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Finite-time quantum quenches in the XXZ Heisenberg chain
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We study the time evolution of the two-point correlation functions in the XXZ Heisenberg chain after a finite-
time quantum quench in the anisotropy. We compare results from numerical simulations to ones obtained in
the Luttinger model and find good agreement. We analyze the spreading of the correlations and the associated
light-cone features. We observe a delay in the appearance of the light cone as compared to the sudden-quench
setup, and link this delay to the properties of the quench protocol.
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I. INTRODUCTION

The past 20 years have seen tremendous progress in the
experimental realization and control of ultracold atomic and
ionic systems in optical lattices [1-4]. In particular, these
systems allow the study of the almost unitary time evolution
following the sudden change of the system parameters, a setup
known as a quantum quench [5]. This has in turn triggered a
huge theoretical effort [6—8] to understand the nonequilibrium
dynamics of closed quantum systems.

Motivated by the ground-breaking experiment on the
quantum Newton cradle [9], one-dimensional many-particle
models have been a particular focus of theoretical research.
A paradigmatic model in this class of systems is provided
by the spin-1/2 Heisenberg chain. For example, it fostered
the investigation [10,11] of the relaxation of quantum systems
subject to an extensive number of conserved quantities and
their relation to integrability and generalized Gibbs ensembles
[12].

Another generic feature of the quench dynamics in quan-
tum systems is the appearance of light cones in two-point
functions, which is ultimately related to the boundedness of
the spreading of information [13,14]. More physically, the
light cone can be linked to the propagation of entangled
pairs of quasiparticles through the system[5,15], and thus
is expected to appear quite generally. Indeed, the light-cone
effect has not only been observed in numerical simulations
on various one-dimensional systems [16-24], but also in
experiments on ultracold gases [25-28].

As is well known, the Heisenberg chain allows a descrip-
tion in terms of an effective field theory [29]. This Luttinger-
liquid theory is well suited to capture the behavior of the
system at low energies and large distances, which has also
been established for the dynamics after a quantum quench
[30-33]. In particular, Collura, Calabrese, and Essler [34]
provided a detailed analysis of the two-point spin-correlation
functions after a sudden quench. For the transverse correlation
function they found a surprising level of agreement between
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numerical simulations and the predictions obtained in the
Luttinger model, while the agreement for the longitudinal
correlation function was much poorer.

Unlike the majority of previous work, which focused
mainly on sudden quantum quenches, we here consider more
general quenches of finite duration t, during which the in-
teraction in the system is modified. The finite quench time 7
introduces an additional energy scale ~t !, which is directly
related to the quench protocol and therefore tunable. As such,
it can be chosen to be of similar size as other energy scales
of the system, including the bandwidth, excitation gaps, or
relaxation rates. The interplay of the additional energy scale
with the established ones may then bring about emergent
quantum states beyond the ones accessible through sudden
quench protocols.

For the above-mentioned Luttinger model this finite-time
quench protocol has been studied in several works [32,35-46].
In particular, the light-cone spreading in two-point correlation
functions was found [36,43] to be delayed as compared to
the light cone after sudden quenches, with the delay being
related to the length and form of the finite-time quench pro-
tocol. Comparisons between the Luttinger model predictions
and numerical simulations for interacting microscopic models
have been limited so far [32,36], with a detailed analysis of
the light-cone spreading and aforementioned delay for the
Heisenberg chain still missing.

The aim of the present paper is to provide this analysis, i.e.,
we numerically calculate the quench dynamics in the XXZ
Heisenberg chain after finite-time quenches and compare the
results to the previously obtained analytical predictions from
the Luttinger model. In particular, we focus on the transverse
two-point function and the delay observed in the light-cone
spreading. Overall we find good agreement between the pre-
dictions from the Luttinger model and our simulations, espe-
cially for the dependence of the delay on the quench duration.
For the longitudinal correlation function the observed delay
for moderate quench times is still well described by the
Luttinger model, even thought the overall agreement between
the simulations and field theory is much poorer.

This paper is organized as follows: In Sec. II we introduce
the Heisenberg XXZ chain and define the quench protocols
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and correlation functions to be studied. In Sec. III we briefly
discuss details of our numerical simulations. Following this,
in Sec. IV we present our main results, namely the discussion
of the simulation results for the transverse two-point function,
their comparison to the predictions from the Luttinger model,
and an analysis of the observed delay of the light cone. This
is followed in Sec. V by a brief discussion of results for
the longitudinal two-point functions, before we conclude in
Sec. VL.

II. MODEL AND QUENCH PROTOCOL

In this work we study the XXZ Heisenberg chain with the
Hamiltonian

L
H(t) =T [SIS5 + SIS0, + A0S, ) (D)
i=1

where §¢, a = x, y, z, denote the spin-1/2 operators on lattice
site i. For the implementation of the quench protocol we
allow for a time-dependent anisotropy A(#). The equilibrium
properties of the model (1) are well known [29]. For |A| < 1
the system is quantum critical, with its low-energy properties
described by Luttinger-liquid theory, whereas for |A| > 1 the
ground state is ordered and the excitation energies are gapped.
Throughout this work we restrict ourselves to the critical
regime with 0 < A < 1 and consider an L-site chain with
periodic boundary conditions.

Below we study the time evolution of the system after a
finite-time quench in the anisotropy, i.e., over a finite time in-
terval T we change the parameter A(¢) from its initial value Ag
to its final value A. The case t = 0 corresponds to the well-
studied sudden quantum quench. Here we consider the case
of vanishing initial anisotropy, Ag = 0, corresponding to the
noninteracting model when mapping (1) to a model of spinless
fermions via a Jordan-Wigner transformation. For times ¢
larger than the quench time t the anisotropy (interaction) is
kept at a constant value A. More specifically, we consider two
types of continuous protocols: First the linear quench,

A AL 1<, )
) =
A, t>T,
and second the exponential quench,
Afexp[In(2)t/t] — 1}, t <,
A(r) = 3)
A, t>T.

In the following, we present a numerical study of the dynam-
ics during and following these quenches. As we will see, even
thought the two protocols are very similar, the numerical data
still show differences that can be traced back to the different
time dependencies.

As observables we consider the equal-time transverse and
longitudinal correlation functions of the spin operators at a
distance ¢, i.e.,

(ST @O)SF(0) = FUSTOS,O) + (ST OSF L) @)

and

(S5(0)S7,(@))- (5)

We will compare our numerical results to analytical expres-
sions for the correlation functions obtained in the Luttinger
model [43] as well as previous numerical simulations [34] for
sudden quenches. Before doing so, we briefly discuss details
of our numerical simulations.

III. NUMERICAL METHOD

For our numerical study, we employ a time-dependent
density-matrix renormalization-group (DMRG) algorithm
[47-50]. Unlike many other time-dependent DMRG algo-
rithms, we use a Krylov subspace method [50] to calculate
the full matrix exponential of the Hamiltonian for the time
evolution. This gives us the possibility to choose time steps of
arbitrary size At while the Hamiltonian is time independent.
In a first DMRG step, we have calculated the ground state
of the initial system with Ay = 0 on a chain of length L =
80. (We keep this system size throughout.) The ground-state
energy density is found to be Ey/(JL) = —0.318378704,
which constitutes a deviation from the exact value Ey/(JL) =
—1/m of AEy =7 x 1070, indicating that finite-size effects
are sufficiently small at this system size.

Starting from the ground state, we perform the first part
of the time evolution over the quench duration t, where we
choose a small step size of Ar =~ Jt/80. For this partic-
ular time evolution, we use time-independent snapshots of
the Hamiltonian H(; <t < t;11) >~ H(t;). Additional calcu-
lations with smaller step sizes have been performed finding
identical results, thus confirming that the chosen step size
is sufficiently small to capture the details of time-dependent
anisotropy A(¢). Alternatively, one could employ a Magnus
expansion [51] of the time-dependent Hamiltonian, in which
case larger step sizes would be feasible.

For the second part of the time evolution after the quench,
we use a larger constant step size JAf < 1. An important
aspect of a global quantum quench is the linear growth
of the entanglement entropy in response to it. We there-
fore dynamically adjust the number of kept states per block
1400 < Ngy < 14000 in each DMRG step to ensure that the
maximum amount of discarded entanglement entropy does
not exceed 8Sma = 1074, The large number of kept states is
also necessitated by the criticality of the system, due to which
the entanglement entropy grows as a logarithm of the system
size L.

IV. TRANSVERSE TWO-POINT FUNCTION

In this section we discuss the dynamics of the equal-time
transverse two-point function (4). In Fig. 1 we show contour
plots of the correlation function in space-time. We clearly
observe a light cone, whose precise position is indicated by
the solid white line together with the position of the light
cone for a sudden quench of equal strength (dashed white
line). The light cone also shows a kink at J¢ = 4 in the lower
panel, which originates from the end of the quench protocol
at this time and thus a change in the effective velocity of the
excitations. Before discussing the properties and origin of the
observed light-cone behavior in more detail, we compare our
results to the field-theoretical predictions.
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FIG. 1. Contour plot of the rescaled correlation function
(S3(1)S5,,(1))€*T1/2 for a linear quench (2) with A =02, Jt =1
(upper panel) and Jt = 4 (lower panel). The exponent « used in
the rescaling is defined in Eq. (8). The solid white line indicates
the position of the local minimum following the light cone ¢ ~
29t — Ax, while the dashed line indicates the position of the light
cone for a sudden quench of equal strength (i.e., 7 = Ax = 0).

A. Field-theoretical prediction

As is well established [29], the low-energy regime of the
XXZ chain (1) in equilibrium is described by the Luttinger
model with the effective velocity and Luttinger parameter
given by

aJ V1 — A2 K T 1

fj:— = —-——
2 m — arccos A

, 6
2 arccos A ©)
In this framework the leading contribution of the transverse

correlation function at large separations is given by (S;S7, ,) =~

(—1)* A} €715 Here an exact analytical expression for the
amplitude Ag is known [52,53].

As has been shown previously [30-34], various aspects of
the quench dynamics of the XXZ chain can also be described
using the Luttinger model. In particular, the time evolution of
the two-point functions (4) after a sudden quantum quench has
been worked out with the result [34,54,55]

ax o AT = o)
(SE)SE () =~ (=1) Jil e | @)
where
171

and the amplitude A* determined numerically [34]. The an-
alytical result (7) possesses a singularity at £ = 20¢, which
physically originates in the light-cone effect, to be discussed
in Sec. IV C below.

Turning to finite-time quenches, the time evolution of
two-point functions in the Luttinger model has been studied
in several works [32,35,36,43]. In particular, the transverse
correlation function (4) after the quench, i.e., at times ¢ > ,
takes the form [43]

e o AT = Ot — Ax)? |

O O ere eyl NG
Again the correlation function possesses a singularity, but this
time there is an additional lag Ax in its position in space time.
This lag Ax can be attributed to the creation and propagation
of quasiparticle pairs during the quench (see Sec. IV C below).
The lag depends on the details of the quench protocol (see,
e.g., Fig. 5); it is explicitly given by

ax = Ko [gzu) - - f L gz(f)], (10)
0

1 —K?

where, for the case of the XXZ chain (1) we are considering
here, the bare velocity and interaction parameter g, are given
by vp = J and

7 + arcsin A(¢)
72 — 4arcsin® A(z)

2(1) =21 — A(1)? arcsin A(z), (11)
respectively. The result (10) was derived for short to moderate
quench times 7, which for the XXZ chain implies the region of
applicability to be given by Jt < 1. In addition, the amplitude
A* is expected to depend on the quench time and protocol. In
the sudden-quench limit (9) reduces to (7) since Ax — 0 and
A* — A*. Finally, we note in passing that linear quenches (2)
in the anisotropy do not translate into linear quenches in the
corresponding interaction parameter g;.

B. Simulation results

A more detailed understanding of the correlation function
shown in Fig. 1 can be obtained by considering cuts at finite
separation £. Such cuts are shown in Figs. 2—4 for ¢ = 10,
for both linear and exponential quench protocols. We plot
the numerical results (solid lines) together with the field-
theoretical expression (9) including the lag (10) (dashed lines)
for several quench times t. We have determined the amplitude
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FIG. 2. Transverse two-point function (4) for a distance of £ =
10 sites, a linear quench (2) with A = 0.2, and several quench times
7. The dashed line shows the field-theoretical prediction (9) with the
respective lags Ax. The amplitude is fitted in the sudden-quench case
to A* = 0.1396 and used for the other quench times as well. Even
in the sudden-quench case we observe a delay 6¢ of the light-cone
feature in the numerical data as compared to the analytical prediction,
which originates from the finite bandwidth in the lattice model (see
also Sec. IVC).

A* by fitting the prediction (9) for times inside the light
cone, 20t < £. The resulting values in the sudden-quench
case are in very good agreement with the ones obtained by
Collura et al. [34]. For finite-time quenches we observe a
dependence of A* on the precise fitting window, with the
differences to the sudden-quench amplitude A* being less
than 5%. Thus in the figures we use A* = A* for all quench
times. As can be seen from the plots, the agreement between
the numerical and analytical results is still very good, thus
indicating that the dependence of the amplitude A* on the
quench duration is rather weak. Our simulation results clearly
exhibit a minimum corresponding to the light cone already
identified in the contour plot of Fig. 1. In comparison to the
analytic result (9), the singularity at £ = 29t — Ax is cut off
by the finite bandwidth of the lattice model, thus turning the
singularity into the propagating minimum. We also observe

— Jt=00
0.04 — JT =02
3 Jt=10
E;t .
R~ \\\ _ ]T ~ 4;0——-
wn RS T
~ | v ,’
0.02 = ‘|l
0 2 4 5 6 8

FIG. 3. Transverse two-point function as in Fig. 2 but for a linear
quench (2) with A = 0.5. The amplitude of the analytical result has
the value A* = 0.1287.
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FIG. 4. Transverse two-point function as in Fig. 2 but for an
exponential quench (3) with A = 0.2. The amplitude again has the
value A* = 0.1396.

that the position of this minimum grows with the quench
time 7, in qualitative agreement with the result (10). A more
quantitative analysis is presented in the next section. Overall,
we find good agreement between the field-theoretical result
(9) and our numerical simulations, in accordance with the
previously observed [34] agreement for sudden quenches.

C. Light cone

Let us now turn to a more detailed analysis of the light
cone. As discussed above, the minimum in the simulation data
shown in Figs. 2—4 corresponds to the singularity at £ = 29t —
Ax in the analytical result (9). However, even for the sudden
quench, i.e., the black solid and dashed lines, we see a delay
64 of the minimum as compared to the sharp singularity (see
Fig. 2 for an illustration). This effect was also observed in

FIG. 5. Delay At observed in the propagating minimum for a lin-
ear quench with A; = 0.2 (red), exponential quench with A, = 0.2
(pink), as well as linear quench with A; = 0.5 (blue), as compared
to the position of the minimum for the sudden quench (black line
in Fig. 2). The data points have been extracted from the numerical
simulations; the lines show the prediction from the Luttinger model
obtained using Egs. (10) and (11) together with Ax = 29At¢. In
particular, the delay depends on the details of the quench protocol, as
can be seen from both the data and predictions for A; = A, = 0.2.
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FIG. 6. Contour plot of the correlation function (S} ()S7, ,(¢)) for
a linear quench (2) with A = 0.2, JT = 1 (upper panel) and Jt =4
(lower panel). The solid white line indicates the position of the local
maximum following the light cone £ ~ 29t — Ax, while the dashed
line indicates the position of the light cone for a sudden quench of
equal strength (i.e., T = Ax = 0).

previous works [34]. It originates from cutoff effects, i.e., the
finite bandwidth in the lattice model (1) not only leads to a
softening of the singularity but also to a shift in its position to
later times [56].

In order to analyze the additional delay Ax caused by the
existence of the finite quench time 7, we subtract the delay
8¢ discussed above in the following. Thus in Fig. 5 we show
the difference of the positions of the propagating minima for
a finite-time quench and a sudden quench with identical final
interaction strengths as a function of the quench time 7. The
shown error bars originate from the uncertainty in determining
the minima in the time evolution. Specifically they are the
combined imprecisions of the minima of the sudden and

— Jt =00

G| Jt=02
250 [

Jt=1.0

(S7Sit10)

— JT=40

ot
FIG. 7. Longitudinal two-point function (5) for a distance of

£ = 10 sites, a linear quench (2) with A = 0.2, and several quench
times 7.

finite-time quenches due to the limited time resolution given
by the step size of our simulations. We compare the delay Ax
thus extracted from the numerical simulations to the analytical
prediction obtained in the Luttinger model, i.e., Egs. (10)
and (11) together with Ax = 29 At. We observe very good
agreement between the two. Only for long quench times
Jt ~ 4 and stronger quenches (A = 0.5) do quantitative de-
viations become visible.

Furthermore, comparing the results for the linear and ex-
ponential quench with final anisotropy A = 0.2 we see that
in the latter case the delay Ax is larger, again in agreement
with the analytical prediction. Thus our numerical simulations
support the qualitative picture that the details of the quench
protocol influence the correlation functions and in particular
the delay of the light cone even after the quench has ended.

Finally, let us comment on the physical origin of the
light-cone delay: The quench excites entangled quasiparticles
which propagate through the system at velocity ¥. For sudden
quenches, all quasiparticles are excited at + = 0, hence they
induce correlations between two points x; and x; at time ¢ if
|x; — x;| < 20t, i.e., if the points can be reached by entangled
quasiparticles [5,15]. In contrast, for finite-time quenches we
observe an additional delay Az, i.e., correlations appear only if
|x;i — x;| < 20(t — At). There are two effects that physically
explain this delay: (i) The excitation of quasiparticles will take
place during the whole quench time 7, i.e., not just at = 0.
(ii) The velocity of the quasiparticles during the quench is in
general smaller than the the postquench velocity 9, thus for
times t < T quasiparticles will propagate at a slower velocity
as compared to the sudden quench. Both effects [36,43] lead to
a lag Ax of the light cone as compared to the sudden quench,
and thus to the delay Af shown in Fig. 5.

V. LONGITUDINAL TWO-POINT FUNCTION

Finally, let us briefly consider the longitudinal two-point
function (5). Contour plots and cuts are shown in Figs. 6 and
7. As for the transverse correlation function above, we observe
a clear delay of the light-cone feature for finite quench times
T as compared to the sudden-quench case. Further analysis of
this delay (Fig. 8) shows again good agreement between the
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FIG. 8. Delay At observed in the propagating maximum of the
longitudinal correlation function for linear quenches to A = 0.2
and A = 0.5, as compared to the position of the maximum for the
sudden quench (black line in Fig. 7). For short to medium quench
times, Jt < 2, we observe good agreement between the numerical
simulations and the prediction from the Luttinger model.

numerical results and the prediction (10), thus confirming that
the Luttinger model can also describe the delay of the light
cone for the longitudinal correlation function.

VI. CONCLUSION

In this work, we have studied the time evolution of
the correlation functions in the XXZ Heisenberg chain for

interaction quenches of finite duration t. The quenches were
performed in the critical regime, starting at the noninteracting
point A = 0 and increasing the anisotropy either linearly or
exponentially up to a final value A(r = 1) > 0. We used a
time-dependent DMRG algorithm to calculate the transverse
and longitudinal equal-time spin-spin correlation functions
at a distance €. Our results show a light-cone feature con-
sistent with the quasiparticle picture originally put forward
by Calabrese and Cardy [5]. Unlike the light cone resulting
from a sudden quench, the light-cone front after finite-time
quenches features a delay Ar. We have compared this delay
with analytical results obtained for finite-time quenches in
the Luttinger model [43]. We find very good agreement for
short and intermediate quench durations, with deviations only
showing up for slow, strong quenches. We conclude that,
despite the nonequilibrium nature of the quantum quench
setup, the Luttinger model can be used to adequately describe
features of the time evolution in the XXZ chain after a finite-
time quantum quench. This is in particular true for the delay
of the light cone caused by the finite quench duration.
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