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Optical conductivity in graphene: Hydrodynamic regime
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A recent measurement of the optical conductivity in graphene [Gallagher, Yang, Lyu, Tian, Kou, Zhang,
Watanabe, Taniguchi, and Wang, Science 364, 158 (2019)] offers a possibility of experimental determination of
microscopic time scales describing scattering processes in the electronic fluid. In this paper, I report a theoretical
calculation of the optical conductivity in graphene at arbitrary doping levels, within the whole “hydrodynamic”
temperature range, and for arbitrary nonquantizing magnetic fields. The obtained results are in good agreement
with the available experimental data.

DOI: 10.1103/PhysRevB.100.115434

Recent experiments [1–8] indicate that charge carriers in
graphene at nearly room temperatures may exhibit a hydrody-
namic flow [9,10]. Traditional linear-response transport mea-
surements uncovered such remarkable features as the strong
violation of the Wiedemann-Franz law [3] and superballistic
transport [5]. In this type of experiments all information about
the flow of electrons is extracted from a small number of
measured resistances [2,4,5,8] and Johnson noise power [3].
Additional information about the flow can be obtained by cur-
rent density imaging [7,11,12] or terahertz spectroscopy [1].
The latter experiment yields the optical conductivity which
can be used to extract information about the electron-electron
and electron-impurity scattering rates in graphene [1].

Hydrodynamic theory of electronic transport [9,10] can be
formulated similarly to the usual hydrodynamics [13] with
the important caveat: the total momentum of the electronic
system in a solid is not, strictly speaking, a conserved quantity.
In general, this means that one can only hope to observe
electronic hydrodynamics in an intermediate temperature win-
dow where the electron-electron interaction is the dominant
scattering mechanism in the problem [9]. In the specific case
of graphene, there is an additional circumstance due to the
linearity of the excitation spectrum: the momentum density
is proportional to the energy current [9,10,14–16] (rather than
the “mass” current as in the usual hydrodynamics [13]). Hence
it is the electrical (rather than the thermal) conductivity that
appears in the hydrodynamic theory of electronic transport in
graphene as a dissipative coefficient [14–16].

In traditional hydrodynamics, dissipative processes are
described by three coefficients [13]: the shear and bulk vis-
cosities and the thermal conductivity. In graphene, the bulk
viscosity vanishes [9,10,15], leaving the shear viscosity as
the only dissipative coefficient in the generalized Navier-
Stokes equation [14–16]. Under the assumption of approxi-
mate conservation of the particle number in each of the two
bands in graphene [17], electronic hydrodynamics describes
two macroscopic quasiparticle currents (the electric and “im-
balance” currents [14–17]). Dissipative corrections to these
currents due to electron-electron interaction are described
by a 2 × 2 matrix of coefficients [10]. In addition, disorder

scattering not only contributes to these coefficients, but also
determines a correction to the energy current [15] yielding the
thermal conductivity [17]. As a result, the electric and energy
currents are relaxed by two different scattering mechanisms
leading to the violation of the Wiedemann-Franz law [3]. The
effect is especially pronounced at charge neutrality [3] where
the two currents are completely decoupled.

Assuming the applicability of the kinetic approach, one can
derive the dissipative coefficients appearing in hydrodynamics
starting with the Boltzmann equation and the local equi-
librium distribution function [9,10,14–16,18]. The resulting
viscosities and conductivities are temperature- and material-
dependent constants [18]. In contrast, calculations based
on the Kubo formula yield frequency-dependent viscosities
[19–21] and conductivities [19,22]. The frequency-dependent
(optical) conductivity is experimentally measurable [22] even
in the hydrodynamic regime [1].

In this paper I extend the kinetic derivation of the dissipa-
tive corrections to the hydrodynamic quantities in graphene al-
lowing for the low-frequency optical conductivity (in general,
hydrodynamics is valid for frequencies which are much lower
than the typical scattering rate associated with equilibration
processes, ωτee � 1). I also use the kinetic theory to extend
the hydrodynamiclike macroscopic description [23] to higher
frequencies where the results should be compared to those in
the high-frequency collisionless regime [21,24–29].

Previously, optical conductivity in the hydrodynamic
regime in graphene was addressed in Refs. [30–34]. A large
part of that research was focused on the two limiting cases,
charge neutrality and the degenerate regime. In the absence
of the magnetic field, the results for these two limits can be
combined in an interpolation formula [34]

σ (ω; q = 0) = A1

−iω + τ−1
dis

+ A2

−iω + τ−1
ee + τ−1

dis

, (1)

where Ai are temperature- and density-dependent constants,
τdis is the elastic mean free time, and τee is the typical time
scale associated with the electron-electron interaction. Here
I report the results of a rigorous calculation of σ (ω) for arbi-
trary carrier densities, temperatures (within the hydrodynamic
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range), and classical (nonquantizing) magnetic fields beyond
the limiting behavior of Eq. (1), as well as of the microscopic
times scales determining σ (ω).

I. UNCONVENTIONAL HYDRODYNAMICS IN GRAPHENE

Unconventional hydrodynamics in graphene was derived
in Refs. [14,15] on the basis of the kinetic theory. The need
for the derivation was dictated by the lack of symmetry in
the problem—the electronic system in graphene is neither
Galilean nor Lorentz invariant. The former follows from the
linearity of the excitation spectrum, while the latter is related
to the classical, three-dimensional nature of the Coulomb
interaction in graphene.

As in any other solid, electrons in graphene may scatter
on lattice vibrations (phonons) and imperfections (typically
referred to as “disorder”) and hence loose momentum. In this
case, one can speak of hydrodynamics only within a limited
parameter regime (e.g., at intermediate temperatures) where
the electron-electron interaction is the dominant scattering
mechanism in the problem. This “hydrodynamic” regime can
be defined by the inequality

τee � τdis, τe-ph, τR, etc., (2)

where τe-ph is the typical scale describing the electron-phonon
interaction, τR is the quasiparticle “recombination” time, and
“etc.” stands for any other scattering-related time scale in the
problem.

Assuming the applicability of the kinetic (Boltzmann)
equation at least in some subset of the hydrodynamic region,
hydrodynamic equations can be derived from the kinetic
equation following the standard procedure [18].

Conservation of charge and energy can be expressed in
terms of the continuity equations [14–16]

∂t n + ∇r · j = 0, (3a)

∂t nE + ∇r · jE = eE · j, (3b)

where n is the carrier density, j is the current (differing from
the charge density and electric current by a multiplicative fac-
tor of the electric charge, e), nE and jE are the energy density
and current, and E is the electric field (eE · j describing Joule
heat). The continuity equation (3a) is valid in any electronic
system, while Eq. (3b) neglects possible energy losses due
to coupling to collective excitations (e.g., phonons, plasmons,
etc.).

The main equations of the hydrodynamic theory, the Euler
and Navier-Stokes equations (for ideal and viscous fluids,
respectively), are based on the continuity equation for mo-
mentum density reflecting momentum conservation. In solids,
electronic momentum can be treated as a conserved quantity
only approximately, in the sense of Eq. (2). Hence, the gen-
eralized Navier-Stokes equation in graphene [15] contains a
weak disorder scattering term

W (∂t + u·∇)u + v2
g∇P + u∂t P + e(E · j)u

= v2
g

[
η�u − ηH�u×eB + enE + e

c
j×B

]
− jE

τdis
, (3c)

where vg is the Fermi velocity in graphene, u is the hydrody-
namic velocity, B is the magnetic field, c is the speed of light,

and W and P are the enthalpy and pressure, which are related
to the energy density in graphene by the “equation of state”
[14,15]

W = nE + P = 3nE

2+u2/v2
g

. (3d)

The shear, η, and Hall, ηH , viscosities in graphene were
discussed theoretically in Ref. [16] and experimentally in
Refs. [2,8].

Due to kinematic suppression of interband scattering in
graphene [10,17], one may consider conservation of the par-
ticle number in each band. This leads to another continuity
equation

∂t nI + ∇r · jI = −nI −nI,0

τR
, (3e)

where nI,0 is the equilibrium “imbalance” density. The imbal-
ance density and current [17] (as well as n and j) are related
to the densities and currents in each band as

n = n+ − n−, nI = n+ + n−, (3f)

j = j+ − j−, jI = j+ + j−. (3g)

Finally, the quasiparticle currents j and jI are not related
to any conserved quantity and hence acquire dissipative cor-
rections (similarly to the energy current in the traditional
hydrodynamics [13]). The energy current in graphene is
proportional to the momentum density and hence cannot be
relaxed by electron-electron interaction. However, it can be
relaxed by weak disorder (leading to the strong violation of
the Wiedemann-Franz law [3]). Combining the dissipative
corrections to the three macroscopic currents in graphene, one
defines the second set of dissipative coefficients [15]

j = nu + δ j, jI = nI u + δ jI ,

jE = W u + δ jE , (3h)⎛⎝ δ j
δ jI

δ jE/T

⎞⎠ = 	̂

⎛⎝Fu−T ∇ μ

T
T ∇ μI

T
0

⎞⎠+ 	̂H

⎛⎝Fu−T ∇ μ

T
T ∇ μI

T
0

⎞⎠× eB,

(3i)

where Fu = eE+ e
c u×B, while μ and μI are the chemical

potentials conjugate to n and nI , respectively. They are related
to the chemical potentials μλ as

μ = (μ+ + μ−)/2, μI = (μ+ − μ−)/2. (3j)

In this paper I disregard thermoelectric effects [17] and set
μ± = μ (or μI = 0).

In addition to Eqs. (3) the complete hydrodynamic theory
includes Maxwell’s equations taking into account electromag-
netic fields induced by inhomogeneities of the charge density
similarly to the Vlasov self-consistency [18]. In solids typical
velocities are rather small, vg � c, and hence Maxwell’s
equations are usually reduced to electrostatics. In gated struc-
tures [2,5,6,8] the electrostatics is controlled by the gate
[35,36], further simplifying the relation between the charge
density and electric field.
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II. DISSIPATIVE COEFFICIENTS

The dissipative coefficients 	̂ and 	̂H are related to the
electrical conductivity [10] (and are the counterpart of the
thermal conductivity in traditional hydrodynamics [13]). In
the absence of the magnetic field the Hall term vanishes,
	̂H (B = 0) = 0. The matrix 	̂(B = 0) simplifies at the Dirac
point, where it is block diagonal, such that the electric current
decouples from the other two. Moreover, at n = 0 the hydro-
dynamic contribution to j vanishes [see Eq. (3h)], leaving the
dissipative correction δ j as the total current. This correction
remains finite even in the absence of disorder,

eδ j(μ = 0) = σQE, σQ = Ae2/α2
g, A ≈ 0.12, (4)

where σQ is known as the “quantum” or “intrinsic” conduc-
tivity of graphene [10,14,15,30–33,37,38]. The quantity σQ

is a constant that depends on temperature only through the
logarithmic renormalization of the coupling constant αg [39].
Away from the Dirac point, matrix elements of 	̂ may exhibit
more pronounced temperature and density dependence, but
within the framework of Ref. [15] they remain independent
of frequency.

A. Kinetic theory approach

Within the standard approach [18], one derives the hydro-
dynamic theory from the kinetic equation

L f = St[ f ], L = ∂t + v · ∇r +
(

eE + e

c
v × B

)
· ∇k.

(5)
Under the assumption of local equilibrium, Eq. (5) can be
solved approximately:

f = f (0) + δ f , (6)

where f (0) is the local equilibrium distribution function (nul-
lifying the collision integral due to electron-electron interac-
tion) and δ f is the nonequilibrium correction. The latter can
be found within linear response:

L f (0) = St[δ f ]. (7)

Linearizing the collision integral, one proceeds with the so-
lution of the resulting linear integral equation (which, how-
ever nontrivial, is much simpler than the original nonlinear
integrodifferential equation). Macroscopic description corre-
sponding to local equilibrium is the ideal (Euler) hydrody-
namics, while the nonequilibrium correction is responsible for
dissipative terms.

The reason one is justified in neglecting Lδ f in Eq. (7) is
the long-wavelength nature of hydrodynamics—macroscopic
quantities are assumed to be varying slowly over long dis-
tances such that their gradients are small. Hence, gradients
of the correction, ∇δ f , represent the second-order smallness
in the hydrodynamic expansion (formally, in the so-called
Knudsen number [13,18]). A similar argument can be applied
to the electric field. Magnetic field is typically not treated
within linear response [15] leading to the field-dependent
viscosity and Hall viscosity [8,16,40–42]. Treating the time
derivative in Liouville’s operator in the same manner leads to

frequency-dependent dissipative coefficients. In other words,
instead of Eq. (7) yielding constant, field-independent viscos-
ity and conductivity, one should solve the equation

L|B=0 f (0) + ∂tδ f + e

c
[v × B] · ∇k f = Stee[δ f ] + Stdis[ f ].

(8)

In this paper, I solve Eq. (8) focusing on the frequency-
and field-dependent “effective conductivities” 	̂(ω) and
	̂H (ω). A similar analysis of the frequency-dependent viscos-
ity [43] will be reported elsewhere.

B. Dissipative corrections to macroscopic
currents in graphene

A comprehensive derivation of the dissipative hydrody-
namics in graphene was reported in Ref. [15]. In comparison
to Eq. (8) that calculation disregarded the time derivative,
∂tδ f , yielding frequency-independent dissipative coefficients.
On the other hand, the other terms in the (linear) equation (8)
were evaluated in all the details. In this section I outline that
calculation in order to make the present paper self-contained,
focusing on the essential changes that are necessary to eval-
uate optical conductivity. Technical details can be found in
Ref. [15].

The main idea of the calculation [14,15] is to formulate
macroscopic equations for the three currents (3i) integrating
the kinetic equation and expressing the nonequilibrium cor-
rection to the distribution function, δ f , in terms of the dissipa-
tive corrections to the currents. To the resulting “three-mode”
approximation, δ f is (in graphene, single-particle states can
be labeled by the band index λ = ± and momentum k; in what
follows, these indices are often omitted for brevity)

δ f = f (0)[1 − f (0)]h, hλk = vλk

vg

3∑
i=1

φih
(i), (9a)

with the three modes (not exhibiting the collinear scattering
singularity [9,14,15,32]) described by

φ1 = 1, φ2 = λ, φ3 = ε

T
,

where ε = ελk is the excitation energy (vλk = ∂ελk/∂k) and
the vectors h(i) are related to the dissipative corrections (3i) to
the macroscopic currents (3h) as [14,15]⎛⎝ δ j

δ jI

δ jE/T

⎞⎠ = vgT

2
M̂h

⎛⎜⎝h(1)

h(2)

h(3)

⎞⎟⎠. (9b)

The matrix M̂h is expressed in terms of equilibrium densities
and compressibilities (see Appendix A for their explicit form)
as

M̂h = ∂n

∂μ
M̂h, M̂h =

⎛⎜⎝ 1 xT
T 2ñ T

T
xT
T 1

[
x2 + π2

3

]
T
T

2ñ T
T

[
x2 + π2

3

]
T
T 6ñE

T
T

⎞⎟⎠,

(9c)
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where ñ and ñE are the dimensionless carrier and energy
densities, respectively, x = μ/T , and

T = 2πv2
g

∂n

∂μ
= 2T ln

[
2 cosh

μ

2T

]
.

Multiplying Eq. (8) by the velocity, vλk, and integrating
over all single-particle states (N = 4 is the degeneracy factor),
one finds the macroscopic equation for the electric current:

N
∑

λ

∫
d2k

(2π )2
vλkL f (0)

λk = I1[ f ] − ∂δ j
∂t

− ωBeB × K[δ f ].

(10a)

The integrated collision integral, I1[ f ], comprises the
electron-electron and disorder scattering terms

I1 = N
∑

λ

∫
d2k

(2π )2
vλk(Stee[δ f ] + Stdis[ f ]) ≡ Iee

1 + Idis
1 .

(10b)

I assume the latter to be weak [see Eq. (2)] such that the
τ approximation is sufficient [with the (model- and energy-
dependent) scattering time, τdis, assumed to have the appro-
priate value determined by T and μ], such that

Idis
1 = − j/τdis. (10c)

The generalized cyclotron frequency,

ωB = eBv2
g/(cT ), (10d)

and the vector quantity K,

K[δ f ] = T N
∑

λ

∫
d2k

(2π )2

k
k2

δ fλk, (10e)

appear after integrating the Lorentz term. Substituting Eqs. (9)
into the integral (10e), one finds [15]

K[δ f ] = vgT

2

∂n

∂μ

[
h(1) tanh

x

2
+ h(2) + h(3) T

T

]
. (10f)

Since Eq. (10a) differs from that considered in Ref. [15]
by the time derivative term in the right-hand side only, one
can anticipate that the frequency-dependent dissipative coeffi-
cients can be elucidated from the results of Ref. [15] by adding
the frequency to τ−1

dis :

τ−1
dis → τ−1

dis + ∂/∂t → τ−1
dis − iω.

The integrated Liouville’s operator, collision integral, and
Lorentz term in Eq. (10a) were evaluated in Ref. [15]. To the
linear order in u (within linear response in E),

N
∑

λ

∫
d2k

(2π )2
vλkL f (0)

λk

= n
∂u
∂t

+ v2
g

2
∇n − v2

g

2
eE

∂n

∂μ
− 1

2
v2

g

e

c

∂n

∂μ
u×B. (10g)

Expressing the time derivative in terms of gradients with
the help of the Euler equation [i.e., Eq. (3c) without the vis-
cous terms and magnetic field], one may express the integrated

Liouville operator in terms of the gradient of the electrochem-
ical potential (in the absence of temperature gradients):

N
∑

λ

∫
d2k

(2π )2
vλkL f (0)

λk = v2
g

(
2n2

3nE
− 1

2

∂n

∂μ

)(
Fu−T ∇ μ

T

)

−
(

2nnI

3nE
− 1

2

∂nI

∂μ

)
T ∇μI

T
.

Similarly to Eq. (10) one finds the macroscopic equation
for the imbalance current. This time the kinetic equation is
multiplied by λvλk which upon integration yields

N
∑

λ

λ

∫
d2k

(2π )2
vλkL f (0)

λk =I2[ f ]− ∂δ jI

∂t
−ωBeB×KI [δ f ].

(11a)

In the right-hand side of Eq. (11a), the integrated Lorentz term
in Eq. (11a) contains the vector quantity

KI [δ f ] = T N
∑

λ

λ

∫
d2k

(2π )2

k
k2

δ fλk

= vgT

2

∂n

∂μ

[
h(1) + h(2) tanh

x

2
+ xh(3)

]
, (11b)

and I2[ f ] denotes the integrated collision integral [defined
similarly to Eq. (10b), but with the extra factor of λ]. The left-
hand side of Eq. (11a) can be evaluated similarly to that in
Eq. (10) such that [15]

N
∑

λ

λ

∫
d2k

(2π )2
vλkL f (0)

λk

= v2
g

(
2nnI

3nE
− 1

2

∂nI

∂μ

)(
Fu−T ∇μ

T

)
−
(

2n2
I

3nE
− 1

2

∂nI

∂μ

)
T ∇μI

T
.

Finally, the energy current jE is proportional to the mo-
mentum density and hence Liouville’s operator acting on
the local equilibrium distribution function yields zero. The
integrated collision integral in the equation for the energy
current vanishes due to momentum conservation. As a result,
the macroscopic equation for the energy current contains only
the Lorentz and disorder scattering terms:

0 = −δ jE

τdis
− ∂δ jE

∂t
− ωB

T
T

eB × δ j. (12)

Combining the three macroscopic currents into a vector,
one can write all three macroscopic equations as a single
equation in the matrix form [15]

M̂n

⎛⎝Fu − T ∇ μ

T
T ∇ μI

T
0

⎞⎠
=
[

α2
gT 2

2T 2
T̂ + π

T

(
1

τdis
+ ∂

∂t

)
M̂h

]

× M̂
−1
h

⎛⎝ δ j
δ jI

δ jE/T

⎞⎠+ π
ωB

T M̂KM̂
−1
h eB

⎛⎝ δ j
δ jI

δ jE/T

⎞⎠, (13a)
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where the dimensionless matrix M̂n describes the integrated Liouville operators in the equations for the quasiparticle currents,⎛⎜⎝
2n2

3nE
− 1

2
∂n
∂μ

− 2nnI
3nE

+ 1
2

∂nI
∂μ

0
2nnI
3nE

− 1
2

∂nI
∂μ

− 2n2
I

3nE
+ 1

2
∂n
∂μ

0
0 0 0

⎞⎟⎠ = −1

2

∂n

∂μ
M̂n, M̂n =

⎛⎜⎝ 1 − 2ñ2

3ñE

T
T

ñ
3ñE

[
x2 + π2

3

]
T
T − xT

T 0
xT
T − ñ

3ñE

[
x2 + π2

3

]
T
T

1
6ñE

[
x2 + π2

3

]2 T
T − 1 0

0 0 0

⎞⎟⎠, (13b)

the dimensionless matrix M̂K describes the integrated Lorentz
terms,

M̂K =

⎛⎜⎝tanh x
2 1 T

T

1 tanh x
2 x

T
T x 2ñ

⎞⎟⎠, (13c)

the integrated collision integral due to electron-electron inter-
action is expressed in terms of the “scattering rates” [15],⎛⎝Iee

1

Iee
2

0

⎞⎠ = −vgT

2

∂n

∂μ

⎛⎝τ−1
11 τ−1

12 0

τ−1
12 τ−1

22 0
0 0 0

⎞⎠
⎛⎜⎝h(1)

h(2)

h(3)

⎞⎟⎠,

⎛⎝τ−1
11 τ−1

12 0

τ−1
12 τ−1

22 0
0 0 0

⎞⎠ = α2
g

8π

NT 2

T T̂, (13d)

and finally τ−1
dis describing disorder scattering enters the equa-

tion together with the time derivative (as explained above).
Solving the linear equations (13) by usual methods [15],

one finds for μI = 0 and neglecting temperature gradients⎛⎝ δ j
δ jI

δ jE/T

⎞⎠

= M̂h
(
1 + Ŝ

−1
xx ŜxyŜ

−1
xx Ŝxy

)−1
Ŝ

−1
xx M̂n

⎛⎝Fu − ∇μ

0
0

⎞⎠
− M̂h

(
1 + Ŝ

−1
xx ŜxyŜ

−1
xx Ŝxy

)−1

× Ŝ
−1
xx ŜxyŜ

−1
xx M̂neB ×

⎛⎝Fu − ∇μ

0
0

⎞⎠, (14a)

where

Ŝxx = α2
gT 2

2T 2
T̂ + π

T

(
1

τdis
− iω

)
M̂h, Ŝxy = π

ωB

T M̂K .

(14b)

Equation (14) provides a closed expression for the dissipa-
tive corrections to the three macroscopic currents in the hy-
drodynamic picture of electronic transport in graphene. This
result generalizes the earlier static solution [15] providing
the dissipative contribution to optical conductivity. While at
charge neutrality the dissipative correction represents the total
electric current [see Eq. (3i)], away from the Dirac point
one has to take into account the time-dependent solution of
the hydrodynamic equations, the Navier-Stokes equation (3c),
and continuity equations. Such solution can be obtained in a
closed analytic form in the two limiting cases, either close to
charge neutrality or in the degenerate regime. These two cases

will be considered in detail in the remainder of this paper.
In the most general case (e.g., for μ ∼ T ) the hydrodynamic
equations have to be solved numerically. Such analysis is
beyond the scope of the present paper and will be discussed
elsewhere.

III. OPTICAL CONDUCTIVITY IN ZERO
MAGNETIC FIELD

Consider first graphene in the absence of magnetic field.
Then the dissipative correction to the electric current is given
by the first line in Eq. (14), which now simplifies to⎛⎝ δ j

δ jI

δ jE/T

⎞⎠ = M̂hS
−1
xx M̂n

⎛⎝eE − ∇μ

0
0

⎞⎠. (15a)

The corresponding contribution to conductivity can then be
formally expressed as

δσ (ω) = (1 0 0) M̂hS
−1
xx M̂n

⎛⎝1
0
0

⎞⎠. (15b)

In addition to Eq. (15b), the full electrical conductivity in
graphene comprises also the hydrodynamic contribution [see
the first term in the electric current, Eq. (3h)]. In order to
distinguish between the two, I will refer to Eq. (15b) as the
“kinetic” contribution [34].

A. Hydrodynamic contribution to optical conductivity

The hydrodynamic contribution to the optical conductivity
should be obtained by solving the Navier-Stokes equation
(3c). Focusing on the homogeneous (q = 0) solution, I may
write Eq. (3c) in the form [δ jE (B = 0) = 0]

W ∂t u + u∂t P = v2
genE − W u

τdis
. (16a)

Looking for homogeneous solutions of the continuity equa-
tions (3a) and (3b), I conclude that

∂t n = 0, ∂t nE = 0, (16b)

hence the time derivative of pressure in the Navier-Stokes
equation vanishes as well (P = nE/2). Then the equation
takes the form

W u
(
τ−1

dis − iω
) = v2

genE, (16c)

with the solution

nu = v2
gn2

W

eE

τ−1
dis − iω

. (16d)
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The resulting hydrodynamic contribution to the optical
conductivity is given by [30]

σh(ω) = e2v2
gn2

W

1

τ−1
dis − iω

. (17)

1. Hydrodynamic contribution to conductivity
in the degenerate regime

In the degenerate regime, x � 1, the enthalpy and carrier
density can be expressed in terms of the chemical potential,

W = 3P = 3nE

2
= μ3

πv2
g

(
1 + π2

x2

)
, (18a)

n = μ2

πv2
g

(
1 + π2

3x2

)
. (18b)

Substituting these expressions into Eq. (17) and keeping the
leading correction only, one finds

σh(ω) = e2μ

π

1

τ−1
dis − iω

(
1 − π2

3x2

)
. (19)

In the limit x → ∞ the result (19) represents the total optical
conductivity, since the dissipative correction (15a) vanishes
(see below).

2. Hydrodynamic contribution to conductivity
near charge neutrality

At charge neutrality, n = 0, the electrical current (3i) is
completely determined by the dissipative correction (15a).
For nonzero but small carrier density, x � 1, the carrier and
energy densities can be expanded as

n = NT 2

2πv2
g

2x ln 2 + O(x3), (20a)

nE = NT 3

2πv2
g

[3ζ (3) + 2x2 ln 2] + O(x4). (20b)

This yields the following solution (to the leading order in
x � 1) of the Navier-Stokes equation (16c):

nu = 16 ln2 2

9πζ (3)
x2T

eE

τ−1
dis − iω

+ O(x4).

The resulting contribution to the optical conductivity is

σh(ω) = e2T

π

16 ln2 2

9ζ (3)

x2

τ−1
dis − iω

+ O(x4). (21)

The numerical coefficient in Eq. (21) is of order unity:

16 ln2 2

9ζ (3)
≈ 0.71.

Close to charge neutrality, the result (21) is subleading to
the kinetic contribution to conductivity, which I discuss next.

B. Kinetic contribution to optical conductivity

Consider now the second contribution to conductivity,
Eq. (15b), which stems from the dissipative correction to
the electric current (15a). Since the general expression is not
transparent enough, I now consider the limiting cases.

1. Optical conductivity at charge neutrality

At charge neutrality, x = 0, the matrices M̂h and M̂n

simplify:

M̂h =

⎛⎜⎝1 0 0

0 1 π2

6 ln 2

0 π2

6 ln 2
9ζ (3)
2 ln 2

⎞⎟⎠, M̂n =
⎛⎝1 0 0

0 −δ 0
0 0 0

⎞⎠,

(22a)

where ζ (z) is Riemann’s zeta function and

δ = 1 − π4

162ζ (3) ln 2
≈ 0.28.

The matrix of the scattering rates simplifies as well since
τ−1

12 (μ = 0) = 0 [14,15]. As a result, the matrix Sxx has the
block-diagonal form

Ŝxx = π

2T ln 2

⎡⎣⎛⎝τ−1
11 0 0

0 τ−1
22 0

0 0 0

⎞⎠+
(

1

τdis
− iω

)
M̂h

⎤⎦,

(22b)

where the electric current decouples from the other two. In the
absence of temperature gradients the correction δ jI vanishes
[also δ jE (B = 0) = 0]. This can be seen from Eq. (15a) where
the source term (i.e., the external electric field) is only present
in the electric current sector. The conclusion about the energy
current can be reached already from Eq. (12).

At zero frequency, the resulting electrical conductivity is
given by Eq. (4):

eδ j = 2 ln 2

π
e2T

(
1

τ11
+ 1

τdis

)−1

E −→
τdis→∞ σQE.

The coefficient A in Eq. (4) can be found by evaluating the
scattering rate numerically [14,15,32,37,38]:

A = 2(ln 2)α2
gT τ11 ≈ 0.12. (23)

The explicit expression for τ11 is given in Appendix B. Note
that the above value of A was calculated with the unscreened
Coulomb potential. At charge neutrality, this is a reasonable
approximation for weak coupling (i.e., αg � 1). For larger
values of αg, which may be more experimentally relevant,
screening leads to a quantitatively significant change in A.

Keeping the nonzero frequency in Eq. (22b), I find the
optical conductivity in graphene at charge neutrality [1,34]:

σ (ω; μ = 0) = 2 ln 2

π

e2T

−iω + τ−1
dis + τ−1

11

, (24)

where τ11 is the same as in Eq. (23). This result is illustrated
in Fig. 1.

2. Optical conductivity in the degenerate regime

Deep in the degenerate (or “Fermi-liquid”) regime, i.e.,
for μ � T , the matrices in Eq. (15b) become degenerate.
In particular, the matrix M̂h determining the relation (9b)
between the dissipative corrections to macroscopic currents
and the nonequilibrium distribution function takes the form
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FIG. 1. Optical conductivity in graphene at charge neutrality.
The real and imaginary parts of Eq. (24) are shown by the solid
and dashed curves, respectively. The shown dependence appears
to agree with the experimental data of Ref. [1] [see Fig. 3(d) of
that reference]. The curves were calculated with αg = 0.23 and
τ−1

dis = 0.8 THz, the values taken from Ref. [1].

(up to exponentially small corrections)

M̂h =

⎛⎜⎜⎝
1 1 x

[
1 + π2

3x2

]
1 1 x

[
1 + π2

3x2

]
x
[
1 + π2

3x2

]
x
[
1 + π2

3x2

]
x2
[
1 + π2

x2

]
⎞⎟⎟⎠, (25)

where I have used the asymptotic expressions

ñ ≈ ñI = x2

2
+ π2

6
, ñE ≈ x3

6
+ π2x

6
,

T
T

≈ x.

The first of these equalities follows from the fact that in
the degenerate regime only one band of carriers contributes
to transport (the contribution of the other is exponentially
suppressed; this is the reason why the first two rows in M̂h are
identical). In the limit x → ∞ the factor π2/x2 → 0 can be
neglected. Then the third row of the matrix M̂h is proportional
to the first two, such that all three dissipative corrections in
Eq. (9b) are proportional to each other. Now, regardless of
the value of x, δ jE (B = 0) = 0 [see Eq. (12)], and hence I
conclude

δ j(x → ∞) = δ jI (x → ∞) ≈ δ jE = 0. (26a)

Note that this result cannot be obtained from Eq. (15b) with
the asymptotic form of M̂h and other matrices since in this
limit the matrix Sxx is degenerate (with or without the power-
law corrections). To find corrections to Eq. (26a) one has
to either keep track of exponentially small corrections to
Eq. (25) or, alternatively, disregard the imbalance mode (since
δ j = δ jI with exponential accuracy). Inverting the remaining
2 × 2 matrix, one finds

δσ (ω) = π3e2μ

3x2
[
3x2τ−1

11 + π2
(
τ−1

dis − iω
)] . (26b)

The scattering rate τ−1
11 in the degenerate regime has the

asymptotic form (neglecting screening; see Appendix C)

τ−1
11 (x � 1) ≈ 4π

3
α2

g

T 2

μ
= 4π

3
α2

g

μ

x2
. (26c)

Combining both contributions, Eqs. (26b) and (19), I find
the optical conductivity in graphene as

σ (ω) = e2μ

π

1

τ−1
dis − iω

[
1 − τ−1

11

(3x2/π2)τ−1
11 + τ−1

dis − iω

]
,

(27)

where the leading contribution is determined by disorder
scattering only. The kinetic contribution to conductivity, δσ ,
is suppressed as x−2. Moreover, the frequency dependence
in δσ becomes important only when it is comparable to
(3x2/π2)τ−1

11 � τ−1
11 (see below).

3. Optical conductivity close to the Dirac point

Close to charge neutrality, i.e., for nonzero but small carrier
densities, x � 1, one finds corrections to Eq. (24). Expanding
the matrices M̂h(n) around the Dirac point, one finds

M̂h(n) = M̂h(n)(x = 0) + δM̂h(n) + O(x3),

where M̂h(n)(0) are given in Eq. (22a), while the leading-order
corrections are given by

δM̂h = x

⎛⎜⎝ 0 1
2 ln 2 2

1
2 ln 2 0 x

2 ln 2

[
1 − π2

24 ln 2

]
2 x

2 ln 2

[
1 − π2

24 ln 2

]
3x
[
1 − 3ζ (3)

16 ln2 2

]
⎞⎟⎠,

and

δM̂n

= x

⎛⎜⎝ − 8 ln 2
27ζ (3) x

4π2 ln 2−27ζ (3)
2 ln 2 0

− 4π2 ln 2−27ζ (3)
2 ln 2

π2x
27ζ (3) ln 2

[
1 − π2

48 ln 2 − π2 ln 2
9ζ (3)

]
0

0 0 0

⎞⎟⎠.

The matrix Sxx can be expanded in the same way, using the
expansion of the scattering rates given in Appendix D. To the
leading order, one finds

Sxx = Sxx(x = 0) + δSxx + O(x3),

where Sxx(x = 0) is given by Eq. (22b) and

δSxx = α2
g

8 ln2 2
δT̂ + π

2T ln 2

(
τ−1

dis − iω
)
δM̂h,

with

δT̂ = x

⎛⎜⎝
x

t (2)
11

− 1
8 ln 2

x
t (0)
11

1/t (1)
12 0

1/t (1)
12

x
t (2)
22

− 1
8 ln 2

x
t (0)
22

0

0 0 0

⎞⎟⎠
[see Eqs. (D2) for notations].
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FIG. 2. Optical conductivity in weakly doped graphene at
n = 0.08 cm−12 [or EF = 33 meV, the value used in Ref. [1]; see
Fig. 4(b) of that reference]. The almost flat red dashed curve shows
the real part of the kinetic contribution (15b), while the black dashed
curve shows the real part of the hydrodynamic contribution (21). The
real part of the full electrical conductivity (i.e., the sum δσ + σh)
is shown by the solid blue curve. The curves were calculated with
αg = 0.23, T = 298 K, and τ−1

dis = 0.8 THz, the values taken from
Ref. [1].

Substituting the above expansions into Eq. (15b), one finds
(see Appendix E for details)

δσ (ω) = σ (ω; μ = 0) + x2δσ (2)(ω) + O(x3), (28a)

δσ (2) = γ11e2T

−iω + τ−1
dis + τ−1

11 (0)
+ γ12e2T

−iω + τ−1
dis + γ13τ

−1
22 (0)

+ e2T
[
γ31τ

−1
22 (0) + γ̃32

(−iω + τ−1
dis

)−γ̃33/τ
(1)
12

][−iω + τ−1
dis +τ−1

11 (0)
][−iω+τ−1

dis +γ13τ
−1
22 (0)

]
+ e2T

2π2

1/τ
(2)
11 − 1/[8τ11(0) ln 2][− iω + τ−1

dis + τ−1
11 (0)

]2 , (28b)

where

γ11 ≈ 0.075, γ12 ≈ 0.66, γ13 ≈ 3.59, (28c)

γ31 ≈ 0.81, (28d)

γ̃32 = γ32 + γ41 ≈ 0.91,

γ̃33 = γ42 − γ33 ≈ 0.102. (28e)

The total optical conductivity in the vicinity of the Dirac
point is given by the sum of the leading term (24), the
hydrodynamic contribution (21), and the above correction
(28b). The two terms are compared in Fig. 2.

C. Comparison with the existing literature

Optical conductivity in graphene was already studied in
several publications, so it is worthwhile to compare the above
calculations to the previously known results.

The authors of the pioneering paper Ref. [30] used general
hydrodynamic arguments to find the optical conductivity at a
generic charge density in the form

σxx = σQ + σh(ω),

where σQ is the dissipative constant (4) and the hydrodynamic
contribution is given (up to the choice of normalization) by
Eq. (17). The specific value of σQ for graphene was calculated
in Refs. [31,32,37,38].

Conductivity at the Dirac point in the absence of disorder
was studied in detail in Ref. [32]. The result of this paper is
the same as Eq. (24) without the disorder scattering rate. The
electron-electron scattering rate estimated in Ref. [32],

τ−1
11 → κα2

gT, κ = 3.646,

perfectly agrees with Eq. (D2a), where the numerical pref-
actor is κ = 3.8. Note that this value was obtained for un-
screened Coulomb interaction.

Optical conductivity beyond charge neutrality was reported
in Ref. [31]. Here the authors combined the result of Ref. [32]
with the hydrodynamic contribution previously reported in
Ref. [30]. In addition, the effect of disorder scattering was
studied not only in the limit of weak disorder, but also
for strong disorder, where the hydrodynamic approach is no
longer valid. For weak disorder, the authors of Ref. [31]
reported an expansion in the disorder strength.

The effect of disorder was also studied in Ref. [38] at
charge neutrality. The reported zero-frequency conductiv-
ity agrees with Eq. (24) for weak disorder, T τdis � 1. For
stronger disorder, the authors of Ref. [38] took into account
the effect of disorder scattering on the excitation spectrum in
graphene, which is beyond the scope of the present paper.

More recently, the interpolation formula (1) was suggested
in Ref. [34] (see also Ref. [44]) with the coefficient A1

coinciding with that in Eq. (17) and the coefficient A2 given
by

A2 → e2

[
T
π

− v2
gn2

W

]
,

interpolating between the two limits: Eq. (24) at charge neu-
trality and Eq. (19) in the degenerate regime. In the former
case n = 0 (with A1 = 0) and T = 2T ln 2, while in the latter
case T = πv2

gn2/W = μ, with A2 = 0.
The interpolation formula Eq. (1) was used to interpret

the result of recent measurements of the optical conductiv-
ity in graphene reported in Ref. [1]. At charge neutrality,
the experimental data appear to confirm the result Eq. (24)
with τdis � τ11 (see Fig. 1), providing a reasonable (in line
with previous measurements [45,46]) estimate for αg in real
graphene. Data away from charge neutrality were measured
at rather low charge densities, where the scattering rates
Eq. (B5) exhibit only small deviations from their values at
μ = 0 (in agreement with the results of Ref. [1]). Now, the
kinetic contribution to optical conductivity Eq. (15b) has
a Lorentzian-like shape as a function of ω [see Eqs. (14),
(24), (26b), and (28)]. Hence, Eq. (15b) can be approximated
by the second term in Eq. (1) by choosing the appropriate
(phenomenological) values for τee and τdis (as was done in
Ref. [1], where the data were fitted by Eq. (1) with the
electronic temperature and τdis used as fitting parameters).
Note that this procedure neglects renormalization of vg due
to electron-electron interaction [10,32,39].
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IV. MAGNETOCONDUCTIVITY IN GRAPHENE

Consider now the effect of classical magnetic fields on
the optical conductivity in graphene. The classical approach
is justified at high enough temperatures where quantized
transport is smeared out.

The general expression for the dissipative corrections to
macroscopic currents is given by Eqs. (14). In the presence of
the magnetic field, these corrections become “entangled” with
the hydrodynamic velocity due to the Lorentz contribution
to Fu.

A. Magnetoconductivity at charge neutrality

The dissipative correction to the energy current was defined
through Eq. (12). Substituting this relation into the Navier-
Stokes equation (3c) at charge neutrality, one finds a station-
ary and uniform solution, u = 0. Evaluating all matrices in
Eqs. (14), one has to consider not only Eqs. (22), but also the
matrix (13c). At x = 0 I find

M̂K =
⎛⎝ 0 1 2 ln 2

1 0 0
2 ln 2 0 0

⎞⎠. (29)

Instead of multiplying the matrices in the general solution
(14a), it appears to be more instructive to write Eq. (13a)
explicitly at x = 0 and proceed with solving the resulting
equations.

Using Eq. (22a), the left-hand side of Eq. (13a) takes the
form

M̂n

⎛⎝eE
0
0

⎞⎠ =
⎛⎝eE

0
0

⎞⎠.

The longitudinal part of the right-hand side of Eq. (13a) is

given by multiplying Eq. (22b) by M̂
−1
h [see Eq. (22a)]:

π

2T ln 2

⎡⎢⎣
⎛⎜⎝τ−1

11 0 0

0 τ−1
22 δ−1 −τ−1

22
π2

27ζ (3)δ

0 0 0

⎞⎟⎠+ 1

τdis
− iω

⎤⎥⎦,

while the Hall part is given by

πωB

2T ln 2

⎛⎜⎝ 0 δ1 −δ2

1 0 0

2 ln 2 0 0

⎞⎟⎠eB ×

⎛⎜⎝ δ j

δ jI

δ jE/T

⎞⎟⎠,

where

δ1 = 1

δ
− 2π2 ln 2

27ζ (3)δ
≈ 2.08, δ2 = π2 − 12 ln2 2

27ζ (3)δ
≈ 0.45.

As a result, the three equations for macroscopic cur-
rents simplify admitting a simple analytical solution. This
solution is analogous to the solution of the stationary
equations leading to the zero-frequency conductivity (see
Refs. [15,23]).

The third such equation stems from Eq. (12) and allows one
to express the correction to the energy current, δ jE , in terms
of the correction to the electric current, δ j:

δ jE = −2(ln 2)
ωBT

τ−1
dis − iω

eB × δ j. (30a)

The second equation determines the correction to the imbal-
ance current:

δ jI = − ωB

τ−1
dis − iω

[
1 − δ1τ

−1
22

δ−1τ−1
22 + τ−1

dis − iω

]
eB × δ j.

(30b)

The first equation determines the electrical current:

eE = π

2T ln 2

(
τ−1

11 + τ−1
dis − iω

)
δ j

+ πωB

2T ln 2
(δ1eB × δ jI − δ2eB × δ jE/T ). (30c)

Both of the corrections (30a) and (30b) are orthogonal to the
electric current, hence δ j‖E. This means that no orthogonal
component of the current is generated, in other words, there
is no classical Hall effect in graphene at charge neutrality,
as expected. Substituting the relations (30a) and (30b) into
Eq. (30c), I find

σxx(ω) = 2 ln 2

π

e2T
(
τ−1

dis − iω
)(

δ−1τ−1
22 + τ−1

dis − iω
)(

τ−1
dis − iω

)(
δ−1τ−1

22 + τ−1
dis − iω

)(
τ−1

11 + τ−1
dis − iω

)+ ω2
B

[
δ3τ

−1
22 + δ4

(
τ−1

dis − iω
)] , (31)

where

δ3 = δ1

δ
− δ2

1 − 2
δ2

δ
ln 2 ≈ 0.88,

δ4 = δ1 − 2δ2 ln 2 ≈ 1.45.

At B = 0, the expression (31) reproduces Eq. (24) as it should.
At ω = 0, I recover the positive, parabolic magnetoresistance
previously found in Refs. [15,23,31].

Let me now estimate the relative value of various parame-
ters in Eq. (31) using the data of Ref. [1]. Measurements at
charge neutrality yield the following value of the coupling
constant, αg = 0.23. Using Eqs. (D2), this leads to the follow-
ing estimates of the scattering rates at a typical temperature

267 K:

τ−1
11 ≈ 7.35 THz, τ−1

22 ≈ 4.17 THz.

The disorder scattering rate at 267 K was estimated as

τ−1
dis ≈ 0.8 THz.

Finally, evaluating Eq. (10d) at a reference magnetic field,
B = 1 T, the frequency ωB can be estimated as

ωB = |e|v2
gB

2cT ln 2
≈ 27.9 THz

B

1 T

300 K

T
,
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such that at 267 K and 0.1 T one finds ωB ≈ 3.13 THz. For
comparison, 267 K→ 34.96 THz, so the hydrodynamic pic-
ture is fully justified.

At higher frequencies and magnetic fields the hydrody-
namic picture breaks down [31] in the sense that the lo-
cal equilibrium (underlying the traditional derivation of the
hydrodynamic equations [10,14,15,18]) cannot be formed.
At the same time, the kinetic (Boltzmann) equation has a
much wider range of applicability. Within linear response, the
kinetic equation can be integrated to obtain the macroscopic
equations for quasiparticle currents [23,40] without referring
to local equilibrium. Remarkably, these linear-response equa-
tions coincide with the macroscopic current equations (10),
(11a), and (12) (see Ref. [15] for more details). On one hand,
this means that the results for linear-response quantities, e.g.,
the electrical conductivity, obtained within the hydrodynamic
theory coincide with the results of the linear-response theory.
On the other hand, the result (31) which has not been worked
out within the linear-response theory has a wider regime of
applicability than the concept of local equilibrium. Extending
the range of frequencies and magnetic fields in Eq. (31) one
arrives at the resonancelike picture illustrated in Fig. 4. Note
that at these frequencies one typically assumes the system to
be in the collisionless regime [21,24–29], where the optical
conductivity is given by the universal value (up to weak
interaction corrections)

σU (ω) = πe2

2h
[1 + Cσαg(ω)], (32a)

where the renormalized coupling constant αg(ω) and the
numerical coefficient are given by

αg(ω) = αg

1 + αg

4 ln D
ω

, Cσ ≈ 0.01. (32b)

Physically, the universal value (32) is due to interband
transitions and is hence beyond the semiclassical Boltzmann
equation discussed in this paper. One typically assumes that
the solutions to the Boltzmann equation yield the conductivity
decaying with frequency, such that in the high-frequency
regime Eq. (32) dominates. In the hydrodynamic regime this
is illustrated in Fig. 3, where the universal value (32) is shown
by the horizontal red line. Extending the kinetic theory beyond
the hydrodynamic regime leads to the cyclotron resonance
at high frequencies where the solution to the Boltzmann
equation dominates over Eq. (32) (see Fig. 4).

B. Magnetoconductivity in the degenerate regime

In the degenerate or Fermi-liquid regime only one band
contributes to electronic transport and hence j = jI with
exponential accuracy (see above). At the same time, away
from charge neutrality the dissipative corrections (14) depend
on the hydrodynamic velocity u and hence the hydrodynamic
and kinetic contributions to conductivity become entangled.
In this case, it seems more transparent to consider the macro-
scopic equations for the electrical and energy currents ex-
plicitly. As shown in Ref. [15], these equations are exactly
the same as the macroscopic linear-response equations con-
sidered in Ref. [23]. Similar equations have been derived
in Ref. [40].

FIG. 3. Optical conductivity in graphene at charge neutrality in
weak magnetic field, B = 0.1 T. The real and imaginary parts of
Eq. (31) are shown by the solid and dashed curves, with red, blue,
and green (in ascending order for solid curves) corresponding to
T = 100, 200, and 300 K, respectively. The curves were calculated
using the parameter values described in the main text based on the
data of Ref. [1]. The horizontal red line shows the universal conduc-
tivity Eq. (32) of free electrons in graphene in the high-frequency
collisionless regime [21,24–29] (actually observed at much higher
frequencies).

The equation for the energy current is just the Navier-
Stokes equation (3c). For a homogeneous flow the gradient
terms and the time derivative of pressure vanish [see the above
derivation of Eq. (16c)], such that the equation takes the form

jE

(
τ−1

dis − iω
) = v2

genE + v2
g

e

c
j × B. (33a)

The equation for the electric current is given by Eq. (10). For
a homogeneous flow this equation takes the form

j
(
τ−1

dis − iω
) = 1

2
v2

g

∂n

∂μ
eE + ωBK × eB + Iee

1 . (33b)

To the leading order [23], jE ≈ μ j, K ≈ j, and Iee
1 → 0.

In this case, the two equations (33) are identical, yielding the

FIG. 4. Optical conductivity in graphene at charge neutrality at
B = 1 T. The real and imaginary parts of Eq. (31) are shown by
the solid and dashed curves, with red, blue, and green (in ascending
order for solid curves) corresponding to T = 100, 200, and 300 K,
respectively. The curves were calculated using the same parameter
values as in Fig. 3. The horizontal red line shows the universal con-
ductivity Eq. (32) of free electrons in graphene in the high-frequency
collisionless regime [21,24–29] (actually observed at much higher
frequencies).
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standard Drude-like results [47]

σxx = e2μτdis

π

1 − iωτdis

(1 − iωτdis)2 + ω2
Bτ 2

dis

, (34a)

σxy = −e2μτdis

π

ωBτdis

(1 − iωτdis)2 + ω2
Bτ 2

dis

. (34b)

Here the electric field is taken to be directed along the x
axis, and the magnetic field is taken to be directed along the z
axis. Note that the electric field is assumed to be oscillating,
E ∼ exp(−iωt ), and the magnetic field is assumed to be
static. For ω = 0, I recover the standard magnetoconductivity
[23,47].

At B = 0 the results (34) yield the Drude conductivity
given by Eq. (19) where one has to set x → ∞. The leading
correction to the Drude result is given by Eq. (27) where both
the correction in Eq. (19) and the kinetic contribution (26b)
are taken into account.

The origin of these corrections is in the differences be-
tween the two equations (33). Indeed, setting B = 0 and
subtracting Eq. (33a) from Eq. (33b), one finds(

j − jE

μ

)(
τ−1

dis − iω
) = v2

g

(
1

2

∂n

∂μ
− n

)
eE + Iee

1

= − π2

3x2

μ

π
eE + Iee

1 ,

where I used the equilibrium carrier density and compress-
ibility in the limit x → ∞ (see Appendix A), keeping only
the leading power-law term.

In the same limit, the collision integral Iee
1 can be ex-

pressed in terms of the two currents as

Iee
1 = −1

2
vgT

∂n

∂μ
τ−1

11 h(1)

= 3x2

π2

τ−1
11

1 − π2

3x2

[(
1 + π2

x2

)
j −

(
1 + π2

3x2

)
jE

μ

]
.

Note that although Eq. (9b) relates the function h(1) to the
dissipative corrections δ j and δ jE the hydrodynamic part of
the macroscopic currents does not contribute to the collision
integral, as can be seen from the above expression by direct
substitution.

Finally, the difference in the Lorentz terms in Eqs. (33) can
be found by evaluating the quantity K to the subleading order:

K = 1

1 − π2

3x2

(
2 j − jE

μ

)
.

Using the above expressions, solving Eqs. (33) is a straight-
forward although tedious task. The result can be expressed as

σxx = e2μτdis

π

(1 − iωτdis)
[
S0 + ω2

Bτ 2
disS1S2

(1−iωτdis )2

]
(1 − iωτdis)2 + ω2

Bτ 2
disS

2
1

, (35a)

σxy = −e2μτdis

π

ωBτdis(S0S1 − S2)

(1 − iωτdis)2 + ω2
Bτ 2

disS
2
1

, (35b)

where

S0 = 1 − τ−1
11

[
(3x2/π2)τ−1

11 + τ−1
dis − iω

][
(3x2/π2)τ−1

11 + τ−1
dis − iω

]2 + ω2
B

,

S1 = 1 − 3τ−1
11

[
(3x2/π2)τ−1

11 + τ−1
dis − iω

][
(3x2/π2)τ−1

11 + τ−1
dis − iω

]2 + ω2
B

,

S2 = π2

3x2

(
τ−1

dis − iω
)2[

(3x2/π2)τ−1
11 + τ−1

dis − iω
]2 + ω2

B

.

In the limit x → ∞, one finds S0 = S1 = 1 and S2 = 0, and
one recovers Eqs. (33). For B = 0, the result (35a) coincides
with Eq. (27).

V. DISCUSSION

In this paper I have considered optical conductivity in
graphene in the hydrodynamic regime. Within the hydrody-
namic approach, the electric current is split into the hydrody-
namic and kinetic contributions [see Eq. (3h)], with the latter
representing the dissipative correction. Unlike the traditional
hydrodynamics [13] in systems with exact momentum con-
servation, the hydrodynamic equations in graphene include
weak impurity scattering. As a result, both contributions to
the electric current decay, yielding Eqs. (17) and (15b).

Exactly at the neutrality point, the hydrodynamic contri-
bution to electric current [and hence the conductivity (17)]
vanishes. In this case, the optical conductivity in graphene is
given by Eq. (21) illustrated in Fig. 1. Assuming the disorder
scattering time in Eq. (21) to be negligibly small, one recovers
the result of Ref. [32]. This result was recently used in Ref. [1]
to establish the experimental value of the electron-electron
scattering time and ultimately the coupling constant, αg. In
the experiment, one treats αg as a fitting parameter using
the expression τ−1

11 = Cα2
gT , with the numerical coefficient C

calculated in Refs. [14,15,32,37,38] assuming the unscreened
Coulomb interaction. Such approach can be justified [32] by
1/N expansion, suggesting that all interaction effects includ-
ing screening and renormalization are confined to establishing
the value of the effective coupling constant but do not signifi-
cantly alter the momentum dependence of the matrix elements
of the Coulomb interaction [38] (in the typical momentum
range contributing to the collision integral).

At high enough doping levels, the electronic system in
graphene is degenerate and most results resemble their coun-
terparts in the usual Fermi liquid. In particular, the optical con-
ductivity is given by Eq. (19). This expression is independent
of the electron-electron scattering rate, which could be inter-
preted as “restoration” of Galilean invariance in the Fermi-
liquid regime. This result is fully hydrodynamic whereas the
kinetic contribution to conductivity vanishes in this limit.

At intermediate carrier densities, the electrical conductivity
is determined by the interplay of the above two mechanisms.
While the hydrodynamic contribution keeps the simple form
(17), the general expression for the kinetic contribution,
Eq. (14), is extremely cumbersome. It is therefore tempting to
use the interpolation formula, Eq. (1), instead. As evidenced
by the leading corrections in both limits, Eqs. (27) and (28),
the “exact” result (15b) differs from Eq. (1). However, the
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resulting optical conductivity is still roughly Lorentzian and
hence could be fit by Eq. (1) using the two scattering rates
as fitting parameters. Such approach was adopted in Ref. [1]
(even the electronic temperature was obtained from the fit).

External magnetic field further complicates the theory by
entangling the two contributions to the electric current. While
not affecting the leading-order behavior in the degenerate
regime, Eq. (34), the leading correction to the Drude behavior,
Eq. (35), is dominated by the coupling between the two
modes. At charge neutrality, the homogeneous electric current
is still unaffected by the coupling to the hydrodynamic modes,
but this is expected to change in finite-size samples where
the flow becomes inhomogeneous. Previously, this physics
was used to explain giant magnetodrag in graphene [48]
and to predict linear magnetoresistance in classically strong
magnetic fields [23,36,49].

Finally, linear-response transport in electronic systems can
be described within the kinetic theory in a wider parameter
range as compared to the applicability region of hydrodynam-
ics. The latter assumes that strong electron-electron interac-
tion establishes local equilibrium [14,15] describing the ideal
hydrodynamic flow. In contrast, the linear-response theory
[23] assumes that in the absence of external fields the system
is in the global equilibrium state described by the Fermi-Dirac
distribution function and characterized by vanishing currents.
Here the currents appear only as a response to the exter-
nal electric field. Remarkably, linearizing the hydrodynamic
equations in graphene (in order to find the linear-response
coefficients, such as electrical conductivity) yields exactly the
same macroscopic equations [e.g., Eqs. (33)] as in the linear-
response theory, rendering these equations more general than
the concept of local equilibrium. Consequently, the results
for optical conductivity obtained in this paper are valid in
a wider frequency range than expected from the purely hy-
drodynamic perspective. This conclusion is most pronounced
for the cyclotron resonance in moderately strong magnetic
fields (see Fig. 4), where the kinetic contribution to the
magnetoconductivity at relatively large frequencies dominates
the universal free-electron conductivity (32) describing the
high-frequency collisionless regime that is not included in
the semiclassical Boltzmann approach [24,26]. A discussion
of the quantum kinetic equation [24] including the interband
transitions responsible for Eq. (32) is beyond the scope of this
paper and will be reported elsewhere.
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APPENDIX A: LOCAL EQUILIBRIUM QUANTITIES

Under the assumption of local equilibrium, the macro-
scopic quantities appearing in the hydrodynamic theory can

be computed explicitly [15]. The quasiparticle densities and
the energy density have the following form:

n = n+ − n− = T 2

v2
g

g2(μ+/T ) − g2(−μ−/T )(
1 − u2/v2

g

)3/2 , (A1a)

nI = n+,0 + n− = T 2

v2
g

g2(μ+/T ) + g2(−μ−/T )(
1 − u2/v2

g

)3/2 , (A1b)

nE = 2
T 3

v2
g

1 + u2/
(
2v2

g

)(
1 − u2/v2

g

)5/2

[
g3

(
μ+
T

)
+ g3

(
− μ−

T

)]
, (A1c)

where

g2

(
μ

T

)
= − N

2π
Li2(−eμ/T ), (A2)

g3

(
μ

T

)
= − N

2π
Li3(−eμ/T ), (A3)

with Lin being the polylogarithm. It is convenient to express
the densities (A1) in the dimensionless form

n = NT 2

2πv2
g

ñ, nI = NT 2

2πv2
g

ñI , nE = NT 3

πv2
g

ñE . (A4)

In the simplest case considered in this paper, μ± = μ, the
dimensionless imbalance density simplifies to

ñI = x2

2
+ π2

6
, x = μ

T
. (A5)

Similarly, the compressibilities (for μ± = μ) are given by

∂n

∂μ
= NT

2πv2
g

,
∂nI

∂μ
= Nμ

2πv2
g

, T = 2T ln

[
2 cosh

x

2

]
.

(A6)

The two thermodynamic quantities in the hydrodynamic the-
ory, the pressure and enthalpy, are given by

P = nE

1 − u2/v2
g

2 + u2/v2
g

, (A7a)

W = nE + P = 3nE

2 + u2/v2
g

. (A7b)

They can be used to determine the stress-energy tensor

�
αβ
E = Pδαβ + v−2

g Wuαuβ (A8)

and the energy current (proportional to the momentum density
nk)

jE = v2
gnk = W u. (A9)

This relation is the key feature of the hydrodynamic descrip-
tion of the electronic system in graphene showing that it is
the energy and not electric current that is described by the
hydrodynamic flow. The quasiparticle currents are determined
by the corresponding densities

j = nu, jI = nI u. (A10)

Unlike the energy current, the quasiparticle currents are not
conserved in electron-electron collisions and hence acquire
the dissipative corrections (3h). Furthermore, the energy cur-
rent can be relaxed by disorder scattering and hence acquires
a dissipative correction of its own.
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APPENDIX B: COLLISION INTEGRAL

The integrated collision integrals (13d) are expressed in terms of the following scattering rates [15]:

1

τ11
= π2α2

gNT

[
NT

v2
g∂n0/∂μ

]∫
d2Q

(2π )2

dW

2π

|Ũ |2
sinh2 W

(
Y00Y11 − Y 2

01

)
, (B1a)

1

τ12
= π2α2

gNT

[
NT

v2
g∂n0/∂μ

]∫
d2Q

(2π )2

dW

2π

|Ũ |2
sinh2 W

(Y00Y12 − Y02Y01), (B1b)

1

τ22
= π2α2

gNT

[
NT

v2
g∂n0/∂μ

]∫
d2Q

(2π )2

dW

2π

|Ũ |2
sinh2 W

(
Y00Y22 − Y 2

02

)
, (B1c)

with

Y00(ω, q) = 1

4π

[
θ (|�| � 1)√

1 − �2
Z>

0 [I1] + θ (|�| � 1)√
�2 − 1

Z<
0 [I1]

]
, (B2a)

Y01(ω, q) = − 1

2π
[θ (|�| � 1)

√
1 − �2 Z>

2 [I] + θ (|�| � 1)
√

�2 − 1Z<
2 [I]], (B2b)

Y02(ω, q) = 1

2π

[
θ (|�| � 1)

√
1 − �2 Z>

2 [I1] + θ (|�| � 1)
|�|√

�2 − 1
Z<

3 [I1]

]
, (B2c)

Y11(ω, q) = 1

π
[θ (|�| � 1)

√
1 − �2 Z>

1 [I1] + θ (|�| � 1)
√

�2 − 1Z<
1 [I1]], (B2d)

Y12(ω, q) = − 1

π
θ (|�| � 1)

√
1 − �2 Z>

1 [I], (B2e)

Y22(ω, q) = 1

π

[
θ (|�| � 1)

√
1 − �2 Z>

1 [I1] + θ (|�| � 1)√
�2 − 1

Z<
3 [I1]

]
, (B2f)

where

Z>
0 [I] =

∫ ∞

1
dz
√

z2 − 1 I (z), Z<
0 [I] =

∫ 1

0
dz
√

1 − z2 I (z), (B3a)

Z>
1 [I] =

∫ ∞

1
dz

√
z2 − 1

z2 − �2
I (z), Z<

1 [I] =
∫ 1

0
dz

√
1 − z2

�2 − z2
I (z), (B3b)

Z>
2 [I] =

∫ ∞

1
dz

z
√

z2 − 1

z2 − �2
I (z), Z<

2 [I] =
∫ 1

0
dz

z
√

1 − z2

�2 − z2
I (z), (B3c)

Z>
3 [I] =

∫ ∞

1
dz

(z2 − 1)3/2

z2 − �2
I (z), Z<

3 [I] =
∫ 1

0
dz

(1 − z2)3/2

�2 − z2
I (z). (B3d)

The functions I and I1 are given by

I1(z) = tanh
zQ + W + x

2
+ tanh

zQ + W − x

2
− tanh

zQ − W + x

2
− tanh

zQ − W − x

2
, (B4a)

I (z) = tanh
zQ + W + x

2
− tanh

zQ + W − x

2
− tanh

zQ − W + x

2
+ tanh

zQ − W − x

2
. (B4b)

The scattering rates (B1) can be expressed in terms of
dimensionless integrals as

τ−1
i j = α2

gNT

16π2

[
NT

v2
g∂n/∂μ

]
t−1
i j , (B5)

which form the elements of the matrix T̂ [see Eqs. (13)].
In the above integrals the frequency and momentum are

expressed in terms of the dimensionless variables

Q = vgq
2T

, W = ω

2T
. (B6)

Finally, the Coulomb interaction has the form

U (ω, q) = 2πe2

q
Ũ = 2παgvg

q
Ũ , αg = e2

vgε
, (B7)

where ε is the dielectric constant of the environment and the
dimensionless factor Ũ accounts for screening.

APPENDIX C: COLLISION INTEGRAL
IN THE DEGENERATE REGIME

Here I evaluate the electron-electron scattering rates (B1)
in the degenerate (or Fermi-liquid) regime.
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Consider first the functions (B4). In the degenerate regime,
μ � T , but the frequency ω is of order T , i.e., W ∼ 1. As
a result, W � x, and one can expand the functions (B4) in
W . The expansion is simplified by the following observation.
For x � 1, the difference between two hyperbolic tangents is
sharply peaked at zQ ∼ x. For positive z one finds

I1(z; x � 1) ≈ −I (z; x � 1) ≈ IP(z; x � 1), (C1a)

IP(z) = tanh
zQ+W −x

2
− tanh

zQ−W −x

2
. (C1b)

The relaxation rates (B1) comprise two integrals each, one
over large and another over small values of the integration
variable z, z � 1 and 0 � z � 1, respectively. For small z,
the peak at zQ ∼ x translates into very large values of the
momentum, Q > x. At the same time, typical values of the
frequency are of order temperature, W ∼ 1, meaning W � x
and hence |�| = |W |/Q � 1. This conclusion has the follow-
ing two consequences.

First, only the region |�| < 1 contributes to the scattering
rates (up to exponentially small corrections; see below), hence
one only needs to evaluate the integrals (B3) over z > 1.
Taking into account Eq. (C1), I find that all three relaxation
rates (B1) coincide,

τ11 = τ12 = τ22, (C2)

such that the matrix of the relaxation rates is degenerate even
in the 2 × 2 sector. This degeneracy is due to the fact that in
this regime only one band contributes to any physical quantity.

Second, the calculation of the single remaining rate, τ−1
11 ,

can be simplified by expanding the function IP in powers of
W :

IP(z) ≈ 2W

1 + cosh(zQ − x)
+ W 3

3

cosh(zQ − x) − 2

[1 + cosh(zQ − x)]2
.

(C3)

Noticing that the integrand in Eq. (B1a) is an even function
of W and at the same time is independent of the direction of
Q, the integral can be simplified as

τ−1
11 = α2

g

N

4π

T 2

μ

∫ ∞

0

dW

sinh2 W

∫ ∞

W
QdQ|Ũ |2[Z>

0 [IP]Z>
1 [IP] − (1 − �2)(Z>

2 [IP])2]. (C4)

The function (C1) depends only on the combination of variables, y = zQ − x. Changing the integration variable to y, I find for
the three functions Z>

i appearing in Eq. (C4)

Z>
0 [IP] = 1

Q2

∫ ∞

Q−x
dyIP(y,W )

√
(x + y)2 − Q2 ≈ 1

Q2

⎡⎣xJ0

√
1 − Q2

x2
+ J1√

1 − Q2

x2

− J2Q2

2x3
(
1 − Q2

x2

)3/2

⎤⎦, (C5a)

Z>
1 [IP] =

∫ ∞

Q−x
dyIP(y,W )

√
(x + y)2 − Q2

(x + y)2 − W 2
≈ J0

x

√
1 − Q2

x2

1 − W 2

x2

− J1

x2

1 + W 2

x2 − 2 Q2

x2√
1 − Q2

x2

(
1 − W 2

x2

)2

+ J2

x3

1 + 3W 2

x2 − Q2

2x2

(
3 + W 2

x2

)2 + Q4

x4

(
3 + W 2

x2

)(
1 − Q2

x2

)3/2(
1 − W 2

x2

)3 , (C5b)

Z>
2 [IP] = 1

Q

∫ ∞

Q−x
dyIP(y,W )

(x + y)
√

(x + y)2 − Q2

(x + y)2 − W 2
≈ J0

√
1 − Q2

x2

1 − W 2

x2

+ J1

x

Q2

x2

(
1 + W 2

x2

)− 2W 2

x2√
1 − Q2

x2

(
1 − W 2

x2

)2

− J2

x2

Q2

2x2

(
1 + 3W 2

x2

)(
3 + W 2

x2

)− W 2

x2

(
3 + W 2

x2

)− Q4

x4

(
1 + 3W 2

x2

)(
1 − Q2

x2

)3/2(
1 − W 2

x2

)3 , (C5c)

where

Jn =
∫ ∞

Q−x
dyIP(y,W )yn, (C6)

and the expansion of the algebraic functions in Eqs. (C5) is justified by the fact that the function IP(y) has a form of a sharp peak
centered at y = 0 [and in fact exponentially decaying beyond y ∼ 1 as can be seen from the expansion (C3)], while x � 1.

Assuming W � x in the degenerate limit, I now disregard the factors W 2/x2 in the algebraic functions in Eqs. (C5) and form
the integrand in Eq. (C4) as (alternatively one can integrate the algebraic functions over momentum while keeping the frequency
finite and then compute the limit x → ∞; the results for both the leading and subleading terms are the same)

Z>
0 [IP]Z>

1 [IP] − (1 − �2)(Z>
2 [IP])2 ≈ 1

Q2

(
1 − Q2

x2

)[
J2

0
W 2

Q2
+ J0J2 − J2

1

x2
− J0J2

x2

Q2

x2

11
2 − 4 Q2

x2(
1 − Q2

x2

)2 + · · ·
]
, (C7)

where the frequency in the first term comes from the factor 1 − �2 in Eq. (C4), which cannot be neglected before one determines
the order of magnitude of the typical values of Q in the integral in Eq. (C4).
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Consider now the functions Jn. The integral for n = 0 yields [the exact result is followed by an approximation obtained by
integrating Eq. (C3); the same approximation can be obtained by series expansion]

J0 = 2[W − ln(eQ+W + ex ) + ln(eQ + ex+W )] ≈ 2W

(
1 + tanh

x − Q

2

)
− 4W 3

3

sinh4 x−Q
2

sinh3(x − Q)
≈ 4W θ (Q < x), (C8a)

where the second equality can be directly obtained by using the first term in the expansion (C3).
The other functions Jn cannot be integrated in a closed form. One can either evaluate them approximately using the leading-

order expansion (C3) or compute them numerically. The approximate calculation yields

J2
0 ≈ 16W 2θ (Q < x), J0J2 − J2

1 ≈ J0J2 ≈ 16(π2 + 1)

3
W 2θ (Q + 2 < x). (C8b)

Substituting the first term in Eq. (C7) into Eq. (C4) I find

t1 = α2
g

N

4π

T 2

μ

∫ ∞

0

dW

sinh2 W

∫ ∞

W
QdQ|Ũ |2 W 2

Q4

(
1 − Q2

x2

)
J2

0 ≈ α2
g

4N

π

T 2

μ

∫ ∞

0

dWW 4

sinh2 W

∫ x

W

dQ

Q3

(
1 − Q2

x2

)
|Ũ |2.

For bare Coulomb interaction, |Ũ |2 = 1, I evaluate the integrals as∫ ∞

0

dWW 4

sinh2 W

∫ x

W

dQ

Q3

(
1 − Q2

x2

)
= 1

2

∫ ∞

0

dWW 4

sinh2 W

(
1

W 2
− 1

x2
− 2

x2
ln

x

W

)
= π2

12
− π4

60x2

(
1 + 2 ln

γμ

T

)
, γ = 0.474.

For statically screened Coulomb, |Ũ |2 = Q2/(Q + κ)2, where the Thomas-Fermi screening yields κ = Nαgx, I find∫ x

W

dQ

Q

(
1 − Q2

x2

)
(Q + κ)2

=
[

1

κ
2

− 1

x2

][
W

W + κ

− x

x + κ

]
+
[

1

κ
2

+ 1

x2

][
ln

x

x + κ

− ln
W

W + κ

]
+ 1

x2
ln

W

x
,

which recovers the above result in the limit κ → 0. The limit x → ∞ here is nontrivial since κ ∝ x and one can discern three
regimes: κ � 1, 1 � κ � x, and κ � x. In the first regime, the integral differs from the above result for κ = 0 by small
corrections. The last regime has only a formal interest, since in order to achieve this one has to consider large αg contradicting
the assumptions of the present approach. In the second regime, the above expression can be represented as a series expansion in
x−1. For not too small αg � 0.1,∫ x

W

dQ

Q

(
1 − Q2

x2

)
(Q + κ)2

= 1

N2α2
gx2

[
ln

Nαg

W
− g(αg)

]
+ W

2N2α3
gx3

+ O(x−4),

where

g(αg) = 1 − Nαg + ln(1 + Nαg) + N2α2
g ln

1 + Nαg

Nαg
, g(αg � 0.25) ≈ ln(1 + Nαg) + 1

2
.

Note that the subleading term in this expansion is essential since the leading term changes sign at not too large W , while the
integral is explicitly positive. Integrating over the frequencies, I find∫ ∞

0

dWW 4

sinh2 W

∫ x

W

dQ

Q

(
1 − Q2

x2

)
(Q + κ)2

= π4

30N2α2
gx2

[ln(γ Nαg) − g(αg)] + 15ζ (5)

4N2α3
gx3

.

Again, while formally subleading in the limit x → ∞, the second term is important since for small αg the first term is negative.
Consider now the contribution of the second term in Eq. (C7). Similarly to the above, I find

t2 = α2
g

N

4π

T 2

μ

∫ ∞

0

dW

sinh2 W

∫ ∞

W
QdQ

1

Q2

(
1 − Q2

x2

)
J0J2 − J2

1

x2
≈ α2

g

4N

3π
(π2 + 1)

T 2

μx2

∫ ∞

0

dWW 4

sinh2 W

∫ x−2

W

dQ

Q

(
1 − Q2

x2

)
,

which in the limit x → ∞ is clearly subleading to t1.
As a result, the “scattering rate” τ−1

11 in the degenerate regime is given by

τ−1
11 ≈ πN

3
α2

g

T 2

μ
(C9a)

for the unscreened Coulomb interaction. Taking into account
screening, the result in the most interesting regime, 1 � κ <

x, is

τ−1
11 ≈ T 4

μ3

[
π

30
[ln(γ Nαg) − g(αg)] + 15ζ (5)

4παgx

]
. (C9b)

One should keep in mind, however, that the Thomas-Fermi
screening is nothing but the static limit of the random-phase
approximation (RPA). The latter is by no means exact, espe-
cially for not so small coupling constants. Hence including
the RPA screening but neglecting vertex corrections might
not yield a better approximation to the exact result than

115434-15



B. N. NAROZHNY PHYSICAL REVIEW B 100, 115434 (2019)

the bare Coulomb interaction. At the neutrality point this is
supported by 1/N expansion [32,38] where one can show
that for the momentum range dominating the integration the
leading-order results are given by the unscreened Coulomb
(perhaps, with the renormalized coupling constant). While
no such analysis has been reported in the degenerate regime,
the above statement seems plausible on physical grounds and
hence Eq. (C9b) should be treated with care.

APPENDIX D: COLLISION INTEGRAL CLOSE
TO CHARGE NEUTRALITY

At charge neutrality I (x = 0) = 0 and hence τ−1
12 = 0. In

the vicinity of charge neutrality the dependence on the chem-
ical potential (or on the dimensionless variable x = μ/T )
comes from the compressibility in the dimensionfull prefactor
in Eq. (B5) and the functions I and I1 determining the dimen-
sionless scattering rates t−1

i j .
The prefactor in Eq. (B5) can be expressed as follows:

α2
gNT

16π2

[
NT

v2
g∂n/∂μ

]
≈ α2

gT

4π ln 2

(
1 − x2

8 ln 2

)
.

Expanding both functions (B4) for x � 1, one finds

I1 = I (0)
1 + x2I (2)

1 + O(x3), (D1a)

I (0)
1 = 4 sinh W

cosh W + cosh zQ
,

I (2)
1 = 2 sinh W (cosh 2zQ − 2 cosh W cosh zQ − 3)

(cosh W + cosh zQ)3
,

I = −xI (1) + O(x3),

I (1) = 4
sinh zQ sinh W

(cosh W + cosh zQ)2
. (D1b)

Substituting these expansions into Eqs. (B1), one can es-
tablish the leading terms in the expansion of the scattering
rates

1

τ11
= α2

gT

4π ln 2

[
1

t (0)
11

+ x2

(
1

t (2)
11

− 1

8 ln 2

1

t (0)
11

)
+ O(x3)

]
,

(D2a)

1

τ12
= α2

gT

4π ln 2

x

t (1)
12

+ O(x3), (D2b)

1

τ22
= α2

gT

4π ln 2

[
1

t (0)
22

+ x2

(
1

t (2)
22

− 1

8 ln 2

1

t (0)
22

)
+ O(x3)

]
.

(D2c)

The quantities t (0,1,2)
i j in Eqs. (D2) are the expansion co-

efficients of the dimensionless integral in Eq. (B5) close
to the Dirac point in the self-evident notation similar to
that in Eqs. (D1). For unscreened Coulomb interaction these
quantities are just numbers without any dependence on any
physical parameter. If screening is taken into account, then
these numbers depend on the screening length, i.e., on a fixed
combination of the coupling constant and temperature.

For unscreened Coulomb interaction, one finds the fol-
lowing numerical values (neglecting the small [37] exchange

contribution):(
t (0)
11

)−1 ≈ 33.13,
(
t (2)
11

)−1 ≈ 3.38,(
t (1)
12

)−1 ≈ 5.45,
(
t (0)
22

)−1 ≈ 18.02,
(
t (2)
22

)−1 ≈ 4.73.

APPENDIX E: OPTICAL CONDUCTIVITY CLOSE
TO CHARGE NEUTRALITY

Inverting the matrix Sxx using the identity

[Sxx(0) + δSxx]−1 ≈ S−1
xx (0) − S−1

xx (0)δSxxS
−1
xx (0),

and substituting the result into the general expression (15b)
together with the expansions of the matrices M̂h(n), one finds
the leading contribution to Eq. (24) as

M̂hS
−1
xx M̂n

≈ M̂hS
−1
xx (0)M̂n + M̂h(0)S−1

xx (0)δSxxS
−1
xx (0)M̂n(0)

+ δM̂hS
−1
xx (0)δSxxS

−1
xx (0)M̂n(0)

+ M̂h(0)S−1
xx (0)δSxxS

−1
xx (0)δM̂n.

The first line comprises the zeroth-order result, Eq. (24), and
the correction

δσ1(ω) = γ11e2T x2

−iω + τ−1
dis + τ−1

11 (0)
+ γ12e2T x2

−iω + τ−1
dis + γ13τ

−1
22 (0)

,

where the scattering rates are evaluated at the Dirac point,
x = 0, and the numerical coefficients are

γ11 = 2 ln 2

π

8 ln 2

27ζ (3)
≈ 0.17 × 2 ln 2

π
≈ 0.075,

γ12 = 3[4π2 ln 2 − 27ζ (3)]2

162πζ (3) ln 2 − π5
≈ 0.66,

γ13 = 162πζ (3) ln 2

162πζ (3) ln 2 − π5
≈ 3.59.

The second line yields

δσ2(ω) = e2T x2

2π2

1
τ

(2)
11

− 1
8 ln 2

1
τ11(0)[−iω + τ−1

dis + τ−1
11 (0)

]2 ,

where the numerator represents the leading correction to the
scattering rate τ−1

11 [see Eq. (D2a)]. Finally, the last two lines
give rise to two similar contributions

δσ3(ω) = e2T x2

−iω + τ−1
dis + τ−1

11 (0)

1

−iω + τ−1
dis + γ13τ

−1
22 (0)

× [
γ31τ

−1
22 (0) + γ32

(−iω + τ−1
dis

)− γ33/τ
(1)
12

]
,

δσ4(ω) = e2T x2

−iω + τ−1
dis + τ−1

11 (0)

1

−iω + τ−1
dis + γ13τ

−1
22 (0)

× [
γ41
(−iω + τ−1

dis

)+ γ42/τ
(1)
12

]
,
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where

γ31 = 288 ln3 2

162πζ (3) ln 2 − π5
≈ 0.81,

γ32 = 3(96 ln3 2 + 27ζ (3) − 8π2 ln 2)

162πζ (3) ln 2 − π5
≈ 0.246,

γ33 = 3[8π2 ln 2 − 27ζ (3)]

162πζ (3) ln 2 − π5
≈ 0.57,

γ41 = 3[4π2 ln 2 − 27ζ (3)][8π2 ln 2 − 54ζ (3)]

2(162πζ (3) ln 2 − π5)
≈ 0.66,

γ42 = 81ζ (3)[4π2 ln 2 − 27ζ (3)]

2π (162πζ (3) ln 2 − π5)
≈ 0.67.
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