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We investigate the Andreev reflection in a parallel double quantum dot structure, by considering one metallic
lead coupled to one s-wave superconductor through the quantum dots. It is found that if an arm of this system
provides the reference channel for the Andreev reflection, the Fano line shapes will have opportunities to appear
in the linear conductance spectra and can be reversed by adjusting the dot level or local magnetic flux. To present
the underlying physics, we obtain the Fano form of the linear conductance expression. Despite the complicated
structural parameters, the property of the Fano effect is clearly shown. We believe that the results of this work
will help us to understand the Fano interference in the Andreev reflection process.
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I. INTRODUCTION

The Fano effect, well known for the asymmetric line
shapes in the spectra concerned, is an important phenomenon
in many physics fields, such as optics, atom and molecule
physics, and condensed matter physics. It originates from
the interference between resonance and reference processes
[1]. In low-dimensional semiconductor systems, electronic
transport is governed by quantum coherence. As the resonant
and nonresonant tunneling channels are achieved, the Fano
line shapes can appear in the transport spectra [2]. A typical
system for observing the Fano effect is the coupled quantum
dot (QD) structure, which provides multiple channels for
electronic coherent transmission. In the appropriate parameter
region, one or several channels serve as the resonant paths
for electron tunneling while the others are nonresonant, which
accordingly lead to the occurrence of Fano interference [3].

The Fano effect manifests itself in QD structures by the
experimental observation of the asymmetric line shapes in the
conductance spectra [4–9]. Relevant theoretical investigations
involve various structures, for example, one or two QDs
embedded in an Aharonov-Bohm ring [10–16], or the double
QDs in different coupling manners [17–21]. According to
their results, the Fano effect in the QD structures exhibits
peculiar behaviors in the electronic transport process, in con-
trast to the conventional Fano effect. These include the tunable
Fano line shape by the magnetic or electrostatic fields applied
on the QDs [17–20], the Kondo resonance associated Fano
effect [10,11,21], Coulomb modification of the Fano effect
[22], the spin-dependent Fano effect [23], and the relation
between the dephasing time and the Fano parameter q [24].
In addition, the Fano effect has been demonstrated to help
improve the thermoelectric efficiency [25].

At the same time, the developments of the microfabrication
technology has promoted scientists to become interested in
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the mesoscopic systems with the coexistence of normal metals
and superconductors (SCs) [26–32]. It is known that in such
systems, the so-called Andreev reflection (AR) is allowed to
take place at the metal-SC interface due to the appearance of
a new energy scale, i.e., the superconducting pairing energy
� [33]. This phenomenon can be described as follows. If an
electron from the normal metal is injected into the SC, it will
be reflected as a hole, thereby transferring a Cooper pair into
the SC. Furthermore, when the coupled QDs are embedded
between the normal metal and SC, intricate phenomena can
be observed, e.g., the appearance of Shiba states, due to the
effect of abundant quantum interference [34]. Since the SC
is a natural source of the entanglement electrons, the multi-
terminal hybrid systems have been proposed to be promising
candidates for the Cooper-pair splitting [35], when the crossed
AR between the normal metals is enhanced [36,37].

Following research progress in the above two aspects,
the Fano effect in the AR process has attracted extensive
attentions [38–46]. And some interesting phenomena have
been observed. Peng et al. discuss the AR in a four-QD
Aharonov-Bohm interferometer, and they find that in this sys-
tem, the reciprocity relation of conductance G(ϕ) = G(−ϕ)
holds. Moreover, the antiresonance point appears in the AR
conductance spectrum with the adjustment of the systematic
parameters [40]. For the parallel-coupled double QDs with
spin-flip scattering, the Fano resonance has also been ob-
served though it is relatively weak. And the spin-flip scattering
enables us to induce the splitting of the Fano peak [41]. Other
groups have reported the AR in a normal metal-molecule-SC
junction using the first-principles approach. They demonstrate
that the presence of the side group in the molecule can lead
to a Fano resonance in the AR process [42]. In addition, it
has been shown that when the T-shaped double QDs are in-
serted in the metal-SC junction, two separate Fano structures
appear in the gate-voltage dependence of the AR process [43].
When an additional terminal is introduced, decoherence has
its effects on the Fano line shapes in the T-shaped double
QDs coupled between the metal and SC [44]. These results
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FIG. 1. (a) Schematic of one parallel double QD structure. In this
geometry, the QDs are coupled to one normal metallic lead and one
s-wave SC simultaneously. (b) Illustration of our considered structure
in the Nambu representation for the infinite superconducting pairing
potential in the SC.

do indicate that the Fano effect in the AR process is very
interesting. However, in order to completely clarify its physics
picture, further discussions are still necessary.

In the present work we aim to investigate the Fano inter-
ference in the AR of the parallel double QD structure, by
supposing a metallic lead to couple to a SC via the QDs. The
numerical results show that the AR spectra are tightly related
to the structural parameters and the threaded magnetic flux.
The obvious phenomenon is that the Fano line shapes will
appear in the linear AR conductance spectra, and they can also
be reversed by adjusting the QD level and local magnetic flux.
However, we observe that the Fano resonance conditions are
completely different from those in the normal electron trans-
port cases [47]. Therefore, the results in this work provide
useful information for describing the Fano interference in the
AR process.

The rest of this paper is organized as follows. In Sec. II the
model Hamiltonian for describing the electron motion in the
parallel double QD structure is first introduced. The formula
for the linear AR conductance is then derived by means
of the nonequilibrium Green function technique. In Sec. III
the calculated results about the linear conductance spectra
are shown. Then discussions focusing on the formation of
the Fano line shapes are given. Finally, the main results are
summarized in Sec. IV.

II. MODEL

The parallel double QD structure that we consider is il-
lustrated in Fig. 1, in which two QDs are inserted in the AR
heterostructure formed by the normal metal and SC in the
parallel way. It can be certain that the AR in this system is
dependent on the quantum interference. The Hamiltonian that
describes the electronic motion in this double QD geometry
reads

H = Hn + Hs + Hd + HnT + HsT . (1)

The first two terms (i.e., Hn and Hs) are the Hamiltonians for
the electrons in the normal metallic lead and SC, respectively:

Hn =
∑
kσ

εkc†
kσ

ckσ ,

Hs =
∑
kσ

εka†
kσ

akσ +
∑

k

(�ka†
k↑a†

−k↓ + H.c.). (2)

c†
kσ

(ckσ ) is an operator to create (annihilate) an electron of the
continuous state |kσ 〉 in the normal metallic lead, and εk is the
corresponding single-particle energy. a†

kσ
(akσ ) is the creation

(annihilation) operator in the SC. εk denotes the corresponding
energy, and �k is the superconducting pairing potential.

The third term describes the electron in the double QDs. It
takes the form as

Hd =
2∑

σ, j=1

ε jd
†
jσ d jσ , (3)

where d†
jσ (d jσ ) is the creation (annihilation) operator of the

spin-σ electron in the jth QD, and ε j denotes the corre-
sponding electron level. We here assume that only one level
is relevant in each QD, since we are mainly interested in
the AR governed by the quantum coherence. Also, in order
to investigate the leading AR properties governed by the
quantum interference, the Coulomb terms have been ignored.
The last two terms in the Hamiltonian denote the QD-lead and
QD-SC couplings. They are given by

HnT =
∑
kσ, j

Vjkd†
jσ ckσ + H.c.,

HsT =
∑
kσ, j

Wjkd†
jσ akσ + H.c. (4)

Vjk (Wjk) corresponds to the QD-lead (QD-SC) coupling
strength with j = 1, 2. Since a quantum ring is formed in this
geometry, local magnetic flux can be introduced to modulate
the quantum interference. In such a case, finite phase shift
will attach to the QD-lead coupling coefficients, which gives
that V1k = |V1k|e−iϕ/2 and V2k = |V2k|eiϕ/2. The phase shift ϕ

is associated with the magnetic flux � threading the system
by a relation ϕ = 2π�/�0, in which �0 = h/e is the flux
quantum [3,48].

In this work we concentrate on the AR process in the
superconducting gap, hence the approximation of �k → ∞
is feasible [49,50]. It should be emphasized that in such a
case, as the Bogoliubov quasiparticle in the SC is inaccessible,
tracing out of the degree of freedom of the SC does not
induce any dissipative dynamics in the QD system and it
can be performed exactly. The resulting dynamics process of
the considered structure can be reexpressed by the following
effective Hamiltonian: H = Hn + H̃d + HnT , where

H̃d =
2∑

σ, j=1

ε jd
†
jσ d jσ −

2∑
j=1

� jd
†
j↑d†

j↓ +
√

�1�2d†
1↑d†

2↓

+
√

�1�2d†
2↑d†

1↓ + H.c. (5)

� j , defined by � j = π
∑

k |Wjk|2δ(ω − εk ), represents the
effective superconducting pairing potential in QD- j induced
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by the proximity effect between the SC and it. The more
interesting contribution is the third and fourth terms, which
describe the formation of nonlocal superconducting corre-
lations between the two QDs. They exactly encompass the
Cooper-pair splitting in the double QD system. In fact, the
above effective Hamiltonian can be obtained by adding up all
contributions in � j within a real-time perturbative expansion
[51,52]. In Appendix A we also present the derivation for
convenience.

According to the new form of H , we next proceed to calcu-
late the current passing through the metallic lead, which can
be defined as J = −e〈 ˙̂N〉 with N̂ = ∑

kσ c†
kσ

ckσ . Using the
Heisenberg equation of motion, the current can be rewritten
as J = −e

∑
j,kσ [VjkG<

jk,σ (t, t ) + c.c.], where G<
jk,σ (t, t ′) =

i〈c†
kσ

(t ′)d jσ (t )〉 is the lesser Green’s function. With the help
of the Langreth continuation theorem and the Fourier trans-
formation, we have [53]

J = e

h

∫
dETr{σ3�[(Gr − Ga) f (E ) + G<]} (6)

in which f (E ) is the Fermi distribution function and σ3

is the Pauli matrix. Gr,a,< are the retarded, advanced, and
lesser Green’s functions in the Nambu representation, which
are defined as Gr (t, t ′) = −iθ (t − t ′)〈{(t ), †(t ′)}〉 and
G<(t, t ′) = i〈{†(t ′)(t )}〉 with Ga = [Gr]†. The field oper-
ator involved, i.e., , is given by  = [d1↑, d†

1↓, d2↑, d†
2↓]T .

� is the linewidth matrix function of the metallic lead, which
describes the coupling strength between the lead and the QDs.
If the lead is manufactured by the two-dimensional electron
gas, the elements of � will be independent of energy.

It is not difficult to find that for calculating the current, one
must obtain the expressions of the retarded and lesser Green’s
functions. The retarded Green’s function can be in principle
deduced from the Dyson’s equation. Via a straightforward
derivation, the matrix of the retarded Green’s function can be
written out, i.e.,

[Gr (E )]−1

=

⎡
⎢⎢⎢⎣

g1e(E )−1 �1
i
2�12,e −√

�1�2

�1 g1h(E )−1 −√
�1�2

i
2�12,h

i
2�21,e −√

�1�2 g2e(E )−1 �2

−√
�1�2

i
2�21,h �2 g2h(E )−1

⎤
⎥⎥⎥⎦, (7)

where g je(h) = [E ∓ ε j + i
2� j j,e]−1. � jl,e and � jl,h

are defined as � jl,e = 2π
∑

k VjkV ∗
lkδ(E − εk ) and

� jl,h = 2π
∑

k V ∗
jkVlkδ(E + εk ), respectively. Note that

because of spin degeneracy, we here only choose the basis of
{φ1e↑, φ1h↓, φ2e↑, φ2h↓}. Within the wide-band approximation
of the lead, we will have � j j,e = � j j,h. And then, the matrices
of �e and �h can respectively be expressed as

�e =

⎡
⎢⎢⎣

�1 0
√

�1�2e−iϕ 0
0 0 0 0√

�1�2eiϕ 0 �2 0
0 0 0 0

⎤
⎥⎥⎦ (8)

and

�h =

⎡
⎢⎢⎣

0 0 0 0
0 �1 0

√
�1�2eiϕ

0 0 0 0
0

√
�1�2e−iϕ 0 �2

⎤
⎥⎥⎦ . (9)

As for the lesser Green’s function, it can be solved using the
Keldysh equation G< = Gr�<Ga, where

�< =
[
�<

11 �<
12

�<
21 �<

22

]
(10)

with �<
jl = [i� jl,e f (E − eV ) 0

0 i� jl,h f (E + eV )

]
. Based on the deriva-

tion above, the electronic current is further simplified, i.e.,

J = 2e

h

∫
dE{TA(E )[ f (E − eV ) − f (E + eV )]}, (11)

where TA = Tr[�eGr (E )�hGa(E )] is the AR transmittance. At
the case of zero temperature limit, the current formula can be
reexpressed, yielding J = 2e

h

∫ eV
−eV TA(E )dE .

It is evident that TA(E ) is the most critical quantity to
evaluate the electronic current driven by the AR. In the
noninteracting case, we are allowed to write out its analytical
expression. One direct method is to define TA(E ) = |τ (E )|2 =
| ∑ jl τ jl |2 with

τ11 = �1Gr
12eiϕ, τ12 =

√
�1�2Gr

14,

τ21 =
√

�1�2Gr
32, τ22 = �2Gr

34e−iϕ. (12)

Via solving the Green’s functions in Eq. (7) (see Appendix B),
the AR coefficient can be expressed, i.e.,

τ (E ) = E2(e−iϕ�2�2 + eiϕ�1�1 − 2
√

�1�2�1�2) − (
e−i ϕ

2 ε1
√

�2�2 − ei ϕ

2 ε2
√

�1�1
)2

det |[Gr (E )]−1| . (13)

At the zero-bias limit, we will have J = G · V with the linear
AR conductance given by

G = 4e2

h
TA|E=0. (14)

Note that at equilibrium, the chemical potential in the normal
metallic lead has been assumed to be zero. As a result, the

expression of τ |E=0 is written as

τ |E=0 = −4
(
e−i ϕ

2 ε1
√

�2�2 − ei ϕ

2 ε2
√

�1�1
)2

(ε1�2 + ε2�1)2 + 4(ε1�2 + ε2�1)2 + 4ε2
1ε

2
2 + C ,

(15)
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where C = |√�1�2eiϕ/2 + √
�2�1e−iϕ/2|4. For the case of

� j = �, there will be

τ |E=0 = −4�
(
e−i ϕ

2 ε1
√

�2 − ei ϕ

2 ε2
√

�1
)2

(ε1�2 + ε2�1)2 + 4�2(ε1 + ε2)2 + 4ε2
1ε

2
2 + C (16)

in which C = �2|√�1eiϕ/2 + √
�2e−iϕ/2|4. All these results

can help us to complete the investigation about the AR in this
structure.

III. NUMERICAL RESULTS AND DISCUSSIONS

With the help of the formulations developed in Sec. II,
we continue to perform calculations to investigate the AR in
the parallel double QD structure with one coupled SC. To do
so, we would like to consider two typical coupling manners,
i.e., the case of symmetric QD-lead(SC) coupling where � j =
� and � j = � and the case of asymmetric QD-lead(SC)
coupling where �1 = λ�2 and �1 = λ�2 with λ > 1.

A. Case of symmetric QD-lead(SC) couplings

We first choose the case of symmetric QD-lead(SC) cou-
pling and present the AR spectra of the parallel double QD
structure. In such a case, the AR coefficient in Eq. (13) can be
written directly, i.e.,

τ (E ) = (2 cos ϕ − 2)E2 − (e−iϕ/2ε1 − eiϕ/2ε2)2

det |[Gr (E )]−1| ��. (17)

It will be transformed into τ (E ) = −(ε1−ε2 )2

det |[Gr (E )]−1|��, in the
absence of magnetic flux. This means that the antiresonance
points appear at the positions of ε1 = ε2 in the AR spectrum,
independent of the change of E . The AR numerical results are
shown in Fig. 2 with � = 0.5. With respect to the effective
pairing potentials in the QDs, they are assumed to be the same
with � = 0.5 and 0.25, respectively. First, Figs. 2(a)–2(c)
correspond to the results of ε1 = 0, 0.25, and 0.5, in the case
of � = 0.5. In Fig. 2(a) we see that the AR spectrum exhibits
the symmetric structure about the axis of E = 0 and ε2 = 0.
And in the case of ε2 = 0, the AR encounters its zero value.
In addition, it shows that four peaks exist in the AR spectrum.
The first and fourth peaks are notably narrow, and they tightly
depend on the change of ε2 or E . Instead, the other two peaks
are hybridized seriously and their positions are relatively
stationary. Figures 2(b) and 2(c) show that when the level of
QD-1 shifts away from the zero energy point, the asymmetry
of the AR spectrum becomes apparent with the change of
ε2. In the case of ε1 = 0.5, the AR is almost suppressed in
the region of ε2 > 0, whereas in the region of ε2 < 0, the
AR is enhanced to a great degree. Besides, when ε2 < 0,
the second and third AR peaks almost get crossed, as a result,
the AR becomes resonant around the position of E = 0. Next
in Figs. 2(d)–2(f), when the superconducting pairing poten-
tials in the QDs decrease to be � = 0.25, the AR spectra are
narrowed seriously and the AR phenomenon mainly occurs
in the region of |E | < 0.5. Besides, the contributions of the
first and fourth molecular states become more weak. The other
result lies in that all the AR peaks are relatively ambiguous,
especially for the peaks near the energy zero point. Therefore,
compared with the case of single-electron tunneling, the AR

FIG. 2. AR spectra in the parallel double QD structure, in the
case of identical QD-lead couplings with � = 0.5. The level of QD-
1 is taken to be ε1 = 0, 0.25, and 0.5, respectively. The results in
(a)–(c) denote the cases of � = 0.5, and (d)–(f) correspond to the
results of � = 0.25.

peaks are related to the eigenlevels of the QDs in the Nambu
representation in an alternative way, since no antiresonance
phenomena depend on the variation of E .

In Fig. 3 we introduce local magnetic flux through this
ring junction to investigate the AR properties. From Eq. (17)
it can be observed that in the case of ϕ = π, τ (E ) has an
opportunity to be equal to zero, corresponding to the occur-
rence of antiresonance at the positions of E = ± 1

2 (ε1 + ε2).

Figures 3(a)–3(c) show the results of
ϕ= π

3 , 2π

3 and π , respec-
tively, in the case of ε1 = 0.5 with � = 0.5. And the results
of � = 0.25 are exhibited in Figs. 3(d)–3(f). One can readily
find that with the increase of magnetic flux, the AR spectrum
experiences obvious changes. First, the first and fourth AR
peaks are strengthened and widened apparently. On the other
hand, the magnetic flux modifies the role of ε2, and then no
antiresonance comes into being [see Figs. 3(a) and 3(b)]. As
shown in Fig. 3(c), when ε2 changes in the positive-energy
region, the AR begins to be more active. Besides, due to the
occurrence of antiresonances, the edges of the respective parts
of the AR spectrum can be clearly seen in the case of ϕ = π .
Next for the case of � = 0.25, the leading properties of the
AR spectra are basically similar to those in the above case [see
Figs. 3(d)–3(f)]. The difference is the narrowness of the AR
spectra, which inevitably reregulates the AR peaks. As shown
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FIG. 3. AR spectra affected by the local magnetic flux through
this system. The level of QD-1 is fixed with ε1 = 0.5. And the other
structural parameters are the same as those in Fig. 2, respectively.

in Fig. 3(f), only three peaks survive in the AR spectrum in
the case of ϕ = π .

Motivated by the intricate results of AR, we would like to
focus on its linear conductance spectrum to further clarify the
AR property. According to Eq. (14), the linear conductance is
related to the AR transmittance in the case of E = 0. In Fig. 4
we plot the linear conductance curves, by taking � = 0.5
and 0.25, respectively. First, Fig. 4(a) shows the results of
the fixed level of QD-1, where ε1 = ±0.5, ±0.25, and 0. We
can clearly find that in the case of ε1 = 0.5, the Fano line
shape appears in the linear conductance spectrum, with the
Fano peak and antiresonance at the positions of ε2 = 0 and
ε2 = 1.0. When the level of QD-1 shifts to ε1 = −0.5, the
Fano line shape is reversed. This suggests that in the linear AR
process of the parallel double QD structure, Fano interference
is allowed to take place, and its mode can be adjusted with
the electric method. If we choose ε1 = ±0.25, there also exist
the Fano line shapes in the conductance spectra. However,
no Fano resonance peak exists in such cases. When ε1 = 0,
only one symmetric line shape can be observed, despite the
occurrence of antiresonance at the position of ε2 = 0.5. Next,
if � decreases to 0.25, one can find from Fig. 4(b) that the
Fano resonance is allowed to appear as well, independent of
the change of ε1. Therefore, the effective pairing potentials in
the QDs play their special roles in driving the Fano resonance
in the linear AR process. In addition, as shown in Figs. 4(c)

FIG. 4. Linear-conductance curves of the AR process in the
parallel double QD structure. The QD-lead coupling strengths are
� = 0.5. (a) and (b) Results in the cases of � = 0.5 and 0.25,
respectively. The level of QD-1 is taken to be ε1 = ±0.5, ±0.25,
and 0. (c) and (d) Influence of magnetic flux on the linear AR
conductance when � = 0.25.

and 4(d), the local magnetic flux can effectively modify the
Fano line shape in the conductance spectrum. Until ϕ = π ,
the Fano line shape is reversed. Note, however, that differently
from the electric tuning [47], the Fano peak in the case of ϕ =
π becomes narrow after the reversal of the Fano line shape.

B. Case of asymmetric coupling

In this part we would like to pay attention to the case
of asymmetric QD-lead(SC) coupling. One reason is that
the quantum transport properties in the parallel double QD
structure tightly depend on the QD-lead coupling manners.
Without loss of generality, the QD-lead(SC) couplings are
taken to be �1

�2
= �1

�2
= λ, thus

τ (E ) = (1 − λ)2E2 − (λε1 − ε2)2

det |[Gr (E )]−1| �2�2 (18)

in the absence of magnetic flux. As a result, the antiresonances
shift to the points of E = ± λε1−ε2

1−λ
.

Figure 5 shows the AR spectra in the cases of �1 = 1.0 and
0.5, respectively, by taking the magnetic flux out of account.
With respect to the value of λ, it is chosen to be λ = 10.
We see that the asymmetry of the QD-lead couplings has
the nontrivial effect on the AR process of this case. First, in
Fig. 5(a) it shows that with the change of E , two main peaks
appear in the AR spectrum, near the regions of E = ±1.0.
The positions of the AR peaks seem to be independent of the
shift of ε2. The other phenomenon is that the AR spectrum
is clearly divided into four regions by the two antiresonance
conditions shown in the above paragraph. Accordingly, the
value of TA(E ) is exactly equal to zero at the energy zero point.
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FIG. 5. AR spectra of the parallel double QD structure when
ε1 = 0, 0.25, and 0.5, respectively. The QD-lead coupling strength
is �1 = 10�2 = 1.0. (a)–(c) Results in the case of �1 = 1.0; (d)–(f)
those of �1 = 0.5.

With the increase of ε1, the asymmetric AR spectrum comes
into being with the shift of ε2, as shown in Figs. 5(b) and
5(c). Meanwhile, the edges of the four AR regions get to be
unclear gradually, though the lines are not modified obviously
by the change of ε2. Next, the case of �1 = 0.5 is exhibited
in Figs. 5(d)–5(f). In the situation of ε1 = 0, one can find one
wide peak around the point of E = 0. With the increase of ε1,
this peak is destroyed, and the suppression of the AR process
can also be observed, accompanied by the appearance of the
asymmetric AR spectrum. Therefore, the asymmetry of the
QD-lead coupling can efficiently alter the AR properties in
our considered structure.

In Fig. 6 we present the influence of the local magnetic
flux through this ring on the AR properties. Figures 6(a)–6(c)
show the results of

ϕ= π
3 , 2π

3 and π , respectively, in the case
of ε1 = 0.5 with �1 = 1.0. And Figs. 6(d)–6(f) correspond
to the result of �1 = 0.5. In this figure one can find that
with the increase of magnetic flux, the AR spectrum exhibits
obvious changes. Similar to the results in Fig. 3, the first AR
peak is strengthened and widened apparently. In addition, the
AR maximum near the positions of E = ±1.0 is suppressed,
compared with the case of ϕ = 0. The other result is that
due to the disappearance of antiresonances, the boundaries of
the AR spectrum become ambiguous in the cases of ϕ = π

3
and 2π

3 . Next, Figs. 6(d)–6(f) show that the magnetic flux

FIG. 6. AR spectra affected by the local magnetic flux through
this system. ε1 is assumed to be 0.5. The other parameters are
identical with those in Fig. 7, respectively.

indeed reverses the symmetry of the AR spectrum, but the AR
transmittance cannot be enhanced in this process.

The results in Figs. 5 and 6 show that the antiresonance is
allowed to take place even in the case of E = 0 when ϕ = nπ .
Thus we anticipate that the Fano effect can be observed in
the linear conductance spectrum despite the asymmetry of
the QD-lead couplings. With this idea, we plot the linear
conductance profile of the AR in Fig. 7. It is clearly shown that
apparent Fano line shapes exist in the linear AR conductance
spectra. As shown in Figs. 7(a) and 7(b), the Fano effect is
enhanced when the superconducting pairing potentials in the
QDs decrease to be � = 0.5. This is due to the fact that
in this case, the Fano resonance is able to occur. Also, in
comparison with the result in Fig. 4, the reference channel
makes more contribution to the Fano effect in this case,
because of the increase of the conductance value outside the
Fano interference region. In addition, Figs. 7(c) and 7(d) show
that the local magnetic flux can reverse the Fano line shape in
the conductance spectrum. Up to now, we have known that in
this structure, the Fano effect is robust in the linear AR process
when one arm provides the reference channel.

C. Analysis on the Fano effect

We next aim to clarify the Fano effect in the linear AR
process. It is well known that for discussing the Fano effect,
one has to transform the conductance expression into its Fano
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FIG. 7. Linear AR conductance in the parallel double QD struc-
ture with the change of the structural parameters. (a) and (b) Results
in the cases of �1 = 1.0 and 0.5. And the level of QD-1 is taken to
be ε1 = ±0.5, ±0.25, and 0. (c) and (d) Impact of magnetic flux on
the conductance spectra.

form. Hence, we start to analyze the Fano effect in the linear
AR process by presenting the analytical expression of the
AR coefficient. After deduction, we are allowed to obtain
the Fano expression of τ |E=0, i.e., τ |E=0 = τb

α(e+q)2

αe2+1 eiϕ (see
Appendix C). And then,

TA|E=0 = |τb|2 α2|e + q|4
|αe2 + 1|2 . (19)

Here τb = 4�1�1

4ε2
1+�2

1+4�2
1

is the AR coefficient in the absence of
QD-2. One can understand that when the level of QD-1 is
fixed but not equal to zero, the arm of QD-1 enables us to
provide the reference channel for the Fano interference in the
linear AR process. Next, e = ε2 + τb

�1�2+4�1�2
4�1�1

ε1, and

q = −
(

�1�2 + 4�1�2

4�1�1
τb +

√
�2�2√
�1�1

e−iϕ

)
ε1 (20)

is the so-called Fano parameter. In addition, it shows
that the other quantity also comes into play, i.e., α =

16�2
1�2

1

[4ε2
1 (�1�2−�1�2 )2+4ε4

1 (�2
2+4�2

2 )]τ 2
b +4�1�1τbC , which is always posi-

tive. It should be noticed that this Fano expression is basically
complicated and different from the result in the case of single
electron tunneling where Tet = Tb

|e+q|2
e2+1 with Tb being the

electron tunneling ability in the reference channel [47,54,55].
This indicates the complicated characteristic of the Fano effect
in the linear AR process.

As shown in Eq. (19), although the AR contributed by
QD-1 can provide the reference channel, the information of
the resonance channel cannot be directly obtained from the
other arm, due to the complexity of the parameter e. Surely,
with the change of e, the profile of TA|E=0 indeed exhibits
the Fano line shape, for a real Fano parameter q. And when
the sign of q (i.e., ±) changes, the Fano line shape will be
reversed. One can then understand the Fano line shapes in
the linear conductance spectra in Figs. 4 and 7. The Fano
antiresonance can be analyzed as follows. When finite mag-
netic flux is introduced through this ring, the Fano parameter
q will become complex, so e + q �= 0 and the Fano effect will
be suppressed. Otherwise, in the cases of ϕ = 0 or ϕ = π ,
the positions of the Fano antiresonances can be ascertained
by letting e + q = 0, and the corresponding conditions can be
solved, i.e.,

ε1

√
�2�2 ∓ ε2

√
�1�1 = 0. (21)

This relationship is simplified to be ε1 ∓ ε2 = 0 in the case of
� j = � with the identical QD-lead couplings. According to
these results, we know that for a fixed ε1, the antiresonance
points always exist in the linear conductance spectra, with

their positions being at the points of ε2 = ±
√

�2�2
�1�1

ε1 = ±λε1

in the case of ϕ = 0 or ϕ = π .
It should be emphasized that the Fano interference is

determined by the eigenlevels of the QD molecule and the
molecule-lead(SC) couplings in the Nambu representation
[see Fig. 1(b)]. In order to present a clear description, we
would like to calculate the eigenlevels of the QD molecule
with finite molecule-lead(SC) couplings. The effective Hamil-
tonian matrix can be given by

H =

⎡
⎢⎢⎢⎣

ε1 − i
2�11,e −�1 − i

2�12,e
√

�1�2

−�1 −ε1 − i
2�11,e

√
�1�2 − i

2�12,h

− i
2�21,e

√
�1�2 ε2 − i

2�22,e −�2√
�1�2 − i

2�21,h −�2 −ε2 − i
2�22,h

⎤
⎥⎥⎥⎦ .

The spectra of the eigenlevels are shown in Fig. 8.
Figures 8(a)–8(d) describe the result of � j = �

and � j = �. As for the QD levels, we take ε1 = 0
and ε1 = 0.5, respectively. It is readily found that
if � = 0, the analytical expressions of Ej can be

written out, i.e., E1 = −E4 = −1√
2

√
ε2

1 + ε2
2 + 4�2 + �

and E2 = −E3 = −1√
2

√
ε2

1 + ε2
2 + 4�2 − � with � =

√
(ε2

1 − ε2
2 )2 + 4�2(ε1 − ε2)2 + 16�4. They are consistent

with the results in Figs. 8(a) and 8(b). Thus, the QD-lead
coupling only contributes to the imaginary parts of the
eigenlevels, as shown in Figs. 8(c) and 8(d). By observing
the results of the eigenlevels, we can explain the leading
feature of the linear AR conductances from the following
two aspects. First, the symmetry of the conductance curves is
determined by the eigenlevel spectra with the change of ε2. In
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FIG. 8. Eigenlevels of the double QDs in the Nambu represen-
tation, due to their coupling with the normal lead and SC. The
parameters are taken to be � j = � = 1.0 and � j = � = 0.5. (a) and
(b) Real parts of the eigenlevels in the cases ε1 = 0 and ε1 = 0.5.
(c) and (d) Corresponding imaginary parts.

the case of ε1 = 0.5, the maximum of E2 shifts to the position
of ε2 = −0.25, and the maximum of E1 shifts to ε2 = 0.25.
Meanwhile, |Re(E3 − E2)|ε2<−0.25 < |Re(E4 − E1)|ε2>−0.25,
and a similar result can be observed between E1 and E4

beside the point of ε2 = 0.25. One can then understand the
asymmetric line shape of the linear AR conductance. Second,
with respect to the antiresonance, it certainly originates from
the destructive quantum interference among the channels
formed by the coupling between the molecular states and
lead-e (lead-h). The analysis shows that the AR coefficient
can be expressed as the superposition of four Feynman paths,

i.e., τ (E ) = ∑
j P j with P j = (−1) j ImEj

E−ReEj−iImEj
. P j is exactly the

direct product of the Green function and eigenlevel widening
of the jth molecular state. In Figs. 8(c) and 8(d) we see
that around the antiresonance position, the imaginary parts
of E1 and E4 get close to zero, so their contributed paths
do not influence the quantum interference. And then, the
antiresonance point in the linear conductance spectrum is
mainly determined by the interference between P2 and P3.
When ε2 = 0.5, the imaginary parts of E2 and E3 reach their
maxima, leading to the enhancement of destructive quantum
interference.

Since the Fano interference can be achieved when the two
arms provide the reference and resonance channels, respec-
tively, we would like to investigate the case where the levels of
the two QDs are shiftable, e.g., ε1 = εd + δ and ε2 = εd − δ

by taking �1 = 10�2 and �1 = 10�2. One expects that the
Fano effect can be driven, due to the asymmetric QD-lead
coupling in this situation. As shown in Fig. 9(a), when �1 =
0.25, two peaks appear in the linear-conductance spectrum.
One is “more” resonant and the other is “less” resonant. This
is exactly the necessary condition of the Fano interference and
gives rise to the Fano effect. When �1 = 0.5, the conductance
magnitude increases, and the Fano effect becomes apparent.

FIG. 9. Linear conductance of the AR in the cases of ε j = εd ±
δ with δ = 0.5. (a) and (b) Results of �1 = 10�2 and �1 = 10�2.
(c) and (d) Case of identical QD-lead(SC) couplings, i.e., � j = �

and � j = �.

However, the further increase of �1 can only weaken the
Fano effect (see the case of � = 1.0). Next, applying the
magnetic flux with ϕ = π reverses the Fano line shape in
the conductance spectrum, as shown in Fig. 9(b). We can then
find that even when the two QDs are both level tunable, the
Fano effect can also be induced in the linear AR process, in
the presence of the asymmetric QD-lead couplings.

For comparison, in Figs. 9(c) and 9(d) we present the other
case, i.e., � j = � and � j = �, by considering ε1 = εd + δ

and ε2 = εd − δ with δ = 0.5. As shown in Fig. 9(c), two
peaks appear in the linear-conductance spectrum in the case of
� = 0.1. With the increase of � to � = 0.25, one peak arises
at the position of εd = 0 in the conductance spectrum. When
� is further increased to be � = 0.5, the conductance peak is
weakened. Thus in such a case, no Fano effect takes place. The
underlying physics should be attributed to the disappearance
of the reference channel. When the magnetic flux is taken into
account, the conductance spectrum can be changed, as shown
in Fig. 9(d). In the case of ϕ = π , one antiresonance point can
be observed at the position of εd = 0, but it cannot be viewed
as the Fano antiresonance.

D. Effect of Coulomb interaction in the QDs

Before concluding, it is necessary for us to make a remark
regarding the many-body effect which we have by far ignored.
However, the many-body effect is an important origin for
the peculiar transport properties in the QD-based structures,
including the ARs. Therefore, it is supposed to influence the
Fano effect in a substantial way. Usually, the many-body effect
is incorporated by only considering the intradot Coulomb
repulsion, i.e., the Hubbard term Hee = ∑

j Ujn j↑n j↓. In this
work we would like to describe the influence of Coulomb
interaction on the Fano effect in the linear AR process by
taking the Hubbard term into account.
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FIG. 10. Linear AR conductance in the case of finite Coulomb
interaction with Uj = U = 2.0. (a) Results of fixed ε1. (b) Conduc-
tance curves in the case of ε1(2) = εd ± δ. Other parameters are the
same as those in Figs. 9(a) and 9(b).

If the Hubbard interaction is not very strong, we can
truncate the equations of motion of the Green functions within
the Hubbard-I approximation [56,57]. By a straightforward
derivation, we find that the theoretical description and the
relevant results developed above are still valid. The only
difference consists in the change of g je,σ = [ (z−ε j )(z−ε j−Uj )

z−ε j−Uj+Uj 〈n jσ̄ 〉 +
i
2� j j,e]−1 and g jh,σ = [ (z+ε j )(z+ε j+Uj )

z+ε j+Uj−Uj 〈n jσ̄ 〉 + i
2� j j,h]−1 with z =

E + i0+. 〈n jσ 〉 is the average occupation of the spin-
σ electron in QD- j, and it can be defined as 〈n jσ 〉 =
− 1

π

∫
dE [ImGr

j j,σ (E )]. The linear conductance spectra of
Uj = U = 2.0 are shown in Fig. 10. It can be found that
due to the many-body effect, the main variation in the linear
conductance spectra is manifested as the appearance of two
Fano antiresonances. For the case of fixed ε1, two antires-
onance points emerge in the conductance curves with the
adjustment of ε2, as exhibited in Fig. 10(a). And around the
antiresonance points, the Fano line shapes can be clearly
observed. Next in Fig. 10(b) where ε1(2) = εd ± δ, we see
that the intradot Coulomb interaction is also able to induce
the two-group splitting of the conductance spectra. However,
the conductance magnitude is suppressed by the existence

of Coulomb interaction, and only the Fano line shape in the
high-energy group is relatively noticeable. We would like to
explain these phenomena as follows. Within the Hubbard-I
approximation, the Coulomb interaction splits each QD level
into two, i.e., ε j and ε j + Uj . Any levels close to the energy
zero point will make leading contribution to the Fano inter-
ference. Therefore, the Fano line shapes in the conductance
spectrum are doubled. In addition, due to the breaking of the
electron-hole symmetry in this system, the Fano line shapes
in the two groups are different from each other, especially for
the results in Fig. 10(b).

If the electron interaction is very strong, the electron corre-
lation effect should be taken into account. One needs to extend
the theoretical treatment by adding the interdot interaction and
beyond the Hubbard-I approximation. And then, the further
modification to the Fano line shapes will naturally arise. It is
known that the renormalization group (NRG) method seems
to be a better approach to treat the many-body effect in the
electron-correlation regime [58]. Such an interesting issue
will be discussed in future studies.

IV. SUMMARY

In summary, in this work we have built the heterostructure
of a metallic lead coupled to one s-wave SC via the QDs
and comprehensively studied the AR properties in the parallel
double QD system. As a result, it has been found that Fano
line shapes will appear in the linear conductance spectra
of the AR process, if an arm of this setup plays the role
of the reference channel for the quantum interference. And
similar to the single-electron transport, the Fano line shapes
can be reversed by adjusting the QD level or local magnetic
flux. However, the characteristic of the Fano resonance is
completely different from that in the single-electron transport
case. In order to clarify the underlying reason for this kind
of Fano effect, we have first obtained the Fano form of the
linear-conductance expression, and then we have presented
detailed descriptions about the Fano effect. Moreover, the
underlying Fano interference mechanism has been clarified
by discussing the molecular states in the presence of QD-
lead(SC) couplings. We believe that the results of this work
can enrich the meaning of the Fano interference.
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APPENDIX A: EFFECTIVE FORM OF THE HAMILTONIAN THE QDS COUPLED TO ONE SC

For the system with two QDs coupled through one s-wave SC, the Green’s function matrix can be written as

[Gr (E )]−1 =

⎡
⎢⎢⎣

ω − ε1 − �11
ee −�11

eh −�12
ee −�12

eh

−�11
he ω + ε1 − �11

hh −�12
he −�12

hh

−�21
ee −�21

eh ω − ε2 − �22
ee −�22

eh

−�21
he −�21

hh −�22
he ω + ε2 − �22

hh

⎤
⎥⎥⎦ (A1)
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in the basis {d†
1↑, d1↓, d†

2↑, d2↓}. The self-energy is defined as � = ∑
k HD,skgskHsk,D with gsk being the Green’s function of the

isolated SC. In the basis {a†
k↑, ak↓}, gsk = [ω−εk −�k

−�k ω+εk

]−1
. And then, HD,sk = H†

D,sk = [W1k 0 W2k 0
0 −W ∗

1k 0 −W ∗
2k

]
.

Via derivation, the self-energy can be expressed in the energy space, i.e.,

� =

⎡
⎢⎢⎢⎣

−i�1β(ω) −i�1β(ω)�
ω

−i
√

�1�2β(ω) i
√

�1�2β(ω)�
ω

−i�1β(ω)�∗
ω

−i�1β(ω) i
√

�1�2β(ω)�
ω

−i
√

�1�2β(ω)

−i
√

�1�2β(ω) i
√

�1�2β(ω)�
ω

−i�2β(ω) −i�2β(ω)�
ω

i
√

�1�2β(ω)�
ω

−i
√

�1�2β(ω) −i�2β(ω)�
ω

−i�2β(ω)

⎤
⎥⎥⎥⎦ , (A2)

where β(ω) = |ω|θ (|ω|−|�|)√
ω2−|�|2 + ωθ (|�|−|ω|)

i
√

|�|2−ω2
. � j = π |Wj |2ρs with ρs being the density of state of the quasiparticle in the SC. And Wj

has been assumed to be real. Note that �
j j
eh and �

j j′
eh correspond to the local AR and crossed AR terms, respectively. Since the

fermionic operators obey the relationship of the exchange antisymmetry, they differ from each other by a minus sign [59].
In the limit of |�| → ∞, β(ω) = ω

i
√

|�|2−ω2
, and then we have

� =

⎡
⎢⎢⎣

0 −�1 0
√

�1�2

−�1 0
√

�1�2 0
0

√
�1�2 0 −�2√

�1�2 0 −�2 0

⎤
⎥⎥⎦ . (A3)

As a result,

H̃d =
2∑

σ, j=1

ε jd
†
jσ d jσ −

2∑
j=1

� jd
†
j↑d†

j↓ +
√

�1�2d†
1↑d†

2↓ +
√

�1�2d†
2↑d†

1↓ + H.c. (A4)

Such a result indicates that the AR between the s-wave SC and QDs induces s-wave pairing potentials in the QDs, which is
exactly the so-called the proximity effect.

APPENDIX B: SOLUTION OF GREEN’S FUNCTIONS

According to Eq. (7), we are able to obtain the expressions of respective Green’s functions, i.e.,

Gr
12 = −�1

(
E − ε2 + i

2�2
)(

E + ε2 + i
2�2

) − �1�2
4 �2e−2iϕ + i

2

√
�1�2�1�2(2E + i�2)e−iϕ

det |[Gr (E )]−1| ,

Gr
14 =

√
�1�2

[(
E + ε1 + i

2�1
)(

E − ε2 + i
2�2

) − �1�2
4

] + i
2

√
�1�2

[(
E + ε1 + i

2�1
)
�2e−iϕ + (

E − ε2 + i
2�2

)
�1eiϕ

]
det |[Gr (E )]−1| ,

Gr
32 =

√
�1�2

[(
E − ε1 + i

2�1
)(

E + ε2 + i
2�2

) − �1�2
4

] + i
2

√
�1�2

[(
E − ε1 + i

2�1
)
�2e−iϕ + (

E + ε2 + i
2�2

)
�1eiϕ

]
det |[Gr (E )]−1| ,

Gr
34 = −�2

(
E − ε1 + i

2�1
)(

E + ε1 + i
2�1

) − �1�2
4 �1e2iϕ + i

2

√
�1�2�1�2(2E + i�1)eiϕ

det |[Gr (E )]−1| , (B1)

with det |[Gr (E )]−1| = E2[E + i
2 (�1 + �2)]2 − E2(ε2

1 + ε2
2 + �2

1 + �2
2) − iE (ε2

1�2 + ε2
2�1) − iE (�1�

2
2 + �2�

2
1 +

�1�1�2 + �2�1�2) − 2iE
√

�1�2�1�2(�1 + �2) cos ϕ + (ε1�2 + ε2�1)2 + 4(ε1�2 + ε2�1)2 + 4ε2
1ε

2
2 + |√�1�2eiϕ/2 +√

�2�1e−iϕ/2|4.

APPENDIX C: FANO FORM OF AR TRANSMITTANCE

In Eq. (15),

τ |E=0 = −4
(
ei ϕ

2 ε2
√

�1�1 − e−i ϕ

2 ε1
√

�2�2
)2

4ε2
1ε

2
2 + (ε1�2 + ε2�1)2 + 4(ε1�2 + ε2�1)2 + C (C1)

with C = |√�1�2eiϕ/2 + √
�2�1e−iϕ/2|4. Therefore, one can get the following result that

τ |E=0 = −τb

eiϕ
(
ε2 − e−iϕ

√
�2�2√
�1�1

ε1
)2

(
ε2 + �1�2+4�1�2

4ε2
1+�2

1+4�2
1
ε1

)2 + 1
α

, (C2)

where τb = 4�1�1

4ε2
1+�2

1+4�2
1

and α = (4ε2
1+�2

1+4�2
1 )2

4ε2
1 (�1�2−�1�2 )2+4ε4

1 (�2
2+4�2

2 )+(4ε2
1+�2

1+4�2
1 )C .
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Next, by defining e = ε2 + τb
�1�2+4�1�2

4�1�1
ε1 and q = −(τb

�1�2+4�1�2
4�1�1

ei ϕ

2 +
√

�2�2√
�1�1

e−i ϕ

2 )ε1, the Fano form of τ |E=0 can be
written out, i.e.,

τ |E=0 = −τb
α(e + q)2

αe2 + 1
eiϕ. (C3)

And then, the AR transmittance can be expressed as

TA|E=0 = |τb|2 α2|e + q|4
|αe2 + 1|2 . (C4)
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[44] J. Barański and T. Domański, Phys. Rev. B 85, 205451 (2012).
[45] G. Fülöp, F. Domínguez, S. d’Hollosy, A. Baumgartner,

P. Makk, M. H. Madsen, V. A. Guzenko, J. Nygård, C.
Schönenberger, A. Levy Yeyati, and S. Csonka, Phys. Rev. Lett.
115, 227003 (2015).

[46] F. Domínguez and A. Levy Yeyati, Physica E (Amsterdam) 75,
322 (2016).

[47] W. Gong, Y. Zheng, Y. Liu, and T. Lü, Physica E (Amsterdam)
40, 618 (2008).

[48] A. Fuhrer, P. Brusheim, T. Ihn, M. Sigrist, K. Ensslin, W.
Wegscheider, and M. Bichler, Phys. Rev. B 73, 205326 (2006).
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