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Topological properties of multilayers and surface steps in the SnTe material class
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Surfaces of multilayer semiconductors typically have regions of atomically flat terraces separated by atom-
high steps. Here we investigate the properties of the low-energy states appearing at the surface atomic steps
in Sn1−xPbxTe1−ySey. We identify the important approximate symmetries and use them to construct relevant
topological invariants. We calculate the dependence of mirror- and spin-resolved Chern numbers on the number
of layers and show that the step states appear when these invariants are different on the two sides of the
step. Moreover, we find that a particle-hole symmetry can protect one-dimensional Weyl points at the steps.
Since the local density of states is large at the step the system is susceptible to different types of instabilities,
and we consider an easy-axis magnetization as one realistic possibility. We show that magnetic domain walls
support low-energy bound states because the regions with opposite magnetization are topologically distinct in
the presence of nonsymmorphic chiral and mirror symmetries, providing a possible explanation for the zero-bias
conductance peak observed in the recent experiment [Mazur et al., Phys. Rev. B 100, 041408(R) (2019)].
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Sn1−xPbxTe1−ySey systems have attracted interest due to
the realization of a three-dimensional topological crystalline
insulator phase [1–5], prediction of two-dimensional (2D)
topological phases [6–10], and the appearance of low-energy
states at the defects [11,12]. Robust one-dimensional (1D)
modes were observed at the surface steps separating regions of
even and odd number of layers [12] and interpreted as topo-
logical flat bands using a model obeying a chiral symmetry
[13]. In a more accurate description step modes can have a
band width but the local density of states (LDOS) is large so
that the system is susceptible to the formation of correlated
states [11,14,15]. Recent experiments indicate that an order
parameter emerges at low temperatures and it is accompanied
with an appearance of a robust zero-bias peak (ZBCP) in the
tunneling conductance [16,17]. The temperature and magnetic
field dependence of the energy gap are consistent with super-
conductivity and under such circumstances the ZBCP is often
interpreted as an indication of Majorana zero modes [16–19],
which are intensively searched non-Abelian quasiparticles
[20]. Thus, this finding calls for a critical study of different
mechanisms which may explain the appearance of the ZBCP.

We show that Sn1−xPbxTe1−ySey multilayers are a paradig-
matic system for realization of topological phases due to
emergent symmetries of the low-energy theory, and ZBCP can
appear in the absence of superconductivity. The important 2D
topological invariants are the mirror-resolved Chern number
C± (due to structural mirror symmetry) and spin-resolved
Chern number C↑(↓) (due to approximate spin-rotation sym-
metry). For odd number of layers N the mirror symmetry is
a point-group operation whereas for even N it is a nonsym-
morphic (NS) symmetry (Fig. 1), so that adding one layer
can change the topology of the system [9,10]. We calculate
the dependence of the Chern numbers on N and show that
the step states appear when these invariants are different on
the two sides of the step. The theory and experiment [12,13]
attribute step states only to odd-height steps, but we predict

FIG. 1. (a),(b) Schematic views of the Sn1−xPbxTe1−ySey multi-
layers stacked in the (001) direction. Green (brown) balls are (Sn,Pb)
[(Te,Se)] atoms. For odd (even) number of layers N there exists
symmorphic (nonsymmorphic) mirror symmetry. (c),(d) The corre-
sponding edge-state spectra for N = 3 and N = 4. (e) Surface atomic
steps describing an interface between three- and four-layer systems
and (f) a symmetrized atomic step. (g),(h) The corresponding spectra
for step modes. The panel below (e) shows local density of states of
the step states. The width of the sample is Ny = 600.
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that also even-height steps can exhibit step states consistent
with another experiment [21].

We discuss the conditions under which a spontaneous
symmetry breaking gives rise to an energy gap at the step and
study an easy-axis magnetic order as one possibility. We show
that magnetic domain walls (DWs) support low-energy bound
states because the regions with opposite magnetization are
topologically distinct in the presence of NS chiral and mirror
symmetries. Due to the appearance of DWs the Fermi level is
pinned to the energy of the DW states for a range of electron
density providing an explanation for the ZBCP observed in
the experiment [16]. The observed temperature and magnetic
field dependencies are consistent with our theory.

Our starting point is a p-orbital tight-binding Hamilto-
nian describing a bulk topological crystalline insulator in the
Sn1−xPbxTe1−ySey-material class [1]:

H(k) = m12⊗13⊗� + t12

∑

α=x,y,z

12⊗
(
13−L2

α

)⊗h(1)
α (kα )

+ t11

∑

α �=β

12⊗
[
13− 1

2 (Lα+εαβLβ )2
]⊗h(2)

α,β (kα, kβ )�

+
∑

α=x,y,z

λασα⊗ Lα ⊗ 18, (1)

where we have chosen a cubic unit cell with internal sites
at the corners labeled by i = 1, . . . , 8 [22], εαβ is a Levi-
Civita symbol, Lα = −iεαβγ are the 3 × 3 angular momentum
L = 1 matrices, σα are Pauli matrices acting in the spin
space, � is a diagonal 8 × 8 matrix with entries si = ±1 at
the two sublattices [(Sn,Pb)/(Te,Se) atoms], and h(1)

α (kα ) and
h(2)

α,β (kα, kβ ) are 8 × 8 matrices describing hopping between
the nearest-neighbor and next-nearest-neighbor lattice sites in
the directions α̂ and α̂ + εαββ̂, respectively [22]. We allow
the possibility to tune the spin-orbit coupling terms λα (α =
x, y, z) to be different from each other although in the real
material λα = λ. When not otherwise stated we use m =
1.65 eV, t12 = 0.9 eV, t11 = 0.5 eV, and λ = 0.3 eV [23].

We focus on Hamiltonian HN (�k) for N layers in the z direc-
tion. The mirror symmetries for odd (even) N can be written as
Mo/e

z (kx ) = σz ⊗ (2L2
z − 1) ⊗ mo/e

z (kx ), where mo
z is a point-

group reflection and me
z (kx ) is a (momentum-dependent) NS

operation consisting of reflection and a shift by a half lattice
vector [Figs. 1(a) and 1(b)]. To calculate C± we split HN (�k)
into two blocks in the Mo/e

z (kx ) eigenspace. Since Mo/e
z (kx )

anticommutes with time-reversal symmetry (TRS) operator
T = Kσy ⊗ 13 ⊗ 18, these blocks carry opposite Chern num-
bers C± [24]. We find that C+ oscillates between +2 and −2
for N = 2n + 1 (we exclude N = 1) and C± = 0 for N = 2n
(n ∈ N) [22,25]. We point out that for even number of layers
the nonsymmorphic nature of the mirror symmetry guarantees
that the Chern number calculated for the blocks must always
be equal to zero. Therefore, one can equivalently conclude
that the mirror-resolved Chern number does not exist as a
topological invariant for even number of layers. The edge-
state spectra for N = 3 and N = 4 are shown in Figs. 1(c)
and 1(d). As predicted by C± = ∓2 we see two pairs of
gapless edge modes in the case N = 3, but surprisingly we

FIG. 2. (a) Spin-resolved Chern numbers C↑ as a function of
N for λx = λy = 0. Because we have switched off λx and λy the
effective spin-orbit coupling becomes smaller. In the case of odd
number of layers where C± is a useful topological invariant, we have
checked that this reduction of the spin-orbit coupling does not change
the C± so that it is reasonable to use λz = 0.3 eV. The only exception
is the case N = 3 where we have used renormalized λz = 0.5 eV to
keep C± fixed. (b) The spectrum for N = 4 showing gapless edge
modes. (c) Gapless spectrum for a step between N = 3 and N = 4
can be protected by a Z2 invariant if λx = 0.

find four pairs of edge modes if N = 4. These edge modes are
consistent with C± = 0 because there exist small gaps which
do not vanish by increasing system size.

To understand the existence of edge modes in the case
of N = 4 we notice that the momentum in the z direction is
quantized and the low-energy degrees of freedom are asso-
ciated with a motion within the (x, y) plane [26]. Therefore,
the components of the spin-orbit coupling λα (α = x, y, z)
contribute differently to the spectrum, and the dominant effect
comes from λzσzLz. Hence, turning off λx and λy is a good
approximation [cf. Figs. 1(d) and 2(b)] and this leads to a
spin rotation symmetry with respect to the z axis. Thus, by
block-diagonalizing HN (�k) we can calculate C↑ = −C↓ as
a function of N [22]. The results are shown in Fig. 2(a)
and suggest that C↑ grows linearly with N and takes values
C↑ = 2 + 4m (m ∈ Z) for odd N and C↑ = 4m (m ∈ Z) for
even N . The careful study of whether this behavior persists for
arbitrary thickness goes beyond the scope of the current Rapid
Communication, but importantly this numerical evidence is
already enough that we obtain a topological description of step
modes for reasonably large systems, including all the systems
considered in this Rapid Communication. In particular, the
result for N = 4 is consistent with th enumber of edge modes
in Figs. 1(d) and 2(b). For λx = λy = 0 the tiny gaps originally
present in the spectrum vanish completely.

These Chern numbers provide an interpretation for the
appearance of the step modes because they appear whenever
C↑ is different on the two sides of the step [Figs. 1(e)–1(h)]
[22]. For a step separating even N and odd N 
C↑ = 2 + 4m
(m ∈ Z) and therefore at least two pairs of helical step modes
[27] exist at these steps in agreement with Refs. [12,13]
[Figs. 1(e) and 1(g)]. These step modes are weakly gapped
because the spin-rotation symmetry is only present as an
approximate symmetry. However, we can use C+ to show that
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these gaps vanish in the limit N → ∞. Namely, by using a
symmetrized step construction shown in Figs. 1(f) and 1(h)
and fixing N so that C+ = ±2 on the different sides of the
step, we find that in a system containing steps on both surfaces
there exist |
C+| = 4 pairs of gapless edge modes protected
by the mirror symmetry. In the limit N → ∞ the step modes at
the different surfaces are completely decoupled, and therefore
each step supports two pairs of gapless edge modes. Interest-
ingly, we find that (depending on N) also even-height steps
can exhibit |
C+| = 4 or |
C↑| = 4|m| (m ∈ Z) pairs of step
modes consistent with the experiment [21].

In the case of a one-atom-high step and finite N the step
modes are weakly gapped even though C± are different on
two sides of the step because the step breaks the mirror
symmetry and hybridizes the mirror blocks. However, the step
modes can still be exactly gapless for certain widths Ny in
the y direction if λx = 0 [Fig. 2(c)]. This effect comes from
the existence of an effective particle-hole symmetry which
together with a mirror symmetry gives rise to an antiunitary
chiral symmetry S = Kσy ⊗ (2L2

x − 1) ⊗ (i�mx ), where mx

is a mirror reflection with respect to the x plane interchanging
the sublattices [22]. Due to this symmetry the Hamiltonian
HN,Ny (kx ) supports a Z2 Pfaffian invariant, which protects a
1D Weyl point if it changes sign as a function of kx [28,29]. As
demonstrated in Fig. 2(c) this kind Weyl points can be realized
at the steps if λx = 0.

Since we have now established the topological origin of the
step modes in the noninteracting system, we turn our attention
to the correlation effects (e.g., spin, charge, orbital, or su-
perconducting order), which are inevitably present due to the
large LDOS in the limit N � 1 [11,14,15,22]. Our aim is to
show that there exists a mechanism for the appearance of the
ZBCP in the absence of superconductivity (without analyzing
the competition between different types of order [22]). We
require that the order parameter opens an energy gap, which
means that it breaks the symmetries associated with C↑(↓) and
C±. Thus, we assume that there exists a magnetic instability
in the vicinity of the steps (due to magnetic impurities or
electron-electron interactions [22]) giving rise to a Zeeman
field HZ = h · �σ . Because the step modes are approximately
spin polarized along the z direction the directions of h within
the (x, y) plane are efficient in opening an energy gap, and
due to spin-orbit coupling the gap depends on the direction of
h within the (x, y) plane [22]. Therefore, the system realizes
an easy-axis ferromagnet and the topological defects are DWs
[30]. In the following we consider h = (hx, 0, 0).

To study the topological DW states we determine the low-
energy theory for a single step, the emergent symmetries,
and the topological invariants. Although hx breaks TRS the
spectrum of a system with two steps still exhibits Kramers
degeneracy at kx = π [Fig. 1(g)] due to a remaining NS TRS
T ′(kx ) = K12 ⊗ (2L2

y − 1) ⊗ g(kx )rz, where g(kx ) is a diago-
nal matrix with entries e±ikx/2 and rz denotes π rotation with
respect to the z axis [22]. T ′(kx ) squares to +1 (−1) at kx = 0
(kx = π ) which yields Kramers degeneracy only at kx = π .
We assign half of the states at kx = π to each step by selecting
from each Kramers’ doublet the state with larger projection
on each step. Our low-energy theory is obtained by expanding
the Hamiltonian around kx = π in one of the subspaces of the

projected states [22]. By assuming λy = 0 the system supports
a k-dependent mirror symmetry Mx(kx ) = σx ⊗ (2L2

x − 1) ⊗
g(kx ) and NS chiral symmetry S(kx ) = iσy ⊗ 13 ⊗ � mxg(kx )
[Fig. 3(a)] [22].

We find that in the presence of these symmetries there
exist three topologically distinct phases shown in Fig. 3(b).
The trivial phase for |hx| < hc is separated from the two
nontrivial ones by the energy gap closings at hx = ±hc. The
nontrivial phases are characterized by a NS chiral Z2 invariant
ν = 1 [22,31], and the phases at hx < −hc and hx > hc are
topologically distinct because the band inversions occur in
the different mirror sectors Mx(π ) = ±1 [Fig. 3(b)]. It is not
a priori known whether the DWs between the topologically
distinct phases in this symmetry class support DW states [31].
However, our calculations show that sharp interfaces between
trivial and nontrivial phases (two nontrivial phases) support
one (two) low-energy bound state(s) per DW [Figs. 3(c)–3(f)].
The number of low-energy states in each case is consistent
with the number of zero-energy DW states expected in the
case of smooth DWs with slowly varying spin textures [22].
Although these states resemble the zero-energy DW states
considered in the context of a Dirac equation [32] and the Su-
Schrieffer-Heeger (SSH) model [33–35], there is an important
difference because they are realized in a model belonging to
a different symmetry class. Namely, the appearance of the
DW breaks the symmetries, and therefore the energies of
these states in the case of sharp DWs remain nonzero even
if the DWs are well separated [22]. Moreover, the energies
depend on the tight-binding parameters and in this sense they
resemble the topological DW states in systems with more
complicated unit cells consisting of three or more atoms [36].
Nevertheless, for realistic system parameters the DW states
appear close to the zero energy [22].

Because the DW states have nonzero energy, in high-
resolution tunneling spectroscopy one would observe two split
peaks in the conductance. However, already small broadening
of the energy levels leads to a single ZBCP [Figs. 3(g) and
3(h)] [22]. Moreover, for sufficiently large density of DWs
the bound states hybridize and form a band inside the energy
gap leading to a single ZBCP where the height of the peak
depends on the density of DWs [Figs. 3(e) and 3(h)]. The
ZBCP is robust against variations of the density because in
analogy to the SSH model [35] we expect that the DWs
are the lowest-energy charged excitations in the system, and
therefore small density of excess electrons (excess holes) is
accommodated in the system by increasing the number of
DWs, so that up to a critical variation of the density the
Fermi level is pinned to the energy of the DW states. A
similar situation occurs in quantum Hall ferromagnets where
the lowest-energy charged excitations are skyrmions [37]
which appear due to excess electrons and have been observed
experimentally [38]. Also the parametric dependencies of the
ZBCP and the energy gap are consistent with the experi-
ment [16]. The increase of temperature suppresses the order
parameter and the energy gap. The external magnetic field
breaks the degeneracy of states with opposite magnetization
leading to a confinement between the DWs similarly as a
symmetry-breaking term in the SSH model [35], so that the
number of DWs and the magnitude of the ZBCP decrease.
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FIG. 3. (a) Schematic representation of symmetries Mx (kx ) and S(kx ) operating at a single step [22]. (b) The energies of the step states
at kx = π as a function of hx for Ny = 52 and λz = λx = 0.5 eV. The states are colored according to the eigenvalues of Mx (π ). There exist
three topologically distinct phases denoted as trivial phase ν = 0 and nontrivial phases with ν = 1±. The nontrivial phases are distinct from
the trivial phase due to NS chiral Z2 invariant ν [22,31]. The lower index ±1 describes the subspace of Mx (π ) = ±1 where the band inversion
occurs. (c),(d) Spectrum and LDOS for a system with DWs separating trivial and nontrivial phases. The system supports four low-energy
bound states at the four DWs. The parameters are Nx = 260, Ny = 52, and λz = λx = 0.5 eV. In the trivial (nontrivial) phase hx = 0.003 eV
(hx = 0.04 eV). (e),(f) Same for a system with DWs separating two nontrivial phases with opposite magnetizations. The system supports
eight low-energy bound states at the four DWs [blue dots in (e) and (f)]. If the number of DWs is increased to eight there exist16 low-energy
bound states [orange dots in (e)]. The parameters are Nx = 160, Ny = 140, |hx| = 0.034 eV, λz = 0.5 eV, and λx = 0. (g),(h) The differential
conductance G as a function of bias voltage Vdc [22] corresponding to spectra in (c) and (e), respectively. In all figures λy = 0. The magnitude
of the gap and hx in our simulations are larger than in the experiment by Mazur et al. [16], but they necessarily decrease for larger N because
the bulk gap decreases and the dispersion of the step states gets flatter [22].

Furthermore, we find that by increasing the Zeeman field the
energy gap of the system decreases [22]. Therefore, all the ob-
servations can be explained without requiring the existence of
superconductivity. Finally, the observation that magnetic
dopants enhance the ZBCP and the energy gap [16] makes
it more plausible that the effect originates from magnetic
instability instead of superconductivity. The systematic anal-
ysis of the correlated states which are consistent with the
observations [16] and the exploration of the possible common
origin of the zero-bias anomalies in various topological semi-

conductors and semimetals [16–19] are interesting directions
for future research [22].
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