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Quantum Hall skyrmions at ν = 0,±1 in monolayer graphene
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Monolayer graphene under a strong perpendicular magnetic field exhibits quantum Hall ferromagnetism with
spontaneously broken spin and valley symmetry [K. Nomura and A. H. MacDonald, Phys. Rev. Lett. 96, 256602
(2006)]. The approximate SU(4) spin/valley symmetry is broken by small lattice-scale effects in the central
Landau level corresponding to filling factors ν = 0, ±1. Notably, the ground state at ν = 0 is believed to be a
canted antiferromagnetic (AF) or a ferromagnetic (F) state depending on the component of the magnetic field
parallel to the layer and the strength of small anisotropies. We study the skyrmions for the filling factors ν =
±1, 0 by using exact diagonalizations on the spherical geometry. If we neglect anisotropies, we confirm the
validity of the standard skyrmion picture generalized to four degrees of freedom. For filling factor ν = −1,
the hole skyrmion is an infinite-size valley skyrmion with full spin polarization because it does not feel the
anisotropies. The electron skyrmion is also always of infinite size. In the F phase it is always fully polarized,
while in the AF phase it undergoes continuous magnetization under increasing Zeeman energy. In the case of
ν = 0, the skyrmion is always maximally localized in space both in F and AF phases. In the F phase it is fully
polarized, while in the AF phase it has also progressive magnetization with Zeeman energy. The magnetization
process is unrelated to the spatial profile of the skyrmions, contrary to the SU(2) case. In all cases, the skyrmion
physics is dominated by the competition between anisotropies and Zeeman effect but not directly by the Coulomb
interactions, breaking universal scaling with the ratio Zeeman to Coulomb energy.

DOI: 10.1103/PhysRevB.100.115422

I. INTRODUCTION

Monolayer graphene is a new two-dimensional (2D) elec-
tron system with Dirac cones in the energy-band structure.
Application of a perpendicular magnetic field leads to the
formation of Landau levels that have peculiar features not
seen in conventional 2D electron gases in semiconducting
materials like GaAs. Notably [1–5], at neutrality there are
a set of fourfold degenerate Landau levels that stay at zero
energy for all values of the field in the absence of Zeeman
energy. The graphene physics in this regime is dominated by
the interplay between the twofold valley degeneracy and the
usual spin degeneracy. This special feature has been clearly
observed experimentally [1–4]. It has been shown notably
that the fourfold degeneracy is completely lifted, leading to
quantum Hall states at Landau level filling factors ν = 0,±1.
This phenomenon can be described as a generalization of the
quantum Hall ferromagnetism [6] which is well known in the
case of the spin degree of freedom [7–17] or in the “which
layer” pseudospin for bilayer 2D electron gases [18–20]. In
the case of graphene there is an approximate SU(4) symmetry
which is spontaneously broken, giving rise to several possible
ground states and associated collective Goldstone modes [11].

A general consequence of the formation of quantum Hall
ferromagnetic ground states is that charge carriers are now
skyrmions instead of simple quasiparticles describable by
Hartree-Fock–type electrons or holes. The local extra charge
positive or negative is accompanied by a texture in the inter-
nal degrees of freedom, i.e., spin and valley in the case of
graphene. These entities are well known to appear in the case

of SU(2) degeneracy, but the graphene system gives them an
even richer structure [21–30]. This is expected to happen close
to all integer filling factors. In the case of spin skyrmions,
there is a competition between Coulomb interactions and the
Zeeman energy: indeed, the interactions favor an extended
texture while the Zeeman energy favors localized states. As
a consequence, there are a finite number of spin flips in a
given texture which can be tuned by varying the ratio of
these two energies. This interplay can be captured by Hartree-
Fock theory [14,31–40] and exact diagonalization techniques
[41–44]. In the case of valley skyrmions, there is no analog of
the Zeeman energy so exchange interactions favor infinitely
large skyrmions [45]. The case of graphene is richer due to the
fact that one may have both spin flips and valley flips. Previous
works have investigated this competition for various filling
factors. However, there is a crucial ingredient that has to be
included: the fact that the SU(4) symmetry is explicitly broken
by lattice-scale effects [46–50]. This phenomenon is particu-
larly acute in the central set of states ν = ±1, 0. Indeed, at
ν = 0 there is a huge degeneracy of SU(4) ground states. To
construct a Slater determinant describing ν = 0 according to
quantum Hall ferromagnetism theory, one has to select two
orthogonal spinors in a four-dimensional space spanned by
spin and valley degrees of freedom. This leads [48–52] to can-
didate states with ferromagnetic (F) or antiferromagnetic (AF)
ordering, charge-density wave, or Kekule states all related
by the SU(4) symmetry. It is likely that the ground state of
monolayer graphene has antiferromagnetic order and that the
application of a field parallel to the plane by, e.g., tilting the
sample leads to a transition to the ferromagnetic phase and a

2469-9950/2019/100(11)/115422(11) 115422-1 ©2019 American Physical Society

https://orcid.org/0000-0003-2510-0473
https://orcid.org/0000-0001-8540-6832
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.115422&domain=pdf&date_stamp=2019-09-13
https://doi.org/10.1103/PhysRevLett.96.256602
https://doi.org/10.1103/PhysRevLett.96.256602
https://doi.org/10.1103/PhysRevLett.96.256602
https://doi.org/10.1103/PhysRevLett.96.256602
https://doi.org/10.1103/PhysRevB.100.115422


THIERRY JOLICOEUR AND BRADRAJ PANDEY PHYSICAL REVIEW B 100, 115422 (2019)

change of edge conduction [48,49,53–55]. It is thus important
to understand the nature of charge carriers at least in these two
phases of graphene in the quantum Hall regime.

In this paper, we use exact diagonalization of small systems
in the spherical geometry to study the skyrmion physics.
Indeed, it is known that the formation of skyrmions in usual
SU(2) systems has very simple observable consequences in
this geometry. We show that in the SU(4) case there are no
low-energy states beyond those associated with skyrmions
generalized to four-flavor case. This is established by formu-
lating counting rules for quantum skyrmion states. We next
add anisotropic terms breaking the valley symmetry that is in-
duced by lattice-scale physics. They can be written in a simple
form which is parametrized by only two unknown quantities:
in addition to an overall strength of the anisotropies, we use an
angle whose variation allows to study both AF and F phases.

In the case of filling factor ν = −1, we investigate in detail
the electron skyrmion since its hole counterpart does not feel
the anisotropies. We find that it is always of infinite size since
the ground state has always zero total angular momentum and
hence is delocalized over the whole sphere. In the F phase
it is also fully spin polarized, but valley totally unpolarized.
On the contrary, in the AF phase it undergoes progressive
magnetization when increasing the Zeeman energy. In the
case of ν = 0, the skyrmion ground state in both phases F
and AF prefers to have the maximum angular momentum
along the skyrmion branch of states, meaning that it is of
smallest possible spatial extent. Again in the F phase it is
fully polarized in spin and valley unpolarized while the AF
phase also has progressive magnetization and also no valley
polarization.

In both cases, the specific feature of these SU(4) skyrmions
is that the magnetization process is determined by the energy
splitting entirely due to anisotropies within a single-orbital
multiplet: L = 0 in the case of ν = ±1 or L = Lmax for ν = 0.
This splitting is ruled by the anisotropy energy scale and
not by the Coulomb energy scale. Hence, it is a competi-
tion between Zeeman effect and anisotropies which governs
skyrmion physics.

In Sec. II we recall some relevant facts about monolayer
graphene under a magnetic field and the anisotropies impor-
tant to the physics of the central zero-energy Landau level.
In Sec. III we discuss the physics of SU(2) skyrmions in the
sphere geometry. In Sec. III we concentrate on the filling
factors ν = ±1. Section IV is devoted to the filling ν = 0.
Finally, Sec. V contains our conclusions.

II. QHE IN MONOLAYER GRAPHENE AND SYMMETRIES

When monolayer graphene is subjected to a perpendicular
magnetic field B there is formation of Landau levels which
have a simple form close to neutrality:

Ens = sgn(n)
h̄vF

√
2

�B

√
|n| − 1

2
gLμBBs, (1)

where n is an integer (positive or negative), the electronic
spin is s = ±1, the magnetic length is given by �B = √

h̄c/eB,
vF is the velocity at the Dirac point, μB the Bohr magneton,
and the Landé factor gL = 2. There is an additional twofold
degeneracy due to the two valleys K and K ′. Electric neutrality

of the graphene layer corresponds to half-filling of the zero-
energy Landau level with n = 0 in Eq. (1). If we neglect the
Zeeman energy gLμBB, there is a fourfold degeneracy. Simple
band filling of these Landau levels leads to the prediction of
integer quantum Hall effect (IQHE) with Hall conductance:

σxy = (4p + 2)
e2

h
, (2)

with p positive or negative so IQHE occurs at filling factors
ν = ±2,±6,±10, . . . . Experiments on high-quality samples
have revealed that in fact IQHE occurs at all integer filling
factors, including the special ν = 0 state. The states at fillings
ν = ±1, 0 all correspond to some occurrence of quantum Hall
ferromagnetism and are the subject of our study. We thus con-
centrate on the Fock space spanned by the orbital n = 0 set of
states in the limit of negligible Landau level mixing. Coulomb
interactions between electrons are the essential ingredient for
quantum Hall ferromagnetism. It is invariant under SU(2)
spin rotations but, in fact, there is a larger SU(4) invariance
under unitary transformations in the four-dimensional space
spanned by the spin and valley degrees of freedom. So, the
Hamiltonian we consider contains at least Coulomb interac-
tions and Zeeman energy:

H0 =
∑
i< j

e2

ε|ri − r j | + εZ

∑
i

σ z
i , (3)

where in the Zeeman term we have used the Pauli matrix σz

in spin space and εZ = gLμBB/2. This symmetry, however, is
only approximate and notably the fate of the ground states at
ν = 0 depends on details of the graphene system beyond this
simple symmetric treatment. The short-distance behavior of
Coulomb interactions as well as electron-phonon interactions
breaks down SU(4) in a way that can plausibly be modeled by
a simple local effective Hamiltonian as proposed notably by
Kharitonov [48,49]:

Haniso =
∑
i< j

[
g⊥

(
τ x

i τ x
j + τ

y
i τ

y
j

) + gzτ
z
i τ

z
j

]
δ(2)(ri − r j ), (4)

where the τα Pauli matrices operate in valley space. The
model we consider is given by the total Hamiltonian H0 +
Haniso. There is a U(1) symmetry due to rotations around the
isospin z axis leading to conservation of the z component of
isospin Tz. In the absence of Zeeman energy, there is complete
SU(2) spin symmetry which is broken down to U(1) spin
rotation around z axis with generator Sz for nonzero Landé
factor. The parameters g⊥, gz are not precisely known, but
the associated energy scale is likely to be larger than the
Zeeman energy in graphene samples. This energy scale is
nevertheless smaller than the Coulomb energy scale. The main
evidence for the role of anisotropies is the presence of a
phase transition in the conductance observed when tilting the
applied magnetic field [53,55]. It is convenient to parametrize
the two coefficients g⊥,z with an angular variable θ :

g⊥ = gcos θ, gz = g sin θ, (5)

in addition to an overall strength g which we take as positive.
We next define a dimensionless strength of the anisotropies by
using the Coulomb energy scale as a reference point:

g̃ = (
g/�2

B

)
/(e2/(ε�B)). (6)
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It is also convenient to translate the parameters g⊥,z into
separate energy scales:

u⊥ = g⊥
2π�2

B

, uz = gz

2π�2
B

. (7)

Experimental evidence suggests that the energy scale g/�2
B is

small compared to the typical Coulomb energy e2/(ε�B) so the
effect of anisotropies should be seen as a small perturbation
that lifts SU(4) degeneracies. Notably, it selects the ν = 0
ground state among several possibilities. Let us follow the
quantum Hall ferromagnetism approach [48,49,56,57] to de-
scribe the filling factor ν = 0. We have to find two orthogonal
vectors φ1 and φ2 in the four-dimensional space spanned
by {|K ↑〉, |K ↓〉, |K ′ ↑〉, |K ′ ↓〉} and fill exactly all orbital
indices denoted by m:

|�0〉 =
∏

m

c†
mφ1

c†
mφ2

|0〉. (8)

If we neglect Landau level mixing, then these states, for any
choice of the pair φ1, φ2, are exact eigenstates of the fully
SU(4) symmetric Coulomb interaction. It is likely that they
are even exact ground states as observed numerically on small
systems [50]. Adding anisotropies that break the full SU(4)
symmetry lifts this degeneracy and leads to the following
phases studied in Refs. [48–50]:

(i) The ferromagnetic phase F defined by φ1 = |K ↑
〉, φ2 = |K ′ ↑〉 which is stabilized in the range −π/4 < θ <

+π/2.
(ii) The antiferromagnetic phase AF with φ1 = |K ↑

〉, φ2 = |K ′ ↓〉 preferred in the range π/2 < θ < 3π/4; note
that this state is an antiferromagnet both in spin space and in
valley space.

(iii) The Kekule state (KD) with φ1 = |n ↑〉, φ2 = |n ↓〉
where n is a vector lying in the XY plane of the Bloch sphere
for valley degrees of freedom: n = (|K〉 + eiφ |K ′〉)/

√
2 where

φ is an arbitrary angle in the XY plane. This state is a spin
singlet but a XY valley ferromagnet. It is preferred in the
range 3π/4 < θ < 5π/4.

(iv) The charge-density-wave state (CDW) defined by
φ1 = |K ↑〉, φ2 = |K ↓〉. This state is a spin singlet but a
valley ferromagnet. Since the valley index coincides with the
sublattice index in the central Landau level, this state has all
the charge density on one sublattice and would be favored by
a substrate breaking explicitly the sublattice symmetry like
hexagonal boron nitride. It requires the range 5π/4 < θ <

7π/4 as it is stabilized by negative valley interactions along
the z direction.

This description is strictly valid in the absence of Zeeman
energy. Notably, when the Landé factor is not zero, the AF
phase undergoes spin canting: for small Zeeman energy it
is energetically more favorable to have the spins lying in
the plane orthogonal to the direction of the field and almost
antiparallel, both having a small component aligned with the
field. Increasing the Zeeman energy leads to an increased
component in the field direction up to full saturation where
we recover the F phase. A mean-field calculation leads to an
approximate state described by φ1 = |K, s+〉, φ2 = |K ′, s−〉
with the spin states on the Bloch sphere coordinates are given
by s± = (± sin α cos β,± sin α sin β, cos α) where β is an
arbitrary angle in the XY plane of the spin Bloch sphere and

α is the canting angle determined by the competition between
Zeeman energy and anisotropies cos α = εZ/(2|u⊥|). This is
the so-called canted antiferromagnetic phase (CAF). Negligi-
ble Zeeman energy leads to the pure AF phase while large
Zeeman energy realized by tilting the field leads to the limit
α → π/2: the two spins become aligned and we are in the
ferromagnetic phase. The transition observed experimentally
in the conductance of the samples of Ref. [53] is attributed to
this CAF/F transition. Since we discuss the role of Zeeman
energy in some detail, we will use interchangeably AF and
CAF for the antiferromagnetic phase.

There are interesting high-symmetry points in the full
Hamiltonian H0 + Haniso. They are studied in detail in
Ref. [50]. Notably, there is a SO(5) symmetry at the boundary
g⊥ + gz = 0 between the AF and the KD phases which uni-
fies antiferromagnetism and Kekule ordering. In this paper,
we concentrate on the study of skyrmions only for AF and
F phase because these are likely seen in experiments. We
note for the future that with a substrate breaking sublattice
equivalence (such as hexagonal boron nitride), it is possible
to stabilize the KD phase or the CDW phase.

In the case of the filling ν = −1, the ground-state wave
function is given by

|�−1〉 =
∏

m

c†
mφ|0〉, (9)

where φ is any spinor and the sum over orbital indices m
fills all available states. While this is an exact eigenstate
of the SU(4) symmetric Coulomb interactions, it is also an
exact eigenstate of the anisotropic Hamiltonian (4) because
the wave function (9) vanishes when two particles are at the
same point space and the anisotropies are taken to be purely
local. It means that the degeneracy in the choice of φ is not
lifted by the simple model we use. This ambiguity persists for
quasihole states that are created from ν = −1 by adding extra
flux. Since the state is even less dense than Eq. (9), its wave
function still vanishes when particle positions coincide. How-
ever, the electron skyrmion which is more dense is sensitive
to anisotropies and its fate will be studied in Sec. IV. A lattice
model like the one studied in Ref. [58] may be necessary to
pinpoint the true nature of the ground state at ν = −1. Since
the anisotropies described by Eq. (4) will change the nature of
the electron skyrmion for ν = −1, we will refer to the range
π/2 < θ < 3π/4 as the AF phase and −π/4 < θ < +π/2 as
the F phase even for ν = ±1.

III. SU(2) SKYRMIONS AND THE
SPHERICAL GEOMETRY

In this section we recall basic facts about SU(2) skyrmions
as studied in the spherical geometry. We consider electrons
with spin 1

2 interacting through the spin-symmetric Coulomb
interaction and no anisotropies in spin space. This means that
the Hamiltonian is given by Eq. (3), i.e., it is just H0. If there
are Nφ flux quanta through the sphere, then ν = 1 filling of the
lowest Landau level requires N = Nφ + 1 electrons and in the
absence of Zeeman energy the corresponding wave function
is given by a Slater determinant

|�ν=1〉 =
∏
M

c†
Mχ |0〉, (10)
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FIG. 1. Energy spectrum of 12 electrons on a sphere with Nφ =
12 flux quanta and zero Zeeman energy, leading to the formation
of a SU(2) hole skyrmion. Energies are plotted as a function of
total orbital angular momentum. There is a well-defined branch of
low-lying states extending from L = 0 up to L = Nφ/2 of states
having L = S that are interpreted as skyrmion states (green dots). The
ground state at L = 0 is also a spin-singlet state which is delocalized
on the whole sphere. The highest-lying state with L = Nφ/2 = 6 of
the skyrmion branch is the fully polarized hole.

where all orbital states are occupied M = −S, . . . ,+S where
Nφ = 2S and |χ〉 is any spin state. The one-body states
indexed by integer or half-integer M are given by

�
(S)
M =

√
Nφ + 1

4π

(
Nφ

S − M

)
uS+MvS−M ,

u = cos
ψ

2
e−iη/2, v = sin

ψ

2
eiη/2, (11)

where ψ, η are spherical coordinates and the number of flux
quanta through the sphere Nφ = 2S is an integer. One-body
states are eigenstates of the orbital angular momentum and
so many-body states can also be classified with total angular
momentum since Coulomb interactions and local anisotropies
translate into rotationally invariant interactions on the sphere.
The state wave function (10) is an orbital singlet Ltot = 0 and
a ferromagnetic multiplet of maximal total spin since the state
is totally spin symmetric. From this fiducial state one can
now add or remove one electron to obtain an entity carrying
charge. A Hartree-Fock approximation is simply to remove
one electron from wave function (10) or to add an electron
with a spin state χ ′ orthogonal to χ and in any orbital state.
Indeed, the ground states are no longer exactly given by a
simple Slater determinant.

It has been discovered numerically [8,9] that the ground
state becomes a spin and orbital singlet when changing by
one unit the number of charges in the system. In addition to a
Ltot = Stot = 0 ground state, there is a low-lying well-defined
branch of states that have equal spin and orbital momentum
L = S that rises up to L = S = Nφ/2. It is well isolated from
higher-lying states (see Fig. 1 for a typical spectrum in the
absence of Zeeman energy). The end of this skyrmion branch
is reached for L = Nφ/2 by the fully polarized hole state

whose exact wave function can be obtained by removing one
creation operator in the wave function (10). This skyrmion
branch is the finite-size translation of the skyrmion spin
texture described by the nonlinear sigma model [10,11]. The
shape of the branch is a reflection of interaction potential
between electrons. Indeed, by using a hard-core interaction
between same-spin electrons, it becomes perfectly flat.

It is convenient to introduce the number of overturned
spins K with respect to the fully polarized case by L = S =
Nφ/2 − K : K increases monotonically as we go along the
skyrmion branch starting from the polarized hole with K =
0. The ground state with L = 0 is fully delocalized on the
sphere and corresponds to a skyrmion of infinite size in the
thermodynamic limit. It is reached for larger and larger K
as the number of particles grows. The exponential growth of
the Fock space with the number of particles severely limits
the sizes that can be reached by exact diagonalization. It
means we can study only skyrmions with a small number of
overturned spins. To overcome this problem, it is also possible
to use trial wave functions in Hartree-Fock calculations. They
can written in the disk geometry as follows:

|�h〉 =
∞∏

m=0

(
umc†

m↑ + vmc†
m+1↓

)|0〉, (12)

where the one-body states indexed by a positive integer m are
the symmetric gauge lowest Landau level eigenstates:

φm(z) = zm

√
2π2mm!

exp
( − |z|2/4�2

B

)
, (13)

where we have defined the complex planar coordinate z = x +
iy and m � 0 is a positive integer. The coefficients um and vm

are variational parameters.
The magnetization process of the skyrmion involves both

spin and orbital angular momentum. In the absence of the
Zeeman term, the ground state is the L = 0 member of the
skyrmion branch. This describes a state with no characteristic
length scale; it is delocalized over all the sphere and cor-
responds to a skyrmion of infinite size. With finite Zeeman
coupling all higher-lying states along the skyrmion branch are
split according to their spin value: since for a finite system
there are finite-energy separations between these states there
will be a succession of level crossings when states with
increasing spin become the ground state in the presence of the
Zeeman effect. The magnetization curve is then a staircase as
a function of the applied field B. The critical fields are defined
through

gLμBB(N/2−K )
crit = EL=K+1 − EL=K . (14)

See, e.g., Fig. 2 where we plot the number of overturned spins
K with respect to the fully saturated case. It is only beyond
some critical field that the ground state becomes fully magne-
tized when a state from the multiplet with L = Nφ/2 becomes
the ground state. If we apply the Hartree-Fock (HF) method
to the state (12) along the lines of Refs. [13,14,31,32,40], we
obtain another approximation to the skyrmion state and thus
of the magnetization curve. In Fig. 2 we have plotted the HF
result in addition to the curve extracted from exact diagonal-
ization with 12 electrons on a sphere. We recover the typical
skyrmion spin flip of K ≈ 3 when gLμBB ≈ 0.015e2/(ε�B)
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FIG. 2. The number of overturned spins in a SU(2) hole
skyrmion as a function of Zeeman energy. The blue steps indicate
the level crossings as observed by exact diagonalization of N = 12
electrons on a sphere with Nφ = 12. The green curve comes from
a Hartree-Fock calculation with the variational state (12). A finite
Zeeman energy is required to fully polarize the system.

in GaAs systems. The various approaches to the skyrmion
properties have been compared in Ref. [12]. It is important to
note that the Coulomb interaction is responsible for the shape
of the skyrmion branch and there is a competition between
this effect and the Zeeman energy to determine the skyrmion
profile. This simple picture will break down in the SU(4) case
as we discuss in the following.

IV. SKYRMIONS AT ν = ±1

If we first neglect anisotropies, we can make exact state-
ments about SU(4) skyrmions at filling factor ν = −1 and its
particle-hole partner filling ν = +1. Indeed, if we consider
exact eigenstates of the SU(2)-symmetric situation without
Zeeman coupling, these states can be embedded in the larger
Fock space built for four flavors and since Coulomb inter-
actions are fully SU(4) symmetric, these states will remain
exact eigenstates. The only characteristic that changes is the
degeneracy since one spin flip is exactly equivalent to any
flavor flip, only the counting of states is different. So, we
know that the SU(2) skyrmion states are still present in the
SU(4) case. The only question is whether or not intruder
states will destroy this picture. This question can be studied
by our exact diagonalizations and the answer is simple: there
are no new intruder states with SU(4) character beyond the
states we know from the SU(2) case. We find that this is valid
for the whole skyrmion branch: the picture corresponding to
our Fig. 1 is thus exactly the same in the SU(4) case. Only
the degeneracies of the states change. There are of course
additional new states but they lie at higher energies in the
upper part of the spectrum. This is evidence for the correctness
of the discussion given in Ref. [21]. These arguments equally
apply to ν = ±1 and ν = 0.

According to Refs. [6,21], the degeneracies can be com-
puted straightforwardly with Young tableaux. The skyrmion
state with largest angular momentum spans an SU(4)

irreducible representation (IR) given by one row of Nφ boxes:

L = Nφ/2 : . . . . . . . . .
; (15)

then the neighboring state with K = 1 has one row of Nφ − 1
boxes and one row of one box:

L = Nφ/2 − 1 : . . . . . .

. (16)

We move then along the whole skyrmion branch by removing
boxes from the upper row and transferring them to the second
row :

L = Nφ/2 − 2 : . . . . . .

. (17)

We proceed until there are Nφ/2 boxes in both rows (we as-
sume Nφ even for simplicity, otherwise there is one remaining
box):

L = 0 : . . .

. . .
. (18)

In the SU(2) case, we can omit the second row and we just
obtain the spin multiplets with L = S. In the SU(4) case, these
IRs have dimensions given by

D(a, b) = 1
2 (a + 1)(b + 1)(b + 2)(a + b + 2)(a + b + 3),

(19)
where b is the number of columns with two boxes and a is the
number of columns with one box.

We now turn to the role of graphene-specific anisotropies
at ν = ±1. In the absence of the Zeeman term, eigenstates are
classified by total angular momentum and spin as in the SU(2)
case, but the anisotropic Hamiltonian (4) allows conservation
of valley isospin along the z direction. The corresponding
isospin Tz is a good quantum number that we use in our exact
diagonalizations in addition to Lz and Sz. This is for a generic
angle: special values of θ in Eq. (4) have more conserved
quantities which we do not consider here. As long as the
magnitude g̃ of the anisotropy remains small, each state of the
skyrmion will have its SU(4) degeneracy lifted but the overall
picture remains valid. In Fig. 3 we have plotted the spectrum
of a 10-electron system with flux tuned to create an electron
skyrmion. The states of the skyrmion branch are now split in
a series of multiplets and, for small enough anisotropy, they
still keep the shape we associate to skyrmion states from the
SU(2) case. Even for an unrealistically large value of g/�2

B =
e2/(ε�B) the skyrmion survives. The effect of anisotropies
of Eq. (4) for small g̃ is simply a first-order perturbation
theory lifting the degeneracies between members of a given
L multiplet. The eigenstates with nonzero anisotropies still
have good quantum numbers: total spin and also Tz. But now
we have to take into account the fact that the magnetization
process that takes place when we increase the Zeeman energy
is quite different from what happens in the SU(2) discussed in
Sec. III. Indeed, for each multiplet along the skyrmion branch
there are states with all possible values of the spin form S = 0
up to S = N/2. So, each multiplet has its own magnetization
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FIG. 3. Energy spectrum of 10 electrons on a sphere with Nφ = 8
flux quanta and zero Zeeman energy. There is formation of a ν =
−1 electron skyrmion. Energies are plotted as a function of the total
angular momentum. The anisotropies are taken to be g̃ = 0.1 and
the anisotropy angle is θ = 0.6π so the system is in the AF phase.
All SU(4) multiplets along the skyrmion branch are now split into
manifolds of states with an energy splitting scale O(g̃) [even with a
very large anisotropy O(1) the skyrmion picture is not destroyed].
The value g̃ = 0.1 is chosen for readability of the figure, and realistic
values are likely smaller.

curve and thus one has to figure out which multiplet will
describe the magnetization process in the thermodynamic
limit. An important consequence is that the energy scale of
the magnetization curve is set by the anisotropy energies and
not by the Coulomb scale :

gLμBB(S)
crit = ES+1 − ES = O

(
g/�2

B

)
. (20)

This is due to the fact that all level crossings corresponding
to the magnetization process occur within a manifold of states
whose degeneracy is lifted solely by nonzero anisotropies.

We now discuss the level ordering in the two phases of
interest, AF and F. The situation in the F phase is very simple
indeed: for each value of L, the multiplet has a ground state
with the maximal spin S = N/2 as can be guessed by the
ferromagnetic nature of the anisotropies. As a consequence,
the maximal spin state with L = 0 will be the ground state
for all values of the Zeeman energy. This means that in the F
phase the skyrmions are always of infinite size and always
fully polarized for all values of the Zeeman field. This is
very different from the case of SU(2) skyrmions where the
fully polarized quasiparticle is the state which is maximally
localized with a size of order �B. Concerning the valley
degrees of freedom, the ground state has always the smallest
possible value of Tz, i.e., Tz = 0 for N even and Tz = 1

2 for N
odd. So, the skyrmion is valley unpolarized.

We have checked that this picture is valid deep in the
F phase but we cannot track the eigenstates close to the
transition point θ = π/2 because there are additional degen-
eracies due to the enhanced symmetry rendering delicate the
convergence of Krylov-subspace methods.

In the AF phase, we observe now that the ordering of the
multiplets is reversed with respect to the F case and now the

FIG. 4. The gaps between the singlet state and the fully mag-
netized state for a given K value as a function of system size. The
values are computed in the AF phase with θ = 0.6π and g̃ = 0.1.
The tentative linear fits given by the straight lines are listed in Table I.

ground state at fixed L has always zero spin. The magnetized
states have energies increasing with magnetization at fixed
L. It is convenient to index states along the skyrmion branch
again by K = Nφ/2 − L, K = 0, 1, . . . . For each K we define
the magnetization gap GNφ

(K ) as the difference in energy
between the ground state at this K and the lowest-lying state
which is fully polarized and hence has a spin S = N/2, how-
ever, this spin value is now unrelated to K , contrary to SU(2)
skyrmions. These gaps are plotted in Fig. 4 as a function of
Nφ = 4, 6, 8 for the accessible values of K . They converge
to a nonzero value in the thermodynamic limit G(K ) which
we estimate by linear fits in Table I. They are expected to
be O(g̃) for small g̃. We observe that G(K ) is decreasing
monotonously toward a nonzero value with increasing K . This
means that if we consider the effect of the Zeeman splitting,
the lowest levels will always be those from the L = 0 set
of states. In Fig. 5 the Zeeman splitting of the L = 0 and 1
states of the largest system we could reach with 12 electrons
is displayed. We have taken into account only the lowest-lying
states with increasing spin and added a Zeeman coupling only
to states whose energy decreases with the field for clarity.
The lower envelope of the set of curves is entirely due to
the states coming from the L = 0 multiplets. It is precisely
this envelope that determines the magnetization curve. So, the
magnetization process is entirely due to the L = 0 multiplet.

TABLE I. Estimates of the gaps between the spin-singlet ground
state at fixed K value and the lowest-lying fully spin-polarized
state. Gaps are given in units of the Coulomb scale e2/(ε�B ) and
parameters are the same in Fig. 4: θ = 0.6π and g̃ = 0.1.

K Magnetization gap G(K )

0 0.0107
1 0.0102
2 0.0099
3 0.00985
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FIG. 5. Evolution of energy levels of a 10-electron system with
an electron skyrmion due to Zeeman effect: we have plotted only
levels with spin ranging from S = 0 up to the maximal value S =
N/2 and for clarity followed only the levels with largest Sz value
of each multiplet: these are the states that have the largest slope as
a function of B. Blue traces belong to the multiplet of states with
L = 0, while red traces are coming from the L = 1 multiplet. So,
the magnetization is always entirely due to the L = 0 states. The
envelope of these states determines the magnetization process of the
skyrmion. Our finite-size studies show that this is still the case in
the thermodynamic limit.

We plot in Fig. 6 the magnetization process for a system of
10 electrons at Nφ = 8. All energy scales are proportional to
g̃ for small g̃, so with data for Nφ = 4, 6, 8 this means that the
critical Zeeman energy to fully saturate the system is ≈0.05g̃
in units of the Coulomb energy. It is important to note that
due to the special magnetization process as deduced from
Eq. (20), the magnetization curve is proportional to g̃ (as long
as g̃ � 1) so it is universal with respect to the magnitude of the
anisotropies. Of course, it still depends upon the value of θ .

FIG. 6. The magnetization of the set of L = 0 states for the
electron skyrmion at Nφ = 8 in the AF phase with θ = 0.6π and
g̃ = 0.1. Note that this staircase curve will collapse onto the vertical
axis when we reach the F phase for θ = 0.5π .

The AF skyrmion is thus of infinite size, is valley unpolarized
because all relevant states have also the minimal allowed
value of Tz, and requires a critical Zeeman energy to be fully
polarized:

gLμBBcrit ≈ 0.05
(
g/�2

B

)
. (21)

V. SKYRMIONS AT ν = 0

We now discuss the fate of the skyrmion excitations at
filling factor ν = 0. The ground state at ν = 0 is described
by the wave function (8). The corresponding SU(4) IR is
described by a Young tableau with two rows of equal length
(when Nφ is even). We consider now only the case of the
hole skyrmion because for ν = 0 it is related to the electron
skyrmion by particle-hole symmetry. If we want to create
a skyrmion, the recipe proposed by Ref. [6] is to glue an
additional row of boxes describing a full inert shell on top
of the Young tableaux describing the skyrmion branch of ν =
±1. So, the member of the branch with maximal L belongs to
the IR:

L = Nφ/2 : . . . . . .

. . . . . . (22)

with the Nφ + 1 boxes in the top row and Nφ boxes in the
lower row. We now move along the skyrmion branch with
decreasing L by moving boxes from the second row to a third
row:

L = Nφ/2 − 1 : . . . . . .

. . . . . .

. (23)

For a state with L = Nφ − K , the top row always has Nφ + 1
boxes, the second row has Nφ − K boxes, and the third row
K boxes. We have checked that the multiplicities of the states
we find from our exact diagonalization (ED) calculations are
exactly reproduced by the dimension of these IRs. An example
spectrum is given in Fig. 7. As in the ν = ±1 case, addition
of anisotropies lifts the degeneracies and does not blur the
overall picture for g̃ up to unity. However, we observe a unique
phenomenon: the ground state of the skyrmion branch does
not stay at L = 0 even in the absence of Zeeman energy (see
Fig. 8). In fact, increasing the strength g̃ shifts the ground state
to larger and larger values of L at fixed size Nφ . This means
that the skyrmion has no longer a finite size due to anisotropies
in line with the arguments presented in Ref. [24]. For g̃ large
enough, the ground state has the smallest allowed size of order
�B for the maximum L of the branch. In Tables II and III we

TABLE II. The angular momentum of the ground state of a
skyrmion state with Nφ = 4 and N = 9 electrons as a function of
anisotropy scale g̃ for θ = 0.6π .

g̃ 0.1 0.2 0.3 0.4 0.5 0.6

L 0 0 1 1 1 2
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FIG. 7. The ν = 0 case: energy spectrum for nine electrons at
Nφ = 4 on a sphere leading to one hole skyrmion. The corresponding
quantum states have L = 0, 1, 2 marked by red dots. The degenera-
cies are those predicted by standard skyrmion counting extended to
four flavors. The eigenvalues are computed in the AF phase with θ =
0.6π and g̃ = 0.01 (chosen for readability). The important observa-
tion is that there are no new states that change the overall picture.
All new physics is entirely contained in the multiplet structure of the
skyrmion branch. This observation is valid for all values of θ in the
F and AF phases we explored and up to g̃ � 1.

give the ground-state quantum numbers as a function of g̃.
This phenomenon happens both in the F and the AF phases. If
we plot the critical anisotropies as a function of system size,
we observe that fixing g̃ and increasing the system size leads
always to the ground state with maximal L value given by

FIG. 8. Lower part of the energy spectrum for 13 electrons at
Nφ = 6 on a sphere leading to one hole skyrmion. The skyrmion
states have L = 0, 1, 2, 3. The eigenvalues are computed in the AF
phase with θ = 0.6π and g̃ = 0.3. The ground state has no longer
L = 0. Indeed, with this choice of anisotropy and size it has orbital
angular momentum L = 2 meaning that the skyrmion has now a
finite size instead of spreading all over the sphere. This is in the
absence of a Zeeman field.

FIG. 9. The critical anisotropies separating ground state with
distinct orbital angular momentum on the spherical geometry as a
function of system size. Below, the green line systems with Nφ =
2, 4, 6 have a L = 0 ground state and L = 1 above. The blue line
marks the separation between L = 1 and 2 for Nφ = 4, 6. System
with odd Nφ = 3, 5 have half-integer orbital angular momentum and
have the minimal value L = 1

2 below the red line and L = 3
2 above.

Extrapolations of these boundaries are all zero. At fixed anisotropy
g̃ this means that a large enough system has a ground state with
maximal L, the end point of the skyrmion branch. Calculations were
performed in the AF phase with θ = 0.6π and similar results hold
for θ = 0.2π in the F phase.

Nφ/2 (see Fig. 9). Moving toward large system size always
leads to a skyrmion state with the maximal value of L. In
the case of the SU(2) skyrmion, that would mean complete
polarization. Here, it is not the case. Indeed, the value of K
is now decoupled from the spin value which is determined by
the level ordering inside the IR with this maximal L value.

So, at fixed g̃ we observe that the system when it is large
enough has a localized skyrmion excitation. The magnetiza-
tion process that takes place now is similar to the case of
ν = ±1. It is the Zeeman splitting of the multiplet L = Nφ/2
that governs the magnetization. There, we find the difference
between F and AF phases. In the F case the lowest-lying state
at L = Nφ/2 has maximal spin so the system is always fully
polarized: charged excitations are fully polarized quasiparti-
cles. On the contrary, in the AF phase there is progressive
magnetization with increasing Zeeman energy. It is important
to note that due to the multicomponent nature of the system,
the spatial and the magnetization are no longer coupled,
contrary to spin SU(2) skyrmions. To fully spin polarize the

TABLE III. The angular momentum of the ground state of a
skyrmion state with Nφ = 6 and N = 13 electrons as a function of
anisotropy scale g̃ for θ = 0.6π . If one increases the system size at
fixed anisotropy, the ground state ends up at L = 0.

g̃ 0.1 0.2 0.3 0.4 0.5 0.6

L 0 1 2 2 2 3
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skyrmion, we estimate that the Zeeman energy should be

gLμBBsat ≈ 0.16 g̃ × [e2/(ε�B)] = 0.16
(
g/�2

B

)
(24)

for θ = 0.6π . This value is approximately three times higher
than in the case of the ν = −1 electron skyrmion.

VI. CONCLUSIONS

We have performed a study of skyrmion physics in mono-
layer graphene for Landau level filling factors ν = ±1, 0 by
use of exact diagonalization on the spherical geometry. The
lattice-scale anisotropies that break the SU(4) spin/valley
symmetry have been incorporated by a simple local effective
interaction with two parameters. The skyrmion physics for
ν = ±1 on one side and ν = 0 on the other side has the
specific feature that the ground-state angular momentum on
the sphere is not related to the spin polarization contrary to
ordinary SU(2) skyrmions. We have shown that state count-
ing from straightforward application of SU(N = 4) skyrmion
theory is correct, i.e., there are no additional states in the
low-energy spectrum.

In the case of ν = −1 the hole skyrmion does not feel
the anisotropies and is an infinite-size spin-polarized valley
skyrmion. The denser electron skyrmion on the contrary has a
different behavior in the AF and F phases. In the F phase, it is
also fully polarized and infinite sized so essentially similar to
the hole case. In the AF phase, the electron skyrmion is still
of infinite size but is unpolarized at small Zeeman energy. A
critical value of the ratio of Zeeman energy versus Coulomb
energy is necessary to obtain a fully polarized state. This is
in agreement with the measurements of Ref. [53] at ν = −1
that give evidence for spin flips as seen by a gap increase
with increasing total magnetic field. This means that these
measurements are in the AF state.

In the case of ν = 0, the counting of states from general-
ized skyrmion theory is still correct but there is a change of
behavior for the ground-state quantum numbers. Indeed, we
find that for large enough system size, the skyrmion is always
in a maximally localized state in real space with a size of
the order of a magnetic length. In the F phase, the skyrmion
is fully spin polarized, while in the AF phase there is a
nontrivial magnetization process and a finite Zeeman energy is
required to obtain a fully spin-polarized quasiparticle. Again,
the polarization mechanism is disconnected from the spatial
extent of the skyrmion. The competition between anisotropies
and Zeeman effect means also that there is no longer a uni-
versal scaling of skyrmion physics with the ratio of Zeeman
energy to Coulomb energy. Our results are summarized in
Table IV.

Recent experiments [53] have measured transport gaps as
a function of the total magnetic field applied to the sample
and also as a function of the perpendicular component of
the field by using a tilted-field configuration. This allows to
separately control the Coulomb energy (sensitive only to the
perpendicular component of the field) and the Zeeman energy
(sensitive to the total field). The transport gap is expected to
be due to a skyrmion-antiskyrmion pair excitation. The field
dependence of the gap at ν = −1 has been measured [53]
and is steeper as a function of the total field than expected
for a simple electron-hole pair. This is evidence for extra
spin flips involved in the excitations. This is exactly what
we expect from our results provided the sample is in the AF
phase (see Table IV). The AF phase is also the explanation
of the conductance transition observed at very large fields
[55] so this is a coherent picture. In the anisotropy model we
use, it is important to note that contrary to the standard clean
skyrmion model there is no universal scaling as a function
of the ratio of Zeeman energy to Coulomb energy. Indeed,
the Coulomb energy is replaced by the anisotropy energy
(provided it is small enough). Deviations from the standard
clean skyrmion scaling have been observed in Ref. [53] but
only for ν = −4. It remains to be seen if this is also true
in the central Landau level. We have obtained in Sec. IV
an estimate for the magnetic field required to fully polarize
the skyrmions. If we ask that for the largest field used in
Ref. [53], B = 35 T, the skyrmion is not fully polarized, this
requires gLμB(B = 35 T) � 0.05(g/�2

B), hence, an anisotropy
energy scale g/�2

B � 800 K. Such a value is large but still
below the Coulomb energy scale ≈1500 K using ε = 2.5 as
appropriate for graphene on hexagonal boron nitride substrate.
The idea behind the introduction of the simple local model (4)
that anisotropies are a small perturbation that selects the true
ground state within the SU(4) manifold is thus still valid. This
estimate calls for more attempts to study the magnitude of the
anisotropies, notably to find an estimate of the θ parameter
distinguishing g⊥ and gz.

While the diagonalizations we have performed give infor-
mation about skyrmion quantum numbers, they cannot lead to
reliable estimates of the associated gaps, but only orders of
magnitude. In addition, it is hard to access the whole range
of θ parameter because there are additional degeneracies at
high-symmetry points like the F/AF boundary. A strategy
would be to construct Hartree-Fock wave functions that can be
evaluated for very large systems and with the correct quantum
numbers. We have found that this is not easy because simple
generalizations of Eq. (8) are not sensitive to anisotropies.
While we have concentrated on the central Landau levels,
there is also skyrmion physics in the higher Landau levels that
requires detailed investigation. Another open question is the

TABLE IV. Summary of results for the skyrmions called here h-sk and e-sk for both phases considered in this work. Results for filling
factor ν = +1 are obtained from the ν = −1 by exchanging hole and electron due to the particle-hole symmetry.

AF F

ν = −1 h-sk: infinite-sized valley, fully spin polarized h-sk : inifinite-sized valley, fully spin polarized
e-sk : infinite-sized, partially spin polarized e-sk : infinite-sized, fully spin polarized

ν = 0 Localized, partially spin polarized Localized, fully spin polarized
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role of Landau level mixing which is certainly quantitatively
important in monolayer graphene. This is an effect which
cannot be straightforwardly included in ED studies since the
Fock space is already very large due to the spin and valley
degeneracies, so adding more levels is not feasible. However,
such effects can be treated in the Hartree-Fock approximation
(see, e.g., Refs. [57,59]. To implement this approach, one
has to write skyrmion wave functions generalizing Eq. (12).
While this will change energetics, it will not change our most

important finding, i.e., the decoupling of the magnetization
process and the spatial profile of the skyrmions.
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