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Dissipative features of the driven spin-fermion system
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We study a generic spin-fermion model, where a two-level system (spin) is coupled to two metallic leads
with different chemical potentials, in the presence of monochromatic driving fields. The real-time dynamics of
the system is simulated beyond the Markovian limit by an iterative numerically exact influence functional path
integral method. Our results show that although both system-bath coupling and chemical potential difference
contribute to dissipation, their effects are distinct. In particular, under certain drivings the asymptotic Floquet
states of the system exhibit robustness against a range of system-bath coupling strength: the asymptotic behaviors
of the system are insensitive to different system-bath coupling strength, while they are highly tunable by the
chemical potential difference of baths. Further simulations show that such robustness may be essentially a
result of the interplay between driving, bath electronic structure, and system-bath coupling. Therefore, the
robustness could break down depending on the characteristics of the interplay. In addition, under fast linearly
polarized driving the quantum stochastic resonance is demonstrated that stronger system-bath coupling (stronger
dissipation) enhances rather than suppresses the amplitude of coherent oscillations of the system.
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I. INTRODUCTION

A wide range of physical and chemical systems can be
effectively described by quantum two-level systems (TLSs).
The most common example for a TLS is a particle of total
spin 1

2 under an external magnetic field which is shown in
nuclear magnetic resonance experiments [1]. Another com-
mon situation is a particle moving in an effective double-well
potential in which only the lowest energy doublet is occupied
[2,3]. A well-known example is the ammonia molecule, NH3:
quantum mechanically the hydrogens can tunnel back and
forth between two potential minima [4,5]. The TLS is also
the simplest nontrivial physical model used as a starting point
to study time-dependent quantum systems. The explicitly
time-dependent quantum problem generates a variety of novel
phenomena that are not accessible within stationary quantum
mechanics. A comprehensive review is given by Grifoni and
Hänggi [6].

An isolated TLS is an ideal model and often fails to
describe thermal and dynamical properties of real physical or
chemical systems when the system is in contact with external
environments. If environments can be effectively described as
a collection of harmonic oscillators, then we obtain the so-
called spin-boson model [2,7] which has been widely studied
and exhibits rich phenomena [6,8]. The environments can also
be fermionic and in this case we have the spin-fermion model
[7,9,10]. The spin-boson and spin-fermion models represent
the simplest nontrivial quantum dissipative models and are
related to various physical and chemical problems. They are
relevant for modeling charge transfer in photosynthesis [11],
the Kondo problem for magnetic impurities [12,13], quantum
stochastic resonance [14–16], and quantum decoherence in
the context of a superconducting charge qubit [17–20].

The possibility of controlling the time evolution of the
molecular system by time-dependent external field has long
appealed to chemists and physicists in order to lead a chem-
ical reaction toward the desired product, design better nan-
odevices, etc. For instance, it is shown that time-dependent
control can boost the thermoelectric efficiency of nanodevices
[21]. Manipulating the time evolution of a molecular system
requires controlling dissipative mechanisms. Understanding
such mechanisms is of both practical and fundamental the-
oretical interest. A driven spin-boson or spin-fermion model
could serve as a simple but nontrivial model for theoretical
investigations.

While the spin-boson model has been extensively studied
both in the presence [6,8,22–31] and absence [2,8,32–46] of
external driving, the spin-fermion model is less well under-
stood. In particular, the interplay of external driving on the
system and the system-environment coupling strength is less
explored due to the limitations of both theoretical and numer-
ical tools. In this article we employ an iterative numerically
exact influence functional path integral method to study the
driven spin-fermion model. This method was first developed
by Makarov and Makri and applied to the spin-boson model
without driving [33,34]; then it was successfully applied to
investigate the driven spin-boson model [23–25]. It is a non-
perturbative method beyond the Markovian limit and thus well
suited for handling real-time dynamics problems. Later Segal
et al. adopted a more flexible discretized scheme for tracing
out the bath and generalized this method to investigate the
spin-fermion and some other generic models in the absence
of driving [47–51]. In this article we adopt such a discretized
scheme and extend the method to the spin-fermion model in
the presence of driving. Our implementation is compared with
the Born-Markov master equation in the Floquet basis [52]. In
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Sec. II we give a brief review of the method, and the details of
the model are given in Sec. III.

In this article we investigate the spin-fermion model
under monochromatic driving at zero temperature with
two fermionic leads kept at different chemical potentials.
Monochromatic circularly and linearly polarized driving
fields are considered in Sec. V.

A noticeable phenomenon appears that under certain driv-
ings the asymptotic Floquet states of the system exhibit
robustness against different system-bath coupling strength:
the asymptotic behaviors of the system tend to be almost
the same even with different coupling strength. It seems that
although both the system-bath coupling and the chemical
potential difference of the baths affect the dissipative rate
greatly, the asymptotic behavior of the system is insensitive to
system-bath coupling strength but dominated by the chemical
potential difference of baths. Such a feature may be useful in
designing a nanodetector driven by an external field to detect
the electronic structure of the environment. In this case the
driving field must be also considered as a part of the detector
and the time-dependent form of the driving field should be
treated as a parameter of essential importance.

More simulations indicate that there may exist a com-
plex interplay between driving, bath electronic structure, and
system-bath coupling. Such robustness may be essentially a
result of the interplay and can break down depending on the
characteristics of the interplay. Moreover, under fast linearly
polarized driving (in Sec. V B 2), quantum stochastic reso-
nance has shown that stronger system-bath coupling (stronger
dissipation) enhances rather than suppresses the amplitude of
coherent oscillations of the system.

Moreover, a convergence test is given in Appendix A and
a benchmark against the Born-Markov master equation in the
Floquet basis is given in Appendix B.

II. GENERAL FORMULATION OF ITERATIVE
PATH INTEGRAL METHOD

Here we give a brief review of the general formalism
of the iterative path integral method (for more details refer
to Refs. [33,34,47]). Let us consider a generic many-body
system which is modeled by a finite system of interest coupled
with two noninteracting baths. Let H (t ) denote the total
Hamiltonian and ρ(t ) denote the total density matrix. Then
the time evolution of ρ(t ) is given by

ρ(t ) = U (t )ρ(0)U †(t ), (1)

where

U (t ) = T exp

[
−i

∫ t

0
H (τ ) dτ

]
=

t∏
ti=0

e−iH (ti )δt . (2)

Here T denotes the chronological ordering symbol and the
product is understood in that we take the limit over all
the infinitesimal intervals δt between zero and t . Basically,
the evolution is split into N pieces for which δt = t/N with
N → ∞. Now we introduce the reduced density matrix of
the system, ρS = TrBρ, which is obtained by tracing the total
density matrix over the bath degrees of freedom. The time

evolution of ρS (t ) is then exactly given by

ρS (s′′, s′; t ) = TrB〈s′′|U (t )ρ(0)U †(t )|s′〉. (3)

Employing finite δt in Eq. (2) approximates the evolution
operator U (t ) into a product of finite N exponentials where
U (t ) ≈ ∏t

ti=0[e−iH (ti )δt ]. Defining the discrete time evolution
operator T = eiHδt , then the reduced density matrix can be
written as

ρ(s′′, s′; t ) = TrB〈s′′|(T †)Nρ(0)T N |s′〉. (4)

Inserting the identity operator
∫

ds|s〉〈s| between every two
T and relabeling s′′, s′ as s+

N , s−
N yields

ρ(s+
N , s−

N ; t ) =
∫

ds+
0 · · · ds+

N−1

∫
ds−

0 · · · ds−
N−1

× TrB[〈s+
N |T †|s+

N−1〉〈s+
N−1|T †|s+

N−2〉
× · · · 〈s+

0 |ρ(0)|s−
0 〉 · · ·

× 〈s−
N−2|T |s−

N−1〉〈s−
N−1|T |s−

N 〉]. (5)

The integrand in Eq. (5) is referred to as the “influence
functional” [47] (IF) and is denoted by I (s±

0 , . . . , s±
N ). The IF

contains the information of the system and bath degrees of
freedom with system-bath interactions. The IF has an impor-
tant property that allows us to greatly simplify the calculation:
nonlocal correlations contained in the IF decay exponentially
under certain conditions [33], which enables a (controlled)
truncation of the IF. It means in practical calculation we need
to only keep a finite memory length. Basically, for a system
under a chemical potential bias �μ at zero temperature the
exponentially decaying of the correlations is guaranteed by
finite �μ, while in a large-temperature situation (T > �μ)
the temperature sets the scale of the memory length that needs
to be kept [47,53]. Based on this feature, an iterative scheme
for evaluating the path integral has been developed [33,34].
The original quasiadiabatic path integral algorithm was based
on the analytical pairwise form of the IF specific to harmonic
baths; later a more general approach was proposed which
was based on the fact that memory effects generically vanish
exponentially [36]. The idea was further developed to simulate
the dynamics of a generic nonequilibrium bias driven system
[53].

Since only a finite memory length needs to be considered,
the IF can be truncated beyond a memory time τc = Nsδt
(here Ns is a positive integer), which corresponds to the
time beyond which bath correlations can be ignored control-
lably. Therefore, the total IF can be written approximately as
[33,34,36,47,48]

I (s±
0 , . . . , s±

N ) ≈ I
(
s±

0 , . . . , s±
Ns

)
Is
(
s±

1 , . . . , s±
Ns+1

)
× · · · Is

(
sN−Ns , . . . , s±

N

)
(6)

with

Is(s
±
k , . . . , sk+Ns ) = I

(
s±

k , . . . , s±
k+Ns

)
I
(
s±

k , . . . , s±
k+Ns−1

) . (7)

The approach becomes exact when τc → ∞ and its physical
content is discussed in Refs. [36,47].

To integrate Eq. (6) iteratively we define a multiple time
reduced density matrix ρ̃S (s±

k , . . . , sk+Ns−1) with an initial
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value ρ̃S (s±
0 , . . . , s±

Ns−1) = 1; i.e., all of the initial components
are identity. Its first evolution step is dictated by

ρ̃S
(
s±

1 , . . . , s±
Ns

) =
∫

ds±
0 I

(
s±

0 , . . . , s±
Ns

)
, (8)

and beyond the first step the evolution step is given by

ρ̃S
(
s±

k+1, . . . , s±
k+Ns

) =
∫

ds±
k ρ̃S

(
s±

k , . . . , sk+Ns−1
)

×Is
(
s±

k , . . . , s±
k+Ns

)
. (9)

Then the time-local (tk = kδt) reduced density matrix is ob-
tained by summing over all intermediate states:

ρS (tk ) =
∫

ds±
k−1 · · · ds±

k−Ns+1ρ̃S
(
s±

k−Ns+1, . . . , s±
k

)
. (10)

In practical calculation, we need to keep track of
ρ̃S (s±

k+1, . . . , s±
k+Ns

), which is a 2Ns rank “tensor.” Suppose the
size of Hilbert space of the system is M; then a space with size
proportional to M2Ns is needed to store the tensor. Similarly,
to store Is(s±

k , . . . , s±
k+Ns

) one needs a space with size propor-
tional to M2(Ns+1). The space size increases dramatically with
increasing M and Ns, which means for practical calculations
we need to ensure M and Ns are not too large. In other words,
the size of the system and truncation time τc need to be small;
otherwise the system may lose feasibility in the numerical
evaluation.

However, there is no restriction or difficulty in the de-
velopment of the method that the Hamiltonian must be time
independent. On the contrary, since it is an iterative method
which is truncated in time it is rather easy to deal with a time-
dependent Hamiltonian. What we need to do is just calculate
the IF with the Hamiltonian in corresponding time. Moreover,
this method is a nonperturbative method beyond the Marko-
vian limit and thus it is well suited for the investigation of
long-time behaviors of driven systems.

III. THE MODEL

In this article we consider the spin-fermion model where a
spin is coupled to two fermionic leads with chemical potential
difference �μ at zero temperature. Such a model serves as a
simple but nontrivial model to study bias-driven nonequilib-
rium systems [9,47,54,55]. The Hamiltonian of the model is
written as

H = H0 + H1, (11)

where

H0 = HS, H1 = HB + HSB. (12)

The bath Hamiltonian HB is that of two independent free
fermion baths (α = L, R) whose statistics are determined by
chemical potentials, i.e.,

HB =
∑
α,k

εkc†
αkcαk . (13)

The operator c†
αk (cαk) creates (annihilates) an electron with

state k in the αth bath. The system Hamiltonian HS is that of

a driven TLS,

HS = 1
2 B(t ) · σ, (14)

where σ = (σx, σy, σz ) are Pauli matrices and B(t ) is the
external field. The system-bath coupling is taken to be

HSB =
∑
αβ

Vαβc†
αkcβk′σz, (15)

where α, β = L, R are the bath indices. In this article we
focus on the model [9,47,56,57] where the momentum de-
pendence of the scattering potential is neglected. In particular,
we consider only interbath system-bath couplings for which
gVαβ = λ(1 − δαβ ), where g is the density of states of each
Fermi bath and λ is the control parameter.

For numerical evaluation we need to employ a second-
order Trotter-Suzuki decomposition [58,59] on the discrete
evolution operator eiHδt for which

eiHδt ≈ eiH1δt/2eiH0δt eiH1δt/2. (16)

With this decomposition and assuming separable initial con-
ditions ρ(0) = ρS (0)ρB(0), the IF of the present model can be
identified as

I (s±
0 , . . . , s±

N ) = 〈s+
0 |ρS (0)|s−

0 〉
× K (s±

N , s±
N−1) · · · K (s±

1 , s±
0 )

× TrB[e−iH1(s+
N )δt/2e−iH1(s+

N−1 )δt

× · · · e−iH1(s+
1 )δt e−iH1(s+

1 )δt/2

× ρB(0)eiH1(s−
0 )δt/2eiH1(s−

1 )δt

× · · · eiH1(s−
N−1 )δt eiH1(s−

N )δt/2], (17)

where

K (s±
k+1, s±

k ) = 〈s+
k+1|e−iH0(tk )δt |s+

k 〉
× 〈s−

k |eiH0(tk )δt |s−
k+1〉 (18)

is the propagator matrix for the isolated system.
It is more flexible to describe the bath as discrete levels and

the infinite bath result can be easily reached even with a small
number (about 40) of effective bath fermions [47]. The trace in
Eq. (17) can be numerically eliminated via the Blankenbecler-
Scalapino-Sugar (BSS) identity [60] and Levitov’s formula
[61–63]; then the analytic structure of the trace is not required.
This feature gives the method feasibility to investigate various
system-bath coupling other than linear coupling including
nonadditive system-bath coupling [64] used in our model.
The generalization to finite temperature is also straightforward
[47,61].

IV. FLOQUET FORMALISM

Alternatively, one could also use the Floquet master equa-
tion to study time-dependent systems. Comparing to the it-
erative path integral technique, the Floquet master equation
approach is restricted to periodically driven systems and it
is based on perturbative expansions. We employ a Floquet
Born-Markov master equation with nonadditive system-bath
interaction to calculate our model as a benchmark. We give
a brief introduction to the Floquet formalism here and a
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detailed derivation of the Floquet master equation is given in
Appendix B.

Let us consider an isolated system with Hamiltonian HS (t ).
If the driving field B(t ) is a periodic function with period T
for which HS (t ) = HS (t + T ), then the Floquet theorem states
that [65], for Schrödinger equation with system coordinate q,

i
∂

∂t
ψ (q, t ) = HS (t )ψ (q, t ), (19)

there exist solutions in the form

ψi(q, t ) = e−iεitϕi(q, t ), (20)

where ϕi(q, t ) is periodic in time with period T and εi is a
real-valued function. The term ϕi is called the Floquet state
and term εi is called the quasienergy. It is clear that εi is
unique up to multiples of � = 2π/T for which εi + n� with
n being an integer corresponds to the same physical state. The
Floquet states ϕi(q, t ) form a complete orthonormal basis for
the system at given time t . The time evolution operator (for
t � t ′)

US (t, t ′) = T exp

[
−i

∫ t

t ′
HS (τ ) dτ

]
(21)

then can be expressed in the Floquet basis by

US (t, t ′) =
∑

n

|ϕn(t )〉〈ϕn(t ′)|e−iεn (t−t ′ ). (22)

In the Floquet basis, the density matrix can be defined as

�i j (t ) = 〈ϕi(t )|ρS (t )|ϕ j (t )〉. (23)

In this representation the time-dependent part of the Hamilto-
nian is absorbed in the Floquet states ϕi(t ); therefore, the time-
dependent part of �i j (t ) is greatly simplified. In particular,
t → ∞ leads to the time-independent density matrix element
�i j which represents the asymptotic Floquet states [52]. In
Appendix B we give a comparison between asymptotic Flo-
quet states calculated by the iterative path integral method
used in this article and those calculated by the Born-Markov
Redfield master equation in Floquet representation.

V. RESULTS

Back in 1927, Hund [4] pointed out the importance of the
quantum tunneling effect in intramolecular rearrangements.
Since then quantum tunneling between two levels in iso-
lated TLSs under external driving has been widely studied.
Rich tunneling phenomena are found in such problems. For
instance, several physicists, including Landau, Zener, and
Stüeckelberg, studied the transition between two levels in
isolated TLSs under a time-dependent energy sweep exter-
nal field [66–68]. Such a model is commonly known as a
Landau-Zener model and it has a wide range of applica-
tions in physics and quantum chemistry. Another example
is the coherence destruction of the tunneling phenomenon
for which in isolated TLSs under monochromatic driving
[69] the tunneling could be suppressed by the external
driving.

According to our simulations, under monochromatic driv-
ing the spin-fermion model would exhibit rich tunneling

phenomena. Many of them could also be found in the spin-
boson model [6,23,31]. These may be common phenomena
of driven dissipative TLSs regardless of what kind of bath
is present. To shorten the length and reduce the number
of figures of this article, we do not represent them here
and instead focus on showing the results which are relevant
to the robustness of asymptotic behaviors of the system
against different λ. Both circularly and linearly polarized
driving fields are considered in this article. Although tun-
neling behaviors of the system differ a lot under different
driving, under certain conditions all of them exhibit robustness
behaviors.

A. Circularly polarized fields

Let us first consider the case of a spin-fermion model
driven by a spatially homogeneous, circularly polarized field.
We set the spin to the z direction at the initial time t = 0,
i.e.,

〈σz〉(0) = 1 and ρS (0) =
(

1 0
0 0

)
. (24)

A pioneering work on isolated driven TLSs in a circularly
polarized field is given by Rabi [70] and it is shown that in
this case analytic solutions can be found [6,70]. However, it is
difficult to find analytic solutions in general cases and thus for
consistency we simulated the isolated driven TLS numerically
in this article.

1. Field in the x-y plane

Here we consider the case where the time-dependent field
is orthogonal to 〈σz〉(0), i.e., in the x-y plane. The system
Hamiltonian can be written as

HS (t ) = B

2
σz + �

2
(σx cos �t + σy sin �t ). (25)

Note that if we turn off the time-dependent part of the field,
namely, set � = 0 and only retain the static part B

2 σz, then the
system becomes localized; i.e., there would be no tunneling
between two levels. In other words the tunneling is totally
induced by the time-dependent field and in the dissipationless
case 〈σz〉(t ) would stay as 1 if � = 0 with the initial condition
in Eq. (24).

With small local potential B = 0.1 and under slow and
weak driving (� = 0.1,� = 0.1), the behavior of 〈σz〉(t ) is
similar to that of a spin-fermion model without driving [47]:
the chemical potential difference acts as a temperaturelike
contributor to dephasing [9] for which 〈σz〉(t ) would be even-
tually dissipate to zero. The dissipation rate would be larger
with larger λ and �μ.

If the driving field is both fast and strong (�= 1 and
�= 1), the driving and dissipation eventually reach a bal-
anced state and 〈σz〉(t ) would remain a finite value instead
of decaying to zero [see Fig. 1(a)]. At first glance this
behavior seems similar to the case in coherent destruction
tunneling [71] (CDT) or driving-induced tunneling oscilla-
tions [26,27,30] (DITOs). However, the situation is different
here. In CDT, without a time-dependent field there would be
tunneling between two levels, and the field suppresses the
tunneling. Here the time-dependent field induces, rather than
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FIG. 1. Dynamics of 〈σz〉(t ) under a circularly driving field in the
x-y plane for (a) varying system-bath coupling strength with �μ = 2
and (b) varying chemical potential difference with λ = 0.1. We have
used B = 0.1, � = 1, and � = 1 for both (a) and (b).

suppresses, the tunneling between the two levels. In DITO,
large amplitude oscillations are induced by a field with high
static energy bias [30], which is not in our Hamiltonian.
Without dissipation (λ = 0), 〈σz〉(t ) oscillates in the positive
region, which means the system is tunneling between two
levels but stays more time in the spin-up state. Such tunneling
is suppressed by the dissipation and eventually the driving and
dissipation reach a balanced state.

Here we can see an interesting phenomenon from Fig. 1(a).
Lines have the same �μ but different λ, and the dissipation
rate is larger with larger λ. However, 〈σz〉(t ) with λ = 0.05,
0.1, and 0.15 reach almost the same value in the asymptotic
state, while from Fig. 1(b) we could see that with the same
λ but different �μ the asymptotic 〈σz〉(t ) differ greatly.
We could say that the system-bath coupling strength affects
the dissipation rate of the fast oscillation greatly but has little
effect on the asymptotic behavior, whereas the asymptotic
behavior is dominated by �μ, or, in other words, by the
electronic structure of the baths. We may say the asymp-
totic Floquet states of the system are robust against different
system-bath coupling strengths λ. Such phenomena can be
commonly seen in our simulations and we discuss it further.
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FIG. 2. Dynamics of 〈σz〉(t ) under a circularly driving field in the
y-z plane for (a) varying system-bath coupling strength with �μ = 2
and (b) varying chemical potential difference with λ = 0.1. We have
used B = 1, � = 1, and � = 0.1 for both (a) and (b).

2. Field in the y-z plane

Now consider the case where the time-dependent field is in
the y-z plane. The system Hamiltonian is

HS (t ) = B

2
(σy cos �t + σz sin �t ) + �

2
σx. (26)

Note that in this case even if the time-dependent field is
turned off, namely, we set B = 0, the system is not localized
since �

2 σx remains in the Hamiltonian. The static field can
be viewed as a rotation axis along the x direction and the spin
would have uniform rotation around the axis. If we plot 〈σz〉(t )
in the dissipationless and static field case we would see 〈σz〉(t )
oscillates between 1 and −1.

With large local potential � = 1 and under strong but slow
driving (B = 1,� = 0.1), coherent oscillations are induced
(see Fig. 2). The fast oscillation part due to system Hamil-
tonian dynamics is eventually dissipated out with a different
rate, and the coherent oscillation due to driving remains.
Similar behaviors have been reported in the spin-boson model
[23,31]. Such oscillation behaviors present typical asymptotic
Floquet states of a dissipative spin system under periodic
driving [23,31,72].
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Lines in Fig. 2(a) are simulated with the same �μ but dif-
ferent λ. It is worth noting that although their dissipation rate
is larger with larger λ, the asymptotic 〈σz〉(t ) with different λ

eventually coincide.
Lines in Fig. 2(b) are simulated with the same λ but

different �μ. It can be clearly seen that their final 〈σz〉(t )
differ greatly. Comparing Figs. 2(a) and 2(b), we may say
that under this driving asymptotic Floquet states of 〈σz〉(t ) are
dominated by the electronic structure of the baths and they are
robust against different system-bath coupling strength λ.

B. Linearly polarized fields

Let us next consider the case where a spin-fermion model
is driven by a spatially homogeneous, linearly polarized field.
The initial condition is the same as in Eq. (24). It was
pointed out long ago by Bloch and Siegert [73] that the driven
TLS problem is no longer analytically solvable when the
field is linearly rather than circularly polarized. To obtain an
approximating solution for a dissipationless driven TLS under
a linearly polarized field, the rotating wave approximation,
which approximately transforms the linearly polarized field
to the form of a circularly polarized field [6], is widely used.
An iterative approach for strong-coupling periodically driven
TLSs also exists [74]. However, in this article we directly
use numerical results for the dissipationless case rather than
analytical approximations.

1. Field in the x direction

Here we consider the case where the time-dependent field
is orthogonal to 〈σz〉(0), say, along the x direction, and write
the system Hamiltonian as

HS (t ) = B

2
σz + �

2
σx cos �t . (27)

With this Hamiltonian the system would be localized if the
time-dependent field is turned off. In other words, the tun-
neling between two levels is totally induced by the time-
dependent field. This is a similar situation to that where
the driving field is circularly polarized in the x-y plane
(Sec. V A 1).

In Fig. 3, the simulations are done under strong but slow
driving (� = 1 and � = 0.1) and with large local potential
B = 1.

Figure 3(a) shows that 〈σz〉(t ) oscillates rapidly in the
dissipationless (λ = 0) case. When dissipation is turned on,
the system coherently oscillates around a nonzero value when
dissipation and driving are balanced. Such kinds of asymptotic
Floquet states are also reported in driven spin-boson models
[31]. The robustness occurs again for which lines with the
same �μ but different nonzero λ almost coincide eventually,
whereas in Fig. 3(b) the lines have the same λ but different
�μ, and they coherently oscillate in different places.

2. Field in the z direction

Now let us consider the case where the time-dependent
field is parallel to 〈σz〉(0) with the system Hamiltonian

HS = B

2
σz cos �t + �

2
σx. (28)
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FIG. 3. Dynamics of 〈σz(t )〉 under a linearly driving field in the x
direction for (a) varying system-bath coupling strength with �μ = 2
and (b) varying chemical potential difference with λ = 0.1. We have
used B = 1, � = 1, and � = 0.1 for both (a) and (b).

There is always a static field along the x direction; thus, even
if the time-dependent driving field is off there is still tunneling
between the two levels. This is the usual case when studying
the dissipative TLS [9,22,23,25–27,30,31,33,34,44,47,49];
thus, we present more simulations here.

In Fig. 4 the simulations are done under strong but slow
driving (B = 1,� = 0.1) with large local potential � = 1. It
can be seen under such driving that coherent oscillations are
induced which are similar to the circularly driving field in the
y-z plane case (Fig. 2). It can be seen from Fig. 4(a) that the
asymptotic 〈σz〉(t ) with �μ = 2 and different λ almost coin-
cide. Under this driving the asymptotic Floquet states exhibit
robustness against different system-bath coupling, whereas
the asymptotic 〈σz〉(t ) with λ = 0.1 and different �μ differ
a lot [see Fig. 4(b)].

The robustness breaks down when we enter the fast driving
region by increasing � to 1 [see Fig. 5(a)]. It can be clearly
seen that the asymptotic 〈σz〉(t ) with different λ differ a lot.
Interestingly, by intuition we may think that the amplitude
of oscillations with smaller λ would be larger since dissi-
pation is smaller. However, conversely, the situation is that
the amplitude of oscillations with the largest λ = 0.15 is
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FIG. 4. Dynamics of 〈σz〉(t ) under a slow linearly driving field
in the z direction for (a) varying system-bath strength with �μ = 2
and (b) varying chemical potential difference with λ = 0.1. We have
used B = 1, � = 1, and � = 0.1 for (a) and (b).

the largest while the amplitude of the line with the smallest
λ = 0.05 is the smallest. In other words, stronger dissipation
enhances the amplitude of oscillations of the system rather
than suppresses it. Such a phenomenon is a kind of quantum
stochastic resonance in which noises amplify and optimize the
response of a driven system [14–16].

Figure 5(b) shows fast driving simulations with λ = 0.1
and various �μ. We found the situation is, in another way
around, that the asymptotic 〈σz〉(t ) coincide with different
�μ.

Situations in Figs. 2 and 4 are similar. However, if � is
increased to 1 in Fig. 2 (not shown in this article) we could
not obtain similar results as in Fig. 5(b): the robustness against
λ breaks down but the asymptotic 〈σz〉(t ) with different �μ

would not coincide either.
At first glance we may conclude that the robustness against

different λ breaks down under fast driving. However, simula-
tions in Fig. 1 are also under fast driving but they still show
the robustness against λ. Right now we could only propose
a hypothesis that the robustness would appear at least under
slow driving.

The results above indicate that there exists a complex
interplay between driving, bath electronic structure, and
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FIG. 5. Dynamics of 〈σz〉(t ) under a fast linearly driving field in
the z direction for (a) varying system-bath coupling strength with
�μ = 2 and (b) varying chemical potential difference with λ = 0.1.
We have used B = 1, � = 1, and � = 1 for both (a) and (b).

bath-system coupling. Dissipation no longer simply acts
as a contributor to dephasing under time-dependent driv-
ing. Due to the interplay the robustness of asymptotic Flo-
quet states against λ is exhibited under certain drivings.
The interplay can lead to quantum stochastic resonance as
well.

VI. DISCUSSION AND CONCLUSIONS

We have numerically simulated the dynamics of the spin-
fermion model under various external monochromatic driving
fields via a numerically exact path integral method beyond
the Markovian limit. Under time-dependent driving, the spin-
fermion model exhibits rich phenomena which are not acces-
sible in stationary situations.

We have also employed a Floquet master equation [52]
with the nonadditive [64] system-bath interaction to check our
results. The Floquet master equation is in qualitative agree-
ment with the path integral method. However, the iterative
path integral approach is nonperturbative and can be applied to
the system with nonperiodic driving while the Floquet master
equation, on the other hand, is perturbative and restricted to
periodic driving. To further validate our approach, possible
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future work is to apply chain-mapping approaches [75–77]
which consider the evolution of both system and bath and are
also nonperturbative.

It can be seen in our simulations that under a monochro-
matic driving field coherent oscillation can be induced in
many circumstances (Figs. 2, 4, and 5). Such coherent os-
cillations are also reported in the spin-boson model under
a monochromatic linearly polarized driving field in the z
direction [23,31]. Such oscillations present typical asymptotic
Floquet states of a dissipative spin system under periodic
driving [23,31,72].

In addition, we also show that under a strong and fast
circularly polarized driving field in the x-y plane (Fig. 1)
the system exhibits behaviors similar to CDT [71] and DITO
[26,27,30]. However, as we pointed out in Sec. V A 1 there
is an essential difference between the behaviors in Fig. 1 and
CDT or DITO. In CDT or DITO, the driving field suppresses
rather than induces the tunneling between the two states. Here
〈σz〉(t ) finally stays in a positive value because driving and
dissipation reach a balanced state.

A linearly polarized driving field in the x direction can
induce coherent oscillations around a nonzero value (Fig. 3):
without dissipation 〈σz〉(t ) oscillates around a nonzero value
with wave packets, while the dissipation suppresses fast os-
cillations and 〈σz〉(t ) eventually coherently oscillates around
a nonzero value.

Based on the observations of simulations in Sec. V we
find an interesting phenomenon that under certain drivings
the asymptotic Floquet states of the system exhibit a kind of
robustness against different system-bath coupling strength λ.
It can be seen from Figs. 1(a), 2(a), 3(a), and 4(a) that in sim-
ulations with the same �μ but different λ asymptotic 〈σz〉(t )
almost coincide. In other words, the asymptotic 〈σz〉(t ) is
insensitive to λ. Meanwhile another dissipative parameter �μ

would greatly affect the asymptotic 〈σz〉(t ). This shows that,
although both system-bath coupling strength λ and chemical
potential difference �μ both contribute to dissipation, their
effects are distinct.

Such robustness breaks down when increasing � to 1 in
a linearly driving field in the z direction case (see Fig. 5).
The robustness also breaks down when increasing � to 1
in Fig. 2 (not shown in this article). However, we cannot
conclude directly that the robustness breaks down under fast
driving since simulations in Fig. 1 (circularly polarized field
in the x-y plane) are also under fast driving (� = 1) but the
robustness still holds. Thus, for this moment we could only
propose a hypothesis that the robustness holds at least under
slow driving.

In addition, in Fig. 5(a) quantum stochastic resonance is
demonstrated in which the amplitude of coherent oscillations
is enhanced, rather than suppressed, by stronger system-
bath coupling (stronger dissipation). Quantum stochastic res-
onance in the driven spin-fermion model needs further theo-
retical and numerical investigations and future study may be
devoted to this issue.

These phenomena indicate that there exists a complex
interplay between the driving, bath electronic structure, and
system-bath coupling. According to our simulations the ro-
bustness against different λ holds at least under slow driving,

but what plays the essential role may be ratios of all parame-
ters and the form of the driving field.

In conclusion, the spin-fermion model shows rich phe-
nomena under monochromatic driving. An interesting phe-
nomenon is that under certain drivings asymptotic Floquet
states of the system exhibit robustness against a range of
system-bath coupling strength λ: the asymptotic behaviors
of the system are insensitive to different λ while the chem-
ical potential difference of baths �μ greatly affects them.
Further simulations indicate that the robustness may be es-
sentially a result of the interplay between the driving, bath
electronic structure, and system-bath coupling and thus can
break down depending on the characteristics of the inter-
play. The interplay can also lead to quantum stochastic
resonance.

The property of robustness indicates that under certain
drivings the asymptotic behaviors of the system are dominated
by the electronic structure of baths regardless of system-bath
coupling strength. In other words, we may extract information
of the electronic structure of baths without knowing the exact
system-bath coupling strength. Such a property may be useful
in designing nanodetectors for the electronic structure of the
fermionic environment. Unlike the common sense detector,
the driving field is also a part of the detector and the time-
dependent parameters of the driving field are of essential
importance. Moreover, the observed result is also not merely a
static quantity but a time-dependent 〈σz〉(t ). In this sense, we
may say it is a detector in time.

Open questions remain whether this property commonly
exists in dissipative systems and if the form of system-bath
coupling changes or the system is no longer a simple TLS.
Since parameters of numerical simulations are limited by
practical computation sources and convergence conditions,
theoretical analyses may give a more general physical picture
about the interplay between driving and dissipation. Further
numerical investigation on the driven spin-boson model and
theoretical investigation on the driven spin-fermion model
may be our future works.
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APPENDIX A: CONVERGENCE AND ERROR ANALYSIS

There are three parameters relevant to accuracy and con-
vergence of simulations: bath size, the time step δt , and the
truncated memory time τc. In this article, we have set the bath
size as 80. With the identical fermionic bath, converged results
are reported for a bath size of 40 [47]. For a more complicated
system with both fermionic and bosonic baths, it has been
reported that bath size of 30 is sufficient to obtain converged
results [49].

Trotter error due to finite time step δt can be reduced
by a smaller δt and the result would become exact when
δt → 0. However, with fixed Ns smaller δt means smaller τc

and larger overall errors. Therefore, smaller δt needs larger Ns
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to ensure enough length of τc. As we discussed in Sec. II, the
computational memory increases exponentially with respect
to Ns and thus the value of Ns is also restricted according to
the available memory.

In principle one can extrapolate final results to the δt → 0
limit and the Trotter error is then eliminated [47,53]. However,
since we are dealing with the time-dependent driving case,
with different δt the driving field is sampled in different
time grids. This brings an extra error in extrapolation. To
extrapolate to the t → 0 case, we need to do simulations
with a range of δt with a fixed τc. When δt is large,
the time grid may miss important points, while small δt
needs large Ns which may be not acceptable in practical
computation. Therefore, in this article extrapolation is not
employed.

It is shown that [47,53] τc roughly corresponds to 1/�μ for
the spin-fermion model without driving. And δt = 0.25 and
Ns = 9 are enough to ensure convergence for small �μ= 0.6
and intermediate coupling strength λ = 0.2. For strong in-
teraction the time step δt needs to be small to guarantee
convergence and correspondingly a large Ns is needed. That
is, if δt = 0.1 and �μ ∼ 0.6 then an extensive computation
effort as Ns > 16 is required.

In this article we set δt = 0.25 and Ns = 10. Since for
strong interaction small δt is needed for small �μ (otherwise
numerical divergence may be encountered), for safety we keep
�μ � 1 and λ in the weak and intermediate interaction region
(λ = 0.05, 0.1, and 0.15) in this article.

Figure 6 shows a convergence test for increasing Ns with
parameters used in Sec. V A 2. Basically it is a reexamination
of Fig. 2 under circularly polarized fields in the y-z plane with
B = 1, � = 1, � = 0.1, λ = 0.1, and �μ = 2. In Fig. 6(a)
the dynamics of 〈σz〉(t ) is shown. Besides, the dynamics of
〈σx〉(t ) is also demonstrated in Fig. 6(b). It can be seen that
convergence is well reached at Ns = 10.

APPENDIX B: COMPARISON TO STEADY-STATE
SOLUTION OF MASTER EQUATION IN FLOQUET

STATES REPRESENTATION

For comparison we employ a Born-Markov master equa-
tion in Floquet states representation to study the case in
Sec. V A 1 where the driving field is circularly polarized in the
x-y plane. In this case, the Floquet states of the isolated driven
TLS can be analytically solved [6,70] such that the Floquet
states and corresponding quasienergies are

ϕ1(t ) =
√

ω − �

2ω

(
e−i�t

�
ω−�

)
, ε1 = 1

2
(ω − �)

(B1)

ϕ2(t ) =
√

ω + �

2ω

(
1

− �
ω+�

ei�t

)
, ε2 = −1

2
(ω − �),

where � = � − B and ω = √
�2 + �2.

Here following the derivation in Ref. [52] we give a
brief review about the Floquet master equation technique.
For conciseness, we denote the system reduced density ma-
trix ρS (t ) by �(t ). After a standard Born-Markov master
equation procedure [78], we obtain an integrodifferential
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FIG. 6. Convergence behavior with increasing Ns. It is a reexam-
ination of Fig. 2 and other parameters are the same as those in Fig. 2.

equation for �(t ),

∂�(t )

∂t
= −i[HS (t ), �(t )]

−
∫ t

0
[σz, σz(t − τ, t )�(t )]C(τ ) dτ

+
∫ t

0
[σz, �(t )σz(t − τ, t )]C∗(τ ) dτ, (B2)

where σz(t − τ, t ) stands for US (t, t − τ )σzU
†
S (t, t − τ ).

Unlike most of the existing works based on two-body
system-bath interaction, our system-bath coupling given by
Eq. (15) contains nonadditive interactions. Therefore, our bath
correlation function C(τ ) is

C(τ ) =
∑

αβ;α′β ′

∑
kq;k′q′

VαβVα′β ′ 〈c†
αk (τ )cβq(t )c†

α′k′cβ ′q′ 〉

= λ2

g2

∑
α �=β

∑
kq

nαk (1 − nβq )ei(εk−εq )τ , (B3)

where g is the density of states of each Fermi bath and nαk =
〈c†

αkcαk〉 = TrB[c†
αkcαk]. It is convenient to define the quantity
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C(E ) as

C(E ) =
∫ ∞

0
C(τ )eiEτ dτ

≈ λ2

g2

∑
α �=β

∑
kq

nαk (1 − nβq )δ(εk + E − εq), (B4)

where principal value contributions are neglected. Note that a
continuous, not discretized, energy spectrum is used here to
calculate C(E ).

Now we define the reduced density matrix of the system
in Floquet representation as �i j (t ) = 〈ϕi(t )|�(t )|ϕ j (t )〉. De-
noting 〈ϕi(t )|σz|ϕ j (t )〉 by σi j (t ) and expanding it in Fourier
series such that

σi j (t ) =
∑

m

σi j (m)eim�t (B5)

yields the master equation for �i j (t ),(
∂

∂t
+ iεi j

)
�i j (t ) = −

∑
kl

[Rik;kl (t )�l j (t ) − Rl j;ik (t )�kl (t )

− R∗
ki; jl (t )�kl (t ) + R∗

jl;lk (t )�ik (t )],

(B6)

where [noticing that σ ∗
i j (m) = σ ji(−m)]

Ri j;kl (t ) =
∑
mn

ei(m+n)�tσi j (m)σkl (n)

×
∫ t

0
e−i(εkl +n�)τC(τ ) dτ, (B7)

and

R∗
i j;kl (t ) =

∑
mn

ei(m+n)�tσ ji(m)σlk (n)

×
∫ t

0
e−i(εlk+n�)τC∗(τ ) dτ (B8)

with εi j = εi − ε j .
In the steady states where t → ∞, only terms satisfying

m + n = 0 survive due to the vanishing of oscillating factors
ei(m+n)�t . The master equation for steady states �i j then reads

iεi j�i j = −
∑

kl

[Rik;kl�l j − Rl j;ik�kl − R∗
kl; jl�kl + R∗

jl;lk�ik],

(B9)
where

Ri j;kl =
∑

m

σi j (m)σkl (−m)
∫ ∞

0
e−i(εkl −m�)τC(τ ) dτ,

(B10)
and

R∗
i j;kl =

∑
m

σ ji(m)σlk (−m)
∫ ∞

0
e−i(εlk−m�)τC∗(τ ) dτ.

(B11)
According to Eq. (B1) the matrix element σi j (t )’s are

σ11(t ) = −�

ω
, σ12(t ) = �

ω
ei�t

σ21(t ) = �

ω
e−i�t , σ22(t ) = �

ω
. (B12)
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FIG. 7. 〈σz〉(t ) in asymptotic Floquet states with different λ

calculated by different methods. Left: Results of the path integral
method. Right: Results of the Floquet master equation. Other param-
eters are the same as those in Fig. 1(a).

Therefore, only the following σi j (m)’s are nonzero:

σ11(0) = −�

ω
, σ12(1) = �

ω

σ21(−1) = �

ω
, σ22(0) = �

ω
. (B13)

Accordingly only six Ri j;kl ’s are nonzero: R11;11, R11;22, R22;11,
R22;22, R12;21, and R21;12. The asymptotic Floquet states can be
found by solving Eq. (B9). The comparisons between 〈σz〉(t )
in asymptotic Floquet states calculated by the path integral
method and by the Floquet master equation are shown in
Figs. 7 and 8.

Figure 7 shows 〈σz〉(t ) in asymptotic states with different
λ when �μ = 2. Most parameters are the same as those in
Fig. 1(a): B = 0.1, � = 1, and � = 1. The right-hand panel
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FIG. 8. 〈σz〉(t ) in asymptotic Floquet states with different �μ

calculated by different methods. Left: Results of the path integral
method. Right: Results of the Floquet master equation. Other param-
eters are the same as those in Fig. 1(b).
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shows the results calculated by the Floquet master equation. It
could be seen that although oscillation amplitudes of 〈σz〉(t )
are different with different λ, their mean positions are almost
the same. In other words, the Floquet master equation calcu-
lation reproduces the robustness against different λ. The left-
hand panel shows the results calculated by the path integral
method for comparison. It is shown that the results of the two
methods are in agreement except that the results of the Floquet
master equation are weakly oscillating.

Figure 8 shows 〈σz〉(t ) in asymptotic states with different
�μ when λ = 0.1. The mean positions of 〈σz〉(t ) calculated
by two methods are in agreement. Both methods show that the
results are significantly altered by different chemical potential
bias �μ.

The results in Figs. 7 and 8 show that the dynamics of
〈σz〉(t ) by the path integral method are in agreement with
those of the Floquet master equation. However, the Floquet
master equation gives weakly oscillating 〈σz〉(t ), whereas the
oscillation decays to zero when the path integral method is
used. Since some other results of the path integral method still
show small oscillations (for example, Fig. 3), the vanishing
of the oscillation is unlikely due to the numerical feature
of the path integral method. The origin of such oscillations
by the master equation is possibly the perturbative nature
of the master equation. However, since these two methods
adopt different approximation schemes and numerical error
mechanisms, further analysis is needed to account for their
numerical difference.
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