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We find that the first-order quantum phase transitions (QPTs) are characterized by intrinsic jumps of relevant
operators while the continuous ones are not. Based on such an observation, we propose a bond reversal method
where a quantity D, the difference of bond strength (DBS), is introduced to judge whether or not a QPT is of first
order. This method is first applied to an exactly solvable spin-1/2 XXZ Heisenberg chain and a quantum Ising
chain with a longitudinal field where distinct jumps of D appear at the first-order transition points for both cases.
We then use it to study the topological QPT of a cross-coupled (J×) spin ladder where the Haldane–rung-singlet
transition switches from being continuous to exhibiting a first-order character at J×,I � 0.30(2). Finally, we study
a recently proposed one-dimensional analogy of a deconfined quantum critical point connecting two ordered
phases in a spin-1/2 chain. We rule out the possibility of a weakly first-order QPT because the DBS is smooth
when crossing the transition point. Moreover, we affirm that such a transition belongs to the Gaussian universality
class with a central charge c = 1.
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Introduction. Understanding how strongly correlated sys-
tems order into different phases as well as the transitions
among them remains one of the most fundamental and signif-
icant problems in modern condensed matter physics [1–3]. In
particular, the quantum phase transitions (QPTs), which occur
at zero temperature, are omnipresent phenomena and could
in general be classified into two types. One is continuous
when the ground state of the system changes continuously
at the transition point, accompanied by a diverging correla-
tion length and vanishing energy gap. The other is, instead,
of first order when the order parameter and other relevant
observables display discontinuity across the transition point.
While traditional continuous QPTs are well described by the
Landau-Ginzburg-Wilson (LGW) theory, recent years have
witnessed some exceptions such as topological QPTs [4–6]
and deconfined quantum critical points (DQCPs) [7–10] that
are beyond the scope of the LGW paradigm. The topological
QPT may take place between two disordered phases, thus it
cannot be detected by local order parameters [11,12]. What is
more, it could be either continuous or of first order upon a fine-
tuned interaction strength [13–16]. The DQCP was proposed
by Senthil et al. [7,8] whereby a continuous QPT occurs
between two spontaneously symmetry breaking (SSB) phases
and the critical point implies an emergent symmetry. The
J-Q model [9] is such an example where extensive numerical
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studies provide evidence for a continuous (or weakly first-
order) transition between a Néel phase and a valence bond
solid (VBS) phase [17–19].

In contrast to continuous QPTs, first-order QPTs are less
studied so far despite appearing frequently in quantum many-
body systems. Remarkably, a first-order QPT called a photon-
blockade breakdown was observed experimentally in a driven
circuit quantum electrodynamics system [20]. The finite-size
scaling of gap and various probes borrowed from quantum in-
formation sciences near the transition points of the first-order
QPTs have been discussed until recently [21–25]. Therefore,
it is of vital importance to devise appropriate tools for a proper
characterization of their dominating features.

Let us consider a Hamiltonian of the form [1]

H(λ) = H0 + λHI , (1)

where λ is a driving parameter. If H0 and HI commute,
then both of them could be simultaneously diagonalized and
eigenfunctions are independent of λ. This means that the
spectra of H0 and HI are irrelevant of λ, while the total
ground-state energy Eg(λ) = 〈H(λ)〉 could vary linearly with
λ. Consequently, there can be a level-crossing point λt where
the ground-state energy per site eg(λ) = (1/L)Eg(λ) = e0 +
λeI as a function of λ exhibits nonanalyticity. Here, L is the
number of lattice sites. It should be aware that continuous
QPTs could also occur and we move the discussion to the Sup-
plemental Material (SM) [26]. Taking the derivative of eg(λ)
with respect to λ, a jump of eI at λt will appear, indicating a
first-order QPT. The jump also reflects the structural change
of the ground-state wave function. Because of the continuity
of energy eg(λ), a similar jump for e0 is also expected to
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eliminate the singularity. To detect the transition point λt , a
quantity D, dubbed the difference of bond strength (DBS), is
introduced to magnify the jump behaviors. It is defined as

D = e0 − sgn(λt )eI , (2)

where the minus sign reflects the spirit of the bond reversal
method. Nevertheless, in most systems the two terms H0 and
HI do not commute, resulting in a cumbersome expression of
eg(λ) vs λ. However, the main spirit remains unchanged in that
the jump character of D faithfully inherits the discontinuity of
first-order QPTs.

In what follows we will first illustrate the bond rever-
sal method in two different but thoroughly studied one-
dimensional (1D) spin models that possess first-order QPTs:
(i) a celebrated spin-1/2 Heisenberg XXZ chain for which all
the energy as well as the DBS D can be calculated analyt-
ically and (ii) a quantum Ising chain with both longitudinal
and transverse fields which does not host an exact solution
but the transition line is well known. Having established
the cornerstone of our method, we then apply it to (iii) a
topological QPT of a cross-coupled spin ladder and (iv) a
recently proposed spin-1/2 chain with DQCP, both of which
are beyond the scope of the conventional LGW paradigm. All
the models are studied by the density-matrix renormalization
group (DMRG) method [32–35], which is a powerful tool for
dealing with quantum-mechanical problems in 1D systems.
We utilize the periodic boundary condition (PBC) for the first
two cases to have a better comparison with the analytical
results. For the latter cases, however, we turn to the open
boundary condition (OBC) which is beneficial to large-scale
numerical calculations.

XXZ chain. The 1D spin-1/2 Heisenberg XXZ chain has
long served as the workhorse for the study of quantum mag-
netism [36]. Its Hamiltonian is given by

H =
L∑

i=1

1

2
(S+

i S−
i+1 + S−

i S+
i+1) + �Sz

i Sz
i+1, (3)

where S±
i = Sx

i ± iSy
i is the raising/lowering operator at site i

and � is the anisotropic parameter. In particular, in the region
−1 < � � 1 the ground state is a Luttinger liquid (LL) with
a gapless excitation spectrum. The ground-state energy per
site eg in the thermodynamic limit (TDL) L → ∞ can be
calculated as [37–39]

eLL
g (�) = �

4
− sin πυ

π

∫ ∞

0

(
1 − tanh υx

tanh x

)
dx, (4)

with � = cos πυ. Beyond the critical region it presents a
long-range ferromagnetic (FM) or antiferromagnetic (AFM)
order, exhibiting in correspondence to the FM point � = −1
a first-order QPT, and a continuous one belonging to the
Kosterlitz-Thouless (KT) universality class at the AFM point
� = 1. In the FM phase (� < −1), the spins are parallel
along the z direction, resulting in eFM

g = �/4. The spin-spin
correlation functions could be obtained by the Hellmann-
Feynman theorem. In the LL phase, however, no simple
expressions for the correlation functions are available except
for some rational υ values [40]. Historically, the explicit
expressions of the correlation functions [26] were first given
by Jimbo and Miwa in 1996 [41], and then simplified by Kato
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FIG. 1. (a) The ground-state energy eg for L = 64 (red rhombus),
128 (blue circle), and TDL (black line). (b) The same setup as (a) for
DBS DL .

et al. several years later [42]. According to Eq. (2), the DBS
is defined as DL = 〈Sz

L/2Sz
L/2+1〉 + 2〈Sx

L/2Sx
L/2+1〉.

At � = −1 the Hamiltonian Eq. (3) possesses a hidden
FM SU (2) symmetry, resulting in a ground-state manifold
of degenerate SU (2) multiplets corresponding to the largest
total spin. The model is not conformal invariant and dra-
matic changes in its entanglement behaviors occur [43–46].
In Fig. 1(a) we show the ground-state energy eg around the
transition point � = −1. A vivid cusp of the energy curve
could be spotted at � = −1, while it turns to be a jump of
DL in Fig. 1(b). This gives clearly a first glance of the jump
character of D in the first-order QPT [26].

Quantum Ising chain with longitudinal field. The 1D
quantum Ising chain is integrable and its exact solution was
presented by Pfeuty in 1970 [47]. It owns a continuous
QPT of the Ising universality class separating a FM and a
paramagnetic phase at the critical value of the transverse
field hz(�0) [48]. What is more, an emergent E8 symmetry
was experimentally verified around the critical point [49]. By
introducing a longitudinal field hx the model is no longer
integrable except for a specially fine-tuned weak longitudinal
field [50]. The total Hamiltonian is thus given by

H = −
L∑

i=1

(
σ x

i σ x
i+1 + hzσ

z
i + hxσ

x
i

)
, (5)

where σ̂ = (σ x, σ y, σ z ) are the Pauli matrices. In the FM
phase (hz < 1) of the magnetic phase diagram [24,51,52],
a first-order QPT with a discontinuity of the magnetiza-
tion, Mx = 1

L

∑
i 〈σ x

i 〉, takes place at hx = 0. Specifically, let
hz = 1/2, and we have the exact ground-state energy eg,0 =
− 3

4π
E (

√
6
√

2/3) ≈ −1.0635, where E (·) is the complete el-
liptic integral of the second kind [47]. As can be seen from
Fig. 2(a), there is a pinnacle at hx = 0 in the energy curve,
and the symmetric feature is reminiscent of Zx

2 symmetry. The
DBS is defined as DL = 〈σ x

L/2〉 − 〈(σ x
L/2σ

x
L/2+1 + hzσ

z
L/2)〉,

which is merely a shift of Mx by eg,0 currently. In this occasion
DL plays the role of the order parameter Mx and it is no
wonder that it exhibits a jump at hx = 0 [see Fig. 2(b)]. In
general, since DBS has an ambiguous relation with the order
parameter, it is thus well founded to regard this jump as a
signal for a first-order QPT [26].
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FIG. 2. (a) The ground-state energy eg for L = 64 (red rhombus),
96 (green square), and 128 (blue circle). (b) The same setup as (a) for
DBS DL .

Cross-coupled spin ladder. The role of frustration in
quasi-1D magnetic materials has attracted numerous attention
[36] ever since the discovery of high-temperature supercon-
ductivity in the 1980’s [53]. The cross-coupled spin ladder
[13,54,55], in particular, is one of the most outstanding mod-
els which is not only of theoretical importance [56–58] but
also experimentally accessible [59]. The Hamiltonian of the
model reads as follows,

H = J‖
L∑

i=1

∑
α=1,2

Si,α · Si+1,α + J⊥
L∑

i=1

Si,1 · Si,2

× J×
L∑

i=1

(Si,1 · Si+1,2 + Si,2 · Si+1,1), (6)

where Si,α denotes a spin-1/2 operator at site i of the α th
leg. J‖(=1) and J⊥ are the nearest-neighbor (NN) interactions
along the leg and rung directions, respectively. J× > 0 is the
antiferromagnetic cross-coupled interaction.

Whereas a continuous QPT with a central charge c = 2
occurs at J⊥ = 0 in the absence of J× [60], there have been
contentious results for the past decade disputing the existence
of nonzero J×. On the one hand, a columnar dimerized phase
was predicted between the Haldane phase and the rung-singlet
phase in a narrow parameter region at a weak cross-coupled
interaction J× [61]. Though some clues for the dimerized
phase appear at the finite-size case [62,63], it is now generally
believed that there is actually no such phase [64–68]. On
the other hand, when J× = 1, the Hamiltonian of Eq. (6)
undergoes a first-order QPT at J⊥,t = 1.401 484 [54]. Due to
the dual symmetry of Eq. (6) [69], we shall just concentrate
on the case where J× is below the dual line J× = 1. Though
various numerical calculations have firmly established that
such a first-order QPT remains present for deviations away
from the dual line as large as J× = 0.6, a unanimous con-
clusion has not been drawn on whether the first-order QPT
could extend to all loci of the phase boundary or just end at
a nonzero inflection point J×,I . At weak interchain couplings,
an early analytic result predicted that the transition is always
of first order [70], and later a numerical calculation of the
same group yielded the conclusion [65]. Meanwhile, in the
work of Wang [13], it is found that the first-order QPT is
dismissed at J×,I = 0.287, and a continuous QPT down to
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FIG. 3. (a) The DBS DL for L = 64 (cyan rhombus), 128 (ma-
genta square), and 192 (blue triangular) of different J×’s. The solid
lines are guides for the eyes. In the bottom projection plane, the
thick black line and the thin black line are the continuous and first-
order phase boundaries, respectively. The pentagram (�) marks the
inflection point. (b) The Haldane gap � along the phase boundary.

the vanishing interchain couplings takes over afterward. It is
worth mentioning that the fact that a continuous QPT occurs
at J× = 0.2 has been checked by the tensor network approach
[68] and the quantum Monte Carlo method [55]. In view of the
ambiguity, it is our purpose to determine the inflection point
J×,I accurately by the bond reversal method.

During each calculation we shall fix J× and vary J⊥
of Eq. (6). We thus define the DBS as DL = RL −
LL, where RL = 〈(Sz

L/2,1Sz
L/2,2 + Sz

L/2+1,1Sz
L/2+1,2)〉 and LL =

〈(Sz
L/2,1 + Sz

L/2,2)(Sz
L/2+1,1 + Sz

L/2+1,2)〉 in a plaquette in the
spirit of Eq. (2). In Fig. 3(a) we show the curvatures of
DBS for different J×’s from 0.2 to 0.6. Here, we keep as
many as 2000 states typically in our DMRG calculation and
extend to 3000 states when necessary. For J× = 0.5 and
0.6, there is a jump of DBS in each case, indicating that
a first-order QPT occurs. For other cases that are smaller
than J× = 0.4, however, the curves are rather smooth and no
conspicuous jumps are encountered. This is strong evidence
that the transitions here are not of first order but continuous
with a central charge c = 2 [26]. Whereas the curvatures of
DBS for J× = 0.4 seem to be smooth, a jump which is a
signal for a first-order QPT appears for a large enough system
size [26]. We also calculate the energy gap of the Haldane
phase, i.e., �L = Eg(Sz

tot = 2) − Eg(Sz
tot = 0), and the results

are shown in Fig. 3(b). It could be found that the gap is
infinitesimal within our numerical precision when J× � 0.30,
and it opens exponentially afterward. After a series of careful
calculations we thus conclude that the inflection point J×,I has
a finite value of 0.30(2).

Spin-1/2 chain with DQCP. Whereas the DQCP was orig-
inally proposed in two-dimensional systems [7,8], the 1D
analogy of DQCP was constructed quite recently [71] and
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FIG. 4. (a) The ground-state energy eg for L = 64 (cyan rhom-
bus), 128 (magenta square), 192 (blue triangular), and 256 (red
circle). (b) The same setup as (a) for DBS DL .

it has been studied by several parallel works on frustrated
spin-1/2 chains with discrete symmetries [72–74]. For con-
creteness, we consider the following anisotropic model,

H =
L∑

i=1

∑
υ=x,z

−JυSυ
i Sυ

i+1 + KυSυ
i Sυ

i+2, (7)

where Jυ, Kυ > 0 so that the NN interactions are ferromag-
netic while the second-NN interactions are antiferromagnetic.
We shall treat the NN interaction Jx = 1 and fix the second-
NN interaction K = Kx/z = 1/2 so that the only adjustable
parameter is Jz(>0). When Jz is not very large, the ground
state of Eq. (7) could be continuously connected to that of
the Majumdar-Ghosh point [75] where Jz = 1. This phase is
the well-known dimerized VBS phase which breaks transla-
tional symmetry. On the contrary, in the regime where Jz is
dominant, the spins align parallely along their z directions,
resulting in a zFM phase with breaking Zz

2 symmetry. In the
original work of Jiang et al. [71], the VBS-zFM transition
was argued to be continuous, a transition which is at odds
with the LGW theory where a direct transition between two
states breaking irrelevant symmetries should be of first order.
The critical point Jz,c is called DQCP in analogy with its
two-dimensional counterpart, and a continuous O(2) × O(2)
symmetry emerges [71]. The model Eq. (7) has been studied
by the matrix product state (MPS) which works directly in the
TDL in two independent calculations [72,73]. Both order pa-
rameters of the SSB phases have a tiny but finite jump around
the critical point. Notwithstanding, such a discontinuity is
argued to be an artifact of the MPS method. In fact, the weakly
first-order phase transition is hardly distinguishable from a
continuous one [17–19], and thus meticulous calculations
should be carried out to check the type of transition. We
therefore resort to the DMRG method where up to 2000 states
are kept to revisit this problem.

To begin with, we calculate the ground-state energy, and
the energy curves shown in Fig. 4(a) are rather smooth.
The DBS DL = 〈Sz

L/2Sz
L/2+1 − Sx

L/2Sx
L/2+1〉 [see Fig. 4(b)] is

continuous likewise when tuning Jz and no overt jump could
be observed in the curves. This implies that the transition is
indeed not a first-order one.

Because of the OBC utilized in our simulations, the VBS
phase only has a unique ground state while the zFM phase
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FIG. 5. (a) The first two energy gaps �1 (open symbols) and �2

(solid symbols). The inset shows a linear extrapolation of �2 to TDL.
(b) Evolution of vNE SL . Inset: Logarithmic extrapolation of peaks
of SL at different length L’s.

still has twofold degeneracy. We define the energy gaps
�1,2 = E1,2 − Eg as the total energy difference between the
first/second excited states E1,2 and the ground state Eg. In
Fig. 5(a) we show energy gaps �1,2 vs Jz. With increasing Jz,
�1 decreases all the way and vanishes rapidly when crossing
the critical point. For �2, however, there is a minimum �m

2,L at
each length L around the critical point. As shown in the inset,
the �m

2,L’s follow a linear scaling versus 1/L and the gap at
TDL is 0.0000(4), indicating the closure of the energy gap
at the critical point. Because of the linear scaling ansatz, the
critical point is conformal invariant [76]. The von Neumann
entropy (vNE) SL is calculated by the minimal entangled
ground state and the final result is shown in Fig. 5(b). A
hump appears near the critical point, and this is more evidence
of a continuous QPT. We fit the maxima of vNE SL as a
function of length L, Sm

L = c
6 ln ( 2L

π
) + c′, where c is the

central charge and c′ is a nonuniversal constant [77]. We find
that c � 1.02(5) at the critical point.

We now calculate the critical point Jz,c and critical expo-
nents of the order parameters. The VBS phase is characterized
by the difference of the adjacent bond strength, i.e., MVBS

L =
|〈Si · Si+1〉 − 〈Si−1 · Si〉|. The zFM phase has a nonzero local
moment at each site and thus MzFM

L = |〈Sz
i 〉|. In practice, we

could set i = L/2 to minimize the finite-size effect. Also,
when calculating the MzFM

L , a finite pinning field of order 1
is added at the boundaries of the open chain so as to select a
determinate ground state. Theoretically, the order parameter
ML vs Jz with the length L follows [78],

ML(Jz ) � L−β/ν fM (|Jz − Jz,c|L1/ν ), (8)

where the critical exponent ν describes the divergence of
the correlation length and β is the critical exponent of the
order parameter such that M ∼ |Jz − Jz,c|β near the critical
point Jz,c.
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FIG. 6. The FSS of the order parameters (a) MVBS
L and (b) MzFM

L .
The critical point Jz,c and critical exponents β and ν are shown in
Table I.

In Fig. 6 we apply the finite-size scaling (FSS) method
to the VBS [Fig. 6(a)] and zFM [Fig. 6(b)] phases in the
range of Jz ∈ [1.20, 1.80]. The scaling results are fairly good
when Jz is close to the critical point Jz,c. Some data, how-
ever, deviate from the scaling function when Jz is far away
from Jz,c. The best fitting values of the critical point Jz,c

and critical exponents are presented in Table I. The overall
critical point Jz,c � 1.4646(6), which is fairly consistent with
previous work by Huang et al [73]. The critical exponents
are almost identical for both order parameters, in agreement
with the property of the DQCP [71]. The final results are β =
0.53(3) and ν = 1.55(6). Interestingly, we find the quantity
2ν(1 − 2β/ν) is roughly equal to 1, as predicted from the
Luttinger theory where both order parameters could be ex-
pressed by a sole Luttinger parameter [71,72]. We also check
the cases where K �= 1/2 [26] and indeed find that the critical
exponents change with K . Together with the central charge
c ≈ 1, we could say that the VBS-zFM transition belongs to
the Gaussian universality class and the critical point shows
some similarities with the LL phase.

Conclusions. In this Rapid Communication, we propose
a bond reversal method to determine a first-order quantum

TABLE I. Extracted critical point Jz,c and corresponding critical
exponents β and ν for the continuous VBS-zFM phase transition.

Phase Jz,c β/ν 1/ν β ν 2(ν − 2β )

VBS 1.4647(3) 0.344(2) 0.64(2) 0.53(2) 1.55(5) 0.98
zFM 1.4645(5) 0.350(3) 0.65(3) 0.54(2) 1.54(7) 0.92

phase transition (QPT) by a quantity D called the difference
of bond strength (DBS). A first-order QPT could be detected
by a jump in DBS and the discontinuity point is exactly the
transition point. The method is rather efficient and could be
easily implemented in almost every numerical method. We use
it to study two unconventional QPTs which are both beyond
the scope of the Landau-Ginzburg-Wilson theory. For the
cross-coupled (J×) spin ladder, we clarify that a continuous
QPT indeed occurs at weak interchain couplings, and the in-
flection point separating the continuous and first-order QPTs
is J×,I � 0.30(2). For a recently proposed spin-1/2 chain
which owns two spontaneously symmetry breaking phases,
we confirm that the transition is continuous because the DBS
is fairly smooth and the energy gap vanishes when crossing
the critical point. After a careful finite-size scaling analysis,
we find that the transition belongs to the Gaussian universality
class with the central charge c = 1.

Note added. Recently, we became aware of a work on a
spin-1/2 chain with DQCP that supports our findings [79].
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