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Ultrafast electric field controlled spin correlations in the Hubbard model
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Highly intense electric field pulses can move the electronic momentum occupation in correlated metals over
large portions of the Brillouin zone, leading to phenomena such as dynamic Bloch oscillations. Using the
nonequilibrium fluctuation-exchange approximation for the two-dimensional Hubbard model, we study how
such nonthermal electron distributions drive collective spin and charge fluctuations. Suitable pulses can induce
a highly anisotropic modification of the occupied momenta, and the corresponding spin dynamics results in
a transient change from antiferromagnetic to anisotropic ferromagnetic correlations. To good approximation
this behavior is understood in terms of an instantaneous response of the spin correlations to the single-particle
properties.
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Ultrashort and highly intense laser pulses have opened
novel pathways to control quantum materials [1,2]. There
are many detailed accounts of the ultrafast momentum and
energy-resolved electron dynamics, from strongly correlated
quasiparticles to band electrons in two-dimensional materials
[3–5]. On the other hand, many rich properties of correlated
materials arise from the interplay of the electronic structure
with charge, spin, and orbital fluctuations, and intriguing
pathways for transient light-induced or enhanced orders have
been theoretically proposed [6–10]. It is therefore of major
interest to understand the interplay between single-particle
properties such as electron populations and spectra and the
collective two-particle properties on the ultrashort timescale.

An intriguing approach would be to explore this interplay
with the help of strong electric fields that can be used to
design specific nonequilibrium electron distributions, which
then possibly induce a collective response. Nonperturbative
electric fields can coherently drive electrons over large por-
tions of the Brillouin zone, enabling Floquet band engineering
[11,12] or the observation of Bloch oscillations [13] and
Zener tunneling [14] in solids. Because of the rapid electron
thermalization, nonthermal electron distributions in metals are
not long-lived enough to manipulate long-wavelength fluctu-
ations, in particular close to critical points [15]. However, a
clear separation of timescales does not necessarily hold for
the collective response at shorter scales, and in the following
we demonstrate that even in quickly thermalizing metallic
systems field-engineered electron distributions can drive a
nontrivial spin response.

We investigate this issue by studying the dynamics of
electrons and spin in a moderately correlated metal, using the
two-dimensional Hubbard model. Extending on the idea of
Refs. [16,17], which proposed to use nonperturbative fields
to engineer negative temperature states, we exploit the polar-
ization direction of the pulse to transiently generate highly
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asymmetric electron distributions in the Brillouin zone, and
investigate the resulting collective (spin) response of the elec-
tron system. Our study is focused on the metallic phase. For
larger interactions, in the Mott insulator, qualitatively different
physics is expected. Both electrons and spins can remain
out of equilibrium for a long time [18], and the physics is
understood in terms of robust spin moments driven by strong
electromagnetic fields directly [19] or through a modification
of exchange interactions [20] and photodoping [21].

Model. The Hubbard Hamiltonian is given by

H = −
∑

〈R,R′〉,σ
tR−R′c†

Rσ cR′σ + U
∑

R

nR,↑nR,↓, (1)

where c†
Rσ creates an electron with spin σ ∈ {↑,↓} on site

R of a square lattice of size L2, U is the repulsive on-
site interaction; tR−R′ is the nearest-neighbor hopping, corre-
sponding to a dispersion εk(t ) = ε0[k − A(t )] with ε0(k) =
−2thop[cos(kxa) + cos(kya)]. We choose units a = 1, e = 1,
c = 1 (speed of light), and h̄ = 1. The tunneling matrix ele-
ment thop = 1 sets the energy scale. We focus on the metallic
phase at moderately strong U � 1.5, before the system would
cross over into a regime dominated by antiferromagnetic cor-
relations. The electric field is incorporated in the calculations
through the Peierls substitution, with the vector potential
A(t ) and E(t ) = − 1

c ∂t A(t ). The field pulses transiently dis-
place the electron distribution over the Brillouin zone, and
the polarization of the pulse is used to generate anisotropic
distributions (see below). If not stated otherwise, we use a
half-cycle pulse of the form E(t ) = η(A0π/2t0) sin(πt/t0)
(for 0 < t < t0) with polarization η = (1, 0). With t0 = 4, the
center frequency of the pulse is considerably lower than the
bandwidth, so that the excitation protocol rather corresponds
to subcycle light-driven dynamics than to off-resonant Floquet
engineering. In our units, the amplitude A0 of the vector
potential quantifies the maximal momentum transfer on an
electron during the cycle in units of h̄/a.

Method. The nonequilibrium dynamics of the model is
discussed within the Keldysh formalism on the L-shaped

2469-9950/2019/100(12)/121114(5) 121114-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.121114&domain=pdf&date_stamp=2019-09-30
https://doi.org/10.1103/PhysRevB.100.121114


DASARI AND ECKSTEIN PHYSICAL REVIEW B 100, 121114(R) (2019)

time contour C, suited to study the dynamics of a
system which is initially in thermal equilibrium at a
given temperature T [22]. We study the dynamics in
terms of the contour-ordered electronic Green’s func-
tions GR−R′ (t, t ′) = −i〈TCcR(t )c†

R′ (t ′)〉, and the collective
propagator χα

R−R′ (t, t ′) = −i〈TC X̂ α
R (t )X̂ α

R′ (t ′)〉, where X̂ α can

be spin SR = ∑
σσ ′ c†

Rσ τσσ ′cRσ ′ (α ≡ s), or charge X α
R =∑

σ nRσ (α ≡ c). The spatial Fourier transform is de-
fined as fR = 1

L2

∑
q eiqR fq. From the contour-ordered

functions we obtain time-dependent spectra (see be-
low), the gauge-invariant momentum distribution ñk(t ) =
〈c†

k−A(t )(t )ck−A(t )(t )〉 = −iG<
k−A(t )(t, t ), and the spin and

charge correlations Cα
q (t ) = 〈X̂ α

q (t )X̂ α
−q(t )〉 = iχα<

q (t, t ).
To study the interplay of electrons and collective fluc-

tuations, we employ the fluctuation-exchange (FLEX) ap-
proximation [23], a 	-derivable (i.e., energy and number-
conserving) approximation designed to treat the interaction
of electrons with charge, spin, pairing, or orbital fluctuation
channels. The formulation of the diagrammatic approach [24]
is identical on the Matsubara and on the Keldysh time contour.
The approximation for the collective propagators is given by
the random-phase approximation (RPA) series

χα
q = (1 − Uα
q)−1 ∗ 
q. (2)

Here ∗ denotes a convolution in contour time [22],
the interaction is Uc = −Us = U for charge and spin,
respectively, and 
R(t, t ′) = −iGR(t, t ′)G−R(t ′, t ) is the
bare susceptibility, which is identical for charge and
spin in the paramagnetic phase. The electron self-energy
is given by the second-order diagram, supplemented
by the contributions from the fluctuation self-energy
�α

R(t, t ′) = iU 2Gα
R(t, t ′)Fα

R (t, t ′), F s/c
R (t, t ′) = [χ s/c

R (t, t ′) ±
1
2χ

s/c
R (t, t ′) ∓ 1

2
R(t, t ′)] beyond second order. To study the
metallic phase in the repulsive Hubbard model at half filling,
where magnetic correlations are dominant, we include only
the magnetic fluctuation channel into the self-energy. The
numerical simulations are performed on a finite grid of L2

momenta (L = 28 for the results below, which is sufficient to
obtain converged results for the short-range correlations under
investigation). The numerical implementation is based on the
libCNTR nonequilibrium Green’s functions library [25].

Results—Single-particle properties. In Figs. 1(a)–1(e) we
exemplarily show the momentum occupation ñk(t ) for a
moderately correlated system (U = 1.5). Without interaction
U , the pulse would simply shift the electrons by the mo-
mentum transfer �k = ∫

dtE ≡ A0 [A0 = (π, 0) in Fig. 1].
In the interacting case we observe a similar shift if the
pulse is not too long, up to a broadening of the distribu-
tion by electron-electron scattering. Subsequently, electrons
relax back to the band minimum and finally thermalize at
elevated temperature, due to the electron-electron scattering
U . The kinetic energy ekin is roughly zero after the pulse,
because the distribution is symmetrically centered around
k = (π, 0). While ekin = 0 would correspond to infinite tem-
perature, during the relaxation the interaction energy is in-
creased and ekin is decreased, such that the final temperature
T∗ is of the order of the bandwidth. The thermalization can
be confirmed also from the local dynamic response func-
tions (which thermalize at a faster rate than the momentum

-0.5 0 0.5
-0.1

0

0.1

-π 0 π
kx

-π

0

π

k
y

(a)

-π 0 π
kx

(b)

-π 0 π
kx

0

0.2

0.4

0.6

0.8

1
(c)

-π 0 π
kx

-π

0

π

k
y

(d)

-π 0 π
kx

(e)

κ
(t

,ω
)

ω

t = 4
t = 5

t = 10

( f )

FIG. 1. Momentum distribution ñk(t ) at given times t , for the
evolution driven by a half-cycle pulse with momentum transfer∫

dt E = A0 = (π, 0), and pulse duration t0 = 4, at U = 1.5. The
distribution is plotted for t = 0 [before the pulse, (a)], t = 4 [directly
after the pulse, (b)], and t = 9.4, 14.6, 30.0 [during the relaxation
towards the hot-electron state, (c)–(e)]. The solid lines show the
surface defined by the occupation ñk = 0.5. (f) Logarithmic ratio
κ (t, ω) = ln[G<(ω, t )/G>(ω, t )], which tends to κ (t, ω) = −β∗ω
(β∗ = 0.11, dashed line) in a thermal state with temperature T∗ =
1/β∗.

distribution [26]). Figure 1(f) shows the logarithmic ra-
tio κ (t, ω) = ln[G<(ω, t )/G>(ω, t )] for the local Green’s
function G. [Time-dependent spectra are obtained from the
partial Fourier transform G>,<(t, ω) = ±Im

∫
ds G>,<(t, t −

s)eiωs.] The linear relation κ (ω) = −ω/T∗, which is reached
for long times, proves that the fluctuation-dissipation theorem
is satisfied, such that local single-particle quantities can be
considered in thermal equilibrium.

To characterize the dynamics it is interesting to look at the
“Fermi surface” defined by ñk = 0.5, although for a general
nonequilibrium state, this surface neither corresponds to a
maximum of the quasiparticle scattering time, nor to a discon-
tinuity in ñk. During the time evolution the surface ñk = 0.5
changes from a closed to an open, quasi-one-dimensional
topology. Because collective excitations and their instabilities
strongly depend on occupied states, this already suggests that
the relaxation can have a strong effect on the two-particle
correlations.

Before discussing the two-particle physics, we briefly
comment on the half-cycle pulse. While

∫
dt E = 0 for a

conventional electromagnetic pulse, the half-cycle pulse with∫
dt E �= 0 allows us to study in a simple manner both the

coherent dynamics during the application of a strong field
and the relaxation dynamics in the absence of a field, which
can both be accessed in different experimental settings. Fur-
thermore, an asymmetric pulse with

∫
dt E = 0, consisting of

an intense first half cycle followed by a longer and weaker
second half, would lead to a similar evolution of the single-
particle occupations as in Fig. 1. This is verified in the
Supplemental Material for different asymmetric pulse shapes
[27]. Such asymmetric pulses have been proposed to engineer
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FIG. 2. Spin correlation function C (s)
R (t ) along the x and y di-

rections for the same parameters as Fig. 1, at time t = 0 (a) and
t = 4 = t0 (b). At t = 0, the system is still isotropic, x ≡ y. Open
symbols show the correlations obtained from the bare susceptibility,
C0,R(t ). The inset shows C (s)

R (t ) in false color. (c) Time evolution
of the nearest-neighbor correlations C(1,0) and C(0,1) in x and y
directions, obtained from the full (solid lines) and bare (dashed lines)
spin correlation function. The shaded area indicates the duration of
the pulse.

distributions [17], and can lead to a population inversion
negative temperature state if the pulse is polarized along the
(11) direction.

Results—Spin correlations. Figure 2 shows the real-space
spin correlation function C(s)

R (t ) = 〈Sz
R(t )Sz

0(t )〉 for the same
set of parameters as Fig. 1. The correlations evolve from
short-range antiferromagnetism in the initial state to a strongly
thermally suppressed antiferromagnetism in the final state.
During the evolution, however, we observe an entirely differ-
ent pattern, with ferromagnetic correlations along the x direc-
tion [see Fig. 2(c) for the nearest-neighbor correlations along
the x and y axes] and mixed ferromagnetic/antiferromagnetic
correlations along y. In part, a modification of short-range spin
correlations is already expected for noninteracting quasiparti-
cles, due to the Pauli principle, as observed after quenches
to the noninteracting Hamiltonian [28]. Importantly, one can
see that the correlations obtained from the bare susceptibility,
C0,R(t ) = i
<

R (t, t ), which reflect the statistical correlations
of independent electrons, remain antiferromagnetic in all di-
rections throughout the evolution. The reversal of the spin
correlations thus happens as a consequence of the collective
response.

In general, the change of the electronic occupation mod-
ifies the effective action for the collective modes, and thus
inflicts a time-dependent force to drive their dynamics. The
numerical results show that at least some part of the spin
correlations respond faster than the electron thermalization. It
is thus interesting to test a scenario which is precisely opposite
to the conventional adiabatic separation between fast electrons
and slow spin, and in which the spin correlations instead
follow the electron dynamics in a quasi-instantaneous manner.
As we show below, the numerical results indeed support the
latter scenario, as one can rather accurately reconstruct the
spin correlations C(s)

q (t ) from a nonequilibrium steady state
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FIG. 3. (a) Correlation C (s)
q (t ) (lines) and effective steady state

C̄ (s)
q (t ) (dots with the same color) for three momenta, and the same

parameters as Fig. 1. The shaded area indicates the duration of
the pulse. The inset shows C (s)

q , C̄ (s)
q , and C (s)

0,q in the full Brillouin
zone at time t = 4. The dashed line indicates the featureless high-
temperature state.

that is determined by the electron distribution ñk(t ) at the
same time t .

We start from 
q(t, t ′), which determines the correlation
function of the collective modes through the RPA equation
(2). Because the system is weakly interacting, a first-order
approximation 
̄q(ω; t ) for 
q(t, ω) is obtained from the
bare response of independent electrons in a nonequilibrium
steady state with momentum occupations n̄k = ñk(t ). Here
and in the following, barred quantities such as n̄ and 
̄ cor-
respond to the nonequilibrium steady state, which depends on
time only parametrically. 
̄q(ω; t ) is just given by the Lind-
hardt expression 
̄<

q (ω; t ) = 1
L2

∑
k n̄k(t )[1 − n̄k−q(t )]δ(εk −

εk−q − ω) = 
̄>
−q(−ω; t ). One can then evaluate Eq. (2) in the

2 × 2 Keldysh matrix representation, using 
̄q(ω) as an input
to obtain a nonequilibrium steady-state result χ̄q(ω; t ), and
thus the steady-state correlations C̄q(t ) = 1

2π i

∫
dω χ̄<

q (ω; t ).
Figure 3 (inset) shows that the qualitative structure of C(s)

q (t )
in the transient state is reproduced by the effective steady state
C̄(s)

q (t ). Again we emphasize that both C̄(s)
q (t ) and C(s)

q (t ) differ
from the bare response C0,q(t ) = i
<

q (t, t ), which retains its
maximum at the antiferromagnetic point q = (π, π ), while
the collective response develops a maximum at (0, π ). The
lines in the main panel of Fig. 3 show that the compari-
son is quantitatively accurate for the characteristic momenta
q = (π, π ), (π, 0), (0, π ) for all times, which confirms the
quasi-instantaneous response of the spin to the electrons. In
accordance with the real-space picture [Fig. 2(c)], the antifer-
romagnetic correlations at q = (π, π ) get strongly suppressed
(C(s)

q ≈ 0.25 corresponds to a featureless high-temperature
state), while correlations along the qx and qy axes are en-
hanced and reversed, respectively.

The fast response of the spin can be further explained
by looking at the spectral function − 1

π
ImχR

q (t, ω) of the
collective modes (Fig. 4). The latter is obtained by partial
Fourier transform χR

q (t, ω) = ∫ smax

0 ds eiωs χR
q (t, t − s), where
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FIG. 4. Spectra of spin correlations for the same excitation as in
Fig. 1, at q = (π, π ) (a), q = (0, π ) (b), and q = (π, 0) (c), for initial
time t = 0, directly after the pulse t = 4, and during the relaxation.
Note that at q = (π, 0) negative spectral weight is formed as a
consequence of the electronic population inversion in this direction.

the superscript R denotes the retarded component, and smax is
set by the simulated time. An exact interpretation of the RPA
equation (2) is that a collective field with response function
χR is driven by a stochastic force due to electronic quantum
and thermal fluctuations with autocorrelations proportional to
i
<

q (t, t ′) [29,30]. Hence, if both the response time set by
χR and the autocorrelation time set by the noise is of the
order of the bandwidth, the spin correlations can follow the
single-electron state on the inverse hopping time. In the initial
state at t = 0, slow modes at q = (π, π ) exist because of
the vicinity of the antiferromagnetic instability [narrow peak
close to ω = 0 in Fig. 4(a)]. These features are, however,
quickly suppressed with time, leading to response with a
spectral width of the order of the bandwidth, i.e., few inverse
hoppings in the time domain.

The spin response on the tunneling timescale indicates
that the antiadiabatic behavior of the short-range spin correla-
tions will become more accurate towards weaker interactions,
because electron thermalization slows down like U −2. (The
absolute value of the collective response of course decreases
in this limit). We have performed simulations for a wide
range of interactions, different pulse amplitudes A0 ≡ (A0, 0)
and pulse durations t0, and found that the reversal of spin
correlations is indeed a rather robust feature. Figure 5 shows
the duration t∗ of the time interval where reversal C(s)

(π,π )(t ) <

C(s)
(0,π )(t ) is observed, which increases with decreasing U

[Fig. 5(a)] in agreement with the argument above. Even a
full cycle A0 = 2π can reverse the correlations [Fig. 5(b)].
Finally, simulations confirm that also the charge response of
the system is rapid, but without significant features in the
repulsive Hubbard model at half-filling.
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FIG. 5. The duration of reversal of spin correlations for different
values of U and pulse durations t0 (a), and for different pulse
amplitudes A0 at U = 1.5 (b).

In conclusion, we have shown that nonthermal electrons
can quasi-instantaneously drive a nontrivial spin response in
a correlated metal. This opens the intriguing possibility to
observe collective electron dynamics driven by ultrastrong
terahertz fields on the subcycle timescale. While we have
focused on spin correlations, which should be dominant in
prototypical Slater-type antiferromagnets such as NaOsO3

[31], analogous effects should be observed for charge cor-
relations in materials which display charge-density wave
transitions, such as TiS2 and TiSe2 [32]. The laser pulses
needed to engineer nonthermal electron distributions should
transfer a momentum comparable to the Brillouin zone size
h̄/a (a is the lattice spacing) in one cycle, and a cycle
duration should be shorter than the thermalization time τ . This
gives field amplitudes of order E0 = h̄/eaτ ∼ 107–108 V/m
for a ∼ 10−9 m and τ = 10–100 fs. Such fields have been
used to drive subcycle dynamics on the single-particle level
[13] without permanent material damage. The corresponding
magnetic fields E/c are of order one Tesla and thus give a
Zeeman splitting which is still much smaller than the relevant
electronic energy scales U and hopping. Though challenging,
the collective physics might be accessible with time-resolved
electron-energy-loss spectroscopy (for the charge correla-
tions), time-resolved x-ray spectroscopy from free-electron-
laser sources, or using noise correlations in time-resolved
photoemission, which should be accessible through state-of-
the-art momentum microscopes [33].
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