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Determinant Monte Carlo for irreducible Feynman diagrams in the strongly correlated regime
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We develop a numerically exact method for the summation of irreducible Feynman diagrams for fermionic
self-energy in the thermodynamic limit. The technique, based on the diagrammatic determinant Monte Carlo and
its recent extension to connected diagrams, allows us to reach high (∼10) orders of the weak-coupling expansion
for the self-energy of the two-dimensional Hubbard model. Access to high orders reveals a nontrivial analytic
structure of the self-energy and enables its controlled reconstruction with arbitrary momentum resolution in the
nonperturbative regime of essentially strong correlations, which has recently been reached with ultracold atoms
in optical lattices.
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Definitive answers to key questions about various forms
of the collective behavior of interacting electrons—from
quantum magnetism to photovoltaics and high-temperature
superconductivity—hinge upon our ability to describe their
properties reliably, i.e., without having to introduce uncon-
trolled systematic errors. This understanding has led to a
surge of interest in the development of unbiased computa-
tional approaches for correlated fermions and the problem of
controlling their error bars, which has become the focus of a
concerted effort (see, e.g., Ref. [1] and references therein).
Such systematic studies reinforce the view that there is no
single universal technique that could access all aspects of
correlation physics in different regimes at once.

Quantum Monte Carlo techniques on a lattice [2–5] are
very powerful at fermion densities around one particle per site
(half filling), and moderate coupling, but struggle to control
the error bars in the thermodynamic limit at low temperatures
and nonzero doping. Controllable approaches based on sys-
tematic extensions of the dynamical mean-field theory [6–8]
are particularly effective whenever the observable is not sen-
sitive to long-range correlations. Diagrammatic Monte Carlo
(DiagMC) techniques [9–13] stochastically sum all Feynman
diagrams to a high order immediately in the thermodynamic
limit and can reliably capture nontrivial spatial correlations,
but their controllability depends on the convergence properties
of the series, which typically diverges already at moderate
interaction strengths. The current state of the field is that
perhaps the most interesting regime of moderate-to-strong
interactions, which is expected to harbor nontrivial correlation
physics at relatively high temperatures, is hardly under control
by any available computational method.

With the lack of accurate theoretical solutions, a promising
approach is the experimental emulation of the basic models
of correlated electrons in solids, in particular, with ultracold
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atoms loaded in an optical lattice [14–23]. This field has
seen dramatic progress since the realization [16,18,19] of the
prototypical fermionic Hubbard model [24–27]

H = −t
∑
〈i, j〉σ

ĉ†
i,σ ĉ j,σ + U

∑
i

n̂i,↑n̂i↓ −
∑
i,σ

μσ n̂i,σ , (1)

where μσ is the chemical potential, ĉ†
i,σ and ĉi,σ create and

annihilate (respectively) a fermion with the spin σ ∈ {↑,↓}
on the site i, and n̂i,σ = ĉ†

i,σ ĉi,σ . Until recently, this model has
been studied at relatively high temperatures, where several
theoretical approaches provide reliable benchmarks for the
calibration and cross validation of results. However, substan-
tial progress in the cooling and probing techniques has already
allowed access to sufficiently low temperatures to observe the
magnetic properties [20–22], and, very recently, detect long-
range antiferromagnetic correlations in the two-dimensional
(2D) Hubbard model at temperatures as low as T = 0.25t
and U ≈ 7t [23]. The experiments have thus already reached
the most challenging regime for all current theoretical
methods.

In this Rapid Communication, we introduce a numerically
exact approach for the stochastic summation of irreducible
Feynman diagrams for the fermionic self-energy based on
the diagrammatic determinant Monte Carlo (DDMC) [3–5]
and its recent extension to connected diagrams in the ther-
modynamic limit (CDet) [13], �DDMC. The method allows
us to reach high orders of the diagrammatic series for the
self-energy of the two-dimensional Hubbard model (1) im-
mediately in the thermodynamic limit. Although the series
manifestly diverges in strongly correlated regimes, access to
high orders enables a systematic protocol for reconstructing
the self-energy with controlled accuracy and arbitrary mo-
mentum resolution. We demonstrate the technique for typical
parameters U = 7t , T = 0.2t , μ = 2t [density n = 0.950(6),
we set t = 1 below], the regime where other methods are
currently struggling to reach a controlled solution [1], and use
it to obtain the corresponding (quasi)momentum distribution,
which can be observed experimentally.
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We start from the effective action with the arbitrary free
parameter α [3,4,28,29] and the expansion variable ξ ,

Sξ = −
∑

ωn,k,σ

c†
ωn,k,σ

G(0)
σ (iωn, k)−1cωn,k,σ

− ξ
∑

ωn,k,σ

ασ c†
ωn,k,σ cωn,k,σ + ξU

∫ β

0
nτ↑nτ↓dτ, (2)

where G(0)
σ (iωn, k)−1 = iωn + μσ − εkσ − ασ and εkσ is the

dispersion relation of the noninteracting system. At ξ = 1
the action corresponds to the Hamiltonian (1). Expansion
in powers of ξ and application of Wick’s theorem leads to
the diagrammatic series for the partition function Z (see,
e.g., Ref. [30]). The key observation [3,4] is that the sum
of all (n!)2 diagrams of order n for a given configura-
tion Sn = {x j, j = 1, . . . , n} of n vertices in space-imaginary
time, x j = (x j, τ j ), can be recovered from the product of two
determinants,

z(Sn) = det A↑(Sn) det A↓(Sn), (3)

where the matrices Aσ are constructed from the Green’s
functions, Aσ

i j (Sn) = G(0)
σ (x j − xi ) − (ασ/U )δi j . Thus, the net

contribution of the factorial number of diagrams of order n
can be computed in only O(n3) elementary operations, and the
sum over all possible Sn can be efficiently sampled by Monte
Carlo [3–5]. Nonetheless, although the series for Z converges
for any finite volume V and inverse temperature β = 1/T ,
the average diagram order grows as βVU , and in typical
interesting cases the extrapolation to the thermodynamic limit
is practically impossible. This is because the sum (3) is domi-
nated by disconnected diagrams—those containing pieces that
are not linked to the rest of the diagram by a G(0) line—
responsible for the exponential scaling of Z on βV .

A family of DiagMC techniques, stochastically summing
only the connected (and typically also irreducible [31]) dia-
grams [9,10,12], enables the calculation of dynamical observ-
ables, such as the fermionic self-energy �kσ , k = (k,−iωn),
immediately in the thermodynamic limit. However, until re-
cently, these diagrams have been sampled in DiagMC one
by one, constituting a factorial scaling of computational time
with the diagram order n. While diagram orders as high as
n ∼ 6 could be accessed in practice, it is typically insufficient
for obtaining controlled results at strong correlations. It is
therefore tempting to take advantage of the determinantal
summation in the spirit of Eq. (3) for a series of irreducible
diagrams as well.

It was shown recently that a determinantal summation
could be applied to a series of connected diagrams imme-
diately in the thermodynamic limit [13]. The idea is that
for each configuration of vertices Sn in Eq. (3) one can re-
cursively subtract all the disconnected diagrams, constructed
from the determinants of the principal submatrices of Aσ .
While all possible diagrams of order n take O(n3) elemen-
tary operations to sum by a single determinant, extracting
only the connected ones requires computing the determi-
nants for all proper subsets of Sn, which is O(n32n) steps,
and a number of subtractions that grows exponentially as
O(3n) [13]. Nonetheless, it beats the factorial scaling of
DiagMC in the theoretical large-n limit. Most importantly,

it was shown in Ref. [13] that in practice this trick allows
one to reach diagram orders as high as n ∼ 10 for the
grand potential density and obtain pressure with unmatched
accuracy in the weakly correlated regime (U ∼ 2). The ap-
proach of determinantal summation/subtraction can be ex-
tended to sums of irreducible diagrams for the self-energy,
as we shall see, at an exponential cost as well. The ques-
tion remains, however, of whether it can bring any practical
benefits in terms of enabling access to the regime of truly
strong correlations.

The series for the self-energy �kσ consists of all possible
connected irreducible diagrams with two vertices that lack
their respective incoming/outgoing propagators with spin σ

and four-(quasi)momentum k [30]. For a particular vertex
configuration Sn, we can compute the sum of all (n!)2 dia-
grams (including disconnected and reducible) with two open
ends carrying σ and k by

zkσ (Sn, l : xl ) = det Aσ
k (Sn, l : xl ) det Aσ̄ (Sn), (4)

where the matrix Aσ
k (Sn, j : x) is obtained from

Aσ (Sn) by replacing its jth column by the vector
(eık(x−x1 ), eık(x−x2 ), . . . , eık(x−xn ) )ᵀ, and σ 	= σ̄ . Now the
task is to remove from zkσ all the disconnected and reducible
diagrams. To this end, we define an auxiliary quantity

fσ (Sn, l : x) = det Aσ
G(Sn, l : x) det Aσ̄ (Sn), (5)

with the matrix Aσ
G(Sn, l : x) obtained from Aσ (Sn) by re-

placing xl in its lth column by x. In essence, fσ sums all
the diagrams of the general structure z�(xi1 − xl )G(0)(xi2 −
xi1 ) · · · �(xip − xip−1 )G(0)(x − xip ), which start at the self-
energy vertex xl from the set Sn, end with a propagator going
to the external vertex x, and may have disconnected parts z.
Thus, the sum of all self-energy diagrams for the configuration
Sn can be obtained recursively from the formula

skσ (Sn, l : xl )

= zkσ (Sn, l : xl ) −
∑

Sp⊂Sn:xl ∈Sp

z(Sn \ Sp)skσ (Sp, l : xl )

−
∑

Sp⊂Sn:xl ∈Sp

∑
xm∈(Sn\Sp)

fσ (Sp, l : xm)skσ (Sn \ Sp, m : xl ).

(6)

Here, xl ∈ Sn, the first sum is over proper subsets Sp of Sn

that include xl , and the last term is additionally summed over
all vertices xm that belong to Sn but not to Sp.

Finally, the expansion of �kσ in powers of ξ (we restore
the explicit dependence on external parameters) reads

�kσ (T, μ,U ) =
∞∑

n=1

an,kσ (T, μσ − ασ , ασ /U )(Uξ )n, (7)

with the coefficients

an,kσ = (−1)n

n!

∑
Sn,l

skσ (Sn, l : xl ), (8)

where
∑

Sn
= ∑

x1···xn

∏n
j=1

∫ 1/T
0 dτ j . The sum over all vertex

configurations can be efficiently computed by the standard
continuous-time Metropolis-type scheme (see, e.g. Ref. [32]
for details). At each Monte Carlo step, the evaluation of
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FIG. 1. Partial sum �
(n)
kσ of the original expansion (7) at ξ = 1

(circles) and that in terms of the transformed variable w(ξ ) (squares)
at T = 0.2t , U = 7t , μ = 2t , ω = ω0, k = (π/8, π ) as a function
of inverse truncation order. The dashed line is an extrapolation by
the series for g(w(1)), Eq. (9). The horizontal bands are the claimed
result, Fig. 3.

skσ is done in two stages: First, all determinants involved in
Eq. (6) are computed in O(n52n) elementary operations, then
the recursive procedure (6) is performed in O(n23n) steps.
This scaling could be improved: The tree algorithm [33,34]
and fast subset convolution [35] reduce these costs to O(n22n)
and O(n42n) [O(2n) and O(n22n) for CDet [34]], respectively.
For realistically accessible orders (n ∼ 12) the computational
cost of both approaches is comparable. Given Sn, our code
evaluates the sum of all 24 936 416 irreducible diagrams at
n = 10 [34] averaged over 10! permutations of vertices in
∼0.01 s on modern CPU.

We now turn to the problem of reconstructing �kσ given
the series coefficients an obtained by �DDMC. Note that, by
construction, �kσ does not depend on the choice of α, but
the series is different for each α, which can be used, e.g., to
control its convergence [28,29]. Here, we use this freedom
to maximize the order n we can reach, which empirically
amounts to nullifying the diagonal of Aσ , so that α is found
from G(0)

σ (x = 0, τ = −0) = α/U . For method validation, we
have reproduced current state-of-the-art benchmarks [1,29].
Here, we address an essentially correlated regime, where
controlled results for �kσ in the thermodynamic limit are not
accessible by other methods [1]. The result of the partial sum
�(n) = ∑n

m=0 amU m at the lowest Matsubara frequency ω0

and k = (π/8, π ) as a function of n up to nmax = 10, shown
in Fig. 1, evidences that the series is wildly divergent. It is
known, however [9,10,36], that the series (7) at T > 0 gen-
erally has a nonzero convergence radius. Except for special
cases, the position of the singularity closest to the origin in
the complex plane of the expansion parameter ξ can be found
from the ratio test, Uξs1 = limn→∞ an−1/an. Figure 2 shows
an−1/an as a function of n, suggesting Uξs1 ≈ −5.

The singularity with Re ξs1 < 0 is an inconvenience, but
does not prevent one from accurately obtaining the self-energy
at ξ = 1. A standard approach is analytic continuation based
on conformal maps. Given �(ξ ), which is analytic at ξ =
0 in the open disk |ξ | < |ξs1 |, the idea is to transform the
complex plane of ξ using an analytic function w = w(ξ ),

FIG. 2. The ratio of successive coefficients of the original,
an−1/an (circles), and transformed by the map w(ξ ), bn−1/bn

(squares), series for the parameters of Fig. 1. The first singularity
is observed at Uξs1 ≈ −5 and the second one at ws2 ≈ 0.27 + i0.03
(corresponding to Uξs2 ≈ −9), while w(ξ = 1) = 0.23.

w(0) = 0, to a domain of the complex variable w where the
singularity is farther away from the origin than the image of
ξ = 1, |w(ξs1 )| > |w(1)|. As a function of w, �(ξ (w)) is then
analytic at w = 0 in the open disk |w| < |w(ξs1 )|, which now
contains w(1). Reexpanding

∑
n an(ξ (w))n in powers of w,

we obtain �(ξ ) = ∑
n bn(w(ξ ))n, which converges at ξ = 1.

Such a map is not unique. We choose ξ = −4ξs1w/(1 −
w)2, which maps the disk |w| < 1 onto the complex plane of
ξ with a branch cut along the real axis from ξs1 to −∞. The
coefficients bn determine the position of the next singularity
nearest to the origin ws2 . The plateau of bn−1/bn at n � 7
(Fig. 2) gives ws2 and confirms that the expansion in w is
indeed convergent, |ws2 | > |w(1)|. This observation is key for
a controlled extrapolation of � with respect to n → ∞, which
would be impossible with current DiagMC, typically cut off at
n ∼ 6. Depending on the map, singularities other than ξs2 can
appear closer to the origin and will manifest themselves in
bn−1/bn. The configuration of singularities generally changes
with k.

To evaluate the series, we use the integral approximant [37]
(IA) technique [38], which associates the result with the
function g(w), � = g(w(1)), that has the same Taylor series
as �(w) up to the highest accessible order nmax and satisfies
the differential equation

QM (x)g′(x) + PL(x)g(x) + RN (x) = 0. (9)

FIG. 3. Evaluation of �kσ for the parameters of Fig. 1 using the
IA method (9) applied to the series (7) (labeled IA) and the shifted
series for �/ξ 2 (sIA) for various choices of [L, M, N]. The horizontal
bands show the claimed result with the error bar.
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(a)

(b)

FIG. 4. (a) �kσ at ω = ω0. Inset: �kσ (iωn) at k =
(π/2, π/2), (π/8, π ). (b) The corresponding momentum
distribution n(k) at T = 0.2t , U = 7t , μ = 2t [n = 0.950(6)]
and n0(k) of the ideal Fermi gas, U = 0.

Here, Q, P, R are polynomials of orders M, L, N , respectively,
determined as the unique solution of Eq. (9) for g(x) =∑nmax

n=0 bnxn up to terms O(xM+N+L+2) with M + N + L +
2 = nmax. In effect, Eq. (9) continues the (not necessarily
convergent) series for g(x) from n � nmax to infinite order
and reconstructs the function behind it. The IA approach
reduces to other standard resummation methods, such as,
e.g., Padé [39] and Dlog-Padé [40], as special cases [38],
capturing a more general analytic structure with algebraic
singularities: Near the singular point xs [a zero of QM (x)],
g(x) = φ1(x)(1 − x/xs)−ν + φ2(x), with functions φ1,2(x)
regular at xs.

The resummation (9) can also be used to obtain � or �/ξ 2

(since a0 = a1 = 0) directly from the divergent series (7)
(Fig. 3). In this case, Q, P, R are constructed for g(x) =∑nmax

n=0 anxn or g(x) = ∑nmax
n=2 anxn−2, respectively. We verify

that the bias introduced by the extrapolation (9) is negligible
by observing that the discrepancy between the estimates of �

obtained for different appropriate [38] choices of [L, M, N]
is negligible compared to the corresponding statistical er-
ror. Vice versa, a measurable deviation from the assumed
asymptotic form (9) would manifest itself as an inconsistency
between different IAs beyond error bars. The results are in
perfect agreement with those obtained for the transformed
series (not shown), providing further evidence that the system-
atic error of the adopted resummation procedure is negligible.
As a by-product, the procedure yields an estimate of the near-
est singularity location, Uξs1 = [−5.7(3) − i0.2(8)], which
may correspond to the s-wave superfluid transition [13] [at a
different density in view of Eq. (7)]. Since our {an} ({bn}) have
error bars, we found that approximants with more general

asymptotics, such as, e.g., hypergeometric/Meijer-G [41,42]
or Borel-Padé/Borel-Dlog-Padé [43,44], result in a large un-
certainty of the extrapolation unless additional constraints on
the number or form of singularities are introduced [45].

We follow this protocol to map out the momentum de-
pendence of �kσ at ω = ω0 [Fig. 4(a)]. The knowledge of
�kσ (iωn) allows one to obtain an accurate estimate of the
momentum distribution n(k) = 〈c†

kck〉 via the Dyson equa-
tion [30] [Fig. 4(b)]. We found that this approach leads to a
more accurate estimate for n(k) than computing it directly
with CDet. The shape of n(k) is qualitatively different from
that of the corresponding noninteracting Fermi gas (U = 0),
revealing that the system is of strongly correlated non-Fermi-
liquid character: The shoulder around (0, π ) is due to the
breakdown of the condition Im �kσ (iωn) ∝ ωn for small ωn,
seen, e.g., for k = (π/8, π ) in the inset of Fig. 4(b). The func-
tion n(k) can be straightforwardly probed experimentally with
ultracold atoms in optical lattices [15], which have recently
been brought to this regime of parameters [23]. Our data thus
provide a controlled theoretical benchmark for the ongoing
studies of strong correlations in the 2D Hubbard model.

In conclusion, we note that, following Ref. [46], the expo-
nential computational cost of �DDMC with the observation
that the transformed series converges implies that the com-
putational time scales polynomially with the inverse of the
desired error bar, which is generally unattainable in finite-
system-size methods due to the negative sign problem [47].
In addition to the controlled determination of observables in
regimes analytically connected to the noninteracting limit, the
diagrammatic approach offers a unique means of detecting
and analyzing phase transitions. Being fundamentally free
from finite-size effects, the series (7) is bound to diverge
at a point of nonanalyticity. The key result is that n ∼ 10
accessed by �DDMC appears to be in the asymptotic regime
at least at T ∼ 0.2, meaning that the point of nonanalyticity
and potentially certain critical properties can be found from
the analysis of an suggested above.

Note added. An algorithm similar to Eqs. (4)–(8) was intro-
duced recently in Ref. [48] and applied in a regime where the
series converges. An alternative approach was subsequently
proposed in Ref. [49]. �DDMC was later used for a controlled
description of the metal-to-insulator crossover in the half-
filled 2D Hubbard model [50].
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Héctor Mera, and Branislav Nikolić for discussions of re-
summation techniques. This work was supported by the
Simons Foundation as a part of the Simons Collaboration on
the Many Electron Problem and by EPSRC through Grant
No. EP/P003052/1.
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