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Kinetic energy density of nearly free electrons. II. Response functionals of the electron density
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We present electron-density-based response functionals yielding the non-negative kinetic energy density
(KED) of nearly free electron systems. In a previous paper, for a canonical free-electron system perturbed by an
external potential, we derived the first- and second-order corrections to the KED as functionals of the potential,
providing the response functions in reciprocal space. Here, we formulate the KED response in terms of the
electron density by converting the potential-based functionals into density functionals. We also determine the
related response of the Pauli KED, which is the KED in excess of the von Weizsäcker KED. We anticipate
that the structure of these density functionals will help guide the design of the more sophisticated kinetic
energy functionals required for orbital-free density functional theory simulations. We conclude by examining the
performance of the first- and second-order density functionals for the KED when applied to electron densities
generated from local pseudopotential calculations for Li, Al, and Si crystals.
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I. INTRODUCTION

In this paper, the second in a two-part series, we examine
electron-density-based response functionals for the kinetic
energy density (KED) of nearly free electron systems. Specif-
ically, we consider the non-negative KED defined as

t (r) = 1
2 [∇r · ∇r0γ (r, r0)]r0→r, (1)

with γ (r, r0) representing the reduced density matrix for
noninteracting electrons with Hamiltonian Ĥ = − 1

2∇2 + v̂,
where v(r) is a static external potential. [An alternate KED,
tL(r) = t (r) − 1

4∇2n(r), where n(r) is the electron density,
arises from another natural definition for the KED, but this
quantity may become negative.] The response functionals
we derive yield the KED that emerges after initially free
electrons—having a uniform KED t0—are subjected to a static
perturbing potential. In the first paper (Part I) [1], we formu-
lated the KED response using a standard potential functional
approach.

Here, we convert those potential functionals into alternate
density functionals, which depend exclusively on (1) the
free-electron density of the unperturbed system and (2) the
change in the electron density induced by the perturbation.
We also obtain density functionals for the first- and second-
order response of the Pauli KED [2,3], which is the quantity
tP(r) = t (r) − tvW [n](r), where

tvW [n](r) = 1
2 |∇

√
n(r)|2 (2)

is the non-negative von Weizsäcker KED [4]. The von
Weizsäcker KED equals the exact KED for any single-orbital
system and, defined in this manner, provides a local lower
bound [3,5] to the exact KED for all systems; the Pauli KED is
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the non-negative excess amount attributable to the fermionic
character of the electrons.

Before proceeding, we remark on one particular motivation
for this work, which relates to the study of materials with
density functional theory (DFT) calculations [6,7]. Orbital-
free (OF) DFT [8–11] is an alternative to the conventional
approach to Kohn-Sham (KS) DFT [7] in which the noninter-
acting kinetic energy of the electrons—that is, the integrated
quantity, Ts, where Ts = ∫

drt (r)—is approximated directly
with an explicit density functional rather than determined
indirectly (but exactly) following the introduction of auxiliary
single-particle wave functions. The OF approach offers a
significant reduction in computational requirements—largely
because it eliminates the need for wave functions altogether
and naturally attains linear or quasilinear complexity scal-
ing with increasing system size—enabling study of many
thousands of atoms (or more), as well as efficient molecular
dynamics simulations that remain grounded in the underlying
laws of quantum mechanics.

The search for universally applicable density functional
approximations for Ts that are both accurate and suitable for
rapid computation has a long history [6,8–17]. A number
of the most successful approximations leverage a known
relationship between a second functional derivative of Ts and
the Lindhard [18] function J̃1(k1, kμ), where the latter also
appears in the potential functional for the first-order electron
density [see Eqs. (79) and (80) in Part I]. The relationship is

F
[

δ2Ts

δn(r)δn(r′)

∣∣∣∣
n0

]
= − 1

J̃1(k1, kμ[n0])
, (3)

where F[�] denotes a Fourier transform, n0 is the uniform
electron density of a free-electron reference system, and
kμ[n0] = (3π2n0)1/3 is the Fermi wave vector for that system.
Even from the earliest work on DFT [6,7], it was apparent
that the Lindhard function can be a useful ingredient in

2469-9950/2019/100(12)/125107(11) 125107-1 ©2019 American Physical Society

https://orcid.org/0000-0001-7330-7554
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.125107&domain=pdf&date_stamp=2019-09-03
https://doi.org/10.1103/PhysRevB.100.125107


WILLIAM C. WITT AND EMILY A. CARTER PHYSICAL REVIEW B 100, 125107 (2019)

approximate density functionals for DFT calculations. Pio-
neering embodiments of this philosophy [19–22], targeting
Ts specifically, inspired a still-growing body of research that
encompasses the incorporation of, to give a few examples, the
generalization of Eq. (3) for the third functional derivative of
Ts [20,23], the version of Eq. (3) that applies to the kinetic
potential [24,25], and variations on Eq. (3) that are more
appropriate for semiconducting systems [26,27].

However, functionals that approximate the integrated Ts

using this strategy are not always able to respect known
constraints on the local KED (or kinetic potential), such as
the local lower bound provided by the von Weizsäcker KED
that we highlighted above. Furthermore, a resurgence within
a different category of functional approximations—see work
by Constantin et al. [28] and Luo et al. [29] for two recent
examples, and references therein—is partly attributable to
rigorous satisfaction of local constraints, underscoring the
utility of targeting the local t (r).

One of the chief results given below—expressed in
Eqs. (17)–(19)—may be understood as an analog of Eq. (3) for
the local KED, providing the corresponding second functional
derivative of t (r) in an analytical form. Any approximation for
t (r) that is constructed to fulfill the requirement implied by
Eqs. (17)–(19) will automatically respect the global constraint
implied by Eq. (3)—and, in addition, could conceivably take
full advantage of the accumulated wisdom relating to other
local constraints. The best avenue for accomplishing this task,
while preserving computational efficiency, is not immediately
obvious; investigations of this sort are ongoing.

Finally, we note two additional reasons to consider re-
sponse functionals for the local KED. First, explicit density
functionals for the KED can be useful for implementing some
exchange-correlation (XC) functionals requiring the KED as
an ingredient [30–32]. Second, we expect response function-
als for the KED to be useful for hybrid DFT approaches that
use different approximation strategies in different regions of
space [33,34].

In Sec. II, we summarize briefly the requisite aspects of
Part I. In Sec. III, we describe the procedure for converting
potential functionals into density functionals, and then give
the first- and second-order density functionals for the KED
response. These expressions are one contribution of this paper,
as are the analogous expressions for the Pauli KED given in
the same section. Next, in Sec. IV, we inspect effective ex-
ternal pseudopotentials along with the corresponding electron
densities and KEDs for a few Li, Al, and Si crystals—and then
assess the approximate KEDs predicted by the density func-
tionals from Sec. III. Concluding remarks are in Sec. V. An
appendix demonstrates that the response functional formalism
can be used to recover the conventional gradient expansion for
slowly varying densities (see Ref. [13] for an overview of the
latter, and references therein).

II. BACKGROUND

We consider spin-unpolarized, noninteracting electrons,
specifying that eigenstates of the Hamiltonian Ĥ = − 1

2∇2 +
v̂ with energies below a chemical potential μ are each pop-
ulated with two electrons. Below, in a subsequent section,

we will consider KS electrons, obtained by treating the KS
effective potential as a fixed external potential.

A. Free-electron systems and the Thomas-Fermi approximation

Free electrons are subject to the simpler Hamiltonian Ĥ0 =
− 1

2∇2 + v0, where v0 is a constant. The electron density and
KED of free-electron systems are nonzero only for μ > v0, in
which case they are{

n0

t0

}
=

{
k3
μ/(3π2)

k5
μ/(10π2)

}
, (4)

where kμ = [2(μ − v0)]1/2 is the Fermi wave vector (in terms
of the potential). One may use Eq. (4) to re-express t0 as a
function(al) of n0 [see also the definition of kμ[n0] given after
Eq. (3)], yielding t0[n0] = c0n5/3

0 with c0 = (3/10)(3π2)2/3.
When, as an approximation, this result is applied locally to a
nonuniform electron density,

tT F [n](r) = c0n5/3(r), (5)

it is known as the Thomas-Fermi density functional for the
KED [35,36], which becomes asymptotically exact in the limit
of a slowly varying density. (In writing t0[n0] and tT F [n](r),
we use a bracket notation to distinguish these terms as density
functionals rather than potential functionals.) The Thomas-
Fermi potential functionals obtained by substituting v0 →
v(r) in Eq. (4) are traditionally understood to yield zero (by
definition) in classically forbidden regions where v(r) > μ; if
not, they would yield imaginary values. In contrast, the KED
in Eq. (5) can be extended naturally into classically forbidden
regions. Finally, after partitioning the electron density into a
free part and a perturbation, n(r) = n0 + n�(r), we record the
Taylor series expansion of Eq. (5) about n�(r) = 0 through
second order:

tT F [n](r) ≈ t0[n0] + k2
μ

2
n�(r) + π2

2kμ

n�(r)2, (6)

The first- and second-order coefficients in Eq. (6) reappear
below, matching the full response functions for the limiting
case of a slowly varying perturbation in the density.

B. Response functionals of the perturbing potential

Nearly free electrons are characterized by the Hamiltonian
Ĥ = − 1

2∇2 + v0 + v�(r), with v�(r) treated as a perturba-
tion. In Part I, we described the usual potential-functional
approach for determining the response of free electrons to a
static perturbing potential. Recalling the definition of n�(r)
given above, and introducing t�(r) = t (r) − t0, the analogous
deviation from the free-electron KED, this approach leads to
the potential-functional series:{

n�(r)
t�(r)

}
=

∫
dk1

(2π )3 eik1·r
{

J̃1(k1, kμ)
K̃1(k1, kμ)

}
ṽ�(k1)

+
∫

dk1

(2π )3

∫
dk2

(2π )3 ei(k1+k2 )·r

×
{

J̃2(k1, k2, kμ)
K̃2(k1, k2, kμ)

}
ṽ�(k1)ṽ�(k2)

+ . . . . (7)
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where we have introduced the reciprocal-space response
functions J̃1(k1, kμ), K̃1(k1, kμ), J̃2(k1, k2, kμ), and
K̃2(k1, k2, kμ), but omit their detailed formulas which
appear in Sec. IV of Part I. In Eq. (7), ṽ�(k) is the Fourier
transform of v�(r) based on the convention

f̃ (k) =
∫

dre−ik·r f (r). (8)

The response functions in Eq. (7) are nonzero only for μ >

v0. Those for the electron density have long been known
in explicit form—J̃1(k1, kμ) was first obtained by Lindhard
[18] and J̃2(k1, k2, kμ) was obtained by Lloyd and Sholl [37]
followed by others [38–41]—and in Sec. IV of Part I we
provide explicit forms for K̃1(k1, kμ) and K̃2(k1, k2, kμ). We
also discuss a real-space formulation [12,42] of the response
functional series in Sec. II of Part I, but, as will become clear,
the conversion procedure is most natural in the reciprocal-
space formulation.

III. DENSITY FUNCTIONALS AND ASSOCIATED
RESPONSE FUNCTIONS

In this section, we derive the electron-density-based re-
sponse functionals for the KED and the Pauli KED by apply-
ing a conversion procedure pioneered by Stoddart and March
[12], to the potential functionals mentioned previously (and
derived in Part I).

A. Converting potential functionals to density functionals

The conversion strategy [12] begins with consideration of
the Fourier transform of the perturbed electron density from
Eq. (7):

ñ�(k) = J̃1(k, kμ)ṽ�(k)

+
∫

dk1

(2π )3

∫
dk2

(2π )3 (2π )3δ(k − k1 − k2)

× J̃2(k1, k2, kμ)ṽ�(k1)ṽ�(k2)

+
∞∑

m=3

ñm(k), (9)

where the dependence on ṽ�(k) is left implicit in the third-
and higher-order terms. Next, one rearranges this series to
isolate the first appearance of ṽ�(k), yielding

ṽ�(k) = ñ�(k)

J̃1(k, kμ)

−
∫

dk1

(2π )3

∫
dk2

(2π )3 (2π )3δ(k − k1 − k2)

× J̃2(k1, k2, kμ)

J̃1(k, kμ)
ṽ�(k1)ṽ�(k2)

−
∞∑

m=3

ñm(k)

J̃1(k, kμ)
. (10)

Finally, by repeatedly inserting the left-hand side of Eq. (10)
into its right-hand side, we may obtain ṽ�(k) as a functional
of ñ�(k) to arbitrary order. While the explicit expressions
become unwieldy rather quickly, we may nevertheless write

the result in the truncated form,

ṽ�(k) = ñ�(k)

J̃1(k, kμ)

−
∫

dk1

(2π )3

∫
dk2

(2π )3 (2π )3δ(k − k1 − k2)

× J̃2(k1, k2, kμ)

J̃1(k, kμ)

ñ�(k1)

J̃1(k1, kμ)

ñ�(k2)

J̃1(k2, kμ)

+ O
(
ñ3

�

)
. (11)

We may now use Eq. (11) to convert the KED potential
functionals in Eq. (7) into KED density functionals.

B. Kinetic energy density as a density functional

We make two notation-related comments before proceed-
ing. In Part I, we used the symbol t1(r) to represent the first-
order potential functional for the KED; here, as above, we use
a bracket notation—t1[n](r, kμ)—to represent the analogous
density functional, where it is understood that kμ is also deter-
mined from the electron density in some fashion (see below
for two possibilities), and we follow this convention wherever
necessary to remove ambiguity. Second, for compactness in
some expressions that follow, we use a hat syntax to refer to
dimensionless response functions; for example, we define

̂K̃1(k1, kμ) = K̃1(k1, kμ)

K̃1(0, kμ)
. (12)

1. First-order term

The first-order density functional for the KED is

t1[n](r, kμ) =
∫

dk1

(2π )3 eik1·rQ̃1(k1, kμ)ñ�(k1), (13)

where

Q̃1(0, kμ) = k2
μ

2
(14)

and

Q̃1(k1, kμ)

Q̃1(0, kμ)
=

̂K̃1(k1, kμ)

̂J̃1(k1, kμ)
= 1

2
− 3η2

1

2
+ [2 ̂J̃1(k1, kμ)]−1.

(15)

This functional emerges after the conversion strategy out-
lined above is applied to the potential functionals for the
KED—see Eqs. (80) and (83) in Part I for definitions of
the potential-functional components. We have not found the
response function of Eqs. (14) and (15) in the literature;
however, partly by coincidence, Eq. (15) happens to be very
similar to (differing only by a constant shift) dimensionless
integral kernels from a number of functionals that target the
integrated kinetic energy or the kinetic potential—see, for
example, Eq. (49) in Ref. [43], Eq. (12c) in Ref. [21], Eq. (13)
in Ref. [44], and Eq. (8) in Ref. [24]—all of which originate
from the second-order constraint summarized by Eq. (3) and
therefore differ subtly, but essentially, from Eq. (15) in form
and in meaning. We provide a plot of Eq. (15) in Fig. 1.
As expected, the k1 → 0 limit of the full response function,
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FIG. 1. Dimensionless response function governing the first-
order change in the kinetic energy density (and Pauli kinetic energy
density) when expressed as a density functional. The horizontal axis
is normalized by a factor of kμ, which is the Fermi wave vector
associated with the reference electron density n0. In the limit of
a slowly varying perturbation (η1 → 0), the first-order correction
to the Thomas-Fermi density functional [see Eq. (6)] is recov-
ered. The response function has a nonanalytic feature (at η1 = 1)
and approaches 1/5 for the case of a rapidly varying perturbation
(η1 → ∞).

Eq. (14), agrees with the first-order coefficient in Eq. (6).
Finally, integrating Eq. (13) over all space yields the expected
result for the first-order kinetic energy,

T1[n] = Q̃1(0, kμ)ñ�(0), (16)

which vanishes if n�(r) integrates to zero.

2. Second-order term

The second-order density functional for the KED is

t2[n](r, kμ) =
∫

dk1

(2π )3

∫
dk2

(2π )3

× ei(k1+k2 )·rQ̃2(k1, k2, kμ)ñ�(k1)ñ�(k2), (17)

with

Q̃2(0, 0, kμ) = π2

2kμ

(18)

and

Q̃2(k1, k2, kμ)

Q̃2(0, 0, kμ)
= 3

2

̂K̃2(k1, k2, kμ)

̂J̃1(k1, kμ) ̂J̃1(k2, kμ)

− 1

2

̂K̃1(k1 + k2, kμ)

̂J̃1(k1 + k2, kμ)

̂J̃2(k1, k2, kμ)

̂J̃1(k1, kμ) ̂J̃1(k2, kμ)
.

(19)

This response function, where the explicit forms of the indi-
vidual components are defined in Eqs. (80), (83), (91–93), and
(96–99) of Part I, is the second-order term that emerges when
the conversion strategy is applied to the KED series in Eq. (7).
Plots of Eq. (19) are given in Fig. 2. This function has not
been reported before and is one of the primary contributions of
this work. Again, the low-wave-vector limit, Eq. (18), agrees
with the relevant coefficient in Eq. (6). Integration of Eq. (17)

FIG. 2. Plots of the dimensionless response function [Eq. (19)]
governing the second-order change in the kinetic energy density
when expressed as a functional of the electron density. η1 represents
k1/(2kμ), and likewise for η2. Plotted for the cases when the angle
between k1 and k2 is π/3 (top) and when this angle is 2π/3 (bottom).
The second-order correction to the Thomas-Fermi functional [see
Eq. (6)] is recovered in the η1, η2 → 0 limit and the response
function tends to diverge as −3η1 · η2 in the η1, η2 → ∞ limit.

over all space produces a delta function that annihilates one
of the wave-vector integrals, ultimately yielding the following
second-order correction to the integrated kinetic energy,

T2[n] = 1

2

∫
dk1

(2π )3

−1

J̃1(k1, kμ)
ñ�(k1)ñ�(−k1), (20)

which is in accord with Eq. (3). Finally, close inspection of
Eq. (19)—not given here in detail, but see Fig. 2—reveals
that Q̃2(k1, k2, kμ) behaves asymptotically as −k1 · k2/(8n0)
when k1 and k2 are large, a point to which we return
shortly.

C. Pauli kinetic energy density as a density functional

As noted above, the von Weizsäcker KED is known ex-
plicitly as a density functional, and so one may choose to
develop approximations for the Pauli KED rather than the
full KED. Here, we adapt functionals given previously into
approximations for the Pauli KED [tP

0 [n0], tP
1 [n](r, kμ), and
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FIG. 3. Plots of the dimensionless response function [Eq. (24)]
governing the second-order change in the Pauli kinetic energy
density when expressed as a functional of the electron density. η1

represents k1/(2kμ), and likewise for η2. Plotted for the cases when
the angle between k1 and k2 is π/3 (top) and when this angle is
2π/3 (bottom). The second-order correction to the Thomas-Fermi
functional [see Eq. (6)] is recovered in the η1, η2 → 0 limit and the
response function remains finite in the η1, η2 → ∞ limit.

tP
2 [n](r, kμ)]. If, beginning with tvW [n](r) as given by Eq. (2),

one conducts a functional Taylor expansion (see the appen-
dices in Ref. [45] or Ref. [46]) about a uniform reference
density through second order, then the zeroth- and first-order
terms vanish and the result is

tvW [n](r) ≈ |∇n�(r)|2
8n0

+ O
(
n3

�

)
. (21)

For this reason, free-electron-based response functionals for
the Pauli KED only begin to differ from those for the full KED
at second order—for example, tP

0 [n0] = t0[n0]. Furthermore,
the second-order term shown in Eq. (21), when converted to
Fourier space, is precisely the divergent −k1 · k2/(8n0) term
that we highlighted in the sentence following Eq. (19). When
this term is subtracted from Eq. (19) to yield the second-order
correction in the Pauli KED, the resulting function remains
finite when k1 and k2 are large (see Fig. 3).

1. First-order term

The first-order density functional for the Pauli KED is

tP
1 [n](r, kμ) =

∫
dk1

(2π )3 eik1·rP̃1(k1, kμ)ñ�(k1), (22)

where P̃1(k1, kμ) = Q̃1(k1, kμ) and Q̃1(k1, kμ) is the first-
order correction to the full KED given in Eq. (15).

2. Second-order term

The second-order density functional for the Pauli KED is

tP
2 [n](r, kμ) =

∫
dk1

(2π )3

∫
dk2

(2π )3

× ei(k1+k2 )·rP̃2(k1, k2, kμ)ñ�(k1)ñ�(k2) (23)

with P̃2(0, 0, kμ) = Q̃2(0, 0, kμ) and

P̃2(k1, k2, kμ)

P̃2(0, 0, kμ)
= Q̃2(k1, k2, kμ)

Q̃2(0, 0, kμ)
+ 3η1 · η2. (24)

As noted above, Eq. (24) remains finite as k1 and k2 become
large. Equation (24) is plotted in Fig. 3.

IV. TESTING THE ELECTRON-DENSITY-BASED
RESPONSE FUNCTIONALS FOR THE KINETIC

ENERGY DENSITY

In this section, we apply the electron-density-based re-
sponse functionals for the KED and Pauli KED to electron
densities associated with a few crystalline solids. The test
systems are local electron-ion pseudopotential models of
body-centered cubic Li, face-centered cubic Al, and cubic
diamond Si. We obtained the test system benchmark data
from KSDFT calculations conducted with the ABINIT code
[47] using a generalized gradient approximation (GGA) [48]
for the XC functional. To ensure high resolution in the local
properties, we used very high computational settings [3200
eV for the plane-wave kinetic energy cutoff, 32 × 32 × 32
k-point meshes for unit cells of two (Li), four (Al), and two
(Si) atoms, and Fermi-Dirac smearing of 0.01 eV]. The local
pseudopotentials for Li and Si were the same as those used in
Ref. [49] and the local pseudopotential for Al was the same as
that used in Ref. [50]—see Ref. [51].

We summarize the test system data in Figs. 4–6, giving
the converged KS effective potential, KS electron density,
and KS KED, all along the [111] direction of the cubic unit
cell. We keep these properties fixed for the remainder of the
analysis (without adjusting them self-consistently), and so the
KS effective potential may be viewed simply as an applied
external potential. (After accounting for ion-ion interactions,
the crystals are charge-neutral; therefore, the spatial average
of these potentials has no Coulombic contribution and derives
entirely from non-Coulombic parts of the respective local
pseudopotentials as well as XC effects.) In Figs. 4–6, we also
show the Fermi energy of the highest occupied orbital, the
free-electron KED obtained by inserting the average electron
density for the respective system into the Thomas-Fermi
functional given by Eq. (5), and the von Weizsäcker KED
given by Eq. (2).
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FIG. 4. For body-centered cubic Li modeled with a local pseu-
dopotential and GGA XC, plots of (a) the effective external potential
v(r), (b) the electron density n(r), and (c) the KED t (r) along
the [111] diagonal of the cubic unit cell, derived from KSDFT
calculations. In each plot, the horizontal axis is scaled by a factor
of the lattice constant a0 and the vertical axis is expressed in Hartree
atomic units. In (a), Li atom locations are marked with “Li” and the
Fermi energy μ is shown as a dotted line. Electrons must tunnel to
traverse the classically forbidden regions where v(r) > μ. In (c), the
free-electron KED t0[n0], obtained by inserting the average electron
density into the Thomas-Fermi functional, is shown as a dotted line,
and the von Weizsäcker KED tvW [n](r) is shown as a dashed curve.

In Figs. 7–9, we summarize the response functional esti-
mates to the KED and Pauli KED for the three test systems
based on the KS electron densities shown in Figs. 4–6, which
are held fixed. For comparison, the exact KEDs from Figs. 4–6
are reproduced in Figs. 7–9, with the latter plots just showing
more detail over a smaller region. Figure 7(a), Fig. 8(a), and
Fig. 9(a) are based on the following approximation to t (r)
involving the response functionals for the full KED:

t (r) ≈ t0[n0] + t1[n](r, kμ[n0]) + t2[n](r, kμ[n0]), (25)

where n0 refers to the average electron density for the respec-
tive system, and t1[n](r, kμ[n0]) and t2[n](r, kμ[n0]) are com-
puted from Eqs. (13)–(15) and Eqs. (17)–(19), respectively.
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FIG. 5. For face-centered cubic Al modeled with a local pseu-
dopotential and GGA XC, plots of (a) the effective external potential
v(r), (b) the electron density n(r), and (c) the KED t (r) along
the [111] diagonal of the cubic unit cell, derived from KSDFT
calculations. In each plot, the horizontal axis is scaled by a factor
of the lattice constant a0 and the vertical axis is expressed in Hartree
atomic units. In (a), Al atom locations are marked with “Al” and the
Fermi energy μ is shown as a dotted line. Electrons must tunnel to
traverse the classically forbidden regions where v(r) > μ. In (c), the
free-electron KED t0[n0], obtained by inserting the average electron
density into the Thomas-Fermi functional, is shown as a dotted line,
and the von Weizsäcker KED tvW [n](r) is shown as a dashed curve.

Figure 7(b), Fig. 8(b), and Fig. 9(b) are based on a different
approximation for t (r) involving the von Weizsäcker KED
and response functionals for the Pauli KED:

t (r) ≈ tvW [n](r) + tP
0 [n0] + tP

1 [n](r, kμ[n0])

+ tP
2 [n](r, kμ[n0]), (26)

where tvW [n](r) is computed from Eq. (2), n0 is again the aver-
age electron density, and tP

1 [n](r, kμ[n0]) and tP
2 [n](r, kμ[n0])

are determined from Eq. (22) and Eqs. (23)–(24), respec-
tively. In essentially every case, the approximation of Eq. (26)
is markedly better than the approximation of Eq. (25),
seemingly because Eq. (26) includes the full von Weizsäcker
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FIG. 6. For cubic diamond Si modeled with a local pseudopo-
tential and GGA XC, plots of (a) the effective external potential
v(r), (b) the electron density n(r), and (c) the KED t (r) along
the [111] diagonal of the cubic unit cell, derived from KSDFT
calculations. In each plot, the horizontal axis is scaled by a factor
of the lattice constant a0 and the vertical axis is expressed in Hartree
atomic units. In (a), Si atom locations are marked with “Si” and the
Fermi energy μ is shown as a dotted line. Electrons must tunnel to
traverse the classically forbidden regions where v(r) > μ. In (c), the
free-electron KED t0[n0], obtained by inserting the average electron
density into the Thomas-Fermi functional, is shown as a dotted line,
and the von Weizsäcker KED tvW [n](r) is shown as a dashed curve.

term while Eq. (25) only includes a second-order approxi-
mation to the von Weizsäcker term. Put differently, Eq. (26)
constitutes a partial resummation of the perturbation series in
which the portion of the series leading to the von Weizsäcker
term is summed to infinite order and the remaining part (the
Pauli KED) is approximated through second order. Moreover,
in all cases, inclusion of the second-order term yields demon-
strable improvement over the first-order-accurate approxima-
tions. In particular, both first-order approximations generate
a negative KED in the low-density regions of the Si test
system (Fig. 9), in clear violation of the local t (r) � tvW [n](r)
constraint, and that this defect is remedied by inclusion of the
second-order terms.
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FIG. 7. Response functional approximations for the KED of the
body-centered cubic Li test system (Fig. 4). In (a), the exact KED
(solid curve, reproduced from Fig. 4) is compared with the first- and
second-order density functional estimates for the full KED (dotted
and dashed curves, respectively)—see Eq. (25). In (b), the exact KED
(solid curve) is compared with the sum of the von Weizsäcker KED
and the first- and second-order density functional estimates for the
remaining Pauli KED (dotted and dashed curves, respectively)—see
Eq. (26). In both (a) and (b), the approximations are accurate in the
free-electron-like region; however, only in (b) are the approximations
also reasonably accurate in the classically forbidden region.

Thus far, all approximations have relied on a fixed n0 for
determining first- and second-order corrections, where n0 has
been set as the average electron density of the system under
consideration. A natural alternative is to use the local n(r) as
the reference density for the location r. The zeroth-order Pauli
KED, for example, is the local Thomas-Fermi KED in this
case instead of the constant tP

0 [n0], and the full second-order-
accurate approximation originally given by Eq. (26) becomes

t (r) ≈ tvW [n](r) + tT F [n](r) + tP
1 [n](r, kμ[n](r))

+ tP
2 [n](r, kμ[n](r)). (27)

This revised approximation, because of the additional density
dependence in the response functions, is more challenging to
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FIG. 8. Response functional approximations for the KED of the
face-centered cubic Al test system (Fig. 5). In (a), the exact KED
(solid curve, reproduced from Fig. 5) is compared with the first- and
second-order density functional estimates for the full KED (dotted
and dashed curves, respectively)—see Eq. (25). In (b), the exact KED
(solid curve) is compared with the sum of the von Weizsäcker KED
and the first- and second-order density functional estimates for the
remaining Pauli KED (dotted and dashed curves, respectively)—see
Eq. (26). In both (a) and (b), the approximations are accurate in the
free-electron-like region; however, only in (b) are the approximations
also reasonably accurate in the classically forbidden region.

evaluate than the original. The usual approach [26,52,53] for
keeping the computational expense manageable for such func-
tionals (having single-density-dependent kernels) involves
computing tP

1 [n](r, kμ[n j]) for a discrete set of n j values
and then extending these results to arbitrary values of n(r)
with interpolating splines. In Fig. 10, the results of applying
of Eq. (27) to the three test systems are reported, based on
uniform spacing of 0.0025 a.u. between successive nj values
and linear splines.

With this approximation, the results for the Li test system
[Fig. 10(a)] are excellent for both the first- and second-order
accurate versions. For the Al test system [Fig. 10(b)], the
first-order-accurate result improves on the previous first-order

 0.00

 0.01

 0.02

 0.03

 0.04

0.0 0.2 0.4 0.6

ki
ne

�c
 e

ne
rg

y 
de

ns
ity

 (a
.u

.)

[111] direc�on (a0√3)

words words words

 0.00

 0.01

 0.02

 0.03

 0.04

0.0 0.2 0.4 0.6

ki
ne

�c
 e

ne
rg

y 
de

ns
ity

 (a
.u

.)

[111] direc�on (a0√3)

words words

(a)

(b)

exactt 0 1t t 0 1 2t tt

0

1 2

P
vW
P P

t t
t t

0

1

P
vW
P

t t
t

exactt

FIG. 9. Response functional approximations for the KED of the
cubic diamond Si test system (Fig. 6). In (a), the exact KED (solid
curve, reproduced from Fig. 6) is compared with the first- and
second-order density functional estimates for the full KED (dotted
and dashed curves, respectively)—see Eq. (25). In (b), the exact KED
(solid curve) is compared with the sum of the von Weizsäcker KED
and the first- and second-order density functional estimates for the
remaining Pauli KED (dotted and dashed curves, respectively)—see
Eq. (26). In both (a) and (b), the second-order approximations are
relatively accurate in the free-electron-like regions, but the first-
order approximations are insufficient, as judged by unphysically
negative estimates for the KED at some locations. Only in (b) are
the approximations reasonably accurate in the classically forbidden
regions.

(fixed-reference-density) approximation [Fig. 8(b)]; however,
the second-order result in Fig. 10(b) displays some irregu-
larities. This problem becomes more severe for the Si test
system [Fig. 10(c)], for which the second-order-accurate ap-
proximation becomes significantly worse than the first-order
approximation in some regions. Referring to Fig. 6, one sees
that the unphysical behavior occurs where the local electron
density is very low, suggesting an explanation: If the free-
electron reference density is very small compared with the
fluctuations in the electron density, the convergence of the
perturbation series is imperiled.
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FIG. 10. Response functional approximations for the KED utiliz-
ing a locally adjusted free-electron reference density. In (a), (b), and
(c), respectively, the exact KEDs for the Li, Al, and Si systems (solid
curves, reproduced from Figs. 4, 5, and 6) are compared with the sum
of the von Weizsäcker KED and the first- and second-order-accurate
density functional estimates for the Pauli KED (dotted and dashed
curves, respectively). In contrast with the fixed-reference-density
approximations appearing in Figs. 7(b), 8(b), and 9(b), the latter
functionals are evaluated using a locally adjusted reference density—
see Eq. (27).

V. CONCLUDING REMARKS

In this second paper of the two-part series, we consid-
ered electron-density-based response functionals for the non-
negative KED of nearly free electrons. Using the potential
functionals developed in Part I, we derived the first- and
second-order corrections to the free-electron KED as func-
tionals of the electron density. The reciprocal-space integral
kernels we provided supply physical insight and are of prac-
tical value because they enable more efficient evaluation of
the functionals via fast Fourier transform (FFT) techniques.
The first-order response function for the full KED, Eq. (15),
is fairly simple, but the second-order function, Eqs. (18) and
(19), is considerably more difficult to obtain, requiring the
function K̃2(k1, k2, kμ) derived at length in Part I. Finally, we
also provided density functionals for the first- and second-
order response in the Pauli KED—Eq. (22) and Eqs. (23)–
(24), respectively—which is the non-negative amount in ex-
cess of the von Weizsäcker KED. The first-order functional
for the Pauli KED is identical to that of the full KED, whereas
the second-order functionals differ by a simple term.

In Sec. IV, we examined approximate KEDs generated
by electron-density-based response functionals when applied
to KS electron densities derived from local pseudopotential
models of body-centered cubic Li, face-centered cubic Al, and
cubic diamond Si. In general, particularly when the second-
order term is included, they provide reasonable approxima-
tions to the exact t (r) in free-electron-like regions where
the electron density deviates only modestly from uniformity.
However, the combination of the von Weizsäcker KED with
response functional approximations for the remaining Pauli
KED yields a marked improvement in regions where the
electron density varies more rapidly. This observation re-
garding the local KED helps explain the success of approx-
imations for the integrated kinetic energy that involve the
full von Weizsäcker energy and obey the constraint specified
by Eq. (3). We also investigated adjusting the free-electron
reference density locally and observed apparent nonconver-
gence of the perturbation series in regions where the local
density is much smaller than the overall magnitude of density
fluctuations.

We anticipate that knowledge of the structure of the KED
response functionals will help guide the design of more
sophisticated kinetic energy density functionals that enable
more accurate OFDFT simulations of materials. For example,
Eqs. (17)–(19) imply a constraint on density functional esti-
mates for t (r) that represents a local generalization of Eq. (3).
One immediate possibility for follow-up involves finding
techniques for evaluating Eq. (17) and/or Eq. (23) with a com-
putational effort that scales linearly with system size because
direct evaluation of these expressions incurs no better than
quadratic scaling, even with assistance from FFT techniques.
This problem has been solved (approximately) in a slightly
different context [20,23] and we are currently exploring this
possibility. Another obvious avenue for follow-up involves
greater consideration of location-dependent reference electron
densities—for example, with the response functions for the
local KED (or Pauli KED) provided in this paper, one may
easily consider the generalization n0 → ñ(r). We explored the
simplest choice briefly in Sec. IV, which is to define ñ(r) ≡
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n(r) in the spirit of the Thomas-Fermi approximation such
that t0(r) ≡ tT F [n](r). However, it seems likely that choosing
ñ(r) in a more sophisticated manner would yield better results.
Finally, while the frozen-density calculations we presented in
Sec. IV are useful for conceptual and diagnostic purposes,
additional insight would follow from self-consistent OFDFT
calculations during which the electron density is varied until
the total system energy is minimized. These computations
require kinetic potentials obtained by straightforward func-
tional differentiation of our results. Such self-consistent cal-
culations represent a more rigorous test for OF functionals
because the approximations must work reasonably well for
all trial densities; if not, the OF-derived density may dif-
fer significantly from the KS density, increasing the overall
error.

Note added in proof: We thank an anonymous referee for
bringing to our attention Ref. [54], which outlines an alternate
method of achieving the inversion from potential functionals
to density functionals.
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APPENDIX

Here, we demonstrate that the conventional gradient ex-
pansion for the KED (in density-functional form) is encoded
in the response functional formalism that is the subject of this
work. Using the fact that

1

̂J̃1(k1 → 0, kμ)
≈ 1 + 1

3
η2

1 + 8

45
η4

1, (A1)

together with the asymptotic forms of the potential-based
response functions given in Sec. V of Part I, one can show
that

Q̃1(k1 → 0, kμ)

Q̃1(0, kμ)
≈ 1 − 4

3
η2

1 + 4

45
η4

1 (A2)

and

Q̃2(k1 → 0, k2 → 0, kμ)

Q̃2(0, 0, kμ)

≈ 1 − 1

3
η1 · η2 − 4

45

(
η4

1 + η4
2

)
− 1

3
(η2

1 + η2
2 )η1 · η2 − 14

45
η2

1η
2
2 − 7

45
(η1 + η2)2η1 · η2.

(A3)

Using these results, together with Eqs. (5), (13), and (17), one
may further show that

t (r) ≈ c0n5/3(r) + 1

6
∇2n(r) + 1

72

|∇n(r)|2
n(r)

+ (∇2)2
n(r)

1200c0n2/3(r)
− ∇[∇2n(r)] · ∇n(r)

480c0n5/3(r)

− 7[∇2n(r)]2

7200c0n5/3(r)
− 7∇2[|∇n(r)|2]

14400c0n5/3(r)
. (A4)

The terms involving two derivatives in Eq. (A4) comprise
the full second-order gradient expansion (compare with Eq.
5.50 in Ref. [13]), and the terms involving four derivatives in
Eq. (A4) are identical to terms appearing in the fourth-order
gradient expansion (compare with Eq. 5.51 in Ref. [13]). To
recover the entire fourth-order gradient expansion, one would
need to carry out the response functional formalism through
fourth order.
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