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The antiferromagnetic phase of the Floquet-driven Hubbard model
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A saddle point plus fluctuation analysis of the periodically driven half-filled two-dimensional Hubbard
model is performed. For drive frequencies below the equilibrium gap, we find discontinuous transitions to
time-dependent solutions. A highly excited, generically nonthermal distribution of magnons occurs even for drive
frequencies far above the gap. Above a critical drive amplitude, the low-energy magnon distribution diverges as
the frequency tends to zero and antiferromagnetism is destroyed, revealing the generic importance of collective
mode excitations arising from a nonequilibrium drive.
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The rapid development of stable, high-intensity radiation
sources has opened up new experimental horizons for the
nonequilibrium control of material properties by application
of tailored radiation fields [1–3]. An applied radiation field
affects a material in two fundamentally different ways: by
changing the Hamiltonian, and creating excitations. The for-
mer, commonly referred to as “Floquet engineering,” offers
an exciting route towards engineering new phases of driven
matter [4–17]. In some cases (e.g., integrable models with
collisionless dynamics) mode excitation can lead to novel
dynamical phases [18]. However, in the generic situation, if
too many excitations are created, the interesting phases can be
destabilized [19–22]. The general consensus in the field has
been that if the drive frequency is sufficiently detuned from the
electronic transition energies, excitations may be neglected,
allowing a focus on Floquet engineering aspects.

In this Rapid Communication we investigate the physics
of ac-driven systems with the drive frequency detuned from
electronic transitions via a theoretical study of the properties
of the Hubbard model. This model is one of the paradigmatic
systems of theoretical condensed matter physics, capturing the
essential physics of electronic ordering and collective modes.
We focus on the effect of the ac drive on the antiferromagnetic
phase and the associated collective modes. We find that even
in the “detuned case,” in which the ac drive does not produce
a significant density of quasiparticle excitations, a highly
nonequilibrium collective mode distribution is produced, with
a remarkable dependence on the drive amplitude suggestive
of a dynamical quantum phase transition. Above a critical
drive amplitude, the nonequilibrium distribution of collective
modes leads to a destruction of long-ranged antiferromagnetic
order, possibly even for dimensions higher than two. These
findings suggest that collective mode distribution effects may
be important more broadly in the physics of Floquet-driven
phases.

Model. We consider the situation sketched in Fig. 1:
the half-filled two-dimensional square-lattice Hubbard model

with nearest-neighbor hopping, repulsive interaction, brought
out of equilibrium via an applied electromagnetic field, and
tunnel coupled to a metallic reservoir to allow the system to
reach a nonequilibrium steady state. The Hamiltonian is

Ĥ =
∑
kσ

εk(t )ĉ†
kσ

ĉkσ
+ U

∑
i

n̂i↑n̂i↓ + Ĥres, (1)

where εk(t ) is the electron dispersion and U the on-site
repulsion. The operator ĉ†

iσ creates an electron of spin σ at
site i of a two-dimensional lattice of unit lattice constant,
c†

kσ
is its Fourier transform in the first Brillouin zone, and

n̂iσ = ĉ†
iσ ĉiσ . Ĥres is a weak tunnel coupling to an infinite-

bandwidth reservoir with a flat density of states [23] giving
rise to a constant inverse electron lifetime � [see Eq. (4)
below]. We set the chemical potential corresponding to half
filling, set h̄ = kB = e = 1, and include the electric field
via the Peierls substitution with a vector potential Ax,y(t ) =
−E sin(�t )/�,

εk(t ) = −2t̃{cos[kx + Ax(t )] + cos[ky + Ay(t )]}. (2)

Henceforth, all energies are given in units of the nearest-
neighbor-hopping matrix element t̃ .

The equilibrium properties of the model are well un-
derstood [24–26]: The ground state is antiferromagnetically
(Néel) ordered, has a gap to electronic excitations, and sup-
ports gapless spin waves. The thermal population of magnons

x
y

z

FIG. 1. Sketch of an antiferromagnetically ordered strongly cor-
related film (top layer, with spins indicated) driven by a radiation
field and in contact with a metallic reservoir (bottom layer) kept at
thermal equilibrium.
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diverges as their energy goes to zero, which in turn leads to
the destruction of long-ranged magnetic order at any nonzero
temperature in dimension d � 2 [27–29]. These features are
revealed by an appropriate interpretation of the results of
a conventional mean field plus fluctuation analysis [24,25],
which is known to provide a qualitatively correct description
of the equilibrium properties of the model.

We study the model for drive frequencies ranging from
smaller than the equilibrium gap (“subgap drive regime”) to
larger than the highest electronic transition visible in linear
response (“Magnus drive regime”) [5,7,16,30] by solving the
nonequilibrium mean-field equations in the presence of a
periodic drive and then computing one-loop corrections.

Saddle-point approximation. To generate the mean-field
theory we write the model as a Keldysh-contour path inte-
gral [31], decouple the interaction via a magnetic-channel
Hubbard-Stratonovich field [32] m, and consider m to have
a mean-field part m0ẑeiQ·Ri , identified with the Néel order
parameter Q = (π, π ), and a fluctuation part δm, which, when
treated to one-loop order, reveals the spin-wave physics.

In a nonequilibrium steady state the mean field is synchro-
nized to the drive [see the inset in Fig. 2(b)] so the mean-
field magnetization can be represented as a Fourier series
m0(t ) = ∑

n m(n)
0 e−in�t . The mean-field equation, found as a

saddle-point approximation for the classical magnetization
field component [33], is then a nonlinear equation for the
components m(n)

0 of the Floquet-space vector representing
m0(t ),

m(n)
0 = I

4πNi

∑
k

′
∫ ∞

−∞
dω Tr[Ĝk,n0(ω)(τ̂1 ⊗ τ1 ⊗ σ3)], (3)

where the primed sum is taken over the magnetic Brillouin
zone (BZ), i.e., half of the electronic BZ, I = U/3 [32],
and Ĝ, the mean-field Floquet Green’s function [34–37], is
a matrix in Keldysh (τ̂ ), momentum-spinor (τ ), spin (σ ),
and Floquet space. The retarded/advanced component of the
electron Green’s function dressed by the reservoir is given by

GR/A −1
k,mn (ω) = (ω + n� ± i�)δmnτ0 ⊗ σ0 − hk,mn, (4)

where hk,mn = εk,m−nτ3 ⊗ σ0 − m(m−n)
0 τ1 ⊗ σ3, with εk,m =

1
T

∫ T/2
−T/2 dt eim�tεk(t ), describing electrons driven by the ex-

ternal field and moving in a time-periodic magnetization
field. The Keldysh Green’s function is given by GK

k,mn(ω) =∑
m′n′ GR

k,mm′ (ω)
K
k,m′n′ (ω)GA

k,n′n(ω), where 
K
k,mn(ω) = −2i�

tanh[(ω + n�)/2T ]τ0 ⊗ σ0δmn is the self-energy from cou-
pling to the reservoir. We solve Eqs. (3) and (4) numerically,
choosing a Floquet cutoff |n| � nmax, and iterate from an
initial guess m(n)

0 = 10−2θ (nmax − |n|). We use the converged
solutions as new starting points to explore multistability.

Representative results for the zeroth Floquet component,
corresponding to the time-averaged dynamics, are shown in
the left-hand panel of Fig. 2. For I � t̃ the qualitative physics
does not depend on the interaction strength, so we present
results only for a single typical case. In the high-frequency
(“Magnus”) limit � � 2m(0)

0 , theoretical arguments [30] sug-
gest that the system is described by an effective Hamiltonian
with the hopping amplitude modified from the equilibrium
value. We see that indeed on the mean-field level, the main
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FIG. 2. Mean-field solutions for varying drive frequencies � =
5–15 in steps of 1 as well as � = 30. (a) Time-averaged mean field
as a function of drive amplitude, and (inset) diagonal component
of the time-averaged spectral functions (solid lines) and occupation
functions (shaded areas) for the mean-field solutions marked in (a).
(b) Second mean-field Floquet component as a function of drive
amplitude, and (inset) an explicit time-dependent mean-field solution
for � = 7 (see Refs. [38,39] for computational details) ramped from
the undriven to the driven state synchronized to the time-transformed
Floquet mean-field solution. The parameters are I = 5, T = 0.01,
� = 0.2, and nmax = 10.

features of the solution remain similar to equilibrium but with
parameters renormalized as expected: a magnetic insulating
state with the expected [30] small increase in the average
staggered magnetization [barely visible in the � = 30 trace
in Fig. 2(a)] arising from the Magnus-regime renormalization
of t̃ by J0(E/�) [7,16]. However, as the drive frequencies are
decreased towards the subgap regime (drive frequency within
or below the region of particle-hole continuum excitations) we
observe a change to a weak decrease of the order parameter
with drive amplitude, and for still lower drive frequency the
mean-field equation gives a discontinuous transition (within a
regime of bistability) to a state of lower gap amplitude and sig-
nificant occupation of the upper band [Fig. 2(a) inset]. Within
mean-field theory, the state remains magnetically ordered on
both sides of the transition; whether a more sophisticated
approximation as in Ref. [22] would lead to a Mott or gapless
state is an important open question.

Figure 2(b) presents the harmonic content of the order
parameter. The spin inversion symmetry of the drive implies
that only even harmonics of the drive frequency appear in the
order parameter, and we find generically that only the 0 and
±2 Floquet components have appreciable amplitudes. The re-
sulting 2� oscillation in the order parameter implies moderate
second harmonic amplitude oscillations in the gap magnitudes
[see the inset in Fig. 2(b)]; the resulting nonlinear optical
effects will be strongest for incident radiation at frequencies
near the gap.

Fluctuations. We now focus on the mean-field solutions
at higher drive frequencies, where the density of the electron
quasiparticle excitations is negligible. We introduce the
fluctuation field as a Keldysh and momentum spinor,
δmμ,i

q (t ) = [δmμ,i
q (t ), δmμ,i

q+Q(t )], with a Keldysh index
i = c, q (classical, quantum [31]) and μ = ± referring to the
directional polar decomposition x ± iy. The fluctuations are
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governed by the electron Green’s function bubble, which,
upon transforming to Floquet space, reads

�
μν,i j
0/Q,q,mn(ω) = i

2N

∑
k

′ ∑
m′

∫ ∞

−∞

dω′

2π
Tr[(γ̂i ⊗ τ0 ⊗ σμ)

× Ĝk,mm′ (ω′)(γ̂ j ⊗ τ0/1 ⊗ σν )

× Ĝk+q,m′n(ω′ − ω − n�)], (5)

with Keldysh indices encoded in the matrices γ̂c/q = τ̂0/1 [33].
Using the sublattice matrix structure [25]

�q =
(

�0,q �Q,q

�Q,q �0,q+Q

)
, (6)

we define the corresponding transverse fluctuation matrix
propagator χ

⊥,i j
q (t, t ′) = (iN/π )〈δm+,i

q (t )δm−, j
−q (t ′)〉, as

χ⊥R/A
q,mn =[

(2I )−1 − �⊥R/A
q

]−1
mn,

χ⊥K
q,mn =[

(2I )−1 − �⊥R
q

]−1
mm′�

⊥K
q,m′n′

[
(2I )−1 − �⊥A

q

]−1
n′n. (7)

The time-averaged (00-Floquet) fluctuation spectrum is
revealed by Im χ⊥,R

0,q,00(ω), shown in the left panel of Fig. 3.
We see that the only low-lying excitations are very sharp
peaks, corresponding to spin waves, with a small but nonzero
broadening from the coupling to the reservoir. The peak
energy vanishes and the peak amplitude grows as q → Q.
At energies below the charge gap, for positive frequencies
Im χ⊥R

0,q,00(ω) ≈ Zqδ(ω − ωq) for not too large �. Upon inte-
grating over the peaks in Fig. 3(a), the inverse spectral weight
Z−1

q shows a linear δq = |q − Q| dependence [Fig. 3(a) in-
set] which agrees well with the expanded equilibrium re-
sult, Z−1

q ≈ αδq, α = 1/(8
√

2πm2
0 )[2 + t2/m2

0 + O(t4/m4
0 )].

The ωq is determined from the peak positions, and gives
the dispersions presented in the right panel of Fig. 3. The
dispersion exhibits the expected linear momentum depen-
dence at lowest energies, ω = vδq. The spin-wave velocity
is seen to compare well to the dissipative equilibrium re-
sult, v = (2

√
2t̃2/m0)(1 − 5t̃2/m2

0 − 3�/πm0 − �2/2m2
0 ) +

O(t̃2+n�3−n/m5
0 ) for n = 0, 1, 2, 3 (consistent with Ref. [26]

for � = 0), provided that the hopping amplitude t̃ is replaced
by the Magnus-renormalized value t̃ J0(E/�) [7]. One may
view this Bessel-function reduction of the spin-wave velocity
as a particularly simple example of Floquet engineering.

The Keldysh component of the transverse propagator con-
tains information about the nonequilibrium distribution of
excitations. For low-lying spin waves with ωq � �, this
information resides in the zeroth Floquet component, from
which we define a time-averaged distribution function F by
the ansatz

χ⊥K
0,q,00(ω) = 2i Im

[
χ⊥R

0,q,00(ω)
]
F (q, ω)

≈ 2iZqδ(|ω| − ωq)Fq. (8)

The spin-wave pole approximation to Im χR allows for a
quasiclassical description in terms of an on-shell distribution
function Fq = F (q, ωq) referring only to the mode energy
ωq. In equilibrium, the fluctuation-dissipation theorem (FDT)
ensures that Fq = coth(ωq/2T ), which tends to unity at ωq �
T and diverges as ω−1

q for ωq → 0.
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FIG. 3. Transverse spin-wave modes. (a) Imaginary part of the
retarded susceptibility as function of frequency and momentum
qx = qy = q for E = 15 showing the spin-wave pole. Inset: Inverse
spectral weight of the peaks in (a). (b) Location of the spin-wave
pole (points) as a function of frequency and δq together with
the equilibrium linear spin-wave dispersion, ω = vδq, (solid lines)
with t̃ → t̃ J0(E/�). The parameters are I = 5, � = 30, T = 0.01,
� = 0.2, and nmax = 3.

Figure 4(a) shows the inverse distribution function F−1
q

as a function of the mode energy ωq at different drive am-
plitudes for a low reservoir temperature T = 0.01. We plot
the reciprocal to fit all data on the same panel. Because the
reservoir temperature is substantially lower than the lowest
ωq included in our numerics, the equilibrium Fq [Fig. 4(b)] is
indistinguishable from unity. We see that increasing the drive
amplitude increases Fq (decreases F−1

q ) at all ωq, with a larger
increase for lower ωq. Increasing either the drive frequency �

or the reservoir coupling � for fixed drive amplitude reduces
Fq (open symbols, left panel of Fig. 4). For higher ωq, Fq

initially increases rapidly as the drive amplitude increases, but
then saturates as the amplitude becomes large. For small ωq,
the situation is different. For the two weakest drive ampli-
tudes, Fq appears to approach a finite, nonzero value as ωq

approaches zero; for the intermediate drive amplitude, F−1
q

vanishes linearly as ωq → 0, while for the two highest drive
amplitudes, F−1

q vanishes faster than linearly as ωq → 0.
Apart from the intermediate drive amplitude (E = 3), these

distribution functions depart markedly from the equilibrium
distribution dictated by the FDT. To illustrate this more
clearly, Fig. 4(c) shows the effective temperature Teff as
defined by Fq = coth[ωq/2Teff (q)]. We see that the results fall
into two groups. For the two smallest drive amplitudes, Teff is
larger at high ωq (a very substantial excitation of high q spin
waves above the equilibrium value), but decreases to a value
consistent with the reservoir temperature as ωq → 0. For
the intermediate drive amplitude, Teff ≈ 0.66 is essentially
momentum-independent (i.e. Fq fits well to the equilibrium
form) and much larger than the reservoir temperatures. For the
two larger drive amplitudes, Teff increases rapidly for small
ωq, indicating a superthermal occupancy of the low-lying
spin-wave modes, in other words, Fq diverging faster than
1/ωq.

The site- and period-averaged mean-squared fluctuations
of the classical component of the order parameter are
given by

〈|δm+,c|2〉 = 1

N

∑
q

∫
dω

4π i
χ⊥K

0,q,00(ω) ∼
∫

d2q

(2π )2
ZqFq. (9)
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FIG. 4. (a) F−1
q and (b) Fq as functions of ωq for increasing drive

amplitude with � = 0.02 and � = 30 together with the equilibrium
curves for T = 0.01 (solid) and T = 0.66 (dashed). In (a) is also
shown the result for � = 45, E = 5.0, � = 0.02 and � = 0.2, E =
3.0, � = 30. (c) Teff corresponding to the curves in (b) together with
the equilibrium T = 0.66 line (dashed). The parameters are I = 5,
T = 0.01, and nmax = 3.

In thermal equilibrium at any nonzero temperature, both Fq

and Zq diverge as 1/δq, and 〈|δm+,c|2〉 therefore diverges log-
arithmically with system size in two dimensions. This is the
expression in the one-loop calculation of the well-known re-
sult [27,28] that thermal fluctuations destabilize long-ranged
magnetic order in continuous-symmetry systems of dimension
d � 2. Our results indicate that the generalization to systems
out of equilibrium is richer than expected from previous work.
Unlike the dc current-driven ferromagnetic case [20,21], a
weak nonequilibrium drive would not destabilize the ordered
state for d = 2, but larger drives lead to a superthermal
occupancy that can destabilize the order even in d > 2.

Conclusions. We have used a mean field plus fluctuation
analysis of the antiferromagnetic two-dimensional Hubbard
model driven by an oscillating electric field to examine the
accepted theoretical intuition, which suggests that if an ac
drive is detuned from direct electronic transition energies,
its main effect is to renormalize Hamiltonian parameters.
Our solution of the full nonequilibrium problem shows rich
additional physics: (i) In the subgap drive regime, the drive
is found to induce a substantial time-dependent component
of the order parameter with first-order-like transitions and
coexistence regimes involving several locally stable (at least

at the mean-field level) phases, and (ii) in all cases, including
the “Magnus” regime of very-high-frequency drive where the
basic electronic state evolves smoothly with the drive ampli-
tude and no electronic quasiparticle excitations are created, we
find a highly nonthermal distribution of magnons. Whereas
the main focus in this Rapid Communication is on the latter,
an analysis of fluctuation effects on the bistability observed in
the subgap drive regime is an interesting open question.

The interaction-mediated transfer of energy to the spin
fluctuations may be thought of as a spin-charge coupling
(albeit a weaker kind than considered, e.g., in Ref. [40]). The
dependence of the magnon distribution on the drive frequency
and coupling to the reservoir indicates that the pathway to
spin-wave excitation involves reservoir states. The kinetics of
this process, and the generalization to more realistic models
of solids, are an important subject for future research. The
distribution of fluctuations depends in a remarkable way on
the drive amplitude. For small and moderate drive amplitudes,
there is substantial excitation of higher-energy modes, but
as the momentum tends to the ordering wave vector, the
distribution tends towards the equilibrium one. However, at
larger drive amplitudes, the distribution diverges faster than
ω−1

q as momentum tends towards the ordering wave vector,
which would indicate destabilization of order even in three
dimensions. This apparent dynamical phase transition as a
function of drive amplitude requires further study.

More generally, our findings show that the low-lying col-
lective degrees of freedom are generically excited by the drive,
and have a large, typically nonthermal, and drive amplitude-
dependent occupancy that can lead to remarkable effects on
physical properties. This finding calls into question the Flo-
quet engineering paradigm in which applied radiation changes
the Hamiltonian without changing the distribution function.
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