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The nuclear spin of a phosphorus atom in silicon has been used as a quantum bit in various quantum-
information experiments. It has been proposed that this nuclear-spin qubit can be efficiently controlled by an
ac electric field, when embedded in a two-electron dot-donor setup subject to intrinsic or artificial spin-orbit
interaction. Exposing the qubit to control electric fields in that setup exposes it to electric noise as well. In this
work, we describe the effect of electric noise mechanisms, such as phonons and 1/ f charge noise, and estimate
the corresponding decoherence timescales of the nuclear-spin qubit. We identify a promising parameter range
where the electrical single-qubit operations are at least an order of magnitude faster then the decoherence. In
this regime, decoherence is dominated by dephasing due to 1/ f charge noise. Our results facilitate the optimized
design of nanostructures to demonstrate electrically driven nuclear-spin resonance.
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I. INTRODUCTION

The nuclear spin of a phosphorus (P) atom in silicon (Si)
is a highly coherent two-level system [1–5] and has been
used as a qubit in several quantum-information experiments
[6–10]. Single-qubit control of such a nuclear spin have been
demonstrated using ac magnetic fields, in the spirit of nuclear
magnetic resonance [6]; initialization and readout can be
performed using the donor electron spin [6,11,12].

A recent work [13] proposes an engineered nanostruc-
ture, in which the P nuclear-spin qubit could be efficiently
controlled by an ac electric field, offering several practical
advantages [13–18], in comparison with the traditionally used
ac magnetic field. The proposed setup is a dot-donor structure
with two bound electrons [19–22], and the interaction between
the control electric field and the nuclear spin is mediated
by the interplay of hyperfine interaction and (intrinsic or
artificial) spin-orbit interaction. In short, the ac electric field
makes the spin of the electrons time dependent, and hyperfine
interaction translates the time-dependent electronic spin to a
time-dependent Knight field, felt by the nuclear spin due to the
hyperfine interaction. Hence, the system of the two electrons
functions as a transducer, converting the ac electric field to an
effective ac magnetic field for the nucleus.

The above mechanism is useful for electrical control, but
it also exposes the nuclear-spin qubit to decoherence due to
electric fluctuations. In this work, we describe two electrical
noise mechanisms, phonons and 1/ f charge noise, in the setup
described above. Our goal is to estimate the corresponding
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decoherence timescales of the nuclear-spin qubit. We identify
a promising parameter range where the electrical single-qubit
operations are at least an order of magnitude faster than the
decoherence, and the latter is dominated by dephasing due
to 1/ f charge noise. Our study complements earlier theory
works where the decoherence of electron-spin and flip-flop
qubits in the dot-donor system were described [14,23,24].

The rest of the paper is organized as follows. In Sec. II,
we introduce the model of the dot-donor setup, and describe
dephasing of the nuclear-spin qubit due to 1/ f charge noise,
which is the dominant information-loss mechanism in the
considered range of parameters. Even though having two
bound electrons in the dot-donor system has definite advan-
tages over having only a single electron, we also discuss the
latter case, for completeness and because of its conceptual
simplicity. In Sec. III, we analyze qubit relaxation processes
and leakage from the qubit subspace due to 1/ f charge noise.
In Sec. IV, we describe how phonons contribute to relaxation
and leakage. Estimates of timescales for the various setups
and mechanisms are collected in Table I. A few remarks are
made in Sec. V, and conclusions are drawn in Sec. VI.

II. NUCLEAR-SPIN DEPHASING DUE TO 1/ f
CHARGE NOISE

In this section, we introduce the P:Si nuclear-spin qubit and
the special dot-donor setup that enables its electrical control.
We discuss two different arrangements [13]: Single-electron
setup (1e): A single electron is confined in the dot-donor sys-
tem. This brings the advantage of conceptual simplicity, but
the quality of electric control suffers strongly from electrical
noise. Two-electron setup (2e): Two electrons are confined in
the system, allowing for efficient electrical control even in the
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TABLE I. Qubit types, working points, and information-loss timescales due to different mechanisms in the P:Si dot-donor system. �R,
relaxation rate; �L, leakage rate; �∗

2 , dephasing rate. Lower index “p” (“c”) refers to phonons (1/ f charge noise). For relaxation and leakage
processes, the initial state can be the qubit ground state |g〉 or the qubit excited state |e〉. Rates are evaluated for temperature T = 50 mK.

presence of realistic charge noise. Our main goal then is to
describe the dephasing of the nuclear-spin qubit due to 1/ f
charge noise in both setups, to calculate the dephasing time
T ∗

2 , and to identify a parameter range where the dephasing
time is longer than the timescale of single-qubit operations.
This is indeed possible for the 2e setup, as revealed by the
last line of Table I: the estimated dephasing rate for that
particular working point is �∗

2 ≡ 1/T ∗
2 = 2.97 kHz, whereas

the Rabi frequency characterizing the operation timescale is
fRabi ≈ 53 kHz.

A. Nuclear-spin qubit with a single donor electron

The setup is shown in Fig. 1. A P atom (red sphere) is
embedded in a Si crystal, at distance d from the interface
with an insulating barrier (e.g., SiO2). The barrier separates
the bulk Si from the gate electrode, the latter being used to
control the position of the donor electron. An ac component
of the voltage on the gate electrode can be used to electrically
drive the nuclear-spin qubit; note, however, that in this work
we consider only the non-driven case, when the gate voltage
is dc.

At low temperature and zero gate voltage, there is a single
electron bound to the donor nucleus. A finite dc gate voltage
creates an electric field E(r) in its vicinity. When this electric
field is pulling the electron toward the gate strongly enough,
then the electron is removed from the donor and sticks to the
interface with the barrier, where it is trapped in a quantum-
dot-like confinement potential created by the gate electrode.
Under certain conditions[14], there is a finite gate-voltage
value which ensures that half of the electronic wave function
is localized on the donor, and the other half is at the interface;

this situation is depicted in Fig. 1(a), where the gray cloud
corresponds to this “split” wave function resembling a bond-
ing state in a diatomic molecule. We refer to this setting as the
ionization point [14].

If the gate voltage is tuned to the vicinity of the ionization
point, then the “orbital” or “charge” degree of freedom of
the electron can be described using the two localized orbitals
|i〉 and |d〉; the former is the one localized at the interface,
the latter is the one localized on the donor. Then, the 2 × 2
effective Hamiltonian that describes the charge in the vicinity
of the ionization point can be written as [14]

Hch = U

2
σz + Vt

2
σx, (1)

where U is the on-site energy difference between the interface
and donor orbitals (controlled by the gate voltage), Vt is
the tunneling amplitude, and the Pauli matrices are defined
in the basis above, e.g., as σz = |i〉〈i| − |d〉〈d|. We denote
the eigenstates of Hch as |a〉 and |b〉, as a reference to the
anti-bonding (higher-energy) and the bonding (lower-energy)
state. Note that a low-energy excited orbital, i.e., the valley
pair of |i〉, is available at the interface [14,21,24], with an
excitation energy varying from a few tens to a few hundreds
of microelectronvolts. We disregard this state in our minimal
model, assuming that its excitation energy is much larger than
the tunnel coupling. For a microscopic model of the tunneling
amplitude and the role of the low-energy valley-pair excited
state, we refer to Ref. [14].

The two-dimensional minimal model for the electron
charge, introduced above, has to be extended with the
electronic-spin and nuclear-spin degrees of freedom, yielding

− −

−
−

− −
−
−
−

FIG. 1. Dot-donor setup and the energy spectra of the coupled electron-nuclear system. (a) Dot-donor setup. The dc gate voltage is used to
balance the donor electron (or electrons) on a bonding orbital (gray cloud) of the artificial molecule formed by the dot-donor system. Magnetic
field (denoted by black arrows) has a homogeneous part B along the z direction and an inhomogeneous Bx (y) along x. The inhomogeneous
magnetic field can be replaced by a sufficiently strong spin-orbit interaction. Red arrow represents the nuclear spin. (b) Energy spectrum of the
coupled electron-nuclear system in the single-electron setup. Homogeneous magnetic field: B = 35.7 mT, tunnelling amplitude: Vt/h = 1 GHz.
(c) Energy spectrum in the two-electron setup. Magnetic field: B = 906.5 mT, tunneling amplitude: Vt/h = 50 GHz. Zoom-ins in (b) and
(c) show the two basis states of the nuclear-spin qubit.
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an 8 × 8 Hamiltonian:

H = Hch + HB,e + HB,n + Hhf + Hμ,e + Hμ,n. (2)

This incorporates the effects of the homogeneous static mag-
netic field (HB), hyperfine interaction between the electronic
and nuclear spin (Hhf), and intrinsic or artificial spin-orbit
interaction (Hμ). In this work, we consider artificial spin-orbit
interaction and neglect the intrinsic mechanism (see Sec. V
for a discussion). More precisely, we assume the presence
of an inhomogeneous magnetic field along x, Bx = βy [see
Fig. 1(a)], where the origin of the y axis is chosen halfway
between the charge centers of the |i〉 and |d〉 orbitals. Then,
the Hamiltonian terms read

HB,e = hγeBSz, (3a)

HB,n = −hγnBIz, (3b)

Hhf = AndS · I, (3c)

Hμ,e = hγe
βd

2
σzSx, (3d)

Hμ,n = hγn
βd

2
Ix, (3e)

where A/h = 117 MHz is the hyperfine coupling strength,
while γe = 27.97 GHz/T and γn = 17.23 MHz/T are the
electron and nuclear gyromagnetic factors. Furthermore, B =
(0, 0, B) is the homogeneous magnetic field, the operator
nd = (1 − σz )/2 is the occupation number of the donor site,
S = (Sx, Sy, Sz ) is the spin of the donor electron, and I =
(Ix, Iy, Iz ) is the nuclear spin of the P atom. We will denote
the eigenstates of Sz (Iz) as |↑〉 and |↓〉 (|⇑〉 and |⇓〉).

Below, we will obtain analytical results for various phys-
ical quantities using perturbation theory. In those calcula-
tions, the unperturbed Hamiltonian is chosen as H0 = Hch +
HB,e + HB,n + Hhf,sec, whereas the perturbation is H1 = H −
H0. Above, Hhf,sec = AndSzIz is the “secular” or “diagonal”
part of the hyperfine interaction. We call the eigenstates of
H0 unperturbed states. These are product states formed from
the previously defined charge and spin states, and therefore
we denote them as, e.g., |b↓⇑〉0. As long as the perturbation
matrix elements between the unperturbed states are weak, the
eigenstates of H can be labeled with the same labels, such as
|b↓⇑〉.

For a particular parameter set studied in Ref. [13], the
energy eigenstates of H are shown as the function of the
on-site energy difference U in Fig. 1(b). The basis states of
the nuclear-spin qubit are those with the two lowest energies
εg and εe, highlighted by the zoom-in in Fig. 1(b), denoted as
|g〉1e ≡ |b↓⇑〉 and |e〉1e ≡ |b↓⇓〉.

B. Nuclear-spin dephasing due to 1/f charge noise

Our goal here is to focus on the nuclear-spin qubit and de-
scribe the information-loss mechanisms arising from its inter-
action with electrical fluctuations. Recent experiments [25,26]
on state-of-the-art silicon quantum devices have shown pro-
nounced significance of 1/ f charge noise. By comparing
various information-loss mechanisms, we will conclude that
the most relevant one is dephasing due to 1/ f charge noise.

To describe dephasing, in this section, we treat the 1/ f
charge noise as a time-dependent on-site energy difference

δU (t ) between the interface and the donor felt by the electron.
Correspondingly, the noise Hamiltonian reads

Hnoise = δU (t )

2
σz. (4)

We describe the dynamics of the nuclear-spin qubit under
the influence of this noise using the effective qubit Hamil-
tonian, obtained by projecting the total Hamiltonian Htot =
H + Hnoise on the qubit subspace:

Hq = PHtotP = h fL

2
σ ′

z + δU (t )

2
Lσ ′

z + δU (t )

2
T σ ′

x, (5)

where P = |e〉〈e| + |g〉〈g|, and the qubit Larmor frequency fL,
the longitudinal matrix element L, and the transverse matrix
element T are defined via

h fL = εe − εg, (6a)

L = 〈e|σz|e〉 − 〈g|σz|g〉
2

, (6b)

T = 〈e|σz|g〉. (6c)

Furthermore, the Pauli matrices are defined in the two-
dimensional qubit subspace, e.g., σ ′

z = |e〉〈e| − |g〉〈g|. In gen-
eral, both the longitudinal L and transverse T matrix elements
are finite. However, for describing dephasing, it is a good
approximation to disregard T in our setup, and keep only
L; this is what we do from now on. The validity of this
approximation is discussed in Sec. V.

We assume that the noise is classical, Gaussian [27,28], and
has the 1/ f power spectrum [25,29–31]

SδU ( f ) ≡
∫ ∞

−∞
dt ei2π f t δU (t )δU (0) = α1/ f kBT

2π f
, (7)

where the overline denotes the average over the noise real-
izations, α1/ f denotes the overall strength of the noise, kB is
the Boltzmann constant, and T is the temperature. From the
analysis of Ref. [14] (Ref. [26]), we estimate α1/ f ≈ 43.5 neV
(α1/ f ≈ 5.1 neV); see Appendix A. In what follows, we will
take the greater value for α1/ f to obtain quantitative results.

In the description of dephasing due to 1/ f noise, the exper-
imental integration time ti is often taken into account [27]. For
example, the decay of the qubit polarization in a Ramsey-type
experiment [6] is inferred by doing many measurement cycles:
there are many grid points along the waiting-time axis, and
for each waiting time, many measurement cycles are carried
out to obtain reliable statistics. The integration time ti is the
total time required to carry out all these measurement cycles;
in our estimates, we will assume that the order of magnitude
of this integration time is a second. The finite integration
time implies that the slow noise components, i.e., those that
can be regarded constant during the integration time, will not
be able to influence the experiment. This argument implies
that dephasing is insensitive to the low-frequency part of the
noise spectrum, that is, the part of the spectrum below the
integration frequency fi = 1/ti can be neglected.

With the above assumptions, dephasing can be character-
ized by an approximately Gaussian decay [27], i.e., the length
of the qubit polarization vector decays in time as ∼e−(�∗

2 t )2
,
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with the inhomogeneous dephasing rate given by

�∗
2 ≈ E1/ f

h

√
2π ln

E1/ f

h fi
, (8)

where we have introduced E1/ f = √
α1/ f kBT L. The energy

scale E1/ f can be expressed from the above numerical estimate
of the noise strength α1/ f ; assuming T = 50 mK, we find
E1/ f ≈ h × L × 0.1 GHz. Note that a necessary formal con-
dition for the approximations leading to Eq. (8) is E1/ f

h fi
� 10.

In practice, this condition always holds (as long as this is
the dominant dephasing mechanism), since it is translated by
Eq. (8) to �∗

2/ fi � 40, and the latter holds because in any
reasonable dephasing-time measurement, the integration time
is orders of magnitude larger than the dephasing time itself.

We evaluate the result Eq. (8) for a particular parameter set
(see Table I) using the nuclear-spin basis states obtained by the
numerical diagonalization of H of Eq. (2) and the subsequent
evaluation of L from Eq. (6b). Our numerical estimate for
this particular working point is �∗

2 = 45.2 MHz, a rate that
is much larger than the esimated electrically induced Rabi
frequency fRabi = 72 kHz at this working point. (For the Rabi
frequency estimate, see Ref. [13].) This is a strong indication
that the nuclear spin cannot be used as a qubit in this working
point. One way to make this a useful qubit is to reduce the
strength of 1/ f noise by at least 4 orders of magnitude. In
systems where the 1/ f noise strength is a linear function
of temperature [25,29], a gradual advancement in cooling
techniques can in principle suppress this noise. However, a
reduction by 4 orders of magnitude probably requires other,
more efficient noise mitigation techniques.

The reason for this strong dephasing is as follows. Re-
call that the working point studied here is the ionization
point. Here, a weak electrical perturbation can displace the
electron along the dot-donor (y) direction very effectively,
which implies a significant change in the electron density on
the donor, which in turn implies a significant change in the
Knight shift felt by the nuclear spin. This mechanism was
implicitly quantified already in Eq. (5) of Ref. [13]; see the
third component of bac therein.

C. Nuclear-spin qubit and its dephasing with two
donor electrons

In contrast to the 1e setup showing poor coherence prop-
erties, much improvement is anticipated for the 2e setup
[13]. Importantly, silicon-based dot-donor devices holding
an even number of electrons are available experimentally
[21,32]. Here we introduce the model Hamiltonian for this
system following Ref. [13], recall how electrical control of the
nuclear-spin qubit is envisioned, and determine the dephasing
rate of the nuclear-spin qubit due to 1/ f charge noise.

The two electrons in the dot-donor system can fill the
orbitals |i〉 and |d〉, both providing two sublevels due to the
electron spin. This implies that there are six two-electron
states to take into account in a minimal model. We use the
standard basis set |S20〉, |S〉, |T+〉, |T0〉, |T−〉, |S02〉. Here, the
first [last] element is the spin singlet state in which both
electrons are localized at the interface [donor], also referred
to as the (2,0) [(0,2)] charge configuration. Furthermore, the

remaining four states are the standard singlet and triplet states
in which one electron is localized at each site, also referred to
as the (1,1) charge configuration.

We assume that the on-site Coulomb repulsion UC between
the electrons (∼ meV) is much larger then the tunnel coupling
Vt (∼10–100 μeV). In the 2e setup, we consider the case when
the on-site energy difference U is set such that on-site energies
of the four (1,1) states and the single (0,2) state are close to
each other, and we restrict our attention to the dynamics in this
low-energy electronic subspace. That is, we neglect the high-
energy |S20〉 state, and model the system by a ten-dimensional
Hamiltonian, using the five electronic and the two nuclear-
spin basis states.

The Hamiltonian describing this arrangement is the two-
electron version of the single-electron Hamiltonian introduced
in Eq. (2). The terms which are different from the single-
electron case read

Hch = −Ũ |S02〉〈S02| + Vt√
2

(|S〉〈S02| + H.c.), (9a)

HB,e = hγeB(|T+〉〈T+| − |T−〉〈T−|), (9b)

Hμ,e = hγe
βd

2
√

2
(|T−〉〈S| − |T+〉〈S|) + H.c., (9c)

where Ũ = U − UC is the energy detuning measured from the
(1, 1)–(0, 2) tipping point U = UC . Each terms above acts as
the identity on the nuclear spin. Furthermore, the hyperfine
Hamiltonian takes the form

Hhf = A

2
(|T+〉〈T+| − |T−〉〈T−| − |S〉〈T0| − |T0〉〈S|)Iz

+ A

2
√

2
[(|S〉〈T+| + |T0〉〈T+| + |T−〉〈T0|

− |T−〉〈S|)I+ + H.c.]. (10)

Note that in Eq. (10), we have corrected a few typos that
appeared in Eq. (A2b) of Ref. [13].

Following the 1e case, it is useful to introduce the anti-
bonding and bonding singlet energy eigenstates of Hch, i.e.,
the molecular states formed by |S〉 and |S02〉, which we will
denote as |Sa〉 and |Sb〉, respectively.

We plot the ten energy eigenvalues of this model in
Fig. 1(c), as a function of the detuning parameter Ũ , for homo-
geneous magnetic field B = 906.5 mT, tunneling amplitude
Vt/h = 50 GHz, magnetic-field gradient β = 0.47 mT/nm,
and donor-interface distance d = 15 nm. Here again, we de-
fine the nuclear-spin qubit basis states as the lowest-energy
eigenstates: |e〉2e ≡ |Sb ⇓〉 and |g〉2e ≡ |Sb ⇑〉.

Before presenting our results for the dephasing time caused
by 1/ f charge noise, we recall that an important energy scale
for the nuclear-spin qubit is the energy gap between the elec-
tronic states |Sb〉 and |T−〉; see Fig. 1(c). We denote the value
of this gap at zero detuning Ũ = 0, as obtained from the
electronic Hamiltonian Hch + HB,e, by δ. It can be expressed
as

δ = Vt√
2

− hγeB. (11)

To ensure that the nuclear-spin qubit dynamics upon electrical
drive follows regular and fast Rabi oscillations [13], it is
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reasonable to set the value of δ much larger than the coupling
matrix element induced by the inhomogeneous magnetic field
between the electronic states |Sb〉 and |T−〉. This relation
is satisfied, e.g., with the choice δ = 200〈Sb|Hμ,e|T−〉. The
parameter values given above satisfy this relation, since they
correspond to 〈Sb|Hμ,e|T−〉 ≈ 50 MHz and δ ≈ 10 GHz.

In the 2e setup, the noise Hamiltonian, derived from its 1e
counterpart in Eq. (4), reads

Hnoise = −δU (t )|S02〉〈S02|. (12)

Projecting the total Hamiltonian onto the two-dimensional
subspace of the nuclear-spin qubit, as done for the 1e case
in Eq. (5), we obtain the right-hand side of Eq. (5) with the
following identifications:

h fL = εe − εg, (13a)

L = |〈g|S02〉|2 − |〈e|S02〉|2, (13b)

T = −2〈e|S02〉〈S02|g〉. (13c)

We obtain the dephasing rate �∗
2 from Eq. (8), after

evaluating the longitudinal matrix element L in Eq. (13b)
with the numerically obtained energy eigenstates |g〉 and |e〉.
For the above parameter values, we find �∗

2 ≈ 2.97 kHz, see
Table I. Note that this rate is significantly smaller than the
Rabi frequency in Table I (estimated in Ref. [13]), suggesting
that the nuclear spin can be used as a functional qubit in this
setting.

Now, we argue that this dephasing is a consequence of
the hyperfine interaction, and not influenced significantly by
the inhomogeneous magnetic field. This is revealed by a
perturbative approach that yields the analytical result for the
longitudinal coupling strength at the (1, 1) − (0, 2) tipping
point (Ũ = 0)

L = A2

32δ2
+ 2A2

32(2
Z + 2δ)δ
− 2A2

32(2
Z + δ)(2
Z + 2δ)

− A2

32(2
Z + δ)2
, (14)

with 
Z = hγeB and correspondingly, �∗
2 ≈ 2.77 kHz in

the working point defined above. The result (14) depends
on the hyperfine coupling strength A, but does not depend on
the magnetic-field gradient β.

To obtain Eq. (14), we take H0 = Hch + HB,e + HB,n as
the unperturbed Hamiltonian, take H1 = H − H0 − Hμ,n as
the perturbation, and neglect the small term Hμ,n for sim-
plicity. Then, we apply time-independent third-order pertur-
bation theory to calculate the perturbation-induced change in
the energy splitting of the nuclear-spin qubit states |Sb ⇓〉
and |Sb ⇑〉. According to Eq. (5), we identify this change
with δU L, express L, and use hγnB � hγeB,Vt , δ to obtain
Eq. (14).

The perturbative result Eq. (14) for dephasing mechanism
is visualized in the level diagram shown in Fig. 2. The blue
horizontal lines depict the energy levels of the unperturbed
Hamiltonian. Arrows represent relevant perturbation matrix
elements that contribute to dephasing. In the third-order for-
mula Eq. (14), each of the four terms can be associated to

|T− 0

|T− 0

|T+ 0

|Sb 0

|Sb 0

|T0 0

|T0 0

|Sa 0

|Sa 0

|T+ 0

Hnoise
Hhf

FIG. 2. Level diagram of the hyperfine states in the two-electron
setup. Horizontal lines indicate the eigenstates of the unperturbed
Hamiltonian Hch + HB,e + HB,n. Arrows indicate the perturbation
matrix elements relevant for the dephasing in the specific working
point (see text). Perturbation matrix elements that are not relevant for
this dephasing mechanism are not shown. Each third-order contribu-
tion to the perturbative qubit-frequency shift described by Eqs. (5)
and (14) corresponds to a three-step loop in this level diagram,
containing two hyperfine matrix elements (dotted black arrow) and
one noise term (solid green arrow).

a three-step loop drawn by the perturbation matrix elements.
For example, the loop corresponding to the first term is
|Sb ⇓〉0 → |Sb ⇓〉0 → |T− ⇑〉0 → |Sb ⇓〉.

To extend the perturbative formula Eq. (14) of L for
the case of non-zero Ũ , we use the exact eigenvalues and
eigenstates of Eq. (9a), yielding

L = 2V 2
t

Ũ 2 + 2V 2
t

[
A2

32δ′2 + 2A2

32(2
Z + 2δ′)δ′

− 2A2

32(2
Z + δ′)(2
Z + 2δ′)
− A2

32(2
Z + δ′)2

]
,

(15)

where δ′ = Ũ
2 +

√
Ũ 2+2V 2

t

2 − 
Z . In comparison to Eq. (14),
the energy denominators are different in Eq. (15). The pref-
actor in Eq. (15) depends on the squared detuning parameter
Ũ 2, i.e., this prefactor is suppressed if we move away from the
working point from Ũ = 0 either to the positive or negative
direction. For the negative [positive] direction, this dephasing
suppression is dominated by the feature that the electronic
state acquires a growing weight in the (1,1) [(0,2)] charge
configuration, and hence gets less affected by noise (hyperfine
interaction).

In Fig. 3(a), we plot the numerically calculated dephasing
rate �∗

2 as a function of the energy detuning Ũ and the
magnetic field B. In the figure, the above working point is
denoted by an “x.” Note that in the figure, the tunnel matrix
element Vt is changed together with the magnetic field B such
that δ is kept fixed; see Eq. (11). The most relevant features in
Fig. 3(a) are as follows.

(i) For B � 0.4 T, the dephasing rate decreases as the
energy detuning Ũ increases, and the dephasing rate is hardly
dependent on the magnetic field. (ii) These trends are con-
firmed by the perturbative result Eq. (15). For example, a
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FIG. 3. Dephasing rate induced by 1/ f charge noise in the two-electron setup. (a) Numerically calculated dephasing rate as a function
of the (1,1)–(0,2) energy detuning and the magnetic field. Note that the tunnel matrix element Vt is tied to the magnetic field B to ensure a
constant S-T− energy gap at Ũ = 0, via Vt = √

2(δ + hγeB) [cf. Eq. (11)]. The white cross denotes the working point B = 906.5 mT, Ũ = 0
and δ/h = 10 GHz. (b) Exact numerical result (solid) is compared to the perturbative result of Eq. (15) at the working-point magnetic field
B = 906.5 mT. Further parameters: α1/ f = 43.5 neV, T = 50 mK.

comparison of the numerical and perturbative result, along
a horizontal cut of Fig. 3(a) containing the working point
“x,” is shown in Fig. 3(b). Using Eq. (15), we can explain
that the decreasing trend of the dephasing rate with increasing
energy detuning Ũ is mostly due to the increasing energy gap
between the electronic singlet ground state and the electronic
excited states, cf. Fig. 1(c). (iii) For magnetic fields much
weaker than the working point value, the dephasing rate does
depend significantly on B. This regime is beyond the validity
of the perturbative result Eq. (15) due the smallness of the
magnetic field.

In conclusion, we have evaluated the inhomogeneous de-
phasing rate of the nuclear-spin qubit for a P:Si 1e and
2e dot-donor setup subject to (artificial) spin-orbit coupling,
and identified a parameter range for the 2e setup where the
dephasing time is much longer than the time required for
single-qubit operations.

III. RELAXATION AND LEAKAGE DUE TO 1/F
CHARGE NOISE

Besides dephasing discussed above, the presence of 1/ f
charge noise also opens up channels for information loss.
Here, we focus on the 2e setup, and describe two types of
inelastic processes caused by 1/ f charge noise; see Fig. 4.
First, we consider inelastic processes between the two qubit
basis states, denoted as �e

R ≡ �ge and �
g
R ≡ �eg in Fig. 4,

to be referred to as relaxation. Second, we consider inelastic
processes that bring the system from one of the qubit basis
states to a state outside the qubit’s Hilbert space, to be referred
to as leakage, shown as � f g and � f e in Fig. 4. Our conclusion
is that the timescales of these processes in the vicinity of the
working point are much longer than the dephasing time 1/�∗

2
derived in the previous section, hence they hardly affect the
functionality of the nuclear-spin qubit.

We use the qubit Hamiltonian Hq of Eq. (5) to describe the
relaxation processes, with the adjustment that δU is treated
now as an operator representing the environment producing
the 1/ f noise. Recall that the longitudinal and transverse
coupling matrix elements L and T are evaluated for the 1e
[2e] setup via Eq. (6) [Eq. (13)]. According to Bloch-Redfield

theory [27], the downhill and uphill relaxation rates are given
by

�e
R = 1

2h̄2 T
2 1 + nBE(h fL)

1 + 2nBE(h fL)
SδU ( fL), (16a)

�
g
R = 1

2h̄2 T
2 nBE(h fL)

1 + 2nBE(h fL)
SδU ( fL). (16b)

Here, nBE(ε) = (e−ε/kBT − 1)−1 is the temperature-
dependent Bose-Einstein function, and SδU ( f ) is the
symmetrized noise power spectrum of the operator δU ,
which is given by the same formula Eq. (7) as in the classical
case.

For the 2e setup, the numerical values of the 1/ f -induced
relaxation rates of the nuclear-spin qubit are around 1 Hz; see
Table I. This implies that relaxation due to 1/ f noise is much
less relevant than dephasing. Note that the uphill and downhill
relaxation rates are almost the same, in line with the fact that
the thermal frequency scale kBT/h ≈ 1.04 GHz well exceeds
the qubit splitting fL ≈ 14.5 MHz in this point.

|f

|e

|g
Γe

RΓg
R

ΓfgΓfe

FIG. 4. Inelastic transitions due to 1/ f charge noise and
phonons. Downhill and uphill processes within the qubit subspace
contribute to qubit relaxation. Transitions from one of the qubit basis
states |g〉 or |e〉 to a state outside of the qubit subspace cause leakage.
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|T− 0

|T− 0

|T+ 0

|Sb 0

|Sb 0

|T0 0

|T0 0

|Sa 0

|Sa 0

|T+ 0

Hnoise

Hhf

Hµ,e

FIG. 5. Level diagram of the hyperfine states in the two-electron
setup. Horizontal lines indicate the eigenstates of the unperturbed
Hamiltonian Hch + HB,e + HB,n. Arrows indicate the perturbation
matrix elements involved in relaxation and leakage (see text). Relax-
ation paths contain one hyperfine, one inhomogeneous field and one
noise matrix element, whereas the paths dominating leakage consist
of one noise matrix element within the |Sb〉 manifold and one matrix
element connecting the |Sb〉 manifold to the |T−〉 manifold.

The transverse matrix element can be obtained from per-
turbation theory similarly as in the case of dephasing.

One possible way for the derivation is to apply quasi-
quasidegenerate perturbation theory [33] to obtain an effective
Hamiltonian for the nuclear-spin qubit subspace, identify
the off-diagonal element of that Hamiltonian with δU T /2
according to Eq. (5), and express T from that equation. From
this approach, for the tipping point Ũ = 0, we obtain

T = A(hγeβd )

16

[
1

δ2
+ 1

(2
Z + δ)2
+ 2

(2
Z + 2δ)δ

+ 2

(2
Z + 2δ)(2
Z + δ)

]
. (17)

The value obtained from this formula is T ≈ 1.96 × 10−5, in
good agreement with the numerical result T = 1.98 × 10−5.

The perturbative contributions can again be visualized by
drawing the perturbation matrix elements as steps between the
energy levels of the unperturbed Hamiltonian; this is shown
in Fig. 5. The four terms in the perturbative formula Eq. (17)
correspond to six three-step paths in Fig. 5 connecting the two
qubit basis states. For example, the first term of Eq. (17) corre-
sponds to the path |Sb ⇓〉0 → |Sb ⇓〉0 → |T− ⇑〉0 → |Sb ⇑〉0.
As seen in Fig. 5, all three-step paths connecting the two qubit
basis states contain one hyperfine matrix element and one
inhomogeneous magnetic field matrix element (besides one
noise matrix element), hence we conclude that relaxation in
this case is dominated by the interplay of hyperfine interaction
and the inhomogeneous magnetic field.

Leakage rates, i.e., noise-induced transition rates from the
nuclear-spin qubit basis states toward higher-lying eigenstates
(see Fig. 4), can also be described by the Bloch-Redfield
result. For example, the leakage from the qubit ground state
|g〉 has the rate

�
g
L =

∑
f �=g,e

� f g = 1

2h̄2

∑
f �=g,e

T 2
f g

nBE(ε f g)

1 + 2nBE(ε f g)
SδU (ε f g/h).

(18)

Here, the sum goes for the possible higher-lying final states
| f 〉, the matrix element is T f g = 〈 f |σz|g〉 for the 1e case and
T f g = −2〈 f |S02〉〈S02|g〉 for the 2e case, and ε f g is the distance
between the energies of | f 〉 and |g〉. The leakage rate �e

L for
the qubit excited state |e〉 is expressed analogously to Eq. (18).

As seen in Table I, the leakage rates for the 2e setup in the
working point are of the order of 0.01 Hz, slower and hence
less significant than the previously considered processes. At
this working point, the dominant leakage process from |g〉 is
the one toward |T− ⇑〉. Approximating the leakage-rate sum
in Eq. (18) with this single contribution, expressing T f g using
perturbation theory, and using the relation δ � hγeB, we find

�
g
L ≈ 1

2h̄2

(hγeβd )2

8δ2

1

e(δ/kBT ) + 1

α1/ f kBT

δ
. (19)

According to this formula, leakage is dominated by the
magnetic-field gradient β. Similar considerations lead to �e

L ≈
�

g
L[1 + ( A

hγeβd )2], i.e., that the leakage from the excited state
has an additional contribution from the hyperfine interaction
A. These results are in line with the level diagram shown in
Fig. 5, where the qubit ground state is hybridized with a single
T− sublevel, whereas the qubit excited state is hybridized with
both T− sublevels.

IV. RELAXATION, LEAKAGE, AND DEPHASING DUE
TO PHONONS

Besides charge noise, interaction with phonons is also a
source of decoherence. Here we consider the deformation-
potential electron-phonon interaction mechanism [34,35].
This mechanism is enhanced in a silicon dot-donor electron
system (compared to, e.g., a double-dot or double-donor
setup) due to the different valley compositions of the elec-
tronic states in the dot and the donor [23]. For the energy
distances considered here, only long-wavelength acoustic
phonons have to be considered.

We describe the phonon-mediated inelastic transitions us-
ing Bloch-Redfield theory, similarly to the case of charge-
noise-mediated transitions in Sec. III. As a natural conse-
quence, the phonon-induced transition rates are related to the
charge-noise-induced transitions rates by the relative weight
of the noise spectral densities at the transition frequency. For
example, the phonon-mediated downhill relaxation rate is

�e
R,p = Sph( fL )

SδU ( fL )
�e

R,c, (20)

and analogous relations hold for the phonon-mediated uphill
relaxation rate �

g
R,p and the leakage rates �e

L,p and �
g
L,p, with

the caveat that fL in Eq. (20) has to be replaced with the
corresponding transition frequencies.

To obtain the noise spectral density Sph( fL ), representing
the phonons, one starts from the single-electron electron-
phonon interaction Hamiltonian [23] for the dot-donor sys-
tem:

Heph = Ûph

2
σz, (21)

where Ûph is expressed via phonon creation and annihilation
operators in Eqs. (12) and (13) of Ref. [23]. The symmetrized
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phonon noise density is then expressed as [cf. Eq. (7)]

Sph( f ) = 1

2

∫ ∞

−∞
dtei2π f t {Ûph(t ), Ûph(0)}, (22)

where the time-dependent operators are defined in the inter-
action picture, the curly brackets {., .} denote the anticom-
mutator, and the overline denotes thermal average for the
equilibrium phonon bath [36].

Equation (22) is evaluated as

Sph( f ) = [1 + 2nBE(h f )]S(0)
ph ( f ), (23a)

S(0)
ph ( f ) = �2h̄

30πρ

(
2

3v5
L

+ 1

v5
T

)
(2π f )3. (23b)

Here, the material-specific parameters for silicon are the
uniaxial deformation potential parameter �u = 8.77 eV, the
mass density ρ = 2330 kg/m3, and the longitudinal and trans-
verse sound velocities vL = 9330 m/s and vT = 5420 m/s.

The Hamiltonian of the electron-phonon interaction
Eq. (21) can be treated analogously to charge noise Eq. (4).
Even though the longitudinal part of the interaction( ∝ Lσ ′

z)
does have a dephasing effect, as it is shown in Appendix B the
dephasing of the qubit is not complete and in fact negligible.

The results obtained for the 1/ f charge noise model can
therefore be converted to the case of phonon-mediated relax-
ation and leakage using Eqs. (23) and (20). As seen in Table I,
the phonon-induced relaxation rates are approximately 10
orders of magnitude smaller then the relaxation rates due to
1/ f charge noise. In contrast, the leakage rates corresponding
to processes induced by phonons and 1/ f charge noise are
very similar. We emphasize that all of these leakage and
relaxation rates are smaller than the charge noise induced
dephasing rate.

V. DISCUSSION

A. Artifical versus intrinsic spin-orbit interaction

Reference [23] suggests that electrical control of the
nuclear-spin qubit should be possible either by relying on
an inhomogeneous magnetic field (artificial spin-orbit inter-
action), or by relying on intrinsic spin-orbit interaction. In a
simple phenomenological picture, spin-orbit interaction can
influence the dot-donor system in two ways; both effects
have been observed in silicon double quantum dots [37–40].
On the one hand, it renormalizes the g-factor (with few
percents), potentially making it anisotropic and different at
the donor and in the dot. On the other hand, it induces a
spin-dependent interdot tunneling matrix element (few tens
of MHz). The consequences of the anisotropic and different
g-factors are similar to those of the inhomogeneous magnetic
field. The consequences of the spin-dependent tunneling term
are expected to be qualitatively different. For example, while
the inhomogeneous magnetic field provides matrix elements
within the (1,1) charge configuration, e.g., between |S〉 and
|T−〉 [see Eq. (9c)], spin-dependent tunneling provides a ma-
trix element connecting (1,1) states with |S02〉. Nevertheless,
in the vicinity of the (1,1)–(0,2) tipping point, where the
singlet electronic ground state |Sg〉 is a balanced superposition
of (1,1) and (0,2) charge states, we expect that the dynamics

induced by spin-orbit interaction is similar to that induced by
an inhomogeneous magnetic field.

B. Neglecting the transverse noise term in the dephasing model

We calculated the nuclear-spin qubit dephasing time due
to 1/ f charge noise in Sec. II. For the dephasing calcu-
lation, we disregarded the transverse noise term with the
prefactor T . This simplification is justified as long as the
noisy component of the Larmor frequency is dominated by
the longitudinal component proportional to L; formally, that
condition reads T 2δU/(2h fLL) � 1. For a rough estimate
of the importance of T in dephasing, we take δU = 1 μeV,
yielding T 2δU/(2h fLL) ≈ 6.70 × 10−4 for the working point
of the 2e setup shown in Fig. 3(a) and thereby suggesting that
our result is accurate in the vicinity of the working point. Note,
however that for low magnetic field, far from the working
point, the longitudinal matrix element L vanishes, see the
horizontal white stripe for B ≈ 0.2 T in Fig. 3(a). In this
region, the description of dephasing should be refined [41].

C. Leakage due to uphill charge transitions

For the 2e setup, we have described information loss
at a well-defined working point specified in, e.g., Table I.
Departing from this example working point might provide
optimized results for certain target quantities, e.g., the qubit
quality factor fRabi/�

∗
2 . We leave such optimization for future

work, hopefully aided by input from experiments. Neverthe-
less, we do emphasize one important feature that arises upon
decreasing the tunnel coupling Vt with respect to the working
point discussed above. Namely, spin-conserving uphill charge
transitions from |Sb〉 to |Sa〉 can destabilize the qubit if the
energy gap between the two electronic states is too narrow.
The corresponding leakage rate can be calculated, e.g., from
Eq. (16b) by using T ≈ 1 and fL �→ √

2Vt/h. For example, at
a relatively low tunnel coupling value Vt = h × 1.8 GHz, this
leakage rate is ≈1 MHz, and is dominantly induced by 1/ f
charge noise.

D. Control-induced decoherence

Information loss mechanisms affecting the qubit during
the driving process are beyond the scope of the recent paper.
Although the two-electron setup shows strong charge noise
resilience even upon resonant driving [13], phonon-induced
decoherence in that driven situation remains a subject of
future study.

VI. CONCLUSIONS

In conclusion, we consider information-loss mechanisms
for an electrically controllable phosphorus nuclear-spin qubit
in a silicon nanostructure. We identify a parameter set (work-
ing point) where the information-loss timescales are longer
than the estimated control time, suggesting that this setup is
suited to demonstrate coherent electrical control of a nuclear
spin. In this working point, the dominant decoherence mecha-
nism is dephasing due to 1/ f charge noise. Our results are ex-
pected to facilitate the optimized design of nanostructures for
quantum information experiments with nuclear-spin qubits.
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APPENDIX A: ESTIMATE OF THE STRENGTH OF THE
1/ f CHARGE NOISE

In this Appendix, we provide the details on how we esti-
mated the strength α1/ f of the 1/ f charge noise, as defined in
Eq. (7).

Our first estimate is based on Ref. [14], which provides
a realistic characterization of the power spectrum of 1/ f
electric-field fluctuation in silicon-based nanostructures sim-
ilar to the one considered in the present work. Namely, at
T = 100 mK, they use the electric-field noise spectrum

SE ( f ) = βE

2π f
, (A1)

with βE = 1
6 104 V2/m2. This is converted to on-site energy

fluctuation via SδU = e2d2SE , where d is the distance be-
tween the charge center of the interface-bound charge state
|i〉 and the charge center of the donor-bound charge state |d〉.
Using this result for SδU , Eq. (7) as a definition for α1/ f , and
the parameter values d = 15 nm and T = 100 mK, we can
express α1/ f ≈ 43.5 neV, as quoted in the main text below
Eq. (7).

Our second estimate is based on the recent electron spin
qubit experiment reported in Ref. [26]. Their Fig. 4(b) shows
the spectral density Sδ fL of the fluctuations δ fL of the spin-
qubit Larmor frequency fL. From that log-log plot, we can
read off that the data is well described by the relation y ≈
6.5 − x, where y = log10 Sδ fL , and x = log10 f . This is directly
converted to

Sδ fL ( f ) ≈ 3 × 106s−2

f
≈ 2 × 107s−2

2π f
≡ βδ fL

2π f
. (A2)

Reference [26] uses a simple model that establishes a linear
relation between the qubit Larmor frequency fluctuation δ fL

and the quantum-dot on-site energy fluctuation δU , δU =
γ δ fL. This implies that the on-site energy fluctuation is char-
acterized by the spectral density

SδU ( f ) = γ 2Sδ fL ( f ), (A3)

which, together with our Eqs. (7) and (A2), yields

α1/ f = γ 2βδ fL

kBT
. (A4)

To obtain an estimate for our target quantity α1/ f , we need
to express γ first. To this end, we use the model of Ref.
[26], which is based on the physical picture that the 1/ f

noise is caused by fluctuating charge traps, located at a typical
distance dct from the center of the quantum dot. Within their
model, the scaling factor γ is given by

γ = hmω2
0dct

gμBblong
. (A5)

Here, m ≈ 0.2me is the relevant conduction-band effective
mass in silicon, h̄ω0 is the orbital level spacing of the quantum
dot, g ≈ 2 is the effective electronic g-factor, and blong is the
micromagnet-induced gradient of the longitudinal magnetic
field. Using Eqs. (A2) and (A5) in Eq. (A4), and insert-
ing the parameter values h̄ω0 = 1 meV, blong = 0.2 mT/nm,
dct = 100 nm, and T = 100 mK, we obtain the value α1/ f ≈
5.1 neV, as quoted in the main text below Eq. (7).

APPENDIX B: PHONON-INDUCED DEPHASING

As it was stated in the main text the dephasing effect
induced by phonons is negligible for the nuclear-spin qubit in
the two-electron setup. The necessary references and deriva-
tion are provided in this Appendix.

As a framework for the calculation we will follow the work
of Ref. [42]. In this work the authors assume longitudinal
coupling between the qubit states and the environment and
show that the off-diagonal element of the reduced density
matrix of the qubit (also referred to as coherence) decays
as exp [−�(t )]. This exponent can be written as an integral
over the phonon wave numbers, and contains the coupling
strengths between the qubit and the phonons.

To account for the contribution of phonons to dephasing
the Hamiltonian Eq. (21) is projected onto the qubit subspace.
Then, we neglect the transverse coupling of the qubit to the
phonons, on the same token as for the case of 1/ f noise
in Sec. II C. As the next step, we identify the qubit-phonon
coupling strengths (called gk in Ref. [42]), and substitute
them into Eq. (4.15) of Ref. [42]. This procedure yields the
following formula for the exponent:

�(t ) = |L|2
90π2

�2
u

ρ h̄

(
2

v5
L

+ 3

v5
T

)

×
∫ ωD

0
dω ω coth

(
h̄ω

2kBT

)
[1 − cos (ωt )], (B1)

where ωD = 13.6 THz is the Debye frequency of silicon in-
troduced as the upper cutoff for the integral.

In three dimensions �(t ) saturates for t � ω−1
D , preventing

complete dephasing [42]. For silicon the value of saturation is

�(t → ∞) ≈ 22.2|L|2, (B2)

where L ∼ 10−4 − 10−6 for T = 50 mK. Hence, we conclude
that this mechanism is extremely inefficient in causing any
decoherence of the nuclear-spin qubit.
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