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Statistical analysis of the Chern number in the interacting Haldane-Hubbard model
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In the context of many-body interacting systems described by a topological Hamiltonian, we investigate the
robustness of the Chern number with respect to different sources of error in the self-energy. In particular, we
analyze the importance of non-local (momentum dependent) vs. local contributions to the self-energy and show
that the local self-energy provides a qualitative description of the topological phase diagrams of many-body
interacting systems, whereas the explicit momentum-dependence constitutes a correction to the exact location of
the phase transition. For the latter, we propose a statistical analysis, on the basis of which we develop a stochastic
upper bound for the uncertainty of the Chern number as a function of the amount of momentum-dependence of
the self-energy. We apply this analysis to the Haldane-Hubbard model and discuss the implications of our results
for a general class of many-body interacting systems.
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I. INTRODUCTION

Since the discovery of the integer quantum Hall effect [1,2]
topology has been considered a key ingredient in characteriz-
ing phases of matter, in particular through the formulation of
topological order parameters. The topology of a system can be
characterized by both bulk and surface properties of a sample.
The latter is reflected in the topological surface states [3,4] at
the interfaces between topologically inequivalent crystals by
virtue of the bulk-boundary correspondence [5]. On the other
hand, the bulk properties are typically characterized in terms
of topological invariants [6] which define an equivalence
relation among the set of non-interacting Hamiltonians.

In integer quantum Hall systems the topological invariant
is given by the Chern number [6],

C = i

2π

∑
n

∫∫
d2k(∂ky〈k, n|∂kx |k, n〉 − ∂kx 〈k, n|∂ky |k, n〉),

(1)

defined as the integral over the Berry curvature. Since the
Berry phase is the phase acquired by an electron on a path
around the Brillouin zone, it is clear that the Chern number
primarily describes the momentum-dependence of the Hamil-
tonian. The definition given in Eq. (1) applies, in principle,
only to single-electron systems, where the Bloch theorem
guarantees the existence of eigenstates |k, n〉, with quasi-
momentum k and band index n.

In recent years, a lot of effort has been devoted to under-
stand the topological properties of non-interacting systems
[7–11] and most recent advances include, for instance, the
prediction of higher order topological insulators protected
by spatial symmetries [12,13]. The progress for interacting
systems has been more difficult due to the challenges posed
by the many-body nature of the interactions. Nonetheless, a
few important results have been obtained in the past.

It has been shown that the Hall conductivity of an interact-
ing system [14] can be computed through Eq. (1) by using a
many-body formalism based on Green’s functions [15,16]. In

this approach one replaces the Hamiltonian with a convenient
effective topological Hamiltonian, which is defined by

Ht (k) = H0(k) + �(k, ω = 0), (2)

where H0(k) is the non-interacting single-particle Hamilto-
nian and �(k, ω) is the self-energy of the original interacting
Hamiltonian, where the value at ω = 0 is usually interpolated
between the smallest positive/negative Matsubara frequencies
when finite temperature methods are used. Equation (2) can
be reinterpreted as an effective model, where one adds an
additional potential—in this case the self-energy—such that
it describes the correct Chern invariant for the interacting
system. This approach is valid if a smooth connection to the
zero-frequency limit can be established as is the case away
from the Mott insulating phase.

In the past, many studies of topological models have
neglected the momentum dependence of the self-energy by
using the popular dynamical mean-field theory [17–19] and
only very few results are available using non-local numerical
methods, e.g., [20,21]. This seems paradoxical, as the disper-
sion of the self-energy is expected to be a key ingredient in the
computation of the Chern number [Eq. (1)].

Motivated by this paradox and the fact that there is no guar-
antee that self-energies available through approximate meth-
ods produce the correct Chern number, we investigate here
how local and non-local contributions to the self-energy are
responsible for the determination of the topological invariant.
For that we propose a method based on a statistical analysis of
the self-energy, that (i) does not require an a priori knowledge
of the correct self-energy and (ii) explores a large phase space
of possible self-energies and therefore is general enough to
allow for universal statements on the nature of topological
phases of interacting systems. In the following we introduce
the method and consider the Haldane-Hubbard model as a
testbed for assessing its validity and predictive power. Our
analysis shows that, albeit the intrinsic momentum-dependent
definition of the Chern number, non-local contributions to
the self-energy add only a small uncertainty to the effects

2469-9950/2019/100(12)/125111(8) 125111-1 ©2019 American Physical Society

https://orcid.org/0000-0002-3273-6050
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.125111&domain=pdf&date_stamp=2019-09-04
https://doi.org/10.1103/PhysRevB.100.125111


MERTZ, ZANTOUT, AND VALENTÍ PHYSICAL REVIEW B 100, 125111 (2019)

FIG. 1. Illustration of the Haldane model, which includes
nearest-neighbor hopping t1, next-nearest neighbor hopping t2 with
phase ±φ for (anti-)clockwise hopping. The two sublattices of the
honeycomb lattice are offset by a mass �. a1, a2 are the lattice
vectors.

of the local self-energy in interacting systems described by
topological Hamiltonians.

A. Haldane-Hubbard model

We study the Haldane-Hubbard model at half-filling on
the honeycomb lattice, cf. Fig. 1, which combines Haldane’s
model for the integer quantum Hall effect [22] with a local
Hubbard interaction of the form

H =
∑

k

(c†
A, c†

B)hk (cA, cB)T + U
∑

i

ni↑ni↓ (3)

with

hk = 2t2 cos φ[cos(k1) + cos(k2) + cos(k2 − k1)]σ0

+ t1[1 + cos(k2) + cos(k2 − k1)]σ1

− t1[sin(k2) + sin(k2 − k1)]σ2

+ [� − 2t2 sin φ[sin(k1) + sin(k2) + sin(k2 − k1)]]σ3,

(4)

where A/B stand for sublattice indices (see Fig. 1), t1, t2 are
the nearest and next-nearest neighbor hopping amplitudes,
respectively, φ is the phase associated with the next-nearest
neighbor hopping, � a trivial mass term, and σi are the
Pauli matrices in sublattice space. Throughout this article,
we keep t ≡ t1, t2/t1 = 0.2, and φ = π/2 fixed. For this set
of parameters, the Haldane model (U = 0) has a topological
phase transition from a topological insulator to a trivial band
insulator at �c ≈ 1.04t .

The phase diagram of the Haldane-Hubbard model at half-
filling has been studied extensively in recent years [17,21,23]
by a variety of methods including static mean-field theory
(MF), dynamical mean-field theory (DMFT), exact diagonal-
ization (ED), dynamical cluster approximation, and quantum
Monte Carlo approaches. In Fig. 2 we recapitulate the current
understanding of the phase diagram from the contemporary
literature and include our results obtained with the Two-
Particle Self-Consistent (TPSC) technique [24,25] for low to
intermediate values of the on-site interaction U where the
method is most reliable [Fig. 2(b), blue line]. The phases ob-
served are a topological insulator (TI) with C = 2 (both spins
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FIG. 2. Phase diagram of the Haldane-Hubbard model. In addi-
tion to our TPSC calculations we show for comparison the ED and
DMFT data from [17] and BDMC from [21]. In (a), BDMC (orange
line), ED (green line), and in (b), TPSC (blue line), DMFT (red line)
are shown. In DMFT the C = 1 (SBTI) phase extends only down
to a finite minimal value of � (red colored area), while it survives
down to � = 0 for ED and BDMC. Qualitatively, the ED and BDMC
phase diagrams are similar, except for ED predicting an SBTI phase
at U → 0.

have Chern number 1) at low � and U , a trivial band insulator
(BI) with C = 0 at large �, a Mott insulator (MI) at large U ,
and an SU(2) symmetry-broken topological insulator (SBTI)
with C = 1 at intermediate values. The TPSC calculations are
in good agreement with DMFT [17] and Bold Diagrammatic
Monte Carlo (BDMC) [21] in the regions of U studied.

In DMFT [Fig. 2(b), red line] the location of the TI →
SBTI phase transition strongly depends on the value of �, and
approaches the TI → BI transition line asymptotically, while
recent BDMC calculations suggest the existence of a critical
point where the two lines intersect [Fig. 2(a), dotted blue
line]. In order to rule out the possibility of this discrepancy
being a consequence of different simulation protocols, we
have performed DMFT calculations using the protocol laid out
in Ref. [21] and confirmed the previously published DMFT
data [17]. The shift of the TI → SBTI transition to lower
values of U in BDMC with respect to DMFT means that the
interacting system obtains magnetic order sooner than DMFT
predicts, which seems to be an indicator of strong non-local
contributions to the self-energy.

II. CHERN NUMBER ANALYSIS:
LOCAL CONTRIBUTIONS

In order to settle the origin of agreement and discrepan-
cies among the various approaches and to establish which
contributions in the self-energy influence the nature of the
topological phases, we introduce in what follows a detailed
analysis of the calculation of the Chern number through the
self-energy as defined in Eq. (2).
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As shown in Ref. [26], one can decompose the self-energy
into a local part �loc and a non-local part �non-loc as

�(k, ω) = �loc(ω) + �non-loc(k, ω), (5)

where �non-loc(k, ω) has a vanishing momentum average, i.e.,
corrections to the local self-energy are already absorbed in
�loc. In order to quantify the explicit momentum-dependence
in �non-loc(k, ω) we define the self-energy dispersion ampli-
tude [26]

da(ω) = max
k,k′

‖�(k, ω) − �(k′, ω)‖. (6)

Since only the zero-frequency self-energy enters the topologi-
cal Hamiltonian [Eq. (2)] we only have to consider the physics
associated with da(ω = 0). Therefore, hereafter, we use the
shorthand notation da ≡ da(0).

A. SU(2)-symmetric self-energy

We first focus on the local self-energy. More specifically
we will analyze the effects of the diagonal and off-diagonal
components of the local self-energy on the Chern number.

In the Hartree approximation [mean field (MF)] the local
self-energy is given by

�MF = U

2
n. (7)

For Hamiltonians in a bipartite lattice with a mass term � the
density alternates between A/B sublattices (see Fig. 1), such
that upon addition of a constant term the self-energy can be
written as

�MF = −U

2
δn σ3 + const., (8)

where δn = (nB − nA)/2 and σ3 is the third Pauli matrix.
The constant is absorbed in the chemical potential. Therefore,
within the Hartree approximation, � reduces the strength of
the mass term with respect to the non-interacting contribution
[Eq. (2)] and the topological transition shifts to larger � with
increasing U .

We can easily see that the above Hartree argument is exact
for the local contribution of the self-energy. The self-energy
generally obeys the symmetry

�A(k, ω = 0) = −�B(k, ω = 0), (9)

which follows from the symmetry of the Hamiltonian, Eq. (3),
up to a constant term, which we can neglect as it is absorbed
in the chemical potential. Since the mass term breaks the sub-
lattice symmetry, for � �= 0 we have �A �= �B and therefore
�A/B = 1

2 [�A + �B ± (�A − �B)]. The local self-energy can
then be written in terms of

δ� ≡ �B(ω = 0) − �A(ω = 0)

2
� 0 (10)

as

�loc = aσ1 + bσ2 − δ� σ3 =
( −δ� a − ib

a + ib δ�

)
, (11)

where a, b ∈ R. With this we can express the complete self-
energy [Eq. (5) at ω = 0] as

�(k, ω = 0) = (aσ1 + bσ2) − δ� σ3 + �non-loc(k, ω = 0).
(12)

We have now made explicit the three terms leading to a shift
of the phase transition in the topological Hamiltonian. We
can readily see that the effect of the diagonal part (Hartree
+ corrections) of the local self-energy is proportional to σ3

and therefore constitutes a mere shift of the mass term

� 
→ � − δ�, (13)

which already describes the results obtained in many studies
with both local and non-local methods [17,19,21], as only the
value of δ� varies slightly, without changing the qualitative
behavior. The negative shift of Eq. (13) in � corresponds to
a positive shift of the topological phase transition along the
� axis (see Fig. 2). Note that since in the local self-energy
non-local corrections are present, the exact value of δ� is not
reproduced by local diagrams only, e.g., in DMFT.

We concentrate now on the off-diagonal contribution to
�loc [Eq. (11)]. For the terms proportional to σ1 and σ2, we
cannot simply write down a mapping like Eq. (13), since
such a (constant) term does not appear as an individual
parameter in the original Hamiltonian. The only similar term
in Eq. (4) is t1σ1, which originates from the coupling of A
and B sites within the unit cell. By using the general approach
given by Eq. (12), we can tune the model between cou-
pled one-dimensional chains (a = −t1, b = 0) and coupled
dimers (|a| � t1). Interestingly, tuning the hopping beyond
the chain model, a < −t1, a novel non-trivial phase with
C = −1 appears at � < �c, similarly to an effect observed in
the dimerized Hofstader model [27]. We note, however, that if
we restrict ourselves to the calculation of the self-energy for
the Haldane-Hubbard model through, for instance, the TPSC
approach, the sign of the local self-energy off-diagonal term
is always positive.

We proceed by numerically studying the effects of such an
off-diagonal term by computing the Chern number, Eq. (1),
with the algorithm given in [28] as a function of

z = ∣∣�AB
loc

∣∣ = |a + ib| (14)

for a single spin. Since Ht is diagonal in the spin basis, keeping
both spins would unnecessarily double the dimensionality of
the problem. Note that this implies a Chern number C = 1
below the critical mass �c instead of C = 2 as in the spinful
model. In Fig. 3(a) we plot the average Chern number 〈C〉,
where 〈· · · 〉 is the average over a number of samples with
random complex phases of �AB

loc . We find that upon perturb-
ing the Hamiltonian with a constant off-diagonal term, the
topological insulator is robust within a well-defined region
(black). Depending on the value of the complex phase, the
phase transition lies in the shaded region, which is located
below the non-interacting phase boundary marked by �c, i.e.,
the non-trivial phase region (C = 1) generally shrinks. This
is a consequence of off-diagonal and diagonal parts of the
local self-energy having opposite effects on the topological
phase (i.e., down-/up-shift of the transition along the �-axis),
albeit the diagonal contribution will typically be much larger
for significantly large �. Figure 3(b) shows, for comparison,
the average Chern number obtained by including in the calcu-
lation the non-local contributions to the self-energy and will
be discussed in Sec. III.

125111-3



MERTZ, ZANTOUT, AND VALENTÍ PHYSICAL REVIEW B 100, 125111 (2019)

0 1 2

z/t

0

1

2

Δ
/
t

C = 1

C = 0

(a)

Δc

C Σloc

0 1 2

z/t

C = 1

C = 0

(b) C Σloc+Σnon−loc

0.0 0.5 1.0

FIG. 3. Average Chern number 〈C〉 as a function of � and z,
Eq. (14). (a) Only local terms are considered, (b) sampling procedure
includes non-local contributions. We added lines marking the non-
interacting phase transition (horizontal) and the shifted transition as
a function of z. The non-trivial phase is stable in the black region and
the phase transition with a local self-energy lies in the shaded region,
i.e., the phase transition is shifted towards smaller � with respect to
the non-interacting case. This shift becomes significant at large z/t .

B. Magnetic self-energy

Before proceeding with the momentum-dependent (non-
local) self-energy contributions, it is worthwhile to analyze
the effect of magnetism on the Chern number. An odd total
Chern number can only arise if the SU(2) symmetry is spon-
taneously broken, i.e., in a magnetically ordered phase. This
follows directly from the topological Hamiltonian, since the
spins are decoupled and the Haldane-Hubbard Hamiltonian
conserves SU(2) symmetry. The mean-field equations are
easily adapted to include an additional on-site magnetization
m

�MF
σ = U

2
(n + σm), (15)

where σ ∈ {+1,−1}. Equation (15) is then rewritten in terms
of δn = (nB − nA)/2 and δm = (mB − mA)/2 as

�MF
σ = −U

2
(δn σ3 + σδm σ3) + const. (16)

In this description one identifies an additional spin-dependent
renormalization of the mass term proportional to the mag-
netization difference δm. As in the SU(2)-symmetric case,
an analogous calculation can be performed with the general
self-energy. In this case the mapping of Eq. (13) is modified
to

� 
→ � − (δ� + δ�σ ), (17)

where the additional term is δ�σ = σ (�B↑ − �B↓ − �A↑ +
�A↓)/4. Therefore, the two spins obtain different renormal-
izations, which can lead to one spin in the non-trivial phase
(C↑ = 1) and the other in the trivial phase (C↓ = 0). The
critical value is given by the condition

� − �c � δ� + δ�σ=+1, (18)

where �c/t ≈ 1.04 marks the position of the non-interacting
phase transition.

III. CHERN NUMBER ANALYSIS:
NON-LOCAL CONTRIBUTIONS

In order to study the effect of the explicit momentum
dependence of the self-energy on the Chern number [the last
term in Eq. (12)], an analytic formula or parametrization of
the self-energy would be helpful. One such parametrization
is possible within the Two-Particle Self-Consistent (TPSC)
method [24], where the self-energy is parametrized by
two variables U,U ′, which are determined self-consistently.
Within this TPSC parametrization we did not detect any
change of the Chern number in the Haldane-Hubbard model
with respect to the momentum-averaged TPSC. Generalizing
the TPSC formula to an ansatz function that serves as a
parameterized form of physical Green’s functions

�(k) = ([V [U ] + V [U ′]] ∗ G0)(k), (19)

where

V [U ] = (1 − χ0U )−1χ0, (20)

χ0 is the susceptibility and U,U ′ are the free parameters
(here, U,U ′ depend on the site index A, B, i.e., there are four
free parameters), we do not find any topological phase transi-
tion induced by the momentum dependence of the self-energy
while restricting ourselves to moderate values for U,U ′.

A. Statistical study: Formalism

Since we would like to systematically determine the im-
portance of the momentum-dependence of the self-energy
for a general class of interacting systems described by ef-
fective topological Hamiltonians, we compute the statistical
distribution of the Chern number across the space of possible
self-energy functions beyond Eq. (19). We note that since this
approach is maximally unbiased, we can only expect to obtain
very general qualitative information. In particular, we cannot
relate our statistical self-energy samples to particular points in
the phase diagram. Since our qualitative result is independent
of da a reasonable value for the interesting regime can safely
be chosen.

The self-energy for the Haldane-Hubbard model is a com-
plex 2 × 2 matrix (for each spin) and is block-diagonal in the
spin space due to the absence of spin-mixing terms. Therefore,
we focus on a single spin for this investigation as the task
is easily separable and both spins are treated in exactly the
same way. We define the following parametrization of the
momentum-dependent part of the self-energy

�non-loc =
(

f1 f2 + i f3

f2 − i f3 − f1

)
, (21)

which contains three independent real-valued periodic func-
tions f1, f2, f3 : R2 → R and is hermitian by construction.
The complete self-energy at ω = 0 is obtained from Eq. (12).
The symmetry between the �11 = f1 and �22 = − f1 matrix
elements is chosen in accordance with Eq. (9). A general-
ization with �22 = f4 would, however, be straightforward.
Further, we expand all functions f j in terms of Fourier
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FIG. 4. We compare the momentum-dependence of (a) a generic
TPSC self-energy (here, a fit where coefficients beyond Nc = 1
vanish is shown) with (b) one of our random samples at Nc = 2. Both
functions follow the same symmetry constraints and are reasonably
smooth.

components

f j (k) =
∑
l1,l2,s

cs,l1,l2 cos(l1k1 + sl2k2)

+
∑
l1,l2,s

c′
s,l1,l2 sin(l1k1 + sl2k2), (22)

where j = 1, 2, 3 and s ∈ {−1, 1}, l1, l2 ∈ {0, . . . , Nc}, Nc be-
ing the order of the expansion. This expansion is convenient
due to the periodicity of the self-energy in momentum space.
By sampling the real expansion coefficients c, c′ from a
suitable probability distribution we obtain samples of smooth
self-energy functions. Due to the completeness of the basis
functions (sin, cos) the entire relevant space is covered in the
limit Nc → ∞. We have verified that in order to represent
the TPSC or FLEX [29] self-energies with high accuracy
one only needs Nc = 1, see Fig. 4(a). At this low cutoff
there are already sufficient degrees of freedom in Eq. (22)
to sample a large variety of sensible functions. In order to
be more general, we increased the cutoff to Nc = 2 and veri-
fied that our sample functions do not oscillate unphysically,
see Fig. 4(b). In our calculations the qualitative results are
independent of the choice of the cutoff, while an increase
in the degrees of freedom generally leads to a decrease in
the relative number of interesting samples (for which the
Chern number is susceptible to �non-loc). For the obtention
of physical self-energies we chose to sample the c, c′ from a
Normal distribution with zero mean and a decaying standard
deviation σ̄

ρ
(
c(′)

s,l1,l2

) = Normal(μ = 0, σ̄ = exp(−l1 − l2)). (23)

Due to the exponential decay of σ̄ with the wavelength of
the oscillation, the self-energies [Eq. (21)] are guaranteed to
be rather smooth. We verified that for instance a uniform
distribution yields highly unsatisfactory samples, especially
at larger cutoff.

Since the function samples of Eq. (22) generally do not
obey any spatial symmetries, we enforce certain symmetries
of the Hamiltonian by adapting the sampling procedure. The

sublattice symmetry, cf. Eq. (9), is already incorporated in
Eq. (21). General lattice symmetries can be implemented on a
higher level. In particular, applying a symmetry operation to
f j yields a constraint on the coefficients, which can then be
used to enforce the symmetry on the self-energy. In practice
this amounts to setting certain coefficients to zero or an
interdependence between some coefficients. For the Haldane-
Hubbard model the diagonal elements have a mirror symmetry
M along the k2 = −k1 axis, i.e.,

M :

(
k1

k2

)

→

(−k2

−k1

)
. (24)

We now compute the weighted average Chern number on
the space of differentiable functions �(k, ω = 0) as a function
of their dispersion amplitudes da [Eq. (6)]. The average is
weighted in nature, since we implement importance sampling
on the subspace of physical functions due to our choice of
the distribution function ρ [Eq. (23)]. After obtaining a sam-
ple for the momentum-dependence we rescale the function
�non-loc to the initially chosen dispersion amplitude da. The
momentum-average

∑
k∈1.BZ �non-loc(k, ω = 0) vanishes by

construction. The resulting Chern number average 〈C〉 dou-
bles as a standard deviation, since here the Chern number can
only take two values C ∈ {0, 1}, which square to themselves
(Var[X ] = E[X 2] − E[X ]2 = E[X ] − E[X ]2). Therefore, the
average Chern number can be interpreted as a stochastic
error measure. Since the expectation value does not accu-
rately describe the difference between the interacting and
non-interacting system, it is still not a sufficient measure for
our statistical analysis.

We have already found in Sec. II A that a value z > 1 can
push the system into a C = −1 phase, which invalidates our
earlier assumption that the Chern number is binary. Therefore,
the average Chern number is an insufficient descriptor of the
statistical distribution. A description in terms of probabilities
of change is more appropriate. We define the probability for
the Chern number to change with respect to a reference Chern
number Cref as

P(C �= Cref ) = 〈min{1, |C − Cref |}〉, (25)

where 〈· · · 〉 is the sample mean. In fact, this definition is
formally equivalent to the normalized distance between two
probability distributions d (X,Y ) = EX,Y [|X − Y |] and there-
fore respects changes on a per-sample basis, which the av-
erage Chern number neglects. It is straightforward to show
that this definition provides an appropriate measure for the
probability of change in the sense that P = 0 implies C = Cref

for all samples and P = 1 ⇒ C �= Cref . Additionally, P is
bounded to the interval [0,1].

B. Statistical study: Non-local self-energy

We now define Cref = C0, which is the Chern number of
the corresponding non-interacting system, and compute the
probability P(C �= C0).

In the simplified case, where we neglect the off-diagonal
contributions to the local self-energy [z = 0, Eq. (14)], we
obtain a sharply peaked function shown in Fig. 5, which is
centered around the phase transition at low da and becomes
increasingly asymmetric for increasing da. The smallness of
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FIG. 5. Probability Pz=0(C �= C0) that the Chern number changes
due to the full momentum-dependent self-energy compared to the
non-interacting case for various values of � and da at z/t = 0. The
position of the non-interacting phase transition �c is marked by a
gray line.

the stochastic error of the Chern number at small da is due
to the peaked structure of the probability of change, which
illustrates the stability of the Chern number with respect to
perturbations. At moderate to large da, however, it turns out
that the topologically non-trivial phase C = 1, which exists
below �c ≈ 1.04 at U = 0, is more susceptible to the addition
of momentum dependent self-energies than the trivial insula-
tor (C = 0) above �c. This means that on average, the effect
of the momentum dependence of the self-energy has the op-
posite sign as that of the local part, since it shifts the transition
towards lower � instead of larger �. Due to the distribution of
finite probabilities around the local transition, we can regard
the non-local contribution as a perturbation that leads to an
uncertainty given by the spread of the probability distribution
along the �-axis. While this is rather small initially, a strong
momentum-dependence of the self-energy can lead to a large
uncertainty in the Chern number.

We note that the probabilities shown here depend on the
sampling procedure used in our algorithm. From the rather
physical nature of the restrictions to our sample functions,
it is expected that in an unbiased average the probability
of changing the Chern number would be rather low in all
cases, since there is a large pool of functions which do not
change the topology at all. We have probed the effect of
restricting our trial function space of self-energies to only
those functions satisfying the lattice symmetries of the non-
interacting Hamiltonian and observed a small but noticeable
increase in probabilities with enforced symmetries, which
indicates that in a more general approach the unphysical
samples lead to a decreased probability and therefore reduced
contrast.

C. Statistical study: Total self-energy

In the discussion so far we have neglected the off-diagonal
terms of the local self-energy, which we have shown in
Fig. 3(a) to have a comparatively weak impact on the Chern
number, provided that z is rather small. Now we add these
terms back in by sampling the parameters a, b, cf. Eq. (12).
For this purpose we use the Euler representation of the off-
diagonal value a + ib = zeiα and sample the phase α from a
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/
t

C = 1

C = 0
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C = 0
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FIG. 6. Probability Pda=0.5t (C �= Cloc ) that the Chern number
changes as an effect of the explicit momentum dependence
�non-loc(k) compared to the purely local case for two different phases
of the local self-energy (a) α = 0 and (b) α = π/2. Finite probabil-
ities exist only around the local transition and decay with increasing
the distance to the transition. The width of the finite-probability band
depends on the dispersion amplitude da. Here, da/t = 0.5.

uniform distribution α ∈ [0, 2π ). The result is then a function
of the absolute value z, which we have observed to contain the
most relevant information. We compute the sample average
over the Chern number, cf. Fig. 3(b), which is remarkably
similar to the one without the momentum-dependent part of
the self-energy shown in Fig. 3(a). In fact, by comparing
the average Chern numbers with and without the explicit
momentum dependence we see that the effect of the momen-
tum dependence is an additional uncertainty around the local
result, which becomes broader for larger da and is consistent
with the result obtained without the off-diagonal terms of the
local self-energy.

For our statistical analysis we distinguish between the rela-
tive probabilities P(C �= C0), where C0 is the Chern number of
the non-interacting model, and P(C �= Cloc), where Cloc is the
local Chern number computed from the topological Hamilto-
nian [Eq. (2)] with �(k, ω = 0) = �loc, cf. Eq. (11). The first
probability characterizes the change with respect to the non-
interacting case, while the second considers only the effect of
the momentum-dependence of the self-energy. Since da and
z, characterizing the strength of the momentum-dependence
and local self-energy, respectively, are both merely parameters
in our model, these are simply different viewpoints onto
the same problem, where the frame of reference is chosen
differently to focus attention on only one parameter.

We now focus our attention on the effect of the momentum-
dependence. Since �AB

loc = ze−iα , in an average over different
values of α one will automatically observe the changes due
to a phase difference, which are unrelated to the momentum
dependence. Hence, P(C �= Cloc) can only be computed as a
function of the phase α. We have computed the probability
P(C �= Cloc) that the momentum-dependent part of the self-
energy �non-loc changes the Chern number for many different
values of α and show in Fig. 6 at two specific values α =
0, π/2 that a finite probability indeed exists only close to the
respective local phase transition. We have verified that this is
true independently of the phase α of the local self-energy. The
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FIG. 7. Probability Pda=0.5t (C �= C0) that the Chern number
changes due to the full momentum-dependent self-energy com-
pared to the non-interacting case for various values of � and z at
da/t = 0.5.

probability can be described as a bell curve placed on top of
each point on the local transition line. The width of this curve
is proportional to the self-energy dispersion amplitude da and
coincides roughly with the result of Fig. 5.

As a result, the Chern number can actually be regarded as
separable in the sense that the effects of the local and non-
local terms in our representation of Eq. (5) are cumulative.
This means that

C = Cloc + δCnon-loc, (26)

where the latter part is a random variable, whose probabilities
for non-zero values decay with increasing distance to the
local phase transition on a length scale proportional to da.
The correction δCnon-loc is therefore—at low to intermediate
da—only relevant relatively close to the local phase transition.
Based on this observation, we can conclude that the topo-
logical phase diagram is well-described qualitatively by the
local self-energy, while the explicit momentum-dependence
only leads to a statistical error bar, the width of which can be
inferred from Fig. 5.

Finally, in Fig. 7 we show at a fixed value da = 0.5t
the probability of change P(C �= C0) with respect to the
non-interacting case while considering the full self-energy,
which largely resembles the result obtained for only the
local self-energy, with an added uncertainty around the phase
transition.

IV. DISCUSSION

In the following we want to emphasize the most important
implications of our results.

A. General implications

The Chern number as defined in Eq. (1) is a direct mea-
sure of the momentum-dependence of the Hamiltonian. It
is therefore expected that introducing a perturbation in the
shape of an arbitrary function of momentum—in this case the
self-energy—will have a large impact.

Our study reveals a paradox, where, in fact, the local
perturbations have a much more immediate effect on the lo-
cation of the topological phase transition, while the non-local
contribution merely adds a rather small uncertainty around
the local result. Therefore, the Chern number is really rather
robust against non-local perturbations to the Hamiltonian.

B. Discussion of the phase diagram

Regarding the phase diagram of the Haldane-Hubbard
model, cf. Fig. 2, we draw the following conclusion. The
C = 2 to C = 0 transition (C = 1 to C = 0 for each spin)
is described very well by the local part of the self-energy,
which is also reflected in the remarkable agreement between
the DMFT and BDMC results. In fact, we have shown in an
earlier publication [26] that in the presence of the mass �

the momentum-dependence of the self-energy is rather weak
for a wide range of parameters. Coincidentally, the TI → BI
transition lies within the non-dispersive regime, hence DMFT
is expected to be very accurate.

The symmetry-broken phase with C = 1, however, lies
close to the Mott insulator, where the momentum-dependence
plays a larger role. However, we note that we expect the
momentum-dependence of � to be the smaller contribution
to the shift of the phase transition in comparison with BDMC,
since it is closely related to the onset of a finite magnetization,
which is predominantly reflected in the local self-energy.
Including non-local (diagrammatic) corrections to the local
self-energy should therefore produce a qualitatively correct
phase diagram, while the non-local self-energy only leads to a
small correction.

Our results are in principle applicable to other topological
models, many of which contain a similar mass term, where,
based on the published phase diagrams, we expect qualita-
tively similar results.
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