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Kinetic energy density of nearly free electrons. I. Response functionals of the external potential
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Free electrons have a uniform kinetic energy density (KED), which evolves into a spatially varying quantity
as the electrons respond to the gradual imposition of an external potential. In this paper and a companion
paper, we examine two sets of functionals for describing the local, non-negative KED that emerges after
such a perturbation. In this paper, we emphasize potential functionals, deriving the first- and second-order
deviations from the free-electron KED as functionals of the perturbing potential, also reconsidering the analogous
functionals for the local density of states and the electron density. (In the second paper, we use these results to
re-express the KED response in terms of functionals of the induced electron density.) We develop reciprocal-
space formulations of the response kernels to complement previously known real-space forms. The first-order
function is straightforward to obtain, but the second-order function requires considerable effort. To manage the
derivations, we relate the KED response to that of the one-electron Green function, and then examine the latter
in detail. Finally, we provide extensive validation of the derived response functions based on asymptotic analysis
of an integral representation, numerical integration of the same generating integral, and application to the linear
potential model.
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I. INTRODUCTION

The local properties of free electrons, such as the electron
density and the kinetic energy density (KED), are uniform
throughout space. As initially free electrons respond to the
imposition of a new external potential, the changes in these
properties may be approximated with response functionals.
Here, we consider response functionals for the local, non-
negative KED defined by

t (r) = 1
2

[∇r · ∇r0γ (r, r0)
]

r0→r, (1)

where γ (r, r0) is the reduced density matrix of a noninter-
acting electron system governed by the Hamiltonian Ĥ =
− 1

2∇2 + v̂, where v(r) is an external potential. [The quantity
tL(r) = t (r) − 1

4∇2n(r) arises from another natural definition
for the KED—see the Appendix—but it does not enjoy strict
non-negativity.] More specifically, we investigate the limiting
case of a time-independent potential that is switched on
gradually over a long period of time—the new steady-state
that emerges (eventually) is encoded in the static response
functionals of the unperturbed system. One expects the re-
sponse functional series to converge when the perturbation is
sufficiently weak; a more rigorous treatment of the conditions
for convergence is not given here, but see Refs. [1,2] for
discussion of the convergence of the underlying response
series (Born series) for the Green function.

In this paper and a companion paper, we examine two
distinct sets of static response functionals for the local KED.
In this paper, we consider first- and second-order corrections
to the free-electron KED in the form of potential functionals,
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so-named because they depend explicitly on the perturbing
potential. In the second paper (Part II) [3], we use these
potential functionals—together with additional ingredients
and a conversion procedure pioneered by Stoddart and March
[4]—to obtain an alternate set of first- and second-order
density functionals for the KED that operate on the induced
electron density and do not depend explicitly on the perturbing
potential. These latter functionals will help guide the design
of the more sophisticated kinetic energy functionals enabling
orbital-free [5–8] density functional theory [9,10] simulations,
an overarching goal.

Our analysis draws heavily on a long tradition of response
functional development based on the free-electron reference
system and, while our focus on the KED is a differentiating
feature, the approach we adopt parallels that of numerous
earlier authors. For example, potential functionals yielding the
response of the electron density have long been known, along
with the closely related (see below) response functionals for
the total kinetic energy [11–25]. We defer a more detailed
account of this earlier work to the following section and men-
tion here only one specific result, the static Lindhard function
[11], which is likely the best-known archetype of the category.
The Lindhard function and associated potential functional—
respectively, J̃1(k1, kμ) in our notation and Eq. (78) below—
governs the first-order response of the electron density and is
a ubiquitous feature in textbooks on condensed matter physics
[26–28].

In the following section, we give background material on
elements of theory and prior work illustrating the origin of the
response functionals. In Sec. III, we consider the response of
the equal-position Green function—that is, G+(r, r, E ), the
diagonal of the retarded one-electron Green function—which
suffices to determine the response of other local properties
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of interest. For completeness, we include full mathemati-
cal detail—readers uninterested in the derivation may skip
Sec. III and proceed directly to Sec. IV, where we provide
the reciprocal-space response functions that are the primary
results of this paper. In Sec. V, we describe a multipart valida-
tion strategy confirming that the (rather complicated) second-
order formulas are correct. We make concluding remarks in
Sec. VI. An Appendix gives additional details and Supple-
mental Material (SM) [29] provides additional verification of
the response function formulas.

II. BACKGROUND

We consider a three-dimensional system of noninteracting
electrons with Hamiltonian Ĥ = − 1

2∇2 + v̂, where the static
external potential is partitioned into a free part and a pertur-
bation, v(r) = v0 + v�(r). Neglecting spin-polarization for
simplicity, we work in the zero-temperature grand canonical
ensemble, meaning that states with energies below a chemical
potential μ are each populated with two electrons. Finally, in
part to avoid working with wave functions explicitly, we adopt
a Green function approach.

The retarded Green function for this system is defined
formally as [30,31]

G+(r, r0, E ) = 〈r| 1

E − Ĥ + iε
|r0〉, (2)

which reflects the fact that G+(r, r0, E ) is the position-space
representation of an operator, Ĝ+(E ), satisfying the equation

(E − Ĥ + iε)Ĝ+(E ) = 1̂. (3)

The +iε term in Eqs. (2) and (3), where ε is a real, positive
constant, ensures that G+(r, r0, E ) has the intended behavior
in the time-domain—specifically, that it describes propagation
forward in time—and the implied limit ε → 0+ is taken at
the end of any calculation of physical quantities. The function
G+(r, r0, E ) encodes all local properties of interest, including
the spin-summed local density of states (LDOS) [30,31],

ρ(r, E ) = − 2

π
[ImG+(r, r0, E )]r0→r, (4)

the electron density,

n(r) = − 2

π

∫ μ

−∞
[ImG+(r, r0, E )]r0→rdE

=
∫ μ

−∞
ρ(r, E )dE , (5)

and the non-negative KED introduced above,

t (r) = − 2

π

∫ μ

−∞

[
1

2
∇r · ∇r0 ImG+(r, r0, E )

]
r0→r

dE

=
∫ μ

−∞
Eρ(r, E )dE − v(r)n(r) + 1

4
∇2n(r). (6)

The second line in Eq. (6) will prove crucial in our develop-
ment below—see the Appendix for a brief demonstration of
its equivalence with the first line.

Unfortunately, the difficulty of obtaining the exact
G+(r, r0, E ) is akin to that of solving the Schrödinger equa-
tion itself. For this reason, we proceed by inspecting the
solution for the simpler free-electron case, where v�(r) = 0,
and then afterwards summarize the iterative technique that
yields approximations for the general case.

A. Free-electron systems and the Thomas-Fermi approximation

A free-electron system is characterized by the Hamiltonian
Ĥ0 = − 1

2∇2 + v0, where v0 is a constant, and its Green func-
tion is diagonal in the momentum representation [30,31]:

〈k| 1

E − Ĥ0 + iε
|k0〉 = G̃+

0 (k, E )〈k | k0〉, (7)

where

G̃+
0 (k, E ) = 2

k2
E − k2 + iε2

, (8)

kE = [2(E − v0)]1/2, and ε2 = 2ε. When defining kE we
specify the principal square root such that kE equals
i[2(v0 − E )]1/2 when E < v0. Using Eqs. (7) and (8) to com-
pute the position representation for the free-electron Green
function, one obtains

G+
0 (r, r0, E ) = − 1

2π

exp(ikE |r − r0|)
|r − r0| , (9)

following the ε → 0+ limit. Note that when E > v0, the
function G+

0 (r, r0, E ) is complex-valued and oscillatory, but
when E < v0 it becomes purely real-valued and decays expo-
nentially with the distance |r − r0|.

We can apply Eqs. (4)–(6) to this result to determine the
free-electron LDOS, which is zero for E < v0, as well as the
associated electron density and KED, which are zero for μ <

v0. When nonzero, the three quantities are⎧⎨
⎩

ρ0(E )
n0

t0

⎫⎬
⎭ =

⎧⎪⎨
⎪⎩

kE/π2

k3
μ/(3π2)

k5
μ/(10π2)

⎫⎪⎬
⎪⎭, (10)

where kμ = [2(μ − v0)]1/2 is typically referred to as the
Fermi wave vector.

It is useful at this stage to consider the replacement v0 →
v(r) made everywhere in Eq. (10). This procedure yields the
Thomas-Fermi [32,33] potential-functional approximations to
ρ(r, E ), n(r), and t (r), which, roughly speaking, are valid
when v(r) is nearly constant in the neighborhood of r. Fur-
thermore, recalling the partitioning v(r) = v0 + v�(r), it is
instructive to invoke the Thomas-Fermi approximation and
then record Taylor series expansions about v�(r) = 0 through
second order:⎧⎨

⎩
ρTF(r, E )

nTF(r)
tTF(r)

⎫⎬
⎭ ≈

⎧⎨
⎩

ρ0(E )
n0

t0

⎫⎬
⎭+

⎧⎨
⎩

−1/(π2kE )
−kμ/π2

−k3
μ/(2π2)

⎫⎬
⎭v�(r)

+
⎧⎨
⎩

−1/
(
2π2k3

E

)
1/(2π2kμ)
3kμ/(4π2)

⎫⎬
⎭v�(r)2. (11)
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This procedure anticipates results appearing later in Sec. IV:
the first- and second-order coefficients appearing in Eq. (11)
agree precisely with the values of the full-fledged response
functions evaluated for the limiting case of a slowly varying
perturbation.

B. Perturbation theory based on a free-electron model

Beginning from the Lippmann-Schwinger-Dyson equation
that relates Ĝ+(E ) and Ĝ+

0 (E ) [30,31],

Ĝ+(E ) = Ĝ+
0 (E ) + Ĝ+

0 (E )v̂�Ĝ+(E ), (12)

one may repeatedly insert its left-hand side into its right-hand
side to generate the infinite series,

Ĝ+(E ) = Ĝ+
0 (E ) +

∞∑
m=1

Ĝ+
0 (E )

m∏
α=1

[v̂�Ĝ+
0 (E )], (13)

where the m th order term is interpreted as free-electron
propagation punctuated by m interactions with the perturbing
potential v̂�. We may now invoke Eqs. (4)–(6) to convert
this series representation for Ĝ+(E ) into series expansions
yielding the deviations from free-electron character in the
LDOS, the electron density, and the KED:⎧⎨
⎩

ρ�(r, E )
n�(r)
t�(r)

⎫⎬
⎭ =

⎧⎨
⎩

ρ(r, E ) − ρ0(E )
n(r) − n0

t (r) − t0

⎫⎬
⎭ =

∞∑
m=1

⎧⎨
⎩

ρm(r, E )
nm(r)
tm(r)

⎫⎬
⎭.

(14)

Two equivalent formulations for the ρm(r, E ), nm(r), and
tm(r) terms are useful. The first involves functionals of the
real-space potential, v�(r), and the second involves function-
als of the Fourier-transformed potential, ṽ�(k), based on the
Fourier transform conventions outlined in the Appendix.

The real-space functionals are obtained from Eqs. (4)–(6)
after insertions of real-space resolutions of the identity of
the form 1̂ = ∫

drα|rα〉〈rα| within the m th order term from
Eq. (13). (See the following section for more detail.) The
ρm(r, E ) are zero when E < v0, which follows the fact that
the free-electron Green function, Eq. (9), is purely real for this
case—and accordingly, nm(r) and tm(r) are zero when μ < v0.
Otherwise, the real-space functionals may be written with the
following structure:⎧⎨

⎩
ρm(r, E )

nm(r)
tm(r)

⎫⎬
⎭ = · · ·

∫
drα · · ·︸ ︷︷ ︸

m integrals
α∈{1,...,m}

⎧⎨
⎩

Im
({r − rα,}m

α=1kE
)

Jm
({r − rα,}m

α=1kμ

)
Km
({r − rα,}m

α=1kμ

)
⎫⎬
⎭

× · · · v�(rα ) · · ·︸ ︷︷ ︸
m potential factors

α∈{1,...,m}

. (15)

The integral kernels appearing in Eq. (15) are the real-space
response functions, for which explicit and straightforward-to-
evaluate expressions are known to all orders [4,13]:

Im
({r − rα,}m

α=1kE
)= (−1)m

(2π )mπ2

sin
(
kE
∑m+1

α=1 |rα − rα−1|
)

∏m+1
α=1 |rα − rα−1|

,

(16)

Jm
({r − rα,}m

α=1kμ

) = (−1)mk2
μ

(2π )mπ2

j1
(
kμ

∑m+1
α=1 |rα − rα−1|

)
∏m+1

α=1 |rα − rα−1|
,

(17)

and

Km
({r − rα,}m

α=1kμ

)
= (−1)m+1k4

μ

2(2π )mπ2

j1′′(kμ

∑m+1
α=1 |rα − rα−1|

)
∏m+1

α=1 |rα − rα−1|
− Jm−1

({r − rα,}m−1
α=1 kμ

)
δ(r − rm)

+ 1

4
∇2

r Jm
({r − rα,}m

α=1kμ

)
, (18)

where in Eqs. (16)–(18) we use the convention that r0 = r
and rm+1 = r. In Eqs. (17) and (18), respectively, j1(x) =
(sin x − x cos x)/x2 is a spherical Bessel function and j1′′(x)
is the second derivative of j1(x). One may obtain the response
functions for the Laplacian version of the KED (see the
Appendix) by simply omitting the last term in Eq. (18) [4].

Alternatively, to develop ρm(r, E ), nm(r), and tm(r) as
functionals of the Fourier-transformed potential, ṽ�(k), one
inserts reciprocal-space resolutions of the identity of the
form 1̂ = ∫

dkα|kα〉〈kα| between the operators of the m th
order term from Eq. (13) before invoking Eqs. (4)–(6). These
Fourier-space formulations describe the response to perturba-
tions that are periodic in nature and are of practical utility be-
cause they facilitate more efficient evaluation of the real-space
functionals with fast-Fourier-transform techniques. (In addi-
tion, the strategy employed in Part II for converting potential
functionals into density functionals proceeds most naturally in
reciprocal space.) After a small amount of rearrangement, the
Fourier-space functionals may be written as follows:⎧⎨
⎩

ρm(r, E )
nm(r)
tm(r)

⎫⎬
⎭ = · · ·

∫
dkα

(2π )3 eikα ·r · · ·︸ ︷︷ ︸
m integrals
α∈{1,...,m}

⎧⎨
⎩

Ĩm
({kα,}m

α=1kE
)

J̃m
({kα,}m

α=1kμ

)
K̃m
({kα,}m

α=1kμ

)
⎫⎬
⎭

× · · · ṽ�(kα ) · · ·︸ ︷︷ ︸
m potential factors

α∈{1,...,m}

. (19)

However, in contrast with the real-space case, straightforward-
to-evaluate expressions for Ĩm(•, kE ), J̃m(•, kμ), and K̃m(•, kμ)
are not known to all orders. (For compactness, we occa-
sionally represent the wave vector arguments with a dot,
{kα,}m

α=1 ≡ •, for instances when the order m is left arbitrary.)
In principle, these functions could be obtained for any m by
direct Fourier transformation of their real-space counterparts;
however, the many-dimensional integrations that arise are
cumbersome and nearly intractable beyond first order [20]. In
the following section, we follow an alternate route to obtain
the second-order functions, but even with this technique,
progress at higher orders remains limited [18,23,34–36].

As mentioned above, J̃1(k1, kμ) is attributed to Lindhard
[11] and is widely known; in addition, one may use it to
obtain Ĩ1(k1, kE ) by differentiation. For the second-order
case, several authors provide expressions for J̃2(k1, k2, kμ),
and to a lesser extent Ĩ2(k1, k2, kE ), but these functions are
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considerably more difficult to obtain. The earliest such deriva-
tion appears to be that of Lloyd and Sholl [15], and one
finds derivations of alternate forms scattered across the litera-
ture [17,19,21,24]. By contrast, the reciprocal-space response
functions for the KED are not well-studied. (The sole example
appears to be work by Li and Percus [24], who, for one-
dimensional systems only, provide reciprocal-space response
functions for the KED through second order.) Here, we con-
tribute explicit formulas for K̃1(k1, kμ) and K̃2(k1, k2, kμ)
appropriate for three-dimensional systems—and, by simple
extension, the analogous functions for the Laplacian version
of the KED (see the Appendix)—which complement the
expressions for the LDOS and electron density discussed
previously. We give these results in Sec. IV, along with
the corresponding expressions for Ĩ1(k1, kE ), Ĩ2(k1, k2, kE ),
J̃1(k1, kμ), and J̃2(k1, k2, kμ)—both for purposes of compar-
ison and because we use the latter as building blocks for
K̃1(k1, kμ) and K̃2(k1, k2, kμ).

Although the local quantities discussed so far are our
primary focus, we conclude this background section by high-
lighting a connection between the response of the electron
density and that of the integrated energy of the noninteracting-
electron system, Etot, as well as the integrated kinetic energy,
Ts. We begin with a coupling constant integral for the system
energy [4,19,37–41],

Etot − E0 =
∫ 1

0
dλ

∫
drv�(r)nλ

�(r), (20)

in which Etot is the total energy, E0 is the energy of a free-
electron system with the same number of electrons per unit
volume, and nλ

�(r) is the deviation from the free-electron
density that would be generated by the scaled perturbation
λv�(r). The expression in Eq. (20) is commonly derived
using the Hellman-Feynman theorem [42] and the value of
the integral is effectively the electrostatic work required to
assemble the new charge distribution [4,19]. If we replace
nλ

�(r) in Eq. (20) with the response-functional series ap-
pearing in Eq. (15)—remembering to attach factors of λ

where appropriate—we may perform the λ integral directly
to deduce that [4,19,40,41]

{
Etot − E0

Ts − T0

}
=

∞∑
m=1

∫
dr · · ·

∫
drα · · ·︸ ︷︷ ︸

m integrals
α∈{1,...,m}

×
{

1
m+1 Jm

({r − rα,}m
α=1kμ

)
−m

m+1 Jm
({r − rα,}m

α=1kμ

)
}

v�(r)

× · · · v�(rα ) · · ·︸ ︷︷ ︸
m potential factors

α∈{1,...,m}

, (21)

where T0 is an integrated kinetic energy of the free-electron
reference system. The response of the kinetic energy given in
Eq. (21) is obtained by subtracting the potential energy from
the total energy at each order. The corresponding reciprocal

space formulations are [4,19,40,41]{
Etot − E0

Ts − T0

}
=

∞∑
m=1

· · ·
∫

dkα

(2π )3 · · ·︸ ︷︷ ︸
m integrals
α∈{1,...,m}

{
1

m+1 J̃m
({kα,}m

α=1kμ

)
−m

m+1 J̃m
({kα,}m

α=1kμ

)
}

× ṽ�

(
−

m∑
α=1

kα

)
· · · ṽ�(kα ) · · ·︸ ︷︷ ︸

m potential factors
α∈{1,...,m}

, (22)

which are developed in an analogous manner.

III. RESPONSE OF THE EQUAL-POSITION
GREEN FUNCTION

In this section—commencing our pursuit of explicit ex-
pressions for K̃1(k1, kμ) and K̃2(k1, k2, kμ)—we investigate
in greater detail the m th-order response of the equal-position
Green function. Readers uninterested in the details of the
derivation may skip directly to Sec. IV, where the results are
given. The m th order equal-position Green function is defined
using Eq. (13) as

G+
m (r, r, E ) = 〈r|Ĝ+

0 (E ) · · · v̂�Ĝ+
0 (E ) · · ·︸ ︷︷ ︸

m repetitions

|r〉. (23)

We choose this object as a jumping-off point because of
its simple structure; furthermore, as noted, response func-
tions for G+

m (r, r, E ) together with Eqs. (4)–(6) lead directly
to response functions for the other local properties. In the
spirit of Eqs. (15) and (19), we repeatedly insert real-space
resolutions of the identity of the form 1̂ = ∫

drα|rα〉〈rα| or
reciprocal-space resolutions of the identity of the form 1̂ =∫

dkα|kα〉〈kα| into Eq. (23) to obtain, after some rearrange-
ment for the latter case,

G+
m (r, r, E ) = · · ·

∫
drα · · ·︸ ︷︷ ︸

m integrals
α∈{1,...,m}

Hm
({r − rα,}m

α=1E
) · · · v�(rα ) · · ·︸ ︷︷ ︸

m potential factors
α∈{1,...,m}

= · · ·
∫

dkα

(2π )3 eikα ·r · · ·︸ ︷︷ ︸
m integrals

α∈{1,...,m}

H̃m
({kα,}m

α=1E
)

× · · · ṽ�(kα ) · · ·︸ ︷︷ ︸
m potential factors

α∈{1,...,m}

, (24)

where we have introduced real- and reciprocal-space response
functions, Hm(•, E ) and H̃m(•, E ). In doing so, we deduce im-
mediately an analytical expression for the real-space function,

Hm
({r − rα,}m

α=1E
) =

m∏
α=0

G+
0 (rα, rα+1, E ), (25)

with r0 = rm+1 = r, as well as a compact integral form for the
reciprocal-space function,

H̃m
({kα,}m

α=1E
) =

∫
dk0

(2π )3

m∏
β=0

G̃+
0

(
β∑

α=0

kα, E

)
. (26)

125106-4



KINETIC ENERGY DENSITY OF NEARLY FREE … PHYSICAL REVIEW B 100, 125106 (2019)

The integral in Eq. (26) prevents one from easily computing
the numerical value of H̃m(•, E ) for a given set of argu-
ments. However, in contrast to the inconvenient representa-
tion of H̃m(•, E ) provided by the 3m-dimensional Fourier
transform of Hm(•, E ), Eq. (26) involves only a single,
three-dimensional integral, irrespective of the order. Integrals
resembling Eq. (26) arise frequently in theoretical physics
[17,25,34–36].

The bulk of this section is devoted to completing the
integral in Eq. (26) for the first- and second-order cases,
yielding H̃1(k1, E ) and H̃2(k1, k2, E ) in analytical form. With
knowledge of these functions, we may use

Ĩm(•, kE ) = − 2

π
ImH̃m(•, E ), (27)

J̃m(•, kμ) =
∫ μ

−∞
Ĩm(•, kE )dE , (28)

and

K̃m(•, kμ) =
∫ μ

−∞
(E − v0)Ĩm(•, kE )dE − Sm{J̃m−1(•, kμ)}

− 1

4

∣∣∣∣∣
∣∣∣∣∣

m∑
α=1

kα

∣∣∣∣∣
∣∣∣∣∣2J̃m(•, kμ)

= −
∫ μ

−∞
J̃m(•, kE )dE − Sm{J̃m−1(•, kμ)}

+
[

1

2
k2
μ − 1

4

∣∣∣∣∣
∣∣∣∣∣

m∑
α=1

kα

∣∣∣∣∣
∣∣∣∣∣2
]

J̃m(•, kμ), (29)

which derive from Eqs. (4)–(6), to construct corresponding
response functions for the LDOS, electron density, and the
KED—the results of this procedure are recorded later in
Sec. IV.

Four points of clarification are in order. First, the process
of deducing Eq. (27) involves noting that v�(r) is purely real
and recognizing that, because Hm(•, E ) is an even function
in its position arguments, its imaginary part determines com-
pletely the imaginary part of its Fourier transform, H̃m(•, E ).
Second, the optional symmetrization instruction in Eq. (29)
is illustrated by the example S2{J̃1(k1, kμ)} = 1

2 [J̃1(k1, kμ) +
J̃1(k2, kμ)]. Third, the second line in Eq. (29) is obtained from
the first line following an integration by parts. Finally, the
response functions for the Laplacian version of the KED are
obtained by adding ||∑m

α=1 kα||2J̃m(•, kμ)/4 to Eq. (29).

A. First-order

The linear response of the equal-position Green function is
governed by

H̃1(k1, E ) =
∫

dk0

(2π )3

2

k2
E − k2

0 + iε2

2

k2
E − ||k0 + k1||2 + iε2

.

(30)

One may attack this integral in several ways; we choose an
approach that foreshadows our strategy for the more difficult
second-order case. We begin by noting that for k1 = 0 we
encounter a multiple of the generic integral

∫
dk0

(2π )3

1[
x − k2

0 + iε2
]2 = 1

2π2

∫ ∞

0
dk0

k2
0[

x − k2
0 + iε2

]2

= 1

4π2

∫ ∞

−∞
dk0

k2
0

(k0 + [x + iε2]1/2)
2
(k0 − [x + iε2]1/2)

2

= i

8π

1

[x + iε2]1/2 , (31)

with x as a real number. This integral will reappear several
times below; the result in the final line may be obtained
by application of the residue theorem. For concreteness, we
specify that the square root on the right-hand side of Eq. (31)
refers to the principal branch with a cut along the negative real
axis. Using this result, we conclude that

H̃1(0, E ) = i

2πkE
, (32)

following the ε → 0+ limit.
To proceed more generally, we combine the two denomi-

nators in Eq. (30) using the formula

1

A1A2
=
∫ 1

0
dx

1

[(1 − x)A1 + xA2]2 ; (33)

in the new denominator, we complete the square with all terms
involving k0 before shifting the origin for the k0 integral with

the replacement k0 → k0 − xk1, eventually obtaining

H̃1(k1, E ) =
∫ 1

0
dx
∫

dk0

(2π )3

4[
k2

E − (x − x2)k2
1 − k2

0 + iε2
]2 .

(34)

At this point, we invoke Eq. (31) to generate

H̃1(k1, E ) = i

2π

∫ 1

0
dx

1[
k2

E − (x − x2)k2
1 + iε2

]1/2 ; (35)

then, noting that the integrand remains analytic over
the full integration path, we make the Euler substitution
[k2

E − (x − x2)k2
1 + iε2]1/2 = −k1x + t , to reduce Eq. (35) to

the more tractable form

H̃1(k1, E ) = i

2πk1

∫ [k2
E +iε2]

1/2+k1

[k2
E +iε2]1/2

dt
1

t − 1
2 k1

. (36)
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The final integral yields

H̃1(k1, E ) = i

2πk1

[
Ln

([
k2

E + iε2
]1/2 + 1

2
k1

)

− Ln

([
k2

E + iε2
]1/2 − 1

2
k1

)]
, (37)

where Ln(z) is the principal logarithm with branch cut along
the negative real axis. After careful extraction of the ε → 0+
limit, we obtain

H̃1(k1, E ) =
⎧⎨
⎩

1
πk1

arctan
( k1

2[|k2
E |]1/2

)
E < v0

h(k1−2kE )
2k1

+ i
2πk1

ln
∣∣ k1+2kE

k1−2kE

∣∣ E > v0

⎫⎬
⎭, (38)

where the range of arctan(x) for real x is (−π/2, π/2) and
h(x) is the Heaviside step function. Note that Eq. (32) is
recovered in the k1 → 0 limit.

B. Second-order

The quadratic response of the equal-position Green func-
tion is governed by

H̃2(k1, k2, E )

=
∫

dk0

(2π )3

2

k2
E − k2

0 + iε2

2

k2
E − ||k0 + k1||2 + iε2

× 2

k2
E − ||k0 + k1 + k2||2 + iε2

. (39)

This integral requires more finesse and inventiveness than
its first-order counterpart. We begin by considering simpli-
fications that arise in a few special cases before eventually
tackling it for arbitrary wave vectors. For the latter task, we
adapt the elegant approach of Brovman and Kholas [18].

1. Simplified case: When k1 = 0 and k2 = 0

When both k1 and k2 are zero, we may write Eq. (39) in
the form

H̃2(k1, k2, E ) = −2
∂

∂E

∫
dk0

(2π )3

1[
k2

E − k2
0 + iε2

]2 , (40)

invoke Eq. (31), and then take the ε → 0+ limit to obtain

H̃2(0, 0, E ) = i

4πk3
E

. (41)

2. Simplified case: When k1 = 0, k2 = 0, or k2 = −k1

If one of the wave vector arguments is zero, or if k2 = −k1,
then Eq. (39) may be written (some manipulation is necessary

when k2 = 0)

H̃2(k1, 0, E ) = H̃2(0, k1, E ) = H̃2(k1,−k1, E )

=
∫

dk0

(2π )3

4[
k2

E − k2
0 + iε2

]2

× 2

k2
E − ||k0 + k1||2 + iε2

. (42)

By comparing Eq. (42) with Eq. (30), one may verify that the
following relationship holds after some rearrangement

H̃2(k1, 0, E ) = H̃2(0, k1, E ) = H̃2(k1,−k1, E )

= −1

2

∂

∂E
H̃1(k1, E ), (43)

which leads directly to the result

H̃2(k1, 0, E ) = H̃2(0, k1, E ) = H̃2(k1,−k1, E )

=
⎧⎨
⎩

− 1
π[|k2

E |]1/2
1

k2
1+4|k2

E | E < v0

δ(k1−2kE )
2k1kE

− i
πkE

1
k2

1−4k2
E

E > v0

⎫⎬
⎭. (44)

3. General case: Preliminary considerations

It is useful at this stage to introduce the triangle formed
by k1, k2, and a third vector k3 = −(k1 + k2), which features
prominently in the coming analysis. The circumradius, kR, of
this triangle may be computed with the formulas

kR = k1k2k3

4 · area
= kα

2 sin θα

, (45)

where α ∈ {1, 2, 3} and θα is the interior angle opposite side
kα . We also define, for compactness in the expressions that
follow,

cα = cos θα = −kβ · kγ /(kβkγ ), (46)

where (α, β, γ ) is a cyclic permutation of {1, 2, 3}. In the
limiting case where k1 and k2 become collinear, the triangle
collapses, kR → ∞, and cα → ±1.

To evaluate H̃2(k1, k2, E ) for the general case, we begin by
employing the formula

1

A1A2A3
= 2!

∫ 1

0
dx
∫ 1

0
dy

h(1 − x − y)

[(1 − x − y)A1 + xA2 + yA3]3 ,

(47)

to combine the three denominators in Eq. (39). In the unified
denominator, we complete the square with all terms involving
k0 and then shift the origin of the k0 integral with the replace-
ment k0 → k0 − xk1 + yk3 to write Eq. (39) in the form

H̃2(k1, k2, E ) = 16
∫ 1

0
dx
∫ 1

0
dy
∫

dk0

(2π )3

h(1 − x − y)[
k2

E − k2
0 + ||xk1 − yk3||2 − xk2

1 − yk2
3 + iε2

]3 . (48)

We now rewrite Eq. (48) as

H̃2(k1, k2, E ) = −4
∂

∂E

∫ 1

0
dx
∫ 1

0
dy
∫

dk0

(2π )3

h(1 − x − y)[
k2

E − xk2
1 − yk2

3 + ||xk1 − yk3||2 − k2
0 + iε2

]2 , (49)
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so that we may invoke Eq. (31) to complete the k0 integral; afterwards, we perform the energy derivative to obtain

H̃2(k1, k2, E ) = i

2π

∫ 1

0
dx
∫ 1

0
dy

h(1 − x − y)[
k2

E − xk2
1 − yk2

3 + ||xk1 − yk3||2 + iε2
]3/2 , (50)

recalling that the principal square root is intended.
Equation (50) is an exact reformulation of Eq. (39), and one

may verify that the results given in the previous subsections
are recovered from Eq. (50) when one or all of k1, k2, and
k3 are set to zero. More importantly, Eq. (50) represents an
improvement over Eq. (39) in several respects: the integrand
contains only a single denominator and the integration con-
sists of a double integral over a unit square rather than a
triple integral over an infinite domain. We leverage this latter
observation in Sec. V below, where we develop a numerical
scheme for validating our analytical formulas.

The double integral appearing Eq. (50) belongs to a class of
integrals that are deceptively difficult to perform. Over time,
a range of techniques have been developed for such prob-
lems [17,18,34–36]. The approach of Brovman and Kholas
is particularly well-suited for the task because it preserves
important symmetries during all intermediate steps. We adapt
this technique to our problem after a brief aside.

4. Simplified case: When k1, k2, and k3 form a small equilateral
triangle

We consider now the case when k1, k2, and k3 form
an equilateral triangle of with sides of length l , such that
k1 · k3 = −l2/2. In this case, the function H̃2(k1, k2, kE ) de-
pends on a single parameter, l , and we may write

H̃ equilateral
2 (l, E )= i

2π

∫ 1

0
dx
∫ 1

0
dy

× h(1 − x − y)[
k2

E − l2(x − x2 − xy − y2 + y) + iε2
]3/2 .

(51)

Even with this simplification, the x and y integrals remain
nontrivial; however, if we introduce a small-l series approx-
imation of the form

1

[z − l2a]3/2 ≈ 1

z3/2
+ 3a

2z5/2
l2 + 15a2

8z7/2
l4, (52)

the x and y integrals become elementary, yielding the asymp-
totic result

H̃ equilateral
2 (l → 0, E ) ≈ i

4πk3
E

[
1 + 3

2

l2

4k2
E

+ 2
l4

16k4
E

]
. (53)

Note that Eq. (53) reduces to Eq. (41) in the l → 0 limit,
as expected. More significantly, the limiting form given by
Eq. (53) is a required feature of the general analytical expres-
sion for H̃2(k1, k2, E ), providing an important consistency
check. Later, in Sec. V, we develop related asymptotic expres-
sions for the LDOS, electron density, and KED for validation
purposes.

5. General case: Completing the derivation

We resume consideration of the general case by writing
Eq. (50) in the form—recalling the definition k3 = −(k1 +
k2)—

H̃2(k1, k2, E )

= i

2π

∫∫
Z
dxdy

1[
k2

E − xk2
1 − yk2

3 + ||xk1 − yk3||2 + iε2
]3/2 ,

(54)

where the region of integration, Z , is the triangle shown in
Fig. 1(a). As x and y range over Z , the vector xk1 − yk3

traverses a triangular region in space with side lengths k1, k2,
and k3. This observation suggests that our task may become
simpler if we make a transformation of variables that maps
Z to a region with those side lengths. The transformation
(x, y) → (p, q) given by(

p
q

)
=
[

k1 − k1·k3
k1

0 k2k3
2kR

](
x
y

)
(55)

maps Z to the region R shown in Fig. 1(b). After solving
Eq. (55) to obtain(

x
y

)
=
[ 1

k1

2kRk1·k3

k2
1 k2k3

0 2kR
k2k3

](
p
q

)
(56)

(a)

(b)

(c)

FIG. 1. Diagrams of (a) the triangle Z in the xy plane, which
is the region of integration introduced in Eq. (54); (b) the triangle
R in the pq plane, which is the region of integration introduced
in Eq. (57); and (c) the triangle W in the uv plane, which is the
region of integration introduced in Eq. (59). In (b), the x marks the
circumcenter of R. The regions W and R are identical in size, but
the circumcenter of W coincides with the origin of the uv axes.
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and accounting for the Jacobian of the transformation, we
recast Eq. (54) into

H̃2(k1, k2, E )

= i

π

kR

k1k2k3

∫∫
R

d pdq

× 1[
k2

E + p2 − k1 p + q2 − 2c1kRq + iε2
]3/2 (57)

following a fair bit of simplification. Next, we complete the
square for both p and q to obtain

H̃2(k1, k2, E )

= i

π

kR

k1k2k3

∫∫
R

d pdq

× 1[
k2

E − k2
R + (

p − 1
2 k1

)2 + (q − c1kR)2 + iε2
]3/2 .

(58)

This form suggests the possibility of another coordinate
change, (p, q) → (u, v), where u = p − 1

2 k1 and v = q −
c1kR. Before doing so, we inspect the point (p, q) =
( 1

2 k1, c1kR), which—underscoring the aspects of symmetry
involved—is the circumcenter of R, as one may readily verify
by computing the distances between it and the three vertices.
Accordingly, we write

H̃2(k1, k2, E )

= i

π

kR

k1k2k3

∫∫
W

dudv
1[

k2
E − k2

R + u2 + v2 + iε2
]3/2 ,

(59)

where the region W , shown in Fig. 1(c), differs from R only
by a translation that locates the circumcenter of W at the
origin of the uv axes.

Our manipulations thus far have been building towards a
change to polar coordinates, (r, ϕ), in the uv plane, after which
Eq. (59) becomes

H̃2(k1, k2, E )= i

π

kR

k1k2k3

∫∫
W

drdϕ
r[

k2
E − k2

R + r2 + iε2
]3/2 .

(60)

To manage the integration over W , we express the full integral
as a sum of integrals over more elementary regions—see
Fig. 2—to obtain

H̃2(k1, k2, E ) = i

π

kR

k1k2k3

3∑
α=1

sgn(cα )
∫ ϕmax

α

−ϕmax
α

dϕ

∫ rmax
α (ϕ)

0
dr

× r[
k2

E − k2
R + r2 + iε2

]3/2 (61)

with

ϕmax
α = arcsin

(
kα

2kR

)
,

rmax
α (ϕ) =

[
k2

R − 1
4 k2

α

]1/2

cos ϕ
. (62)

(a) (b)

FIG. 2. Diagrams facilitating the transition from Eq. (60) to
Eq. (61). In (a), the integration region (shaded) is a triangle with side
lengths k1, k2, and k3. All angles are acute and therefore the triangle’s
circumcenter lies within its interior. To facilitate the integration,
the shaded region is partitioned into three isosceles triangles, each
having two sides of length kR, the triangle’s circumradius (dark
lines), and one side of length kα (where α ∈ {1, 2, 3}). In (b), the
integration region is a different triangle with side lengths κ1, κ2, and
κ3. The angle ϑ1 (opposite κ1) is obtuse and therefore the triangle’s
circumcenter lies outside its interior. The integration is managed by
subtracting the integral over isosceles triangle associated with κ1

from the sum of those associated with κ2 and κ3.

The sign functions appearing in Eq. (61) arise because the
circumcenter of an obtuse triangle lies outside of the triangle
itself (see Fig. 2). If W is acute, the sign functions will all
return +1. If W is obtuse, the sign function associated with
the obtuse angle will return −1. Somewhat subtly, it is also
the case that

ϕmax
α = arcsin (sin θα )

= θαh(cα ) + (π − θα )h(−cα ), (63)

which is related to the geometrical constraint ϕmax
α � π/2.

The remaining task is to evaluate the double integrals of
the form∫ ϕmax

α

−ϕmax
α

dϕ

∫ rmax
α (ϕ)

0
dr

r[
k2

E − k2
R + r2 + iε2

]3/2 . (64)

The r integral is completed easily and the result may be
expressed as

2ϕmax
α[

k2
E − k2

R + iε2
]1/2

−
∫ ϕmax

α

−ϕmax
α

dϕ
| cos ϕ|[(

k2
E − k2

R + iε2
)
cos2ϕ + k2

R − 1
4 k2

α

]1/2 . (65)

Because ϕmax
α � π/2, the absolute value signs in the numera-

tor of this expression are in fact unnecessary. Introducing t =
sin ϕ and leveraging the symmetry of the remaining integrand,
we write the previous result as

2ϕmax
α[

k2
E − k2

R + iε2
]1/2 − 2

∫ kα/(2kR )

0
dt

× 1[(
k2

E − k2
R + iε2

)
(1 − t2) + k2

R − 1
4 k2

α

]1/2 (66)
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and complete the final integral with aid from the identity
1

[a(1 − t2) + b]1/2 = 1

ia1/2

∂

∂t
Ln(2ia1/2t + 2[a(1 − t2) + b]

1/2
), (67)

noting, importantly, that if Im[a] > 0 and Im[b] = 0, then the argument of the principal logarithm in Eq. (67) maintains a positive
imaginary part for all t ∈ [0, kα/(2kR)]. We have now reduced the original double integral to

2i[
k2

E − k2
R + iε2

]1/2

[
Ln

(
i

kα

2kR

[
k2

E − k2
R + iε2

]1/2 + |cα|[k2
E + iε2

]1/2
)

− Ln

([
k2

E − 1

4
k2
α + iε2

]1/2)
− iϕmax

α

]
, (68)

and we may assemble a near-final result by replacing the integrals in Eq. (61) with this expression.
To conclude the derivation, one performs the ε → 0+ limit. Numerous simplifications arise during this process, aided by the

identity sgn(cα )ϕmax
α = θa − πh(−cα ), the fact that θ1 + θ2 + θ3 = π , the factorization

(
4k2

E − k2
α

) =
(

2cαkE + kα

[
1 + k2

E

k2
R

]1/2
)(

2cαkE − kα

[
1 + k2

E

k2
R

]1/2
)

, (69)

and various properties of the principal logarithm and arctangent functions. For the case when E < v0, we obtain

H̃E<v0
2 (k1, k2, E ) = 2kR

πk1k2k3
[
k2

R + ∣∣k2
E

∣∣]1/2

3∑
α=1

[
arctan

(
2
[∣∣k2

E

∣∣]1/2
kRcα

kα

[∣∣k2
E

∣∣]1/2

)
− π

6

]
; (70)

when 0 < kE < kR, we obtain

H̃0<kE <kR
2 (k1, k2, E ) = 2kR

πk1k2k3
[
k2

R − k2
E

]1/2

3∑
α=1

⎡
⎢⎣π

3
− πh(−cα ) − πsgn(cα )h

(
kα

2kE

[
1 − k2

E

k2
R

]1/2

− |cα|
)

+ π

2
sgn(cα )h(kα − 2kE ) + i

2
ln

∣∣∣∣∣∣∣
cα − kα

2kE

[
1 − k2

E

k2
R

]1/2

cα + kα

2kE

[
1 − k2

E

k2
R

]1/2

∣∣∣∣∣∣∣
⎤
⎥⎦; (71)

and, finally, when kE > kR, we obtain

H̃kE >kR
2 (k1, k2, E ) = 2kR

πk1k2k3
[
k2

E − k2
R

]1/2

3∑
α=1

i

[
arctan

(
2cαkE kR

kα

[
k2

E − k2
R

]1/2

)
− π

6

]
. (72)

The expressions in Eqs. (70)–(72) are the final results for the general case.
Reconsidering briefly the case when k1, k2, and k3 form a small equilateral triangle, we see that Eqs. (70) and (72) are the

relevant expressions; one may verify that both behave asymptotically as Eq. (53), as expected.

6. Simplified case: When k1 and k2 are collinear

Recalling that kR → ∞ as k1 and k2 become collinear, we may extract the result for this case directly from Eqs. (70)
and (71):

H̃ collinear
2 (k1, k2, E ) = 2

πk1k2k3

3∑
α=1

⎧⎨
⎩ arctan

(
2
[∣∣k2

E

∣∣]1/2
cα

kα

)
− π

6 E < v0

−cα
π
2 h(kα − 2kE ) + cα

i
2 ln

∣∣ kα−2kE
kα+2kE

∣∣ E > v0

⎫⎬
⎭, (73)

where we have used the fact that cα → ±1 in this limit to simplify the expressions.

IV. RESPONSE FUNCTIONALS FOR THE LOCAL
DENSITY OF STATES, ELECTRON DENSITY, AND

KINETIC ENERGY DENSITY

Here, we give first- and second-order corrections to the
free-electron LDOS, electron density, and electron KED
as functionals of the perturbing potential, providing the
reciprocal-space response functions for the KED. By direct
Fourier transformation, it is manageable to convert between
the (known) real-space and (generally unknown) reciprocal-
space response functions only at first order. The formulas
we give are obtained instead by application of the tech-

niques described in the previous section. The first-order for-
mulas emerge when Eqs. (27)–(29), which originate from
Eqs. (4)–(6), are applied to the first-order response function
for the equal-position Green function given by Eqs. (32) and
(38). The second-order formulas are generated by applying
Eqs. (27)–(29) to the second-order response function for the
equal-position Green function given by Eqs. (41), (44), (70)–
(72), and (73).

The first-order response functions involve a single wave
vector, k1, and it proves convenient to define the dimension-
less vector η1, which rescales k1 by 2kE or 2kμ, depending on
context: η1 = k1/(2kE ) in the functions involving E , whereas
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η1 = k1/(2kμ) in the functions involving μ. The second-order
response functions involve two wave vectors, k1 and k2, and
depend on their lengths as well as the angle between them
or, equivalently, the length of k3 = −(k1 + k2), as introduced
earlier. Readers who skipped Sec. III should review the para-
graph on the triangle formed by k1, k2, and k3, particularly
the definitions of the circumradius kR and the cosines {cα}
given in Eqs. (45) and (46), respectively. We again make
use of scaled wave vectors for the second-order case—η2
refers to k2/(2kE ) or k2/(2kμ), and likewise for η3—and we
utilize a dimensionless circumradius defined by ζR = kR/kE or
ζR = kR/kμ, as well as the following dimensionless quantity,

�R =
√∣∣∣∣1 − k2

E

k2
R

∣∣∣∣ or �R =
√∣∣∣∣1 − k2

μ

k2
R

∣∣∣∣, (74)

all depending on context.
Finally, we also express the response functions themselves

in a dimensionless form, scaled by their respective values for
the case when all wave vector arguments are zero. These latter
values are given by Eqs. (76), (79), (82), (85), (90), and (95)
below—all of which we anticipated in Eq. (11).

A. First-order response

1. Local density of states

The first-order change in the LDOS, ρ1(r, E ), is zero if
E < v0, as discussed above. Otherwise, it may be expressed
as a functional of the real-space potential—see Eqs. (15) and
(16)—or as a functional of the Fourier-transformed potential,

ρ1(r, E ) =
∫

dk1

(2π )3 eik1·r Ĩ1(k1, kE )ṽ�(k1), (75)

with

Ĩ1(0, kE ) = − 1

π2kE
(76)

and

Ĩ1(k1, kE )

Ĩ1(0, kE )
= 1

2η1
ln

∣∣∣∣1 + η1

1 − η1

∣∣∣∣. (77)

The dimensionless function given by Eq. (77) is plotted in
Fig. 3(a). It may be obtained by differentiating the static
Lindhard function [11] presented next.

2. Electron density

The first-order response of the electron density, nonzero
for μ > v0, is given in real-space form by Eqs. (15) and (17).
The same quantity expressed as a functional of the Fourier-
transformed potential is

n1(r) =
∫

dk1

(2π )3 eik1·rJ̃1(k1, kμ)ṽ�(k1), (78)

with

J̃1(0, kμ) = − kμ

π2
(79)

and

J̃1(k1, kμ)

J̃1(0, kμ)
= 1

2
+ 1 − η2

1

4η1
ln

∣∣∣∣1 + η1

1 − η1

∣∣∣∣. (80)

FIG. 3. Dimensionless response functions governing the first-
order changes in (a) the local density of states, (b) the electron
density, and (c) the kinetic energy density, all when expressed as
functionals of the perturbing potential. The horizontal axes are
normalized by factors of kE or kμ, as appropriate, which are wave
vectors associated with E or μ, respectively—see the main text for
definitions. In the limit of a slowly varying perturbation (η1 → 0),
the first-order corrections to the Thomas-Fermi potential functionals
are recovered [see Eq. (11)]. The response functions all have a
nonanalytic feature (at η1 = 1) and decay to zero for the case of a
rapidly varying perturbation (η1 → ∞).

As mentioned, J̃1(k1, kμ) is the Lindhard response function
[11] for static external potentials. We plot Eq. (80) in Fig. 3(b).

3. Kinetic energy density

The first-order potential functional for the KED, for μ >

v0, is given either by Eq. (15) with Eq. (18), or by

t1(r) =
∫

dk1

(2π )3 eik1·rK̃1(k1, kμ)ṽ�(k1), (81)

with

K̃1(0, kμ) = − k3
μ

2π2
(82)

and
K̃1(k1, kμ)

K̃1(0, kμ)
= 3

4
− 3η2

1

4
+
(
1 − 3η2

1

)(
1 − η2

1

)
8η1

ln

∣∣∣∣1 + η1

1 − η1

∣∣∣∣.
(83)
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A plot of Eq. (83) is given in Fig. 3(c). To the best of
our knowledge, this function has not been reported before,
although it is closely related to the companion functions for
the LDOS and the electron density. The first-order response
function for the Laplacian version of the KED (see the Ap-
pendix) is obtained by adding k2

1 J̃1(k1, kμ)/4 to the response
function given here.

B. Second-order response

1. Local density of states

The second-order change in the LDOS, ρ2(r, E ), is zero
if E < v0, as discussed above. Again, it may be expressed
as a functional of the real-space potential—see Eqs. (15) and
(16)—or as a functional of the Fourier-transformed potential,

ρ2(r, E ) =
∫

dk1

(2π )3

∫
dk2

(2π )3 ei(k1+k2 )·r Ĩ2(k1, k2, kE )

× ṽ�(k1)ṽ�(k2). (84)

The function Ĩ2(k1, k2, kE ), equivalent to a function first ob-
tained by Lloyd and Sholl [15], is more complicated than its
first-order counterpart. When both k1 and k2 are zero,

Ĩ2(0, 0, kE ) = − 1

2π2k3
E

; (85)

when one of the wave vector arguments is zero, or when
k2 = −k1,

Ĩ2(k1, 0, kE )

Ĩ2(0, 0, kE )
= Ĩ2(0, k1, kE )

Ĩ2(0, 0, kE )
= Ĩ2(k1,−k1, kE )

Ĩ2(0, 0, kE )
= 1

1 − η2
1

;

(86)

when k1 and k2 are nonzero and collinear, but k2 �= −k1,

Ĩcollinear
2 (k1, k2, kE )

Ĩ2(0, 0, kE )
= − 1

η1η2η3

3∑
α=1

cα

1

2
ln

∣∣∣∣1 + ηα

1 − ηα

∣∣∣∣; (87)

and, finally, when k1 and k2 are noncollinear,

Ĩ2(k1, k2, kE )

Ĩ2(0, 0, kE )
= − 1

η1η2η3�R

×
3∑

α=1

{ 1
2 ln

∣∣ cα+ηα�R

cα−ηα�R

∣∣ kE < kR

π
6 − arctan

( cα

ηα�R

)
kE > kR

}
.

(88)

The dimensionless version of Ĩ2(k1, k2, kE ), the expression in
Eq. (88), is plotted in Fig. 4 for the cases when the angle
between k1 and k2 is π/3 and when it is 2π/3; these two
choices subdivide evenly the set of possible angles ranging
from zero to π.

2. Electron density

The second-order response of the electron density, nonzero
for μ > v0, is given in real-space form by Eqs. (15) and (17).
The same quantity expressed as a functional of the Fourier-
transformed potential is

n2(r) =
∫

dk1

(2π )3

∫
dk2

(2π )3 ei(k1+k2 )·rJ̃2(k1, k2, kμ)ṽ(k1)ṽ(k2).

(89)

FIG. 4. Plots of the dimensionless response function [Eqs. (86)–
(88)] that governs the second-order change in the local density of
states when expressed as a functional of the perturbing potential.
η1 and η2 are scaled lengths (see main text) of the wave vectors k1

and k2, respectively. Plotted for the cases when the angle between
k1 and k2 is π/3 (top) and when this angle is 2π/3 (bottom). See
main text for discussion of the triangle with side lengths k1, k2,
and k3 = |k1 + k2|. The second-order correction to the associated
Thomas-Fermi functional [see Eq. (11)] is recovered in the η1, η2 →
0 limit and the response function becomes zero in the η1, η2 → ∞
limit.

The earliest derivation of J̃2(k1, k2, kμ) is that of Lloyd and
Sholl [15], and a range of seemingly equivalent functions have
been derived numerous authors [17,19,21,24]. We compare
some of these expressions in the SM. Lloyd and Sholl showed
that, when both k1 and k2 are zero,

J̃2(0, 0, kμ) = 1

2π2kμ

; (90)

when one of the wave vector arguments is zero, or when k2 =
−k1,

J̃2(k1, 0, kμ)

J̃2(0, 0, kμ)
= J̃2(0, k1, kμ)

J̃2(0, 0, kμ)
= J̃2(k1,−k1, kμ)

J̃2(0, 0, kμ)

= 1

2η1
ln

∣∣∣∣1 + η1

1 − η1

∣∣∣∣; (91)
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FIG. 5. Plots of the dimensionless response function [Eqs. (91)–
(93)] that governs the second-order change in the electron density
when expressed as a functional of the perturbing potential. η1 and
η2 are scaled lengths (see main text) of the wave vectors k1 and k2,
respectively. Plotted for the cases when the angle between k1 and
k2 is π/3 (top) and when this angle is 2π/3 (bottom). See main
text for discussion of the triangle with side lengths k1, k2, and k3 =
|k1 + k2|. The second-order correction to the associated Thomas-
Fermi functional [see Eq. (11)] is recovered in the η1, η2 → 0 limit
and the response function becomes zero in the η1, η2 → ∞ limit.

when k1 and k2 are nonzero and collinear, but k2 �= −k1,

J̃collinear
2 (k1, k2, kμ)

J̃2(0, 0, kμ)

= 1

η1η2η3

3∑
α=1

cαηα

[
1

2
+ 1 − η2

α

4ηα

ln

∣∣∣∣1 + ηα

1 − ηα

∣∣∣∣
]

; (92)

and, finally, when k1 and k2 are noncollinear,

J̃2(k1, k2, kμ)

J̃2(0, 0, kμ)

= ζ 2
R

η1η2η3

3∑
α=1

cα

1

2
ln

∣∣∣∣1 + ηα

1 − ηα

∣∣∣∣
− ζ 2

R�R

η1η2η3

3∑
α=1

{ 1
2 ln

∣∣ cα+ηα�R

cα−ηα�R

∣∣ kμ < kR

arctan
( cα

ηα�R

)− π
6 kμ > kR

}
. (93)

FIG. 6. Plots of the dimensionless response function [Eqs. (96)–
(99)] that governs the second-order change in the kinetic energy
density when expressed as a functional of the perturbing potential.
η1 and η2 are scaled lengths (see main text) of the wave vectors k1

and k2, respectively. Plotted for the cases when the angle between
k1 and k2 is π/3 (top) and when this angle is 2π/3 (bottom). See
main text for discussion of the triangle with side lengths k1, k2,
and k3 = |k1 + k2|. The second-order correction to the associated
Thomas-Fermi functional [see Eq. (11)] is recovered in the η1, η2 →
0 limit and the response function becomes zero in the η1, η2 → ∞
limit.

Plots of the dimensionless version of J̃2(k1, k2, kμ) are given
in Fig. 5.

3. Kinetic energy density

Finally, the second-order potential functional for the KED,
for μ > v0, is given either by Eq. (15) with Eq. (18), or by

t2(r) =
∫

dk1

(2π )3

∫
dk2

(2π )3 ei(k1+k2 )·rK̃2(k1, k2, kμ)ṽ(k1)ṽ(k2).

(94)

When both k1 and k2 are zero,

K̃2(0, 0, kμ) = 3kμ

4π2
; (95)
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when one of the wave vector arguments is zero,

K̃2(k1, 0, kμ)

K̃2(0, 0, kμ)
= K̃2(0, k1, kμ)

K̃2(0, 0, kμ)
= 2

3
+ 1 − 2η2

1

6η1
ln

∣∣∣∣1 + η1

1 − η1

∣∣∣∣;
(96)

when k2 = −k1,

K̃2(k1,−k1, kμ)

K̃2(0, 0, kμ)
= 1

3
+ 2 − η2

1

6η1
ln

∣∣∣∣1 + η1

1 − η1

∣∣∣∣; (97)

when k1 and k2 are nonzero and collinear, but k2 �= −k1,

K̃collinear
2 (k1, k2, kμ)

K̃2(0, 0, kμ)

= 1

η1η2η3

3∑
α=1

cαηα

[
1 + 3η2

α

36
+ 1 − η4

α

24ηα

ln

∣∣∣∣1 + ηα

1 − ηα

∣∣∣∣
]

+ 2

3

J̃1(k1, kμ)

J̃1(0, kμ)
+ 2

3

J̃1(k2, kμ)

J̃1(0, kμ)
− 2η2

3

3

J̃2(k1, k2, kμ)

J̃2(0, 0, kμ)
;

(98)

and, finally, when k1 and k2 are noncollinear,

K̃2(k1, k2, kμ)

K̃2(0, 0, kμ)

= − ζ 2
R

η1η2η3

3∑
α=1

cα

[
ηα

9
− η2

α + 2ζ 2
R

18
ln

∣∣∣∣1 + ηα

1 − ηα

∣∣∣∣
]

− ζ 2
R�R

η1η2η3

1 + 2ζ 2
R

9

3∑
α=1

{
1
2 ln

∣∣ cα+ηα�R

cα−ηα�R

∣∣ kμ < kR

arctan
( cα

ηα�R

)− π
6 kμ > kR

}

+ 2

3

J̃1(k1, kμ)

J̃1(0, kμ)
+ 2

3

J̃1(k2, kμ)

J̃1(0, kμ)
− 2η2

3

3

J̃2(k1, k2, kμ)

J̃2(0, 0, kμ)
.

(99)

Plots of the dimensionless version of K̃2(k1, k2, kμ) are shown
in Fig. 6. This function is a central contribution of this
work. The second-order response function for the Lapla-
cian definition of the KED (see the Appendix) is obtained
by adding k2

3 J̃2(k1, k2, kμ)/4 to the response function given
here.

V. VALIDATION OF THE RESPONSE FUNCTIONS

The response functions provided in Sec. IV, particularly
those at second order, are somewhat inscrutable, and readers
uninterested in replicating the lengthy derivations may won-
der if the expressions are entirely correct. Moreover, if the
formulas are to be used in numerical work and not just for
insight, errant factors of π (for example) could be ruinous.
Finally, as we have mentioned previously, several independent
formulations of J̃2(k1, k2, kμ) appear in the literature and
while the competing formulas are all similar in structure,
they do not agree in every particular. One presumes they
are equivalent—the space of possible rearrangements of the
logarithms and arctangents is large—but it is still useful to
compare various candidates with a known benchmark. To
this end, we describe a multipart validation strategy involving
(1) study of a nontrivial asymptotic condition (introduced
already, the case when k1, k2, and k3 form a small equilat-
eral triangle); (2) a demonstration showing that the response
function formalism recovers known gradient expansions for
slowly varying potentials; (3) numerical calculation of the
response functions themselves; and (4) consideration of the
linear potential model system.

The first three components of the validation effort start
from the same point. Based on Eqs. (27)–(29) and the mod-
ified integral form for H̃2(k1, k2, E ) given by Eq. (50), we
construct new integral representations for the response func-
tions of interest (in dimensionless form):

Ĩ2(k1, k2, kE )

Ĩ2(0, 0, kE )
= 2 lim

ε2→0+
Re

∫ 1

0
dx
∫ 1

0
dy

h(1 − x − y)[
1 − 4xη2

1 − 4yη2
3 + 4||xη1 − yη3||2 + iε2

]3/2 , (100)

J̃2(k1, k2, kμ)

J̃2(0, 0, kμ)
= 2 lim

ε2→0+
Re

∫ 1

0
dx
∫ 1

0
dy

h(1 − x − y)[
1 − 4xη2

1 − 4yη2
3 + 4||xη1 − yη3||2 + iε2

]1/2 , (101)

and

K̃2(k1, k2, kμ)

K̃2(0, 0, kμ)
= 1 − 2η2

3

3

J̃2(k1, k2, kμ)

J̃2(0, 0, kμ)
+ 2

3

[
J̃1(k1, kμ)

J̃1(0, kμ)
+ J̃1(k2, kμ)

J̃1(0, kμ)

]
− 4

3
lim

ε2→0+
Re

∫ 1

0
dx
∫ 1

0
dyh(1 − x − y)

× [
1 − 4xη2

1 − 4yη2
3 + 4||xη1 − yη3||2 + iε2

]1/2
. (102)

The energy integrals required by Eqs. (28) and (29) are
facilitated by the observation that both integrands become
purely imaginary in the ε → 0+ limit as E tends to −∞. The
specific form of Eq. (102) is obtained from the second line of
Eq. (29).

The integrals in Eqs. (100)–(102) are exact restatements
of the respective response functions, lightly manipulated
into a convenient form, but otherwise untainted by repeated
transformations that might introduce error. Having unified
denominators and simple, finite domains, they are amenable
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to asymptotic analysis and well-suited to numerical treatment,
which we pursue in turn.

A. Asymptotic case: When k1, k2, and k3 form a small
equilateral triangle

Assuming that k1, k2, and k3 each have length l , we analyze
the small-l behavior of Eqs. (100)–(102) exactly as in Sec. III,
obtaining

Ĩequilateral
2 (l → 0, kE )

Ĩ2(0, 0, kE )
≈ 1 + 3

2
η2

l + 2η4
l , (103)

J̃equilateral
2 (l → 0, kμ)

J̃2(0, 0, kμ)
≈ 1 + 1

2
η2

l + 2

5
η4

l , (104)

and

K̃equilateral
2 (l → 0, kμ)

K̃2(0, 0, kμ)
≈ 1 − 11

18
η2

l − 1

5
η4

l , (105)

where ηl = l/(2kE ) or ηl = l/(2kμ), depending on context.
One may then compare Eqs. (103)–(105) with the Taylor
series obtained under the same assumptions from Eqs. (88),
(93), and (99)—the respective pairs match exactly. We give
plots comparing the exact functions with their asymptotic
approximations in Fig. 7. The agreement is excellent in each
case for l � 1, building confidence in the second-order for-
mulas. We utilize this analytical tool again in the SM to
quickly prescreen expressions for J̃2(k1, k2, kμ) found in the
literature.

B. Recovering gradient expansions for slowly varying potentials

The response functional formalism can recover the well-
studied conventional gradient expansions (see Refs. [38] and
[43] and references therein) that are appropriate for slowly

FIG. 7. For the case when k1, k2, and k3 form an equilateral
triangle of length l , the second-order response functions for the local
density of states (top left), the electron density (top right), and the
kinetic energy density (bottom right). Plotted alongside asymptotic
approximations derived independently for l → 0; the agreement (in
this limit) helps validate the response-function formulas.

varying potentials and may be derived in a variety of ways.
Proceeding as in the previous subsection, we may obtain
asymptotic forms of the various response functions for k1 →
0 and k2 → 0, given here for the electron density and KED
response functions through fourth order in the wave vectors:

J̃1(k1 → 0, kμ)

J̃1(0, kμ)
≈ 1 − 1

3
η2

1 − 1

15
η4

1, (106)

K̃1(k1 → 0, kμ)

K̃1(0, kμ)
≈ 1 − 5

3
η2

1 + 7

15
η4

1, (107)

J̃2(k1 → 0, k2 → 0, kμ)

J̃2(0, 0, kμ)

≈ 1 + 1

3

(
η2

1 + η2
2

)+ 1

3
η1 · η2

+1

5

(
η4

1 + η4
2

)+ 4

15

(
η2

1 + η2
2

)
η1 · η2

+ 1

3
η2

1η
2
2 + 2

15
(η1 + η2)2η1 · η2, (108)

and

K̃2(k1 → 0, k2 → 0, kμ)

K̃2(0, 0, kμ)

≈ 1 − 5

9

(
η2

1 + η2
2

)− η1 · η2

− 7

45

(
η4

1 + η4
2

)− 8

27

(
η2

1 + η2
2

)
η1 · η2

− 7

27
η2

1η
2
2 − 4

27
(η1 + η2)2η1 · η2. (109)

These asymptotic forms permit recovery of the conventional
gradient expansions. For example, the gradient expansion for
the electron density through second order is

n(r) → kμ(r)3

3π2
− ∇2v(r)

12π2kμ(r)
− |∇v(r)|2

24π2kμ(r)3 , (110)

which may be obtained from Eqs. (10), (78), (89), (106), and
(108), and the analogous gradient expansion for the KED is

t (r) → kμ(r)5

10π2
− 5kμ(r)∇2v(r)

24π2
+ 3|∇v(r)|2

16π2kμ(r)
, (111)

which may be obtained from Eqs. (10), (81), (94), (107), and
(109). The fact that this approach yields the same gradient
expansions obtained by other means—note that Eqs. (110)
and (111), respectively, agree with Eqs. (6.7.17) and (6.7.19)
in Ref. [43]—provides further evidence that the response
functions are correct.

C. Validation by numerical integration

We defer detailed discussion of the numerical integration to
the SM. Note, however, that we have written ε2 → 0+ limits
explicitly in each of Eqs. (100)–(102). When performing
the integrals numerically, we choose a small, positive value
for ε2 to avoid poles in the integrands. The analysis in the
SM confirms that the formulas given in Sec. IV are correct.
We provide code used for this purpose in the form of an
open-source Jupyter notebook [44,45], so that readers may
download it and verify this conclusion themselves.
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FIG. 8. The electron density (top, solid curve) and kinetic energy
density (bottom, solid curve) as functions of the position z are
shown for the Airy gas model system with μ = 2 and g = 1/2. Also
shown are response-functional-based approximations through first-
order (dotted lines) and second-order (dashed curves) utilizing a free-
electron reference system with kμ = [2μ]1/2, which is appropriate
near z = 0.

D. Electrons in a linear potential

To conclude this validation section, we consider nonin-
teracting electrons in the linear potential v(r) = gẑ, often
referred to as the Airy gas [46–49]. Analytical expressions
[49] for the electron density and KED are known for this
system:

nlin(r) = 1

6π l3
[2ζ 2Ai2(ζ ) − Ai(ζ )Ai′(ζ ) − 2ζAi′2(ζ )]

(112)

and

tlin(r) = 1

20π l5
[2(1 − ζ 3)Ai2(ζ ) + ζAi(ζ )Ai′(ζ )

+ 2ζ 2Ai′2(ζ )], (113)

where l = (2g)−1/3 and ζ = −(μ − gz)/(gl ). For definiteness,
we consider the case of μ = 2 and g = 1/2, for which plots
of Eqs. (112) and (113) are given in Fig. 8.

To probe the effectiveness of the response functions, we
consider the region around z = 0 and choose kμ = [2μ]1/2 to
define an appropriate free-electron reference system for this
region. Using the response function formalism along with the
Fourier transform F[r] = i(2π )3∇kδ(k), one can show that

the electron density in the neighborhood of z = 0 is given
through second order by

n(r) ≈ k3
μ

3π2
+ ig

∫
dk1eik1·rJ̃1(k1, kμ)

∂

∂kz
δ(k)

−g2
∫

dk1

∫
dk2ei(k1+k2 )·rJ̃2(k1, k2, kμ)

× ∂

∂k1z
δ(k1)

∂

∂k2z
δ(k2)

≈ k3
μ

3π2
+ gJ̃1(0, kμ)z + g2J̃2(0, 0, kμ)z2

− g2 ∂2

∂k1z∂k2z
J̃2(k1, k2, kμ)

∣∣∣∣ k1=0
k2=0

. (114)

An analogous treatment for the KED yields

t (r) ≈ k5
μ

10π2
+ gK̃1(0, kμ)z + g2K̃2(0, 0, kμ)z2

− g2 ∂2

∂k1z∂k2z
K̃2(k1, k2, kμ)

∣∣∣∣ k1=0
k2=0

. (115)

Plots of Eqs. (114) and (115) are given in Fig 8, from which
it is clear that these approximations effectively describe the
exact quantities in the neighborhood of z = 0.

VI. CONCLUDING REMARKS

In this paper, we considered the local, non-negative KED
of initially free electrons perturbed by an external potential.
In particular, we derived the reciprocal-space response ker-
nels through second order based on a free-electron reference
system. While our treatment of the subject was relatively
formal, we use these results in Part II to obtain alternate
first- and second-order corrections to the free-electron KED
as functionals of the induced electron density—and there we
examine the performance of the density functionals when
applied local pseudopotential models of crystals.

The reciprocal-space formulas for the first- or second-order
response functions for the KED—Eqs. (83) and (96)–(99)—
constitute our main results. In view of the complicated form of
the second-order function, we employed a multipart validation
strategy to ensure its correctness. Some of this procedure
is detailed in Sec. V, and the remainder is in the SM. In
doing so, we showed that several [15,16,21] second-order
response functions for the electron density are equivalent,
despite apparent differences in form.
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APPENDIX: MATHEMATICAL NOTES

Throughout, we adhere to the following Fourier transform
conventions for three-dimensional functions:

f̃ (k) = F[ f (r)] =
∫

dre−ik·r f (r),

f (r) = F−1[ f̃ (k)] =
∫

dk

(2π )3 eik·r f̃ (k). (A1)

We denote plane-wave eigenstates by

〈r | k〉 = eik·r

(2π )3/2 , (A2)

meaning that no extra normalizations appear in resolutions of
the identity and that

〈k1|v̂�|k2〉 = ṽ(k1 − k2)

(2π )3 . (A3)

The Laplacian version of the kinetic energy density
and Eq. (6)

While the KED defined in Eqs. (1) and (6) is useful because
it is strictly non-negative, other functions yielding the same
total kinetic energy upon integration may also justifiably be
called KEDs. The eigenfunctions of the Hamiltonian consid-

ered in this paper can be made strictly real, meaning that, after
expanding the reduced density matrix in these eigenfunctions
and defining tL(r) = − 1

2 [∇2
r γ (r, r0)]r0→r, one can show di-

rectly using the product rule that

t (r) = tL(r) + 1
4∇2n(r). (A4)

The integral of ∇2n(r) vanishes for systems that are finite or
described with periodic boundary conditions, establishing that
the two KEDs yield the same total kinetic energy for either
case.

Continuing, after noting that

γ (r, r0) = − 2

π

∫ μ

−∞
ImG+(r, r0, E )dE , (A5)

it becomes clear that

tL(r) = − 2

π

∫ μ

−∞

[
−Im

1

2
∇2

r G+(r, r0, E )

]
r0→r

dE , (A6)

from which one begins to see how tL(r) arises naturally in
conjunction with the Schrödinger equation. To obtain the
second line of Eq. (6), expand the Hamiltonian in Eq. (3) and
use the result to replace the Laplacian term in Eq. (A6). Then,
after extraction of the imaginary part, the ε → 0+ limit, and
some simple rearrangement, the expected result follows from
Eq. (A4).
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