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Topological Anderson insulator phase in a quasicrystal lattice
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Motivated by the recent experimental realization of the topological Anderson insulator and research interest
on the topological quasicrystal lattices, we investigate the effects of disorder on topological properties of a
two-dimensional Penrose-type quasicrystal lattice that supports the quantum spin Hall insulator (QSHI) and
normal insulator (NI) phases in the clean limit. It is shown that the helical edge state of the QSHI phase is robust
against weak disorder. Most saliently, it is found that disorder can induce a phase transition from NI to QSHI
phase in the quasicrystal system. The numerical results based on a two-terminal device show that a quantized
conductance plateau can arise inside the energy gap of the NI phase for moderate Anderson disorder strength.
Further, it is confirmed that the local current distributions of the disorder-induced quantized conductance plateau
are located on the two edges of the sample. Finally, we identify this disorder-induced phase as topological
Anderson insulator phase by computing the disorder-averaged spin Bott index.

DOI: 10.1103/PhysRevB.100.115311

I. INTRODUCTION

The quasicrystal, which possesses long-range orientational
order but nontranslational symmetry [1–6], exhibits various
unusual physical properties such as extremely low friction [7],
self-similarity [8,9], and critical behaviors of wave functions
[10,11]. Moreover, the quasicrystal possesses multifractal
energy structure [12], which is responsible for the counter-
intuitive transport properties, including the abnormally low
conductivities [12,13] and the disorder-enhanced transport
[14,15] that was experimentally confirmed in a photonic
system [16]. Due to its unique properties, the quasicrystal
has attracted much attention theoretically and experimentally,
and has been investigated in various systems including the
solid state systems [17–20], photonic systems [21–23], and
phononic systems [23,24].

Materials with nontrivial topology have attracted much
attention in the past decade [25–27]. Nowadays, the search for
new topological phases becomes a fundamental theme of the
condensed matter physics community. Topological materials
were mainly investigated in conventional crystalline systems.
Recently, an increasing interest is realizing nontrivial topolog-
ical phases in the quasicrystal systems. For example, Huang
and Liu proposed that the quantum spin Hall insulator (QSHI)
can be realized on a Penrose-type quasicrystal lattice, in which
the bulk topology is captured by the spin Bott index [28,29].
Furthermore, they found that the QSHIs manifest similarly
in an Ammann-Beenker-type octagonal quasicrystal and a
periodic snub-square crystal, indicating the robustness of the
topological properties regardless of symmetry and periodicity
[30]. Moreover, the quantum Hall insulator [31], the Floquet
Chern insulator [32], the topological superconductor [33,34],
the non-Hermitian topological insulator [35,36], and the
higher-order topological insulator [37]/superconductor [38]
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were proposed in the quasicrystal systems. In the mean-
time, the topological phase transitions were experimentally
observed in photonic quasicrystals [39], and recently the
topological edge modes were also reported in quasiperiodic
acoustic waveguides [40].

On the other hand, the interplay between topology and
disorder plays an important role in the recent research of topo-
logical matters. The topological Anderson insulator (TAI),
one of disorder-induced topologically nontrivial phases, was
first proposed by Li et al. [41]. Since then, the TAI and the dis-
order effects on the topological matters have been investigated
in various models and systems [42–60]. Recently, the TAI
phase has been observed experimentally in one-dimensional
disordered atomic wires [61] and a photonic platform [62]. It
is noted that up to now the studies of the TAI phase mainly
focus on the crystalline systems with disorder. Considering
the recent processes of topological nature of quasicrystal
systems, thus the disorder effects on topological quasicrystal
systems is also an interesting issue worth addressing.

In this work, we investigate the disorder effects on a
general atomic-basis quasicrystal lattice model arranged ac-
cording to the Penrose tiling. By calculating the two-terminal
conductance, it is found that disorder can induce a quantized
conductance plateau with G = 2e2/h from the normal insula-
tor (NI) phase. The quantized plateau has zero conductance
fluctuation, and maintains in a certain range of disorder
strength. Thus it is indicated that the TAI phase appears
in the quasicrystal system. Furthermore, the inspection of
the nonequilibrium local current distribution confirms that
the quantized conductance plateau arises from the disorder-
induced helical edge states. Finally, the TAI phase can be char-
acterized by the quantized disorder-averaged spin Bott index.

II. MODEL AND METHOD

Following the pioneer works by Huang and Liu [28,29], we
start with a two-dimensional (2D) quasicrystal lattice with its
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FIG. 1. (a) Schematic illustration of the Penrose tiling, which is
composed of the fat and thin rhombuses that can tile the 2D plane
in an aperiodic way. (b) The first three NN hoppings in the Penrose-
type quasicrystal lattice with the distance ratio being r0 : r1 : r2 =
2 cos 2π

5 : 1 : 2 sin π

5 .

sites arranged on each vertex of the Penrose tiling [63], as de-
picted in Fig. 1(a). The Penrose tiling contains two types (thin
and fat) of rhombuses, which can fill the plane completely in
an aperiodic way. To construct the Penrose tiling, we adopt
Bruijn’s method by projecting a five-dimensional cubic lattice
onto the 2D plane [64]. The QSHI model on the Penrose-type
quasicrystal lattice introduced by Huang and Liu [28,29] is
described by the following Hamiltonian:

H =
∑

iα

εασ0c†
iαciα +

∑
〈iα, jβ〉

tiα, jβσ0c†
iαc jβ

+ iλ
∑

i

(
c†

ipy
σzcipx − c†

ipx
σzcipy

)
, (1)

where c†
iα and ciα are the creation and annihilation operators

of electrons with the orbital α = s, px, py on site i. σi are
Pauli matrices representing spin. εα is the magnitude of the
on-site energy of the α orbit. The second term corresponds
to the hopping integral with its amplitude depending on the
orbital type and the distance vector di j = r j − ri. The last
term is the spin-orbit coupling (SOC) term and λ corresponds
to the SOC strength. In this model, the hopping integral tiα, jβ

is determined by the Slater-Koster parametrization [65]

tiα, jβ (di j ) = SK[Vαβγ (di j ), d̂i j], (2)

which depends on the orbital type α, β = s, px, py, the vector
di j , and the bonding parameter γ = σ, π . Here the specific
form of tiα, jβ (di j ) is presented in Table I, where d̂i j = (l, m)
is the unit direction vector along di j and di j = |di j | is the
distance between ith and jth sites. The bonding parameters

TABLE I. Slater-Koster hopping matrix elements.

Orb. s px py

s Vssσ lVspσ mVspσ

px −lVspσ l2Vppσ + (1 − l2)Vppπ lm(Vppσ − Vppπ )

py −mVspσ lm(Vppσ − Vppπ ) m2Vppσ + (1 − m2)Vppπ

Vαβγ (di j ) depend on the distance between two sites and can
be expressed by the Harrison relation [66]

Vαβγ (di j ) = V 0
αβγ

d2
0

d2
i j

, (3)

where d0 modulates the overall bonding amplitudes. In the
subsequent calculations, we take the parameters as εs =
1.8 eV, εpx = εpy = −6.5 eV, λ = 1 eV, V 0

ssσ = −0.4 eV,
V 0

spσ = 0.9 eV, V 0
ppσ = 1.8 eV, and V 0

ppπ = 0.05 eV. We will
only consider the nearest-neighbor (NN) hopping, the next-
nearest-neighbor hopping, and the next-next-nearest-neighbor
hopping, which correspond to the short diagonal of the thin
rhombuses, the edge of rhombuses, and the short diagonal
of the fat rhombuses, respectively, shown in Fig. 1(b). In
the previous works by Huang and Liu [28–30], based on
the Penrose-type quasicrystal lattice model described by the
Hamiltonian (1), they proposed that the quantum spin Hall
effect can be realized in quasicrystal lattices.

We will investigate the transport properties of the
Penrose-type quasicrystal lattice with disorder by using the
Landauer-Büttiker-Fisher-Lee formula [67–69] and the re-
cursive Green’s function method [70,71]. The linear con-
ductance can be obtained by G = (e2/h)T , where T =
Tr[	LGr	RGa] is the transmission coefficient. The linewidth
function 	η(μ) = i[�r

η − �a
η] with η = L, R, and the Green’s

functions Gr/a(μ) are calculated from Gr (μ) = [Ga(μ)]† =
[μI − HC − �r

L − �r
R]−1, where μ is the chemical potential,

HC is the Hamiltonian matrix of the central scattering region,
and �

(r/a)
L,R are the retarded (advanced) self-energies due to the

device leads.
As shown in Fig. 2(a), we adopt a clipped Penrose lattice

of size Lx × Ly as the central scattering device, and two semi-
infinite square lattices as the leads connected to the device
along the x direction. The Hamiltonian for the semi-infinite
lead is

HL =
∑

iα

μLσ0c†
iαciα +

∑
〈iα, jβ〉

tiα, jβσ0c†
iαc jβ, (4)

where μL is the chemical potential of the leads. In modeling
the leads, we only consider the NN hopping of the square
lattice, i.e., di j = r1. The Hamiltonian that describes the con-
nection between the leads and device is

HLD =
∑

〈isα, jsβ〉
tisα, jsβσ0c†

isα
c jsβ, (5)

where the labels is and js correspond to the connected points
in the leads and device, respectively. In the subsequent calcu-
lation, we take μL = 2 eV to guarantee a high density of state
of the leads. We will introduce the Anderson-type disorder to
the central scattering region with

�H =
∑

iα

Wiασ0c†
iαciα, (6)

where Wiα is uniformly distributed within [−U/2,U/2], with
U being the disorder strength.

On the other hand, the Penrose quasicrystal lacks the
translational symmetry, and cannot be analyzed in the frame-
work of Bloch theory. However, the quasicrystal tiling ap-
proximants provide a systematic approach to constructing a
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FIG. 2. (a) Schematic illustration of the two-terminal device used
in the transport simulations for the Penrose lattice. (b) Phase diagram
for the conductance as functions of the chemical potential μ and d0

in the clean limit. In our numerical simulations, the width and length
of the sample are chosen to be Lx = 200r1 and Ly = 100r1.

periodic lattice which can gradually approximate the aperi-
odic quasicrystal with increasing the vertex number of the su-
per unit cell [10,11,72,73]. It is noted that the spin Bott index
has been proposed to identify the quantum spin Hall state in
both crystalline and nonperiodic systems [28,29]. Thus, in the
Penrose-type quasicrystal lattice, we will adopt the spin Bott
index to identify the topological phase. To calculate the spin
Bott index in real space, one needs to construct the projector
operator of the occupied states as

P =
N∑
i

|ψi〉〈ψi|, (7)

where ψi is the ith eigenvector of the Hamiltonian obtained
by the Penrose-type quasicrystal tiling approximants and N
is the number of the occupied bands. Then we construct
the projected spin operator as Pz = PŝzP, where ŝz = h̄

2 σz is
the spin operator. The eigenvalue of Pz is composed of two
parts that are separated by zero-value energy. The number of
positive eigenvalues is N/2, which is equal to the number of
negative eigenvalues. In this way, the new projector operators
can be constructed as P± = ∑N/2

i |φ±
i 〉〈φ±

i |, where φ+
i (φ−

i ) is
the eigenvector of the ith positive (negative) eigenvalue. One
defines the projected position operators of the two spin sectors
as

U± = P±ei2πX/Lx P± + (I − P±),
(8)

V± = P±ei2πY/Ly P± + (I − P±),

where Xii = xi and Yii = yi are diagonal matrices and (xi, yi )
is the coordinate of the ith lattice. In order to make the results
more stable, we adopt the singular value decomposition M =
Z��† for U± and V±, and then set M̃ = Z�† as the new
unitary operators. Finally, the spin Bott index is obtained as
[28,29]

Bs = 1
2 (B+ − B−), (9)

with B± = 1
2π

Im [Tr (ln V±U±V †
±U †

±)] being the Bott indexes
for the two spin sectors.

III. NUMERICAL SIMULATION

A. Clean limit

In Fig. 2(b), we compute the conductance as a function of
the chemical potential μ and d0 for the system being in the
clean limit, i.e., U = 0. First, let us focus on the 2

3 filling
of the electron states, which corresponds to the chemical
potential of about μ = −0.3 eV. From Fig. 2(b), it is observed
that the conductance is zero for d0 being less than 0.88 and
μ = −0.3 eV. Thus, in this case, the system is a NI, while,
for a larger d0, the conductance shows a quantized value of
G = 2e2/h, implying the nontrivial topological nature of the
system. On the other hand, when the chemical potential is
located in the bulk bands, the multifractal band structure [12]
can be clearly observed from the phase diagram [Fig. 2(b)],
that is each band of the quasicrystal system has several pseu-
dogaps that separate it to subbands, which leads to the regions
with zero or quantized conductances in the phase diagram. In
this work, however, we will only concentrate on the gap near
2
3 filling of electron states.

By calculating the spin Bott index on the approximated
Penrose quasicrystal system, we confirm that for d0 > 0.88
the system is a QSHI, which is characterized by nonzero spin
Bott index Bs = 1 (corresponding to the quantized conduc-
tance G = 2e2/h), while, for d0 < 0.88, the system is a NI
with Bs = 0.

B. Disorder effects

Now, we study the disorder effects on the 2D quasicrystal
lattice. In Figs. 3(a) and 3(c), we respectively plot the con-
ductance as a function of the disorder strength U for d0 =
0.90 and d0 = 0.87 with several different values of chemical
potential μ. For the case of d0 = 0.90 [Fig. 3(a)], in the clean
limit, the system is a QSHI with a quantized conductance G =
2e2/h when the chemical potential lies in the bulk energy gap
(μ = −0.3 eV). With increasing disorder strength, the con-
ductance keeps the quantized value until the disorder strength
U exceeds 6 eV. Therefore, similar to the previous studies
on disordered crystalline systems [41–44], the topologically
protected helical edge states in the Penrose-type quasicrystal
lattice are also robust against disorder. When the chemical
potential is located at the bulk bands (μ = 0 eV and μ =
−0.45 eV), the conductance is suppressed by disorder, then
gradually decreases to the quantized plateau before it finally
disappears.

While for a NI phase with d0 = 0.87 and μ = −0.3 eV
[as shown by the red curve in Fig. 3(c)], the conductance is
zero as no state appears inside the bulk energy gap when the
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FIG. 3. (a) Conductance as a function of the disorder strength
U for d0 = 0.90 with different chemical potentials μ = 0 eV, μ =
−0.3 eV, and μ = −0.45 eV, which correspond to the blue, red,
and green dashed lines in (b), respectively. The error bars show the
standard deviation of the conductance for 1000 samples. (b) Phase
diagram for the conductance as functions of the disorder strength
U and the chemical potential μ. In our numerical simulations, the
width and length of the sample are chosen to be Lx = 200r1 and
Ly = 100r1, respectively. (c),(d) The same as (a),(b), except that
d0 = 0.87.

disorder strength is weak, with increasing disorder strength
(U > 2 eV), the conductance increases and then forms a
quantized plateau with G = 2e2/h. The quantized plateau
is observed for a certain range of disorder strength, and it
decreases and finally disappears with increasing the disorder
strength. The zero conductance fluctuation of the quantized
plateau indicates that it may be originated from the helical
edge state of the QSHI phase. The case with d0 = 0.87 and
μ = −0.5 eV is also presented in Fig. 3(c) (as shown by the
green curve). It is observed that in this case the variation
of conductance with increasing disorder strength is similar
to that of the case with d0 = 0.90 and μ = 0 eV (or μ =
−0.45 eV) shown in Fig. 3(a).

In Figs. 3(b) and 3(d), we plot the phase diagrams of
the QSHI state and the NI state on the (U, μ) phase space,

FIG. 4. Averaged nonequilibrium local current distribution of the
disorder-induced QSHI phase on the Penrose lattice with d0 = 0.87,
μ = −0.3 eV, and U = 4 eV. The arrow size means the current
strength.

FIG. 5. Disorder-averaged spin Bott index on the approximated
Penrose lattice with (a) d0 = 0.87 and (b) d0 = 0.90. The error bars
show the standard deviation of the spin Bott index for 1000 samples.

respectively. Here each point is obtained from a single con-
figuration of disorder, which is enough to determine the
quantized conductance region. It can be clearly shown that
the disorder-induced quantized conductance region for the NI
phase appears mainly in the energy gap, and the small region
of the valence bands [Fig. 3(d)].

To further confirm the assertion that the quantized conduc-
tance plateaus originate from the robust edge states, we cal-
culate the nonequilibrium local current distribution between
sites i and j from the following formula [42]:

Ji→j = 2e2

h
Im

⎡
⎣∑

α,β

Hiα,jβGn
jβ,iα

⎤
⎦(VL − VR), (10)

where VL(VR) describes the voltage of the left (right) lead
and Gn = Gr	LGa is the electron correlation function. To
calculate the local current distribution, a small external bias
V = VL − VR is applied longitudinally between the two termi-
nals, where VL and VR describe the voltages of the left and
right leads. The small bias voltage V is fixed to be 0.0001 eV.
We assume the electrostatic potential in the central part is
φ(xi ) = (Lx − xi + 1)V/(Lx + 1), where xi is the x direction
coordinate of the ith site and 1 � xi � Lx. Then, the electric
field is uniformly distributed in the central sample region.

In Fig. 4, we plot the averaged current distribution [42]
of the disorder-induced QSHI state. The size of the arrows
corresponds to the local current strength. Apparently, for the
disorder-induced QSHI phase with G = 2e2/h, the currents
are localized at the two opposite sides of the sample, which
characterizes the helical edge states of the disorder-induced
QSHI phase.

In addition, the spin Bott index can also characterize the
topological properties of the disordered system [28,29]. As
shown in Fig. 5, we plot the spin Bott index varying as
functions of the disorder strength U with d0 = 0.87 and d0 =
0.90. For the QSHI phase [Fig. 5(a)], the spin Bott index is
quantized as 1, and maintains this value for a certain range
of disorder strength. For the NI phase [Fig. 5(b)], the spin
Bott index is zero when the disorder is weak, and increases
to the quantized value 1 with increasing disorder strength.
Therefore, we identify this disorder-induced topologically
nontrivial phase as a TAI phase.

IV. CONCLUSION

In this work, we study the effects of disorder on topological
properties of a 2D Penrose-type quasicrystal lattice. First, it is
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shown that the QSHI phase in the quasicrystal system is robust
against weak disorder. Moreover, the disorder-induced TAI
phase on a 2D quasicrystal lattice is proposed. The TAI phase
is characterized by a disorder-induced quantized conductance
plateau with G = 2e2/h. We also present the nonequilibrium
local current distribution and the disorder-averaged spin Bott
index, which further identify the TAI phase. In the previous
studies, the TAI phases were mainly presented in the crys-
talline systems [41–44], while we extend the territory of the
TAI phase to the quasicrystal systems.

In conclusion, we found that the occurrence of the TAI
phase shares various similarities between the crystalline and
quasicrystalline systems; for example, they both require that
the NI phase is in proximity to the QSHI phase in the clean
limit and the chemical potential is located near the band edge.
The present results show that the disorder-induced phase tran-
sition is irrelevant to the lattice structure, and only depends
on the above-mentioned conditions. In previous works on
crystalline systems [41–44], the disorder-induced topological
phase transitions can be explained by a k-space self-consistent
Born approximation, where disorder renormalizes the mass
term and chemical potential, resulting in the TAI states. How-
ever, quasicrystal lacks the translational symmetry, and the
original theory for the TAI phase is not available. Considering
the similarities mentioned above, we could conjecture that
the underlying reason for the occurrence of the TAI phase in

the Penrose-type quasicrystal lattice may be attributed to the
renormalization effect of disorder, and it will be investigated
in our future works.

Recently, the TAI phases in the crystalline systems have
been successfully realized in one-dimensional disordered
atomic wires [61] and a photonic platform [62]. On the other
hand, the atomic quasicrystals may be grown by the deposition
of atoms on the surfaces of quasicrystal substrates [17–20,28],
and the photonic quasicrystals have already been realized in
experiments [16,21–23,39]. Therefore, we suggest that the
experimental realization of the TAI phase in the quasicrystals
is promising in the atomic or photonic systems.
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