes ratio.

For our choice of open boundary conditions, corner states
emerge from the latter states due to a higher symmetry class
C4v transition point between topological phases ruled by C2v

class. This suggests the existence of a quadrupole moment at
a single point of the ratio t1/t2, but hidden due to immersion
of the corner states into the bulk bands.
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