
PHYSICAL REVIEW B 100, 115438 (2019)

Optimal efficiency and power, and their trade-off in three-terminal quantum
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We establish a theory of maximal energy efficiency and output power for three-terminal thermoelectric
engines which have two independent output electric currents and one input heat current. This setup goes beyond
conventional heat engines with only one output electric current. We derive the maximal energy efficiency
and output power and their trade-off for three-terminal thermoelectric engines with and without time-reversal
symmetry. This formalism goes beyond the known results for conventional thermoelectric engines and shows
some interesting features. A concrete example of a quantum-dot three-terminal thermoelectric engine is studied
to demonstrate that for the same system, our setup can substantially enlarge the physical parameter region with
high efficiency and power, when compared with previous setups with only one output electric current. Therefore,
the setup with two output electric currents offers a promising pathway toward high-performance thermoelectric
devices. Our theoretical framework also applies for thermoelectric heat engines with multiple output electric
currents, providing a formalism for the study of maximal efficiency and power in complex thermoelectric
materials and devices.
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I. INTRODUCTION

Thermoelectric phenomena have attracted lots of research
interest because of their relevance to fundamental physics and
state-of-the-art energy applications [1–6]. The understanding
of fundamental thermodynamic constraints on the efficiency
and power of nanoscale thermoelectric devices has been a sub-
ject of widespread interest in the past decades [7–17]. Recent
theoretical [7–37] and experimental [38–42] studies on ther-
moelectric phenomena in mesoscopic systems have renewed
the fundamental understanding on thermoelectric transport
and energy conversion. Several concepts, such as reversible
thermoelectric energy conversion [43,44], inelastic thermo-
electric transport [5,18–25], fundamental bounds on the max-
imal energy efficiency and output power [7–10,16,17,45],
universal fluctuations of energy efficiency [11–13,15], coop-
erative thermoelectric effects [8,46,47], and nonlinear ther-
moelectric effects [48] were proposed. In particular, with the
seminal works by Benenti et al. [49] and later by Brandner
et al. [50], mesoscopic thermoelectric heat engines with bro-
ken time-reversal symmetry have gained much interest, partic-
ularly in multiterminal transport configurations [6,29,51–55]
where thermoelectric engines with asymmetric Onsager trans-
port coefficients are studied in the setup with one input heat
current and one output electric current.

In the linear-response regime, the transport properties of
thermoelectric engines studied in the literature are described
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by the following equation,(
Ie

IQ

)
=

(
G L1

L2 K

)(
V

Th−Tc
Th

)
, (1)

where Ie and IQ are the charge and heat currents, and G and
K are the charge and heat conductivities, respectively. L1

and L2 describe the Seebeck and Peltier effects, separately.
V is the voltage bias across the device, and Th and Tc are
the temperatures of the hot and cold thermal reservoirs, re-
spectively. In time-reversal broken multiterminal systems the
two coefficients L1 and L2 can be different [29,49], though
they are identical for time-reversal symmetric thermoelectric
devices in the linear-transport regime. The energy efficiency
for thermoelectric heat engines is defined as η = −IeV/IQ

with IeV < 0 (i.e., power output) and IQ > 0 (i.e., heat con-
sumption). As shown in Ref. [49], for a thermoelectric heat
engine described by the above equation, the maximal energy
efficiency and the energy efficiency at the maximal output
power condition are given by

ηmax = ηCr12

√
ZT + 1 − 1√
ZT + 1 + 1

, η(Wmax) = ηC

2

r12ZT

2 + ZT
, (2)

respectively, where ηC = Th−Tc
Th

is the Carnot efficiency and

ZT = L1L2

GK − L1L2
, r12 = L1

L2
(3)

are the thermoelectric figure of merit and the ratio between
the two off-diagonal elements. For a time-reversal symmetric
macroscopic system with length l and cross-section area
A, the above equations come back to the more familiar
form, r12 = 1 and the figure of merit ZT = σS2T/κ , where
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σ = Gl/A is the electric conductivity, S = L/(T G) is the
Seebeck coefficient, and κ = (K − L1L2/G)l/(AT ) is the
thermal conductivity. Benenti et al. [49] showed that the above
results give guidance to exceed the so-called Curzon-Ahlborn
limit [56] ηCA for the energy efficiency at maximal output
power (in the linear-response regime, ηCA = ηC/2).

The existing studies on three-terminal thermoelectric en-
ergy conversion are restricted to the situation with only one
output electric current (i.e., the charge and heat currents
flowing out of the third terminal are set to zero) [53,54]. Even
for multiterminal systems, electric (heat) currents except one
are suppressed by tuning the electrochemical potentials and
temperatures of the other electrodes [29]. Such constraints
are not easy to realize in experiments. Besides, they may be
disadvantageous for the performance of the thermoelectric
heat engine, as shown by the numerical calculations in this
paper.

The main purpose of this paper is to search for high-
performance thermoelectric energy conversion in the largely
unexplored regime where thermoelectric engines have more
than one output electric current. For this purpose, we develop
a theoretical framework to calculate the maximal energy
efficiency and output power for thermoelectric engines with
multiple output electric currents. Such thermoelectric engines
can be feasibly realized in multiterminal mesoscopic systems
connected to two heat baths. To be concrete, we study a setup
for a three-terminal thermoelectric engine where one electrode
is attached to the hot thermal reservoir, and the other two
electrodes are attached to the same cold thermal reservoir
(see Fig. 1). No further constraints are imposed on the de-
vice which acts as a thermoelectric engine with two output
electric currents. This setup is more feasible to realize than
previous three-terminal setups with only one output electric
current. We find that such a setup can substantially enlarge
the physical parameter region with high-energy efficiency and
output power. We also find situations where both the efficiency
and power can be considerably increased when the three-

FIG. 1. Schematic of a quantum-dot thermoelectric heat engine
with a magnetic flux �. Three quantum dots (with energy Ei,
i = L, R, P) are connected to three electrodes. The tunneling rate
between the dots and the electrodes is �. We consider the setup
where both the R and P electrodes are connected to a cold reservoir
of temperature Tc, whereas the L electrode is connected to a hot
reservoir of temperature Th.

terminal thermoelectric engine goes from the previous setup
to the present setup. We derive the analytical expressions for
maximal energy efficiency and output power for the present
setup and find their trade-off relations [8,9,16,17,53] in the
linear-response regime. We clarify the physical interpretation
of the output electric power and how to exploit it, when the
thermoelectric engine has two output electric currents. Our
theoretical framework can also be applied to thermoelectric
engines with multiple output electric currents, providing a
pathway toward multiterminal thermoelectric devices with
multiple electric currents which are distinct from previous
setups with only one electric current.

This paper is organized as follows. In Sec. II, we introduce
the three-terminal thermoelectric transport model. In Sec. III,
we obtain the maximal energy efficiency and output power,
and derive the relations between the maximum efficiency, the
maximum power, the efficiency at maximal power, and the
power at maximal efficiency in linear response. In Sec. IV,
we deduce the bounds on the maximal efficiency and power
in the linear-response regime. In Sec. V, we analyze the effi-
ciency and power of quantum-dot three-terminal thermoelec-
tric engines with two output electric currents. In particular,
the advantages of the setup with two output electric currents
are emphasized. We conclude and remark for future studies in
Sec. VI.

II. MESOSCOPIC THREE-TERMINAL QUANTUM-DOT
THERMOELECTRIC HEAT ENGINES

As shown in Fig. 1, we consider a mesoscopic thermoelec-
tric device consisting of three quantum dots (QDs) coupled to
three electrodes. This is a minimal model to demonstrate the
setup with two output electric currents. Although this model
has been studied before [29,51,52,54], the configuration
illustrated in Fig. 1 has yet to be studied. This model is valid
when the Coulomb interaction can be neglected [51]. Each
QD is coupled to the nearby electrode. We thus may employ
the indices 1/2/3 to label the leads L/R/P, respectively [13].

Hopping between QDs is affected by the magnetic flux �

piercing through the device at the center with the phase φ/3
assigned to each of the hoppings (φ = 2π�/�0, where �0

is flux quantum). The system is described by the following
Hamiltonian [51],

Ĥ = Ĥqd + Ĥlead + Ĥtun, (4)

where

Ĥqd =
∑

i=1,2,3

Eid
†
i di + (teiφ/3d†

i+1di + H.c.), (5)

Ĥlead =
∑

i=1,2,3

∑
k

εkc†
ikcik, (6)

Ĥtun =
∑
i,k

Vikd†
i cik + H.c. (7)

Here, d†
i and di create and annihilate an electron in the ith

QD with an energy Ei, respectively, and t is the tunneling
amplitude between the QDs. c†

ik and cik create and annihilate
an electron in the ith electrode with the energy Ei (i = 1, 2, 3).

The chemical potentials and temperatures of three reser-
voirs are denoted by μi and Ti (i = L, R, P), respectively. For
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each reservoir, there are electric and heat currents flowing out
of the reservoir. In total there are six currents. However, only
four of them are independent, due to charge and energy con-
servation [51]. We choose the charge and heat currents flowing
out of the L and P reservoirs as the independent currents
which are denoted as I i

e and I i
Q (i = L, P), respectively. The

corresponding thermodynamic forces are

F i
e = μi − μR

e
, F i

Q = Ti − TR

Ti
(i = L, P), (8)

where e < 0 is the electric charge. We focus on the setup
where the L reservoir is connected to the hot bath and the R
and P reservoirs are connected to the cold bath, i.e.,

TL = Th, TP = TR = Tc. (9)

There are two independent output electric currents, IL
e and IP

e
(i.e., the charge currents flowing out of the L and P reservoirs),
whereas there is only one input heat current IQ ≡ IL

Q (i.e.,
the heat current flowing out of the hot reservoir L) with the
corresponding force FQ ≡ F L

Q .
With such a setup, the phenomenological Onsager trans-

port equation is written in the linear-response regime as( �Ie

IQ

)
=

(
M̂ee M̂eQ

M̂Qe MQQ

)( �Fe

FQ

)
, (10)

where the symbols e and Q are used to abbreviate the indices
of forces and currents for charge and heat, respectively [i.e.,
�Ie = (IL

e , IP
e )T , �Fe = (F L

e , F P
e )T , IQ ≡ IL

Q, and FQ ≡ F L
Q ; here

the superscript T stands for vector/matrix transpose]. M̂ee

denotes the 2 × 2 charge conductivity tensor, the 2 × 1 matrix
M̂eQ describes the Seebeck effect, while the matrix M̂Qe de-
scribes the Peltier effect. The 1 × 1 matrix (scalar) MQQ rep-
resents the heat conductivity. For systems with time-reversal
symmetry (e.g., φ = 0, π ), Onsager’s reciprocal relation gives
M̂eQ = M̂T

Qe. In contrast, for time-reversal broken systems,
they are not equal to each other.

Consider that the thermoelectric engine is giving elec-
tric power to two energy storage capacitors. One of them
(connected with the L and R electrodes) has a voltage bias
(μL − μR)/e, while the other one (connected with the P and
R electrodes) has a voltage bias (μP − μR)/e. Assuming the
capacitances of these capacitors are very large (e.g., a large
power grid or a high capacitance rechargeable battery), the
output electric power of the thermoelectric engine is then [8]

W = −�IT
e

�Fe = −( �F T
e M̂ee �Fe + �F T

e M̂eQFQ
)
. (11)

The situation when the thermoelectric engine gives electric
power to a resistor circuit will be discussed at the end of this
paper. We the present situation where the energy efficiency is
defined as

η = W

IQ
= − �F T

e M̂ee �Fe + �F T
e M̂eQFQ

M̂Qe �Fe + MQQFQ

� ηC . (12)

Here, ηC = 1 − Tc/Th = FQ is the Carnot efficiency which is
the absolute upper bound for the attainable energy efficiency
due to the second law of thermodynamics.

III. MAXIMAL ENERGY EFFICIENCY AND OUTPUT
POWER AND THEIR TRADE-OFF

We note that in the linear-response regime the energy
efficiency is invariant under the scaling transformation �Fe →
a �Fe and FQ → aFQ, with a being an arbitrary constant. In
comparison, the output power scales as W → a2W . We can
then fix FQ and obtain the maximal energy efficiency by
solving the following differential equation,

∂η

∂ �Fe

= 0. (13)

We obtain that

�Fe = − 1
2

[
ηmax(M̂ee)−1M̂T

QeFQ + (M̂ee)−1M̂eQFQ
]
. (14)

Here, we define

M̂ee ≡ 1
2

(
M̂ee + M̂T

ee

)
(15)

as the symmetric charge conductivity tensor. Inserting
Eq. (14) into Eq. (12), we arrive at

ηmax = ηC
λ1 − λ2(ηmax/ηC )2

4 − 2[λ2(ηmax/ηC ) + λ3]
. (16)

Solving the above quadratic equation, we obtain the maximal
efficiency as

ηmax = ηC
2 − λ3 −

√
(2 − λ3)2 − λ1λ2

λ2
. (17)

Here,

λ1 ≡ M̂T
eQ(M̂ee)−1M̂eQM−1

QQ, (18a)

λ2 ≡ M̂Qe(M̂ee)−1M̂T
QeM−1

QQ, (18b)

λ3 ≡ M̂Qe(M̂ee)−1M̂eQM−1
QQ (18c)

are three dimensionless parameters that characterize the ther-
moelectric transport properties of the system. The output
power at maximum efficiency is

W (ηmax) = W0

[
λ1 − λ2

(
ηmax

ηC

)2
]
, W0 ≡ 1

4
MQQF 2

Q .

(19)

Similarly, we can obtain the maximal output power with
fixed FQ by solving the following equation,

∂W

∂ �Fe

= 0, (20)

which yields

Wmax = λ1W0. (21)

Meanwhile, the efficiency at maximum output power is
[57,58]

η(Wmax) = ηC
λ1

4 − 2λ3
. (22)

Comparing the energy efficiency and output power for the
above two optimization schemes, we find that

ηmax

η(Wmax)
= 1 + λ2

λ1

(
ηmax

ηC

)2

(23)
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(a) (b)

FIG. 2. (a) ηmax/ηC and (b) W (ηmax) as functions of λ3 for
different λ1, when λ2 = 1. The black dots represent the limit given
by Eq. (29). (c) ηmax and (d) η(Wmax) as functions of λ1 and λ2

when λ3 = 1. The white region is forbidden due to the second law
of thermodynamics. The unit of the output power is W0.

and

W (ηmax)

Wmax
= 1 − λ2

λ1

(
ηmax

ηC

)2

. (24)

The above trade-off relations between the optimization of the
efficiency and power are presented graphically in Fig. 2. These
relations also reveal several important properties: First, the
performance of the thermoelectric engine is better when λ2 <

λ1 compared with the situation with λ2 > λ1. In addition,
when λ2 < λ1, the efficiency at maximal output power can
possibly exceed the Curzon-Ahlborn limit [55] in the linear
response ηCA = ηC/2, in consistency with previous works
[29,49,50]. In the previous setups, it is known that the second
law of thermodynamics alone allows a finite power output
at Carnot efficiency. In our system the second law of ther-
modynamics alone also allows this situation when λ1 > λ2.
However, most microscopic theories of transport (such as
the scattering theory used below [9,10,50]) have zero power
output at Carnot efficiency, so the possibility of finite power
output at Carnot efficiency remains under debate [9,10,27–
29,49,50,59–63].

We now make two remarks. First, the above results are
also valid for the situation with multiple (>2) output electric
currents. This can be readily verified through the vectorial
(matrix) formulation used in the above discussions. Second,
the second law of thermodynamics imposes the following
constraints on the dimensionless parameters,

λ1 � 0, λ2 � 0, λ1 + λ2 + 2λ3 � 4. (25)

The derivation of the above constraints goes as follows: The
entropy production rate associated with the thermoelectric

transport is given by [7]

TRṠ = �IT
e

�Fe + IQFQ

= ( �Fe, FQ)

(
M̂ee M̂eQ

M̂Qe MQQ

)( �Fe

FQ

)
. (26)

The second law of thermodynamics requires Ṡ � 0 for all val-
ues of �Fe and FQ, which is equivalent to require the following
matrix to be positive semidefinite,⎛

⎝ M̂ee
M̂T

eQ+M̂Qe

2
M̂T

Qe+M̂eQ

2 MQQ

⎞
⎠. (27)

Therefore, MQQ � 0 and the matrix M̂ee is positive semidef-
inite. In addition, the determinant of the above matrix is
positive semidefinite which yields

|M̂ee|
∣∣∣∣∣MQQ − M̂T

eQ + M̂Qe

2
(M̂ee)−1

M̂T
Qe + M̂eQ

2

∣∣∣∣∣ � 0,

(28)

where | | is the determinant of the matrix. From these positive
semidefinite properties, one can deduce Eq. (25) straightfor-
wardly.

We now compare our formalism with previous formalisms.
In the previous studies, the charge and heat currents flowing
out of the P terminal are tuned to vanish by adjusting the
chemical potential and temperature at the P terminal (often
called a probe terminal in mesoscopic physics). Under such
constraints (denoted as P = 0 for short throughout this paper),
there is only one heat current and one electric current in the
system. Thermoelectric transport is then described by a 2 × 2
Onsager matrix [6,29,51–54]. In this limit, the matrices M̂ee,
M̂eQ, and M̂Qe become scalar quantities. From the definition
in Eq. (18), one finds that for such a setup

λ2
3 = λ1λ2, for P = 0. (29)

The above constraint describes one of the main differences
between our formalism and the previous formalisms. The
other major difference is that the temperatures of the P and R
terminals are identical in our setup, whereas they are generally
different in previous formalisms. As shown in Fig. 2(a), for the
same physical parameters (e.g., the same device), our setup
may yield higher-energy efficiency. In the figure, the black
dot represents the limit (29) considered in previous studies.
Figure 2(b) shows that larger output power may also be
achieved. The opposite trends of energy efficiency and output
power with λ3 is a reflection of the efficiency-power trade-off.
Figures 2(c) and 2(d) show the maximal energy efficiency and
the output power at such an efficiency. These results show
again that the region with λ1 > λ2 is more favorable than the
region with λ1 < λ2 for thermoelectric heat engine.

IV. THERMODYNAMIC BOUNDS ON THE EFFICIENCY
AND POWER IN THE LINEAR-TRANSPORT REGIME

The thermodynamic bounds on the maximal energy effi-
ciency ηmax and the energy efficiency at the maximum output
power η(Wmax) can be reached at the reversible limit where
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FIG. 3. Bounds on (a) the maximum energy efficiency, ηmax|bound,
(b) the efficiency at the maximum output power, η(Wmax)|bound,
(c) the ratio between efficiency, ηmax/η(Wmax)|bound, and (d) the ratio
between power, W (ηmax)/Wmax|bound, as functions of λ1 and λ2.

λ1 + λ2 + 2λ3 = 4, leading to

ηmax|bound =
⎧⎨
⎩

ηC
λ1

λ2
, if λ1 < λ2,

ηC, if λ1 � λ2.

(30)

The above results are presented graphically in Fig. 3(a) for
various λ1 and λ2. The upper bound for the efficiency at the
maximum output power is

η(Wmax)|bound = ηC
λ1

λ1 + λ2
. (31)

From the above, the Curzon-Ahlborn limit [55,64] for the
energy efficiency at the maximum output power condition,
ηCA = ηC/2, can in principle be overcome for λ1 > λ2. This
observation is consistent with previous studies [6,29,49–54]
(in particular, the seminal work by Benenti et al. [49]).
We remark that although the above formalism, as previous
formalisms [6,49,51], allow an access of Carnot efficiency
at finite power, microscopic mechanisms may forbid such
situations, as shown in Refs. [27–29,50].

Combining Eqs. (30) and (31), we find the ratio between
those bounds on the energy efficiency,

ηmax

η(Wmax)

∣∣∣∣
bound

=

⎧⎪⎪⎨
⎪⎪⎩

1 + λ1

λ2
, if λ1 < λ2,

1 + λ2

λ1
, if λ1 � λ2.

(32)

Meanwhile, the ratio between those bounds on the output
power is given by

W (ηmax)

Wmax

∣∣∣∣
bound

=

⎧⎪⎪⎨
⎪⎪⎩

1 − λ1

λ2
, if λ1 < λ2,

1 − λ2

λ1
, if λ1 � λ2.

(33)

As presented in Figs. 3(c) and 3(d), the trade-off between
the maximal energy efficiency and the maximal output power
is substantially reduced when λ1 � λ2. Thus, in this regime
high-energy efficiency and large output power may be ob-
tained simultaneously.

V. LINEAR THERMOELECTRIC TRANSPORT
COEFFICIENTS IN NONINTERACTING

QUANTUM-DOT THREE-TERMINAL SYSTEMS

In this section, the thermoelectric transport properties of
the quantum-dot three-terminal thermoelectric engine will
be calculated using the Landauer-Büttiker formalism. The
linear-transport properties of the three-terminal thermoelectric
engine will be derived for the calculation of the maximum
efficiency and power for the setup illustrated in Fig. 1. This
model is utilized to compare concretely the performance of the
three-terminal thermoelectric engines between the previous
setup and the setup illustrated in Fig. 1. With the setup in
Fig. 1, the linear thermoelectric transport is described by the
following equation,⎛

⎜⎝
IL
e

IP
e

IQ

⎞
⎟⎠ =

⎛
⎝M11 M12 M13

M21 M22 M23

M31 M32 M33

⎞
⎠

⎛
⎜⎝

F L
e

F P
e

FQ

⎞
⎟⎠. (34)

The coherent flow of charge and heat through a noninteracting
QD system can be described using the Landauer-Bütiker
theory. The charge and heat currents flowing out of the left
reservoir are given by [1,65]

IL
e = 2e

h

∫
dE

∑
i

[TiL(E ) fL(E ) − TLi(E ) fR(E )],

IQ = 2

h

∫
dE

∑
i

(E − μL )[TiL(E ) fL(E ) − TLi(E ) fR(E )],

where fi(E ) = {exp[(E − μi )/kBTi] + 1}−1 is the Fermi-
Dirac distribution function and Ti j is the transmission prob-
ability from terminal j to terminal i. Here, h is the Planck
constant. The factor of 2 comes from the spin degeneracy of
electrons. We assume that the magnetic flux is confined in
a small region at the center of the device and the magnetic
field is vanishing in regions with electrons. Consequently, the
electron spin degeneracy is not lifted by the magnetic flux. An
analogous expression can be written for IP

e , provided that the
subscript (superscript) L is substituted by P.

The Onsager coefficients Mi j are obtained from the lin-
ear expansion of the electric currents I i

e (i = L, P) and the
heat current IQ in terms of the thermodynamic forces [1,65]
F i

e (i = L, P) and FQ as follows,

M11 = 2e2

hkBT

∫ ∞

−∞
dE

∑
i �=L

TLi(E )F (E ),

M12 = − 2e2

hkBT

∫ ∞

−∞
dETLP(E )F (E ),

M13 = M31 = 2e

hkBT

∫ ∞

−∞
dE (E − μ)

∑
i �=L

TLi(E )F (E ),
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M21 = − 2e2

hkBT

∫ ∞

−∞
dETPL(E )F (E ),

M22 = 2e2

hkBT

∫ ∞

−∞
dE

∑
i �=P

TPi(E )F (E ),

M23 = − 2e

hkBT

∫ ∞

−∞
dE (E − μ)TPL(E )F (E ),

M32 = − 2e

hkBT

∫ ∞

−∞
dE (E − μ)TLP(E )F (E ),

M33 = 2

hkBT

∫ ∞

−∞
dE (E − μ)2

∑
i �=L

TLi(E )F (E ).

where F (E ) ≡ {4 cosh2[(E − μ)/kBT ]}−1. The transmission
probability Ti j (E ) is calculated using the Caroli formula [1]

Ti j = Tr[�i(E )G(E )� j (E )G†(E )], (35)

where the (retarded) Green’s function for the triple-QD
system is G(E ) ≡ (E − Hqd − i�/2)−1. The rate for elec-
trons to tunnel from a QD to the nearby electrode, � =
2π

∑
k |Vik|2δ(ω − εik ), is assumed to be an identical constant

for all three QDs (i.e., � does not depend on electronic
energy). When an external magnetic flux � is applied to the
system, the transport coefficients satisfy the Onsager-Casimir
relation [1,65]

Mi j (φ) = Mji(−φ), ∀ i, j. (36)

Using the above equations, we calculate the linear-
transport coefficients Mi j for a set of physical parameters
that define a three-terminal thermoelectric heat engine, i.e.,
Ei (i = 1, 2, 3), �, φ, t , and T . Throughout this paper we set
the equilibrium chemical potential as μ = 0, since tuning the
chemical potential is equivalent to tuning the QDs’ energy. For
each thermoelectric heat engine, we then obtain the dimen-
sionless parameters λi (i = 1, 2, 3) from the linear-transport
coefficients Mi j . From the quantities λi (i = 1, 2, 3), we can
obtain the output power [up to W0, see Eq. (19)] and the
energy efficiency at two working conditions: (i) the maximal
energy efficiency condition and (ii) the maximal output power
condition. The numerical results are presented graphically in
Figs. 4 and 5.

From Fig. 4, one can see that the magnetic flux has only a
weak effect on the dimensionless quantities λi (i = 1, 2, 3) for
the model and the parameters we adopted. The dependence
on the QD energy E1, on the other hand, is much more
pronounced. The deviation from the limit where λ2

3 = λ1λ2

(mainly driven by time-reversal symmetry breaking at finite
magnetic flux) is not pronounced as well. Consistently, we
find from Fig. 5 that the energy efficiency and output power
also have a weak dependence on the magnetic flux but a
very strong dependence on the QD energy E1. Interestingly,
for the parameters we adopted, the energy efficiency and
output power are high when the magnetic flux is φ ≈ 0 and
E1 ≈ 2kBT . In such a regime, an appealing energy efficiency,
ηmax � 0.6ηC , and the efficiency at the maximal output power,
η(Wmax) � 0.4ηC , can be obtained.

In Figs. 6 and 7, we compare the performance of our setup
with the previous setup P = 0 for the same three-terminal

FIG. 4. The dimensionless quantities (a) λ1, (b) λ2, (c) λ3, and
(d) λ2

3/λ1λ2 as functions of the QD energy E1 and the magnetic flux
φ. The other parameters are t = 0.2kBT , � = 0.5kBT , μ = 0, E2 =
1.0kBT , and E3 = 2.0kBT .

quantum-dot heat engine [i.e., the physical parameters Ei (i =
1, 2, 3), �, μ, t , T , and φ are identical for the two setups]. The
P = 0 setup is illustrated in Fig. 6(a), where the heat and elec-
tric currents flowing out of the P terminal vanish by adjusting
the electrochemical potential μP and temperature TP of the
P terminal. In the P = 0 limit, there is only one electric and
one heat current, where the maximum energy efficiency and

FIG. 5. Maximum energy efficiency and output power in a triple-
QD thermoelectric engine. (a) ηmax, (b) η(Wmax), (c) Wmax, and
(d) W (ηmax) as the functions of the QD energy E1 and the magnetic
flux φ. The other parameters are t = 0.2kBT , � = 0.5kBT , μ = 0,
E2 = 1.0kBT , and E3 = 2.0kBT .
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FIG. 6. (a) Schematic of the triple-QD thermoelectric engine
when the electric current IP

e and heat current IP
Q vanish (denoted as

P = 0 briefly). (b) The maximum efficiency and (c) the efficiency
at maximum power for the P = 0 limit as functions of QD energy
E1 and magnetic flux φ. (d)–(f) Comparing the maximal energy
efficiency and output power for the P = 0 limit and the case with
two output electric currents for the QD energy E1 and the magnetic
flux φ: (d) Maximal efficiency, (e) efficiency at maximum power, and
(f) maximum output power. The other parameters are t = 0.2kBT ,
μ = 0, E2 = 1.0kBT , and E3 = 2.0kBT .

output power have been studied in detail before [6,27,49–54].
We emphasize that the P = 0 setup has only one output
electric current and is thus quite different from our setups.
A comparison between them must be interpreted as follows:
When the temperatures of the hot and cold reservoirs are set,
and the structure of the three-terminal system is given as well,
one can choose our setup or the P = 0 setup (if TP can be
adjusted) to exploit the thermal energy to gain electric energy.
One then chooses between the two setups for better energy
efficiency or output power. In the comparison, one must also
understand that the gained electric energy may be stored or
consumed in different ways for the two setups (the consump-
tion of the gained electric power in our setup will be discussed
in detail at the end of this section). As shown in Fig. 6, the
maximal efficiency, the efficiency at maximum power, and the
maximum output power can be significantly improved when
the three-terminal device goes from the P = 0 setup to our
setup. The improvement is especially pronounced when φ � 0

(a) (b)

(c) (d)

FIG. 7. (a) The maximum efficiency and (c) efficiency at max-
imum power as functions of E1 for different E3. Comparing the
maximal energy efficiency and output power for the P = 0 limit and
the case with two output electric currents for various QD energies
E1 for different E3: (b) Maximal efficiency, and (d) efficiency at
maximum power. The other parameters are t = 0.2kBT , μ = 0,
φ = 0, and E2 = 1.0kBT .

and E1 � 2kBT . In particular, the maximum output power is
substantially increased by an order of magnitude when our
setup is adopted. We remark that, unlike the P = 0 setup
where the energy efficiency and output power are improved
by introducing the magnetic flux φ [49–54], in our setup the
φ = 0 limit is favorable for high thermoelectric performance.

We then compare the thermoelectric performance between
the P = 0 setup and our setup in more detail for the non-
magnetic situations with φ = 0. Figure 7(a) shows the max-
imum energy efficiency for the two setups for two cases:
(i) E3 = 2kBT and (ii) E3 = 3kBT . It is seen that for case
(i), the maximal energy efficiency for our setup can reach
to slightly larger than 0.6ηC , whereas the maximal energy
efficiency for the P = 0 setup is smaller than 0.5ηC . For
case (ii), the maximal energy efficiency for our setup is also
considerably larger than the maximal energy efficiency for the
P = 0 setup. For both cases, the energy efficiency achieved
with our setup is very high, �0.6ηC . Figure 7(b) shows the
ratio between the maximal energy efficiency obtained in our
setup to that obtained in the P = 0 setup. For case (i) this
ratio is largest when E1 � 2kBT , while for case (ii) the ratio
is largest when E1 � 3.2kBT . Similar behaviors are found
for the energy efficiency at the maximum output power,
as shown in Figs. 7(c) and 7(d). These results demonstrate
concretely that our setup may yield considerably better energy
efficiency than the P = 0 setup, even in the regime where
the P = 0 setup already has high-energy efficiency. Moreover,
comparing Figs. 5(a) and 5(b) and Figs. 6(b) and 6(c), one
finds that our setup can substantially increase the physical
parameter region with high-energy efficiency. To be more
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FIG. 8. The maximum efficiency ηmax [(a) and (c)] and the
efficiency at maximum power η(Wmax) [(b) and (d)] for our setup
with two output electric currents [(a) and (b)] and for the P = 0 setup
[(c) and (d)] as functions of E1 and E3. Other physical parameters are
t = 0.2kBT , μ = 0, φ = 0, and E2 = 1.0kBT . The scales of the color
bar are identical for (a) and (c) [(b) and (d)].

careful in this conclusion, we present the maximum energy
efficiency and the energy efficiency at maximum power as
functions of E1 and E3 for both setups in Fig. 8, where
we obtain the same conclusion. Importantly, this conclusion
implies that for experimental realizations, particularly when
the physical parameters cannot be controlled precisely, our
setup may have a better chance to yield thermoelectric devices
with high-energy efficiency. Indeed, mesoscopic systems have
considerable fluctuations where the physical parameters such
as the quantum-dot energy cannot be fully controlled in ex-
periments. An enlarged parameter region for high efficiency
will increase the feasibility of high-performance mesoscopic
thermoelectric devices.

From the above results, we find that the zero magnetic flux
cases are favorable for high-performance thermoelectric de-
vices for our setup. This nonmagnetic limit is more appealing
for experimental realization and potential applications. In fact,
this limit also makes the theory much easier: When φ = 0,
MeQ = MT

Qe, and thus λ1 = λ2 = λ3. The maximal energy
efficiency can come back to the conventional form of

ηmax = ηC

√
ZT + 1 − 1√
ZT + 1 + 1

, ZT = λ3

1 − λ3
. (37)

We now discuss the practical problem of connecting the
three-terminal thermoelectric heat engine to a resistor circuit
which receives the electric power. According to Ref. [8], the
best performance of the engine-resistor system is given by
the impedance matching between the engine and the resistor.
For the three-terminal setup, we shall use a triangular resistor
circuit to receive the electric power to achieve the best per-
formance, as schematically shown in Fig. 9. For simplicity,

FIG. 9. The three-terminal thermoelectric device is connected
with a three-resistor circuit, where the resistors (denoted as Ri, i =
1, 2, 3) are connected to three electrodes, and Ii represents the current
following through each resistor.

this discussion will be restricted to the time-reversal symmet-
ric limit. The current-force response matrix for the resistor
circuit is

�I ′
e = M̂L �Fe, (38)

where �I ′
e = (I ′

L, I ′
P )T . I ′

L and I ′
P are electric currents following

from L and P electrodes into the resistor circuit, respectively.
The electric currents following through the resistors Ri (i =
1, 2, 3) are given by

I1 = μL − μR

eR1
= F L

e

R1
, (39a)

I2 = μR − μP

eR2
= −F P

e

R2
, (39b)

I3 = μP − μL

eR3
= F P

e − F L
e

R3
. (39c)

On one hand, using Kirchhoff’s current law for the resistor
circuit, we obtain

I ′
L − I1 + I3 = 0,

I ′
P + I2 − I3 = 0.

(40)

Combining Eqs. (38)–(40), we arrive at the expression
for M̂L,

M̂L =
⎛
⎝

1
R1

+ 1
R3

− 1
R3

− 1
R3

1
R2

+ 1
R3

⎞
⎠. (41)

On the other hand, Kirchhoff’s current law for the electrodes
requires that

�I ′
e + �Ie = 0. (42)

Therefore,

�Fe = −(M̂ee + M̂L )−1M̂eQFQ. (43)

The power consumed by the resistor circuit is then

W = �F T
e M̂L �Fe

=M̂Qe(M̂ee +M̂L )−1M̂L(M̂ee +M̂L )−1M̂eQF 2
Q . (44)
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The input heat current is given by

IQ = [−M̂Qe(M̂ee + M̂L )−1M̂eQ + MQQ]FQ. (45)

The energy efficiency is then given by η = W/IQ. By varying
M̂L, we find that the maximum output power is reached at

M̂L = M̂ee, (46)

whereas the maximum energy efficiency is reached at

M̂L =
√

1 − λ3M̂ee. (47)

The energy efficiency and output power for these two condi-
tions are the same as what we obtained before, in Eqs. (17),
(19), (21), and (22).

VI. CONCLUSION AND DISCUSSIONS

In conclusion, we study the thermoelectric performance
of a three-terminal quantum-dot heat engine in a setup with
two output electric currents. We derive the formulas for the
maximum energy efficiency and output power, as well as their

trade-off. With such a formulation, we calculate the maximum
efficiency and power for various physical parameters of the
quantum-dot three-terminal thermoelectric engine. Through
concrete numerical results, we find that the setup with two
output electric currents can substantially enlarge the parame-
ter region with high efficiency and power, and thus provides a
promising pathway toward high-performance thermoelectric
devices. These results introduce intriguing features on ther-
moelectric energy conversion in the mesoscopic regime, with
particular emphasis on multiterminal setups with multiple
output electric currents. Our study indicates that such setups,
though having been ignored before, can be promising for
high-performance thermoelectric energy conversion.
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