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Magnetodrag in the hydrodynamic regime: Effects of magnetoplasmon resonance and Hall viscosity
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In this work we study magnetotransport properties in electronic double layers of strongly correlated electron
liquids. For sufficiently clean high-mobility samples, the high-temperature regime of transport in these systems
can be described in pure hydrodynamic terms. We concentrate on the magnetic field dependence of longitudinal
drag effect mediated by the interlayer Coulomb scattering and identify several mechanisms of transresistance
which is caused by viscous flows, magnetoplasmon resonance, and dissipative thermal fluxes. In particular, we
elucidate how Hall viscosity enters magnetodrag and modifies its temperature dependence in the magnetic field.
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I. INTRODUCTION AND MOTIVATION

Electronic transport experiments in heterostructures con-
sisting of two spatially separated conducting layers pro-
vide a versatile platform to directly study manifestations
of electronic correlations promoted by the long-range na-
ture of Coulomb interaction. The canonical example is the
Coulomb drag setup of weakly coupled two-dimensional lay-
ers, wherein interlayer electron scattering gives raise to a non-
local response, namely a voltage drop Vdrag that appears in one
of the layers due to the electrical current Idrive flowing in the
other [1]. The resulting drag resistivity ρD = Vdrag/Idrive [2] is
extremely susceptible to temperature (T ), magnetic field (H),
interlayer spacing (d), intralayer carrier density (n) or density
mismatch between the layers (δn), and intralayer mean free
path (l), which can be dominated by either impurity scattering
in the disordered case, or by interelectron collisions in clean
systems. Importantly, the transresistivity reflects not only the
exact character of interlayer interaction, but also the nature of
elementary excitations in each layer and thus gives practical
tools to elucidate their fundamental properties. This becomes
especially pronounced in the regime of strongly coupled lay-
ers at small layer separation where drag reveals superfluidity
of indirect excitons [3] and broken symmetries in the double-
layered systems of monolayer and bilayer graphene [4–7]. It
has been demonstrated recently that the extent of many-body
correlations can be further enriched by incorporating a twist
angle between the layers [8].

In this work we study magnetodrag between quantum
wells of strongly correlated electrons at large interlayer sep-
arations. In this case the interlayer coupling is weak and
can be treated perturbatively, yet the intralayer interactions
should be accounted for exactly. More specifically, we con-
sider high-mobility and low-density two-dimensional (2D)
electron systems in a situation when the intralayer interaction
parameter, so-called Wigner-Seitz dimensionless radius rs that
is understood as the ratio of the average potential energy to
the average kinetic energy rs � (na2

B)−1/2 ∼ e2/(εvF ), can be
large, 1 < rs < rc

s . Here aB = ε/me2 is the effective Bohr

radius in the material with the dielectric constant ε and the
effective mass m. The critical value of rc

s marks the onset
of Wigner crystallization in 2D and is estimated to be of
the order rc

s ∼ 40 [9,10]. For sufficiently clean samples at
large rs and at moderately high temperatures, the electron-
electron scattering length lee can become short compared to
other scales at which electrons relax their momentum by
electron-impurity or interlayer electron-electron scattering. If,
in addition, the temperature is not too high, such that the
energy- and momentum-relaxing electron-phonon scattering
can be neglected, the electronic liquid exhibits hydrodynamic
behavior. In this scenario, the complexities of intralayer in-
teractions can be described by only a few kinetic coefficients,
such as viscosity and thermal conductivity, in the framework
of Navier-Stokes equation of a charged fluid [11,12].

There are several key factors stemming from both exper-
imental observations and theoretical proposals that motivate
this work. It has been shown early on that in the collision-
less limit with respect to intralayer scattering and to the
leading second order in interlayer interaction, longitudinal
magnetodrag is absent (at least to H2 order), as all field
dependent terms cancel out upon inverting the drag conduc-
tivity matrix, and Hall drag vanishes as well [13]. These
results hold unless some special additional assumptions are
made concerning the energy dependence of the quasiparticle
scattering time that may lift cancellations and lead to a weak
Hall drag signal [14]. On the other hand, experiments show
strong magnetodrag resistance with pronounced temperature
dependence ρD ∝ T H2 [15,16]. Furthermore, the magnitude
of drag effect increases sharply with large rs [17–19]. This
seems to suggest that intralayer interaction processes are of
principal importance and cannot be disregarded. The situation
with the Hall drag is more subtle since there is only very
limited data available in the weak field. Most of the experi-
ments have been conducted in high quantizing fields at low
temperatures in Shubnikov–de Haas and integer quantum Hall
regimes [20–25] where the sign of magnetodrag depends on
the Landau level filling factor difference between the two lay-
ers. This limit is well described by existing theories [26–32].
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The hydrodynamic regime of drag effect has recently
attracted considerable attention, and have been studied the-
oretically in the context of strongly correlated electronic
double layers [33–36] and graphene layers close to neutral-
ity [37–40]. The magnetodrag—the drag effect in an external
magnetic field—has not been studied in the context of hydro-
dynamic transport in strongly interacting electronic fluids at
large rs. In this paper we study the Coulomb drag effect in
the presence of an out-of-plane magnetic field in the hydro-
dynamic regime. We show that the magnetodrag is nonzero
even in classical magnetic fields (Landau quantization not
being important). The main effects of the magnetic field
are to modify the spectrum of collective modes (plasmons);
change the transport coefficients of the liquid, in particular its
viscosity tensor and thermal conductivity.

One particularly interesting aspect of the electronic mag-
netohydrodynamics is the appearance of the Hall viscosity—
an antisymmetric component of the viscosity tensor in a
magnetic field. Hall viscosity has been the subject of intense
theoretical scrutiny over the years, as it is related to a topo-
logical property of the quantum Hall state [41–44]. There
have been several proposals on how to measure its classical
counterpart via bulk magnetoresistance in planar and Corbino
geometries [45–49]. However, measurements of Hall viscosity
have been realized only recently in graphene electron liquid
as reported by the Manchester group [50]. Here we explore
how the Hall viscosity enters the magnetodrag resistance.
While our results are limited to a classically strong magnetic
field field, qualitatively they should be applicable as long as
temperature is high enough that thermal broadening effects
smear out Landau quantization. A crossover from semiclassi-
cal to Shubnikov–de Haas regime was considered recently in
the context of Hall viscosity calculation [51]. In principle, a
similar approach can be used in application to the Coulomb
drag problem.

The remainder of the paper is organized as follows. First,
in Sec. II we present our results at the qualitative level and
explain their physical origin since some of the expressions we
find can be anticipated based on very general considerations.
The next central Sec. III of the paper contains technical
details of our calculations which are based on the stochastic
magnetohydrodynamic theory of the Navier-Stokes equation
with Langevin forces. In the last Sec. IV we discuss emergent
transport regimes, provide estimates of the relative importance
of various terms in drag magnetoresistance, and place our
findings in the context of published experiments. In the Ap-
pendices we show that a modified structure of the stress tensor
in the field does not translate into the correlation function of
Lagnevin fluxes, and calculate asymptotes of certain integrals.
In conclusion, we also briefly comment on possible further
developments and remaining outstanding questions.

II. QUALITATIVE CONSIDERATIONS

A. Temperature regimes

We start with a discussion of temperature regimes that limit
the applicability of the expressions obtained in this paper.

For weak impurity and phonon scattering, the onset of a
collision-dominated regime in a bilayer is set by the tem-

perature Tcol at which the intralayer electron mean free path
becomes comparable to the interlayer separation lee � d . A
specific estimate for Tcol depends on the nature of quasiparticle
scattering. Throughout the paper, we assume that the Fermi-
liquid (FL) picture applies, in which lee = vF τee ∝ vF EF /T 2.
There is direct experimental evidence that this relationship
holds for the strongly interacting regime rs ∼ 10 [52]. In
this regime we deduce Tcol ∼ EF /

√
kF d . In our analysis we

systematically assume that kF d > 1, which is a valid regime
for most of the double layered systems in drag experiments,
except for double layers with graphene where this condition
can be reversed at low doping.

In this high-temperature regime, T > Tcol, one must take
into account intralayer electron-electron collisions while con-
sidering the interlayer drag effect. A fully hydrodynamic
description of the drag effect is possible at yet higher temper-
atures, the scale for which is set by comparing the frequency
of the two-dimensional plasmon mode ωpl [see Eq. (4) and
the text below it] with the wave vector q ∼ 1/d , to the
inverse electron-electron intralayer scattering time. For ωpl �
1/τee, transport in an electronic double layer is dominated
by hydrodynamic density fluctuations. Besides the plasmon,
the latter include propagating diffusive modes of thermally
expanding electron liquid caused by temperature fluctuations.
It is easy to show that the fully hydrodynamic regime sets in
at temperatures above Thydro ∼ EF / 4

√
kF d .

The energy scale that sets the onset of strong electron-
phonon scattering is determined by the Bloch-Grüneisen tem-
perature Tph = 2kF us, where us is the speed of sound. It
is important that for 2D systems it is possible to reach a
regime where Tph > EF . Indeed, Fermi energy scales linearly
with electron density EF ∝ n, whereas Tph ∝ √

n, so that
for semiconductor heterostructures at sufficiently low carrier
densities Tph can be above EF . This condition is fulfilled
in numerous experiments (see Ref. [53] for a review of
experimental data and a related discussion). At temperatures
below Tph, the electron-phonon scattering time is long as it
scales as a high power of temperature τ−1

e-ph � ξph(T/Tph )5,
where the energy scale of ξph is proportional to the square of
the deformation potential [54]. This behavior guarantees that
τee � τe-ph. Lastly, in sufficiently clean samples, it is possible
to ensure that the electron-impurity scattering rate is small
compared to the momentum exchange rate between the layers
of the system. Under such conditions, impurity scattering can
be neglected while considering the drag effect.

In conclusion, we assume the following hierarchy of
energy scales Tcol < Thydro < EF < Tph and the expressions
for magnetodrag resistance obtained in this work apply for
Thydro < T < Tph.

B. Mechanisms of magnetodrag

To begin the discussion of magnetodrag mechanisms, we
recall the scale of the drag resistance in the hydrodynamic
regime [33]:

ρD � ρQ

(kF d )4

aBη

nd

T

EF
. (1)

Here ρQ = 2π/e2 is the resistance quantum, and η is the
shear viscosity of electron fluid. In this formula, and all the
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forthcoming estimates in this section, we omitted all numeri-
cal coefficients and the cumbersome logarithmic in tempera-
ture renormalization factors, which we derive explicitly later
in the text. The expressions for ρD in Eq. (1) can be understood
from the following physical considerations. In the collision-
dominated regime, fluctuations of the viscous stresses that
excite density modes can be described by stochastic Langevin
forces in the Navier-Stokes equation. The latter obey Gaussian
distribution and the fluctuation-dissipation theorem dictates
that they correlate to a corresponding kinetic coefficient,
which is the shear viscosity η. Since drag is governed by the
coupling of density modes we expect that the temperature
dependence of the corresponding resistance is determined
by the product T η. To understand density and spacing de-
pendence of ρD, we first realize that the typical momentum
transfer between the layers is set by the inverse layer sep-
aration q ∼ 1/d , which is basically a property of screened
Coulomb interaction ∝(e2/q)e−qd . To the linear order in the
electron flow velocity v of the drive layer the drag force FD

is proportional to a product q(q · v). As one needs to sum
over all transferred momenta, the phase space in 2D brings a
factor q2, the correlation function of fluctuating stresses gives
another q4 (this is because stress tensor contains gradient of
velocity, and another gradient in the Navier-Stokes equation
that needs to be squared in the correlation function), and
lastly dynamical screening effects associated plasmon modes
bring another 1/q2. All together this gives FD ∝ 1/d5 while
the remaining density dependence can be restored from the
dimensional argument recalling that shear viscosity has units
of density so that FD ∝ 1/n4 leading to Eq. (1).

The first mechanism of magnetodrag comes from the mag-
netic field dependence of the shear viscosity: in a finite field
electrons experience cyclotron motion, which suppresses the
viscosity η → η(H ) by shortening the mean free path in the
direction of flow [55]:

η(H ) = η/[1 + (2ωcτee )2]. (2)

Here ωc = eH/mc is the cyclotron frequency. For the drag
magnetoresistance δρD(H, T ) = ρD(H, T ) − ρD(0, T ), this
gives rise to a negative viscous drag correction δρvisc

D in the
weak field limit ωcτee � 1:

δρvisc
D � −ρD(ωcτee )2. (3)

In order to explain the second contribution to drag resis-
tance, we recall that the plasmon dispersion spectrum ω±(q)
for a double 2D electron system consists of two branches of
excitations. These are the acoustic (optical) plasmon modes,
where the charge density oscillations in the two layers occur
in antiphase (phase). It should be noted that in the hydrody-
namic limit the imaginary part of the plasmon dispersion is
determined by electron viscosity Im ω± ∝ ηq2/(mn), so that
fluctuations with sufficiently low wave numbers q have large
mean free paths, and therefore plasmons are well-defined
excitations in this regime. As explained in Ref. [56] this is also
the physical reason for fluctuational mechanism of viscosity to
be the basic one at sufficiently small gradients and in samples
with no elastically scattering potential. At the finite field the
plasmon dispersion is pushed to higher energies, ω±(H, q) =√

ω2
±(q) + ω2

c , so that it is harder to excite plasmon resonance

and correspondingly drag friction decreases as

δρ
pl
D � −ρD(ωc/ωpl )

2, ωpl =
√

2πe2n

εmd
, (4)

where ωpl is the characteristic plasmon energy computed at
the typical wave number of interlayer coupling.

Yet another, third, contribution to the magnetodrag in the
hydrodynamic regime comes from the modification of the
plasmon dispersion by the Hall viscosity ηH. This effect has
been recently considered in the context of edge magnetoplas-
mon excitations [57], and in the context of magnetic resonance
in a high-frequency flow of a viscous electron fluid [58]. We
consider this effect in a bulk of a bilayer system. Hall viscosity
results in the contribution to magnetic transresistance of the
form

δρH
D � −ρD(ωc/ωpl )

2
(
l2
HηH/nd2

)
. (5)

We recall that the classical Hall viscosity [55]

ηH = η(2ωcτee )/[1 + (2ωcτee )2] (6)

is linear in H at weak fields so its product with the square of
magnetic length lH = √

c/eH is independent of the field in the
main approximation. Furthermore, by using an electron gas-
kinetic formula for viscosity, η = mvF nlee, it is easy to show
that the term in the last brackets of Eq. (5) is parametrically
equal to the square of the Knudsen number Kn = lee/d .

The fourth and the final contribution to the magnetodrag
that we have identified is an energy driven mechanism related
to the propagating neutral modes. Indeed, thermal fluctuations
drive diffusive energy fluxes through thermal conduction that
locally heat electron fluid. These processes can be accounted
for by introducing additional Langevin forces that lead to
thermal expansion and thus change of electron density. The
corresponding entropy production gives another channel of
dissipation and enhances interlayer friction via plasmons

δρ th
D � (ρQ/nd2)(cV T/κ )(uT /dωpl )

4(ωcτee )2. (7)

Here κ is the electronic thermal conductivity, cV =
T (∂s/∂T )V is specific heat per particle, and uT =√

T/mcv (∂s/∂ ln n)T is the thermal mode velocity. Unlike the
viscous mechanism, thermal drag is enhanced by magnetic
field.

The fact that δρ th
D is inversely proportional to κ is rather

subtle and deserves a brief explanation. In analogy with the
viscous term, the thermal Langevin forces correlate to thermal
conductivity by a fluctuation-dissipation relation so that the
corresponding strength of density response is proportional to
T κ . However, unlike the density modes of plasmon excitation,
a neutral thermal mode is purely diffusive with an over-
damped dispersion relation ω = iκq2/ncV . A slow thermal
diffusion effectively antiscreens a dynamical Coulomb inter-
action of long wavelength density fluctuations which scales
as 1/(κq2)2. This mechanism is similar to that of drag en-
hancement in the disordered case as screening is less effective
for diffusive modes [13]. It is also analogous to the previ-
ous discussion of drag enhancement by emergent magnet-
oviscous modes. Lastly, it should be noted that the energy
drag discussed here is conceptually different from the E-
drag due to the direct interlayer energy flux proposed in the

115401-3



APOSTOLOV, PESIN, AND LEVCHENKO PHYSICAL REVIEW B 100, 115401 (2019)

context of drag between tightly nested graphene layers [37].
Magnetothermal drag described by Eq. (7) emerges due to
intralayer energy currents.

C. Magnetodrag in classically strong fields

We find that the initial corrections to drag resistance due
to field-dependent viscosity, thermal conductivity, and field-
induced shift of the plasmon resonance, persists only at the
relatively weak fields. At moderately high fields, but still
below the typical scale of plasmon energy ωc < ωpl, drag
magnetoresistivity increases:

ρD � ρQ
(
TV/ω2

pl

)
(ωc/ωpl )

2(1/ηd2), (8)

where V = e2/d is the scale of Coulomb energy in a confine-
ment of a quantum well. Thus the shape of the full magne-
todrag resistance curve is nonmonotonic: the initial negative
H2 correction crosses over to a positive H2 growth (we will
demonstrate that the positive δρ th

D correction is in fact smaller
than the negative δρ

pl
D ). One should notice that in a striking

contrast to the zero-field result [see Eq. (3)] Eq. (8) scales
inversely proportionally to viscosity. For Fermi liquids this
implies that ρD ∝ T 3H2 (modulo logarithmic factors). The
physical mechanism of positive H2 magnetodrag resistance
can be traced to the density modulations associated with the
viscomagnetic collective modes. In the long wavelength limit,
these modes are overdamped and disperse as q3 and q4 due
to admixture to optical and acoustic plasmons, respectively.
Screening is not effective in this region of wave numbers,
and in addition, these modes have a scattering phase space,
which scales as a cube of frequency. As we show below,
both factors contribute to strong positive H2 enhancement of
drag resistance. At this point, it is perhaps useful to draw an
analogy to a related problem where coincidently, similarly
dispersing mode ω = iκq3 exists for composite fermions of
the half-filled Landau level [59]. From that context it is
known that such a density response strongly enhances drag
transresistance in quantum Hall bilayers [60]. As we alluded,
formally the same mechanism of poor screening combined
with the phase space argument applies to our situation, albeit
for a different microscopic reason and regime of parameters.

III. TECHNICAL APPROACH

A. Stochastic Navier-Stokes equations

We consider a symmetric electronic double-layer system
where we assume a steady current in the active layer (layer 1)
and no current in the passive layer (layer 2). The equilibrium
electron density in each layer is n, whereas small density
variations and fluctuations of the flow velocity are denoted
as δn(r, t ) and δv(r, t ), respectively. For each layer separately
we write continuity

∂t n + div(nv) = 0, (9)

and Navier-Stokes equation of motion

m[∂tv + (v · ∇)v] = −1

n
∇P − ∇U − e

c
[v × H] + 1

n
∇ · σ.

(10)

The right-hand side of this equation accounts for forces acting
on the liquid from pressure P(n), a self-consistent Coulomb
potential U (n), which is determined by the fluid density via
the Poisson equation, the Lorentz force, and the tress tensor
of viscous fluxes

σik = 2ηvik + (ζ − η)δik∂lvl + ηH(εi jzvk j + εk jzvi j ) + ςik .

(11)

Here vik = (∂kvi + ∂ivk )/2, where i, k are Cartesian indices,
and we used shorthand notation for the spatial derivative ∂i =
∂/∂xi. The notation ∇ · σ in Eq. (10) should be understood as
a convolution ∂kσik , and as usual, summation over the repeated
index is assumed here and in all equations below, unless
otherwise stated. The tensorial structure of viscous stresses is
governed by vik together with the Kroenecker delta symbol δik

and Levi-Civita fully antisymmetric symbol εi jk . Longitudinal
stresses are determined by the shear (first) viscosity η and bulk
(second) viscosity ζ , whereas the transverse stresses occur due
to odd (Hall) viscosity ηH induced by a field. The form of
σik in Eq. (11) requires an explanation. We should recall that
in general viscosity is the rank-four tensor ηi jkl . In the ex-
ternal magnetic field, Onsager reciprocal symmetry of kinetic
coefficients enforces a condition ηi jkl (H ) = ηkli j (−H ). As a
result, between the unit vector of the field eH = H/H and two
unity tensors Kronecker (δi j) and Levi-Civita (εi jk) there are
seven independent tensorial combinations that preserve the
symmetry of viscosity tensor so that one needs seven scalar
viscosity coefficients [61]. The simplified form of the stress
tensor we use in Eq. (11) with three viscosities corresponds
to a situation when hydrodynamic flow is constrained to the
two-dimensional plane and field is oriented perpendicular to
that plane. In this formalism, thermal fluctuations are captured
by stochastic Langevin forces ςik (r, t ) whose variance is
described by the correlation function

〈ςik (r, t )ςlm(r′, t ′)〉 = 2T δ(r−r′)δ(t −t ′)×[η(δilδkm+δimδkl )

+ (ζ − η)δikδlm], (12)

where 〈· · · 〉 denotes thermal averaging. In the classical regime
the strength of these fluctuations is obviously determined by
the equilibrium temperature T . One should notice that even
though Hall viscosity enters the stress tensor in Eq. (11) it
actually drops out from the correlation function (12). This
has to do with the fact that Hall viscosity is a dissipationless
coefficient as it does not lead to entropy production in the flow
and, consequently, does not enter the correlation function by
virtue of fluctuation-dissipation relation. In Appendix A we
show explicitly how terms with ηH in σik cancel out from
Eq. (12).

The steady current j = env in the active layer exerts the
drag force FD = 〈δn2(−∇U2) on the passive layer. Relating
the potential to density fluctuations by using the Poisson
equation and ignoring the intralayer forces we can express the
drag force

FD =
∑

q

(−iq)
∫

dω(2πe2/εq)e−qd D(q, ω) (13)

in terms of the density-density correlation function

D(q, ω) = 〈δn1(q, ω)δn2(−q,−ω)〉, (14)
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where δn1,2(q, ω) are the Fourier components of the density
fluctuations in both layers and q is the absolute value of
the vector q. Knowing the drag force one readily finds the
longitudinal magnetodrag resistivity

ρD(H, T ) = (v · FD)/(env)2. (15)

B. Linear response and collective modes

In order to calculate the correlation function of interlayer
density fluctuations, and having in mind linear response anal-
ysis, we linearize continuity and Navier-Stokes equations with
respect to small deviations from equilibrium in densities and
velocity fluctuations. From Eq. (9) we find for the drive layer

∂tδn + div(δnv + nδv) = 0. (16)

Next, using the explicit form of the stress tensor from Eq. (11)
in Eq. (10) we find after the linearization

∂tδv + (v · ∇)δv = − 1

m
∇δU + νη∇2δv + νζ ∇ div δv

+ νh{[(∇2δv + ∇ div δv) × ez]

+∇ div[δv × ez]}/2 − ωc[δv × ez]

+ 1

mn
∇ · ς̂. (17)

Here we introduced kinematic viscosities νη = η/mn, νζ =
ζ/mn, and νh = ηH/mn. In the equation above we have ne-
glected terms proportional to gradients of pressure fluctua-
tions ∇δP that are driven by both density and entropy fluctu-
ations. These terms contribute to drag resistance, but they are
subdominant in the entire temperature range of the collision-
dominated regime. We will return to this point later in the
text. We have also neglected inductive terms stemming from
the induced field fluctuations that render current-current type
interlayer interaction. These contributions are small in extra
powers of v/c � 1. For the drag layer, linearized equation of
motion looks identical to Eq. (17), one only needs to send the
drift velocity to zero v → 0, but obviously not its fluctuations
δv(r, t ).

To make further progress in solving these equations it is
convenient to make collinear and tangential projections that
transform Navier-Stokes equation into a scalar form for two
components of the velocity field fluctuations. For this purpose
we pass to the Fourier representation δv(r, t ) ∼ e−iωt+iqr and
introduce

δv‖ = (q · δv)/q, δv⊥ = (q · [δv × ez])/q. (18)

Then separating Eq. (17) for both velocity components we
find

[−iω + i(v · q)]δv‖ = − iq

m
δU − ωνδv‖ − (ωc + ωh)δv⊥

+ i

mnq
(q · ς̂q), (19)

[−iω + i(v · q)]δv⊥ = −ωηδv⊥ + (ωc + ωh)δv‖

+ i

mnq
(q · [ς̂q × ez]), (20)

where ωη = νηq2, ων = νq2, ωh = νHq2, and ν = νη + νζ . It
is worth noting that νH < 0 for ωc > 0, so the |νH|q2 term

is actually subtracted from ωc. For small density fluctuations
δn/n � 1, the linear screening approximation applies and the
variations of the Coulomb potential in the active layer δU1 can
be expressed via the variations of electron density in the both
layers as follows:

δU1 = 2πe2

εq
(δn1 + e−qdδn2). (21)

For the passive layer this expression is the same, one only
needs to flip indices 1 ↔ 2. We can use continuity equa-
tion (16) to exclude δv‖ and δv⊥, and obtain a closed set
of equations for density fluctuations only in both layers
δn1,2. Motivated by the physical picture of propagating in-
phase and out-of-phase density modes, it will be conve-
nient to introduce symmetric and antisymmetric combinations
δn± = δn1 ± δn2, including the Langevin fluxes ς̂± = ς̂1 ±
ς̂2. These steps enable us to write density response in a
combined form:

�±δn± = (ωc + ωh)
q2ς⊥

±
m

− (ωη − iω)
q2ς

‖
±

m

+ i(v · q)

2

[
�+δn+ + �−δn− − q2(ς‖

+ + ς
‖
−)

m

]
.

(22)

Here the projections of Langevin fluxes are

ς⊥
± = q · [ς̂±q × ez]

q2
, ς

‖
± = q · (ς̂±q)

q2
, (23)

and the polarization functions have the form

�±(q, ω) = iω(ωη − iω)(ων − iω) − (ωη − iω)ω2
±

+ iω(ωc + ωh)2. (24)

The dynamic vertex functions that couple fluctuating density
modes in the presence of the drift and finite magnetic field are

�±(q, ω) = (ωη − iω)(ων − iω) − iω(ωη + ων )

+ω2
± + (ωc + ωh)2. (25)

Here we introduced symmetric/antisymmetric plasmon fre-
quencies ω2

± = ω2
p(1 ± e−qd ) and ω2

p = 2πe2nq/mε.
It is instructive to investigate properties of the polariza-

tion function more closely in few limiting cases. Ignoring
viscous effects entirely and without magnetic field Eq. (24)
simplifies to �± = iω(ω2

± − ω2), which has poles at the real
axis of frequency corresponding to plasmon resonances. This
is obviously physically expected as in general poles of the
polarization function correspond to collective modes propa-
gating in the system. At finite field, but still without viscosity
terms, poles simply shift to higher energies, �± = iω(ω2

± +
ω2

c − ω2), as expected for magnetoplasmon modes. For weak
viscous effects ωη,ν � ω±, poles shift from the real axis into
the complex plane of frequency, so that plasmons acquire
a finite lifetime τ−1

pl = (ωη/2)[ων/ωη + ω2
c/(ω2

± + ω2
c )]. This

energy scale sets the width of plasmon resonance. Odd viscos-
ity also modifies the real part of the magnetoplasmon disper-
sion curve by inducing a shift by �ω±(H, q) = ωcωh/(ω2

± +
ω2

c )1/2. Importantly, the viscous pole couples to plasmons in
magnetic field iω → iω + ωηω

2
±/(ω2

± + ω2
c ) that gives rise
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to overdamped viscomagnetic collective modes. In particular,
for the admixture of the viscous diffusive pole to the optical
plasmon branch we have in the limit of long wavelength
fluctuations ω = iκq3, where κ = 2πe2η/(εm2ω2

c ). This dis-
cussion is further exemplified by Fig. 1 where we plot the
density response function D(q, ω) of emergent hydrodynamic
modes.

We seek for the solution of Eq. (22) to the linear order in v

in the form δn± = δn(0)
± + δn(1)

± , where

δn(0)
± = q2

m�±
[(ωc + ωh)ς⊥

± − (ωη − iω)ς‖
±], (26)

δn(1)
± = i(v · q)

2�±

[
�+δn(0)

+ +�−δn(0)
− − q2(ς‖

+ + ς⊥
− )

m

]
. (27)

These expressions allow us to calculate the density-density
correlation function

D(q, ω) = i(q · v)(nT q2/m)

|�+|2|�−|2
∑
±

±�∗
∓ × {

�±
[
ωη(ωc + ωh)2

+ων

(
ω2 + ω2

η

)] + �±ων (ωη + iω)
}
, (28)

where we made use of the following thermal averages:

〈ς‖
i ς

‖
j 〉 = 4T (η + ζ )δi j, 〈ς‖

i ς⊥
j 〉 = 0, 〈ς⊥

i ς⊥
j 〉 = 4T ηδi j,

(29)

which were obtained with the help of Eq. (12) and indices
{i, j} = ± imply symmetric/antisymmetric combinations.

In order to find resulting drag resistance we need to use
D(q, ω) in Eqs. (13) and (15). A complete functional form

FIG. 1. A contrast plot for the density-density correlation func-
tion D(q, ω) displaying in a.u. the intensity of hydrodynamic col-
lective modes in a bilayer of 2D electron liquids. Plasmon branches
are highlighted by the solid line for optical mode, and dashed line
for acoustic mode, respectively. Inset plot shows a zoom into the
low-momentum region of viscomagnetic modes.

of the field dependence in ρD(H ) is rather complex and
difficult to find analytically. Instead, we will inspect Eq. (28)
in several formal limiting cases that enables us to uncover
more clearly physical processes responsible for resistance. We
are also able to find an analytic interpolation formula that
captures temperature and field dependence of drag resistance
in the parameter space of interest. A complete solution can be
obtained rather efficiently by numerical integration. We will
discuss below a convenient choice of dimensionless variables
for numerical analysis.

C. Viscous flow magnetodrag resistance

The dependence of the drag resistance on the magnetic
field stems from several main sources. The first one is just due
to the field dependence of the viscosity itself [see Eq. (2)]. In
order to single out this contribution from the density response
function in Eq. (28) one needs to send terms with ωc + ωh to
zero in the polarization function �± and vertex function �±,
but retain field dependence of ωη and ων . The corresponding
part of the density-density correlation function then reads

Dvisc = i(v · q)(nT q2/m)(ω2
+ − ω2

−)ω2
ν[

ω2ω2
ν + (ω2 − ω2−)2

][
ω2ω2

ν + (ω2 − ω2+)2
] . (30)

Inserting this expression into Eqs. (13) and (15), frequency
integration can be readily done by poles in the complex plane
of ω, and remaining momentum integration can be made
dimensionless by introducing a variable x = qd . We thus find

ρvisc
D (H ) = εT (η + ζ )

16π2e4n4d5
F0(β ), (31)

where we introduced dimensionless parameter

β = η + ζ

n

√
aB

2πnd3
, (32)

and a dimensionless function of that parameter

F0 =
∫ ∞

0

x4(β2x3 + 1)e−xdx

2 sinh(x)(β2x3 + e−2x )
. (33)

Provided that kF d > 1, which is our basic assumption for the
weakly coupled layers, it will be shown below that β < 1
in the high temperature hydrodynamic regime. In the limit
β → 0, the dimensionless function F0(β ) diverges logarith-
mically (see Appendix B for a detailed analysis). Retaining
the leading asymptotic behavior and expanding Eq. (31) to H2

order we obtain a magnetic field induced correction to viscous
Coulomb drag resistance

δρvisc
D (H ) � −ρQ

(η/n)(ωcτee )2

rs(kF d )5

T

EF
ln5

[
1

β2 ln3(1/β )

]
.

(34)

In this expression (and in what follows) we neglected bulk
viscosity, as it is typically small compared to the sheer
viscosity. This is certainly justified for Fermi liquids where
ζ ∼ (T/EF )2η so that ζ � η at all temperatures below the
Fermi energy T � EF . We have also suppressed all numerical
factors for brevity and kept only parametric and functional
dependence on physical parameters.
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D. Magnetoplasmon drag resistance

The second source of drag resistance captured by Eq. (28)
is induced by the coupling between the longitudinal and trans-
verse modes of fluctuations facilitated by the magnetic field.
As a result, both electron cyclotron motion and Hall viscosity
terms modify plasmon dispersion so that this mechanism of
drag is strongest at the plasmon resonance of a bilayer system.
Expanding Eq. (28) to the second order in ωc + ωh we get
D = Dvisc + Dmpl where

Dmpl = −2i(v · q)(nT q2/m)(ω2
+ − ω2

−)ω2
η[

ω2ω2
η + (ω2 − ω2−)2

]2[
ω2ω2

η + (ω2 − ω2+)2
]2

× (ωc + ωh)2(
ω2 + ω2

η

) [
ω2ω2

η + (ω2 − ω2
+)(ω2 − ω2

−)
]

× [
ω2ω2

η − (ω2 − ω2
+)(ω2 − ω2

−)

+ω2(ω2
+ + ω2

− − 2ω2)
]
. (35)

This cumbersome expression can be split into the sum of
simple fractions each of which has a relatively simple pole
structure that can then be integrated over the frequency an-
alytically. As in the previous section, the final momentum
integration can be made dimensionless. We thus find from
Eqs. (35), (13), and (15) the corresponding resistance

δρ
mpl
D (H ) = −εT η(ωc/ωpl )2

16π2e4n4d4
F1(α, β ), (36)

where

F1 =
∫ ∞

0

3β2x6(1 − 2αx2)e−xdx

2 sinh(x)[β2x3 + e−2x]2[(1 + 2β2x3)2 − e−2x]

(37)

and α = Rc|νH|/(vF d2) with Rc = vF /ωc being the cyclotron
radius. In F1(α, β ) we kept only the linear in α term and
neglected all higher order contributions. We have also retained
only leading order terms in powers of β in the numerator of
the integrand. The product of Rc|νH| is field independent up
to correction of the order of ω2

c , which are of higher order of
accuracy for Eq. (36) since it is already quadratic in H .

To make a further connection to our earlier qualitative
discussions, we can formally split Eq. (36) into two terms
δρ

mpl
D = δρ

pl
D + δρH

D . The first resonant magnetoplasmon con-
tribution follows from the part of F1 that is independent of α.
Retaining the leading asymptotic behavior of F1 when β � 1
(see Appendix B for details) we find

δρ
pl
D � −ρQ

(η/n)(ωc/ωpl )2

rs(kF d )5

T

EF
ln3

[
1

β2 ln3(1/β )

]
. (38)

The second linear in α term of F1 defines the Hall viscosity
contribution to magnetoplasmon drag resistance

δρH
D � −ρQ

ηηH(kF Rc)(ωc/ωpl )2

rsn2(kF d )7

T

EF
ln5

[
1

β2 ln3(1/β )

]
.

(39)

In Fig. 2 we plot F0,1 functions as well as their ratio that
defines the relative contribution to magnetodrag resistance.

FIG. 2. Dependence of the dimensionless functions F0,1 from
Eqs. (33) and (37) on viscosity parameter β. In the main panel we
plotted F0(β ) and F1(α = β, β ) in solid and dashed lines, respec-
tively. In the inset we show the ratio F1(α = zβ, β )/F0(β ) for several
values of z = 1/4, 1/2, 1 displayed in thin, normal, and thick lines,
respectively.

E. Thermomagnetic drag resistance

In order to capture the thermal component of the drag
resistance δρ th

D quoted in Eq. (7) we need to invoke an
extended hydrodynamic theory. This requires an account of
extra forces ∂iP from the pressure term in the Navier-Stokes
equation. Even though the equation of state may not be known
for a strongly correlated liquid, still one can relate pressure
fluctuations δP = (∂P/∂n)Sδn + (∂P/∂s)V δs in a given layer
to density (δn) and entropy (δs) fluctuations via general ther-
modynamic relations such as (∂P/∂s)V = n2(∂T/∂n)S . Due
to screening the compressibility term in pressure fluctuations
can be neglected in the long wavelength limit, however the en-
tropic term must be retained. To close the system of equations
we then need an entropy production equation whose linearized
version reads in Fourier components

nT [i(q · v) − iω]δs = −κq2δT − i(q · g), (40)

where κ is the thermal conductivity of electron liquid and g
is the Langevin force of thermal fluxes that is described by a
familiar correlation function (see Appendix A for a reminder)

〈gi(r, t )gj (r′, t ′)〉 = 2κT 2δi jδ(r − r′)δ(t − t ′). (41)

For density and entropy as being independent thermodynamic
variables, temperature fluctuations δT = (∂T/∂n)Sδn +
(∂T/∂s)V δs can be related to isentropic expansion
of the liquid αS = −(∂ ln n/∂T )S and specific heat
cV = T (∂s/∂T )V . Thermal fluxes in the fluid give
raise to diffusively propagating overdamped mode of
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entropy fluctuations ω = iκq2/ncV and propagating
acoustic mode ωα = uT q, with the characteristic velocity
uT = √

T/mcV (∂s/∂ ln n)T , of thermal expansion that lead to
an additional density variation

δnth
± = − iuT q2

√
mcV T

(q · g±)

�±
(42)

that should be added to δn(0)
± in Eq. (26). Polarization function

�± is also modified by a term −(κq2/ncV )ω2
α that should

be included in Eq. (24). As shown in Ref. [33] these modes
couple to plasmons and render an additional drag resistance

δρ th
D = 3ζ (3)

32πe2

1

nd2

ε2T

χn

(
uT

ωpld

)4

, (43)

where χ = κ/ncV is the kinematic thermal diffusivity. At fi-
nite magnetic field we need to account for the modification of
thermal conductivity that gets a correction δκ = −κ (ωcτee )2

which then translates into Eq. (7). The coupling of the thermal
mode to magnetoplasmon gives an additional contribution to
drag resistance that, however, has an extra smallness in powers
(uT /ωpld ), and thus can be neglected.

F. Viscomagnetic drag resistance

A direct expansion of D(q, ω) at small fields, which we
carried out in the previous subsections, captures correctly only
the initial trend of magnetoresistance. Our carefully numerical
analysis revealed that at higher fields, drag in fact grows as
a function of H . To develop an analytical understanding of
apparent nonmonotonic field dependence, we single out poles
in the polarization functions �±(q, ω) corresponding to all
the collective modes in the system. Specifically, Eq. (24) can
be written as follows:

�±(q, ω) = (iω − λ±ωη ) × {(iω)2 + ω2
±/λ±

− iω[ων + (1 − λ±)ωη]}, (44)

where λ± is the root of the following algebraic equation:

ω2
±/λ± = (ωc + ωh)2 + ω2

± + ωη(ων − λ±ωη )(1 − λ±).

(45)

In the limit of long wavelength fluctuations ωη ∼ ων � ω±,
so that this equation can be easily solved iteratively in small
viscous terms. To the main order in O(ω2

η ) corrections

λ± = ω2
±/[(ωc + ωh)2 + ω2

±]. (46)

With this form of �± in Eq. (44) we can perform a frequency
integral analytically in the expression for the drag force. We
find∫ +∞

−∞
D(q, ω)

dω

2π

= i(v · q)
nT q2

m

× e−2qd
[
ω2

η

(
ω6

p + ω2
Hω4

p + 4ω6
H

) + ω4
pω

4
c e−2qd

]
2ω4

pωη

[
ω2

η

(
ω2

p + 2ω2
H

)2 + ω4
p

(
ω2

p + ω2
H

)
e−2dq

] ,

(47)

FIG. 3. In the main panel we show magnetodrag resistance
normalized to its zero-field value r‖ = ρD(H, T )/ρD(0, T ), plot-
ted for several different values of the viscosity parameter β =
1/8, 1/14, 1/20 [Eq. (32)] as a function of cyclotron frequency
normalized to the energy scale of a plasmon h = ωc/ωpl. The inset
plot shows a zoom into the low-field region where δr‖ = r‖ − 1 is
plotted in dashed, dotted, and solid lines corresponding to different
values of a ratio α/β = 1/4, 1/2, 1 and fixed β = 1/8.

where ωH = ωc + ωh. To arrive at this expression, we have
also made a consistent approximation by treating ωη ∼ (ω2

+ −
ω2

−)/ωp � ωp. As a result, for the magnetodrag resistance
due to resonant collective modes we obtain the interpolation
formula

ρD(H, T ) = εT η

16π2e4n4d5
F3(α, β, h), h = ωc/ωpl, (48)

where

F3 =
∫ ∞

0

{β2x2[4h6(x) + h2(x)x2 + x3] + h4(x)e−2x}e−2xdx

β2{β2x2[2h2(x) + x]2 + [h2(x) + x]e−2x}
(49)

and h(x) = h(1 − αx2). It should be noted that integrand in
F3 has two extremal regions as function of x. The first one
is at x � 1, due to the viscomagnetic collective mode, and
the second at x ∼ ln(1/β ) � 1, due to plasmon resonances.
Function F3 describes a smooth crossover from the negative
quadratic drag resistance at weak fields [Eq. (36)] to the pos-
itive quadratic magnetodrag at a higher field region [Eq. (8)].
The shape of F3 is illustrated in Fig. 3 for several different
parameters.

IV. ANALYSIS AND DISCUSSION

Results obtained in this work for magnetodrag resistance
cover a broad range of temperatures, electron densities, and
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interaction strengths. A particular temperature and field de-
pendence of ρD(H, T ) and relative magnitude of various
terms depends on the microscopic state of electronic fluid
via viscosities η(T, H ), ζ (T, H ), and thermal conductivity
κ (T, H ) coefficients, as well thermodynamic characteristics
such as specific heat cV (T, H ). For strongly correlated liq-
uids, a detailed microscopic theory of the temperature de-
pendence of all these coefficients has not been developed.
To narrow down the parameter space of different transport
regimes in our comparative analysis we choose to focus on
Fermi liquids at rs ∼ 1 where κ � E2

F /[T ln(EF /T )], η �
n(EF /T )2 ln2(EF /T ), τ−1

ee � (T 2/EF ) ln(EF /T ), and cV �
T/EF [62–66]. For this case, the parameter β in Eq. (32) that
defines logarithmic renormalization of drag resistance from
plasmon resonances is given by β � 1/(kF d )3/2(EF /T )2. For
brevity, we shall further omit these extra logarithmic factors
from F functions of Eqs. (33) and (37), including also FL
logarithms.

We would like to note that the discussion below can
be generalized to the nondegenerate limit T > EF , whereby
electrons form a classical gas, so that η ∼ mvT T/e2 and κ ∼
vT T/e2, where vT ∼ √

T/m is the thermal velocity. Another
interesting regime is the so-called semiquantum liquid, for
which some conjectures were put forward in Refs. [67,68].
In particular, cV ∝ T , κ ∝ T , η ∝ 1/T at zero magnetic
field.

A. Temperature dependence

The zero-field longitudinal drag resistance has a maximum
at a temperature scale Tpl ∼ EF / 4

√
kF d , where it can be es-

timated to be of the order of ρmax
D /ρQ ∼ 1/(kF d )19/4 [33].

The scale of Tpl ∼ Thydro marks the condition at which plas-
mons attain hydrodynamic limit ωpl ∼ τ−1

ee (Tpl ). It is impor-
tant to stress that a simple extrapolation of the drag resis-
tance from collisionless side T < Tcol (namely a contribution
of the particle-hole continuum) underestimates drag resis-
tance in a parametrically large factor. Indeed, as particle-
hole excitations give quadratic in temperature drag ρ

p-h
D /ρQ ∼

1/(kF d )4(T/EF )2 at lowest temperatures [13], this behav-
ior changes to linear ρ

p-h
D /ρQ ∼ 1/(kF d )5(T/EF ) at T ∼

EF /(kF d ) due to kinematic constraints. Extrapolating then
this ρ th

D to Tpl we see that ρ
p-h
D /ρmax

D ∼ 1/
√

kF d . The proper
crossover in the region Tcol < T < Thydro is captured by a low-
energy tail of plasmons which is beyond pure hydrodynamic
theory and requires solution of the full kinetic equation [34].
The important conclusion that can be drawn from this naive
extrapolation attempt is that intralayer equilibration processes
strongly enhance drag and this is qualitatively consistent with
experimental findings (see for example Ref. [16] where a
detailed discussion is presented about the discrepancies of
observation and theory predictions from improved random-
phase approximation). At temperatures above Tpl the zero-
field drag resistance decays from its maximal value as ρD �
ρQ/(kF d )5(EF /T ), at Thydro < T < EF , however, it starts to
grow again in the nondegenerate regime at T > EF as ρD �
ρQ/(kF d )5(T/EF )5/2, which persists until the hydrodynamic
description breaks down by frequent electron-phonon scatter-
ing processes (see Fig. 4 for the illustration).

FIG. 4. A schematic plot for the temperature dependence of the
zero-field drag resistance normalized to its maximal value at the
plasmon peak. The range of temperatures Tcol < T < Thydro describes
the crossover from collisionless to hydrodynamic regime [34].
Hydrodynamic regime applies at higher temperatures T > Thydro, un-
til its is destroyed by electron momentum and energy nonconserving
collisions with phonons at T ∼ Tph. Power exponents in a crossover
T 3 → 1/T are quoted assuming an FL picture.

B. Magnetic field dependence

Furthermore, we have investigated how the maximum of
drag is affected by magnetic field. At lowest fields, consid-
ering the ratio between plasmon and viscous contributions to
magnetodrag resistance from Eqs. (3) and (4),

δρ
pl
D

δρvisc
D

∼ 1

(ωplτee )2
∼ (kF d )(T/EF )4, (50)

we see that at the onset of hydrodynamic regime, T ∼ Tpl ∼
Thydro, these contributions are of the same order, however
plasmon mechanism dominates, δρ

pl
D > δρvisc

D , everywhere at
higher temperatures Tpl < T < EF . The Hall viscosity contri-
bution contains an extra factor in the square of the Knudsen
number. At the plasmon resonance T ∼ Tpl we can estimate
Kn ∼ 1/

√
kF d , so that δρH

D < δρ
pl
D . The thermomagnetic part

of drag resistance is a growing function of temperature but
even at the plasmon resonance it is still small compared to
plasmonic contribution δρ th

D /δρ
pl
D ∼ 1/(kF d ), and becomes of

order one δρ th
D /δρ

pl
D ∼ 1, only at T ∼ EF . In summary, for

a FL regime the temperature scalings of these terms are as
follows (again omitting both FL logarithms and plasmon reso-
nance logarithms): δρvisc

D ∝ −H2/T 5, δρpl
D ∝ −H2/T , δρH

D ∝
H2/T 5, δρ th

D ∝ H2T 3.
For a regime of parameters where ωcτee < 1 one can ignore

field dependence of shear viscosity coefficient and concentrate
exclusively on the resonant collective mode contributions to
drag. For example at the temperature of the drag peak T ∼
Tpl the condition that ωcτee < 1 is satisfied for all the fields
up to the scale of plasmon frequency ωc � ωpl. One could
also easily estimate that α(Tpl ) ∼ β(Tpl ) ∼ 1/(kF d ). In this
regime drag resistance is given by Eq. (8), which for the FL
parameters reads as

ρD(H ) � ρQ

(kF d )(RckF )2

(
T

EF

)3

∝ T 3H2. (51)
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This result enables us to estimate the enhancement of the
drag peak by magnetic field ρmax

D (H )/ρmax
D ∼ (kF d )(d/Rc)2.

It is perhaps worth mentioning that the expression for drag
resistance in Eq. (8) bears a close resemblance to a recently
obtained viscous magnetoresistance of a single electron layer
subject to smooth inhomogeneous potential with long cor-
relation radius [12], in particular its inverse proportionality
to viscosity as opposed to the linear proportionality of the
zero-field resistance. This is not accidental as both have a
similar physical origin. Indeed, in the presence of the current,
the external potential moves relative to the liquid and produces
fluctuations of density in the electron liquid. The subsequent
scattering of density fluctuations from the disorder potential
produces a net resistive force. Thus intralayer resistivity can
be understood in terms of the drag force between the electron
liquid and the disorder potential.

C. Outlook

In closing, we mention that within the same hydrodynamic
approach we examined a question of whether Hall viscosity,
which enters stress tensor as a transverse term, can render
finite Hall drag resistance. However, upon a close inspection
of various terms we do not find nonvanishing contributions
at least within the main hydrodynamic approximation. It is
still possible that higher gradient corrections to hydrodynamic
equations of motion, due to the formal expansion in Knud-
sen number, and additional gradient terms, due to density
dependence of kinetic coefficients, can lead to transverse
correlations that generate Hall drag. In this work, we have not
delved into an exhaustive analysis of these possibilities, which
should be pursued in a separate study.
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APPENDIX A: CORRELATION FUNCTION
OF FLUCTUATING VISCOUS STRESSES

AND THERMAL FLUXES

Theory of hydrodynamic fluctuations was developed by
Landau and Lifshitz [69] based on earlier ideas of Rytov [70]
who also developed the same approach to electromagnetic
fluctuations. The general idea of the method can be summa-
rized as follows. Let us view the expressions for the stress
tensor σik and heat flux Qi in the fluid

σik = 2ηvik + (ζ − η)δik∂lvl + ηH (εi jzvk j + εk jzvi j ) + ςik,

(A1)

Qi = −κ∇iT + gi, (A2)

as an equation of motion for a random variable xa subject to a
random force ya,

ẋa = −
∑

b

γabXb + ya, (A3)

where the first term on the right-hand side describes relaxation
with dissipative coefficient γ . The meaning of conjugated (or
dual) variables Xa is identified by entropy production

Ṡ = −
∑

a

ẋaXa. (A4)

For the Gaussian distribution of xa the correlation function of
ya is then given by

〈ya(t )yb(t ′)〉 = (γab + γba)δ(t − t ′), (A5)

which signifies the fluctuation-dissipation relation and On-
sager symmetry principle.

In this setup we want to identify ẋa with either σik or Qi so
that force ya should be identified with ςik or gi, respectively.
Even though xa represent a discrete set of variables, we can
think of a partitioning system into small volumes �V and
then taking a continuum limit �V → 0 to get to fields σik and
Qi. To realize this plan we first calculate the rate of entropy
production in the fluid

Ṡ =
∫ [

σik

2T

(
∂vi

∂xk
+ ∂vk

∂xi

)
− Qi

T 2

∂T

∂xi

]
dV. (A6)

Two points are important here. First is that Ṡ does not con-
tain cross terms between viscous and thermal fluxes, which
implies that their fluctuations are uncorrelated. The second
point is that the trace σikvik = ηvikvik + (ζ − η)(div v)2 is
independent of Hall viscosity ηH , which reinforces the fact
of its nondissipative nature. From this expression of Ṡ we
conclude that if we identify ẋa → σik , then the conjugated
variable is Xa → −(�V/T )vik . Conversely, if we identify
ẋa → Qi, then Xa → (�V/T 2)∂iT . With this prescription we
can write stress tensor (A1) in the form of an equation of
motion (A3) as follows:

σik = −
∑
lm

γik,lm

(
−�V

T
vlm

)
+ ςik, (A7)

which enables us now to identify the corresponding dissipa-
tive tensor

γik,lm = T

�V
[η(δikδlm + δimδkl ) + (ζ − η)δikδlm

+ ηH (εimzδkl + εkmzδil )] (A8)

that should enter the correlation function (A5) for ςik . Taking
a continuum limit �V → 0 implies (T/�V ) → T δ(r − r′).
This way we arrive at Eq. (12) from the main text. A Hall
viscosity piece of γik,lm drops out from the correlation func-
tion because of symmetrization with respect to pairs of indices
while terms with ηH are antisymmetric and cancel pairwise.

In complete analogy, we can present the heat flux (A2) in
the form of Eq. (A3) as follows:

Qi = −
∑

ik

γik

(
�V

T 2
∂kT

)
+ gi, (A9)
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with

γik = κT 2

�V
δik . (A10)

After symmetrization and in the continuum limit this gives
Eq. (41) from the main text. In closing this Appendix we
mention that this approach can be generalized to the regime
of quantum fluctuations. In that case few modifications are
needed: first, is that thermal factor should be replaced by
a proper distribution function of bosonic modes of given
frequency ω; second, is that kinetic coefficients become dis-
persive and only their real part enters the correlation function.
For example, quantum thermal fluctuations are described by
the correlator (a time Fourier transform):

〈gi(r, ω)g j (r′,−ω)〉 = T ω coth(ω/2T )Re κ (ω)δ(r − r′).

(A11)

APPENDIX B: ASYMPTOTIC BEHAVIOR OF INTEGRALS

The leading asymptotic behavior of F0(β ) in Eq. (33) and
F1(α, β ) in Eq. (37) can be captured as follows. For any
finite and small β the integrand of F0 increases from x = 0
to a certain maximum value at the point of x0 ∼ ln(1/β ), and
then exponentially decays as x → ∞. Taking into account

this behavior and the fact that the peak is relatively sharp we
can approximate β2x3 → β2x3

0 in the denominator of Eq. (33)
since in the main logarithmic approximation we have to treat
β2x3 ∼ e−2x � 1, so that

F0(β ) ≈
∫ ∞

0

x4dx

β2x3
0e2x + 1

= −3

4
Li5

(
− 1

β2x3
0

)

≈ 1

160
ln5

[
1

β2 ln3(1/β )

]
. (B1)

In the last approximate equality sign we retained only the
leading log in the expansion of the polylogarithmic function
Li5(z) at its large argument, which also contains a series of
logs of smaller powers.

Function F1 behaves qualitatively similar to F0 and also
admits representation in polylogarithmic functions. Indeed,
the integrand of F1 in Eq. (37) reaches maximum at a point x1

which is parametrically close to x0 with logarithmic accuracy
x1 ∼ ln(1/β ). By approximating β2x3 → β2x3

1 we find

F1(α, β ) ≈
∫ ∞

0

3β2x3
1 (1 − 2αx2)x3dx

(β2x3
1e2x + 1)2

= −9

8
Li3

(
− 1

β2x3
1

)
− 90α

8
Li5

(
− 1

β2x3
1

)
. (B2)
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