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Orbital angular momentum (OAM) light possesses in addition to its usual helicity (s = ±h̄, depending on its
circular polarization) an orbital angular momentum l . This means that in principle one can transfer more than
a single quantum of h̄ during an optical transition from light to a quantum system. However, quantum objects
are usually so small (typically in the nanometer range) that they only locally probe the dipolar character of the
local electric field. In order to sense the complete macroscopic electric field, we utilize Rydberg excitons in the
semiconductor cuprite (Cu2O), which are single quantum objects of up to micrometer size. Their interaction with
focused OAM light allows for matching the focal spot size and the wave-function diameter. Here, the common
dipole selection rules (� j = ±1) should be broken, and transitions of higher � j with higher-order OAM states
should become more probable. Based on group theory, we analyze in detail the optical selection rules governing
this process. Then we are able to predict what kind of alternative exciton transitions (quantum number n and lexc)
one would expect in absorption spectroscopy on Cu2O using different kinds of OAM light.
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I. INTRODUCTION

The giant size of Rydberg atoms leads to huge interaction
effects from which one gains insight into atomic physics on
the single quantum level [1,2]. In the solid state there exists an
analog, called Rydberg exciton, which is an exciton state with
large principal quantum number n. This exciton should be
capable of sensing elementary excitations in its surroundings
on a quantum level [3]. An exciton is an excited state of the
crystal, in which an electron and a hole form a quasiparticle
bound by Coulomb interaction. In covalent crystals, such as
cuprous oxide (Cu2O), excitons are delocalized, the electron-
hole pair is loosely bound, and the orbits are large with
macroscopic dimensions of ∼1 µm. The so-called Wannier
excitons appear in the low-energy spectrum of the crystal as
sharp absorption peaks below the band gap [4]. Excitonic ef-
fects are decisive for the optical properties of semiconductors
[5], among which cuprous oxide is unique in crystal quality
[6]. Rydberg excitons are well suited for the investigation of
interaction effects. Huge polarizabilities are expected, leading
to enormously strong dipolar interactions [7]. Furthermore,
in contrast to Rydberg atoms, highly excited excitons with
micrometer-size extensions are of interest because they can
be placed and moved in a crystal with high precision using
macroscopic energy potential landscapes [8].

The energies of the optically excited excitons can be de-
termined directly by one-photon absorption studies, in which
the photon energy of a single-frequency laser with a nar-
row spectral linewidth of a few neV is continuously tuned.
The exciton energy series can be calculated according to
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En = Eg − EB, with the band-gap energy Eg = 2.17 eV, the
exciton binding energy EB = Ry∗/(n − δn,l )2, the quantum
defect δn,l induced by the nonparabolic hole dispersions [9],
and the modified Rydberg constant [10] Ry∗ = Ry m∗/(ε2m).
The crystal environment is taken into account through the
permittivity ε, which is isotropic for cubic (Oh) symmetry,
and the effective electron and hole masses me and mh are
incorporated via m∗ = memh/(me + mh).

We are interested in excitons which are formed between
the highest valence and lowest conduction bands in cuprous
oxide [see Fig. 1(a)]. These bands are formed by copper 3d
and 4s orbitals, respectively. Both bands have the same parity;
thus the transition dipole moment for band-to-band transitions
vanishes. When forming excitons, only so-called second-class
transitions are possible. This means that beyond the valence
and conduction band symmetry, also the symmetry of the
exciton envelope wave function has to be taken into account.
This means that for our case of s- and d-type valence and
conduction bands (�l = 2), only P excitons with envelope
angular momentum lexc = 1 can be excited. In this case, the
photon carries one h̄ of angular momentum (right and left
circularly polarized light), and the p envelope of the exciton
carries the second h̄ of angular momentum that is necessary to
make the transition with �l = 2 from the 3d valence to the 4s
conduction band. Hence, in Cu2O, electric dipole transitions
cannot lead to excitons with an s-type envelope. However,
the transition dipole moment of the second-class transition
(p-type envelope) is typically one order of magnitude smaller
than for s-type excitons in semiconductors with s- and p-type
bands (e.g., GaAs).

All aforementioned considerations are usually done for
plane waves with zero orbital angular momentum. However,
light beams with an azimuthal phase dependence of e−ilϕ carry
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FIG. 1. (a) Formation of different exciton series between the
highest valence (VB) and the lowest conduction (CB) bands in Cu2O
depending on the light properties (s = 1; l = 0, 1). Using OAM light,
Rydberg excitons with different envelope functions (S, P, D, · · · )
can be excited by allowed transitions. (b) Experimental scheme: A
spiral phase plate imprinted on a fiber facet creates OAM light, which
excites Rydberg excitons in cuprite at cryogenic temperatures. The
signal is detected using a photodiode (PD). The Rydberg exciton se-
ries is visible in the absorption spectrum as broadened, asymmetric,
Fano-shaped absorption lines.

an additional orbital angular momentum l h̄, independent of
their polarization state [11–15]. For any given l the beam has l
intertwined helical phase fronts, for which the Poynting vector
has an azimuthal component, meaning it is no longer parallel
to the beam axis. That component produces an orbital angular
momentum parallel to the beam axis, which is associated with
regions of high intensity. This comes together with a phase
singularity on the beam axis with zero optical intensity and
no linear or angular momentum, which persists no matter how
tightly the beam is focused. The most common forms of heli-
cally phased beams are the Laguerre-Gauss mode. Such donut
modes form a complete basis set for paraxial light beams
and have circular symmetry. Orbital angular momentum light
can be straightforwardly produced using computer generated
holograms [15] or spiral phase plates [16]. In addition, orbital
angular momentum (OAM) light carries a strong field gradient
in its center while there is no E -field intensity (dark penumbra
in the beam center). This unique feature makes the interaction
of OAM light with atomic matter different from plane waves
[17]. In particular, during the interaction of OAM light and
atoms one can not only transfer the physical properties of
OAM light (spin s and angular momentum l) to internal and
external degrees of freedom [18], but one can also use OAM
beams to trap particles due to their field gradient [19].

Most importantly, with the combination of OAM light and
Rydberg excitons in cuprite (macroscopic quantum objects),
we bridge the size gap between light and matter [20]. Previ-
ously, Quinteiro studied the excitation of bulk semiconductors
by twisted light [21,22]. Time-resolved pump-probe studies
using OAM light have been carried out as well [23,24]. Dif-
ferent from atomic physics, the size of the Rydberg excitons,
which are single quantum objects, is comparable to the size
of a tightly focused OAM beam. In fact, the n = 25 Rydberg
exciton has a Bohr radius of 920 nm, whereas the wavelength
for its excitation is 571 nm, which can be focused down
to a tight focus of about 500 nm. This gives us the unique
opportunity to investigate the interaction of OAM beams
with single quantum objects with comparable sizes in the
hundreds-of-nanometer range. In atomic and ionic systems,

the small sizes in the angstrom range probe the OAM beam
only locally and thus experience a local field with mostly
dipolar character.

When we regard crystals as macroscopic continua, the
rotational symmetry is broken down to discrete groups [25].
However, in cuprous oxide this rotational symmetry is still
quite high (point group Oh). The symmetry transformations
of a Hamiltonian always form a group, which is directly
related to the physical symmetry of the system to which the
Hamiltonian applies. Such symmetry considerations can be
used to extract information residing in the respective transition
matrix elements regarding the selection rules associated with
orbital angular momentum transfer. Optical transitions occur
from the crystal ground state to the excitonic states and are
driven by the light field operator. Exciting matter with OAM
light allows for one more degree of freedom (spin and angular
momentum quantum number) compared to usual dipolar light
(spin quantum number only). Applied to Rydberg excitons,
which can be in different angular momentum quantum states,
we can engineer alternative selection rules with OAM light,
thus having a rich set of control parameters [26].

II. METHODS

Our aim is to predict whether an optical transition be-
tween the cuprite crystal ground state and exciton states
with different amounts of angular momentum lexc is allowed
or forbidden when exciting with OAM light. For allowed
transitions the overlap of crystal ground and excited states
contains the symmetry of the exciting light (optical transition
driving operator A · p). The symmetries of the excitonic states
are derived from the cuprous oxide band symmetries. As the
excitation takes place inside the crystal, we use the tables of
Ref. [27] in order to determine the OAM light symmetries
within the symmetry group of cuprite.

Cuprous oxide belongs to symmetry group Oh, which con-
tains all 24 proper and 24 improper rotations which transform
a cube into itself. See the Supplemental Material [28] for a
detailed description of this point group. Knowing how the
symmetry group behaves under parity, it sufficies to take only
the symmetry classes with the proper rotations into account.
The symmetry of an exciton is described by the product of
the symmetries of the conduction band (electron), the valence
band (hole), and the envelope function, determining the an-
gular momentum quantum state. The former two symmetries
are known from the literature [29] and the latter one can
be derived from the atomic orbitals of the hydrogen wave
function due to the high symmetry of cuprite [30–32]. Orbital
angular momentum light is described by a Laguerre-Gauss
mode, which can be decomposed, in the longitudinal dipole
approximation, into a plane wave part A0 times a phase factor
eilϕ . While the symmetry of the plane wave part is trivial,
in order to extract the symmetry of the phase factor, we
decompose the latter one into basis functions, analyze how
these basis functions change when undergoing Oh symme-
try operations, and calculate the trace of the transformation
matrix (characters). For the complete set of characters (one
character per symmetry operation) the corresponding light
field symmetry can be assigned according to the character
tables of group Oh [27].
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III. RESULTS AND DISCUSSION

A. OAM light symmetry assignment via calculation
of transformation matrix diagonal elements

In the following we are going to assign a symmetry to
the optical transition driving operator involving OAM light
modes with different amounts of orbital angular momentum
l . OAM light is described by a Laguerre-Gauss mode which
is a Gaussian beam times an additional phase factor eilϕ . The
complete light field operator A has the following form:

Al p(r, ϕ, z)

= A0 eikz w0

w
exp

[−r2

w2
+ ikr2

2R
− i(2p + |l| + 1)φ(z)

]

×
(√

2r

w

)|l|
L|l|

p

(
2r2

w2

)
eilϕ, (1)

with A0: light field amplitude; k: wave vector; w(z): beam
waist; w0 = w(z = 0); φ(z): Gouy phase; R(z): radius of
curvature; L|l|

p : generalized Laguerre polynomial.
We consider in our calculations only the case where the

OAM light propagates in the z direction. The exciton is
assumed to be located in the vortex center (xy plane), so
the overall symmetry is maintained and the r dependence of
the mode does not influence the transformational properties.
However, as the field gradient in the OAM light beam be-
comes important for quadrupole transitions, we develop the
light field in z. Then, in dipole approximation the Gaussian
beam part simplifies to A0 eikz ≈ A0 (1 + ikz) ≈ A0. From the
OAM part, the only relevant factor for symmetry consider-
ations is eilϕ . Then, the optical transition driving operator
becomes A · p = A0eilϕ · p. The symmetries of A0 and p with
respect to group Oh are �+

1 and �−
4 , respectively. The function

eilϕ is cylindrically symmetric and can be aligned along the
three coordinate axes in the cubic cuprite crystal. Thus, we
consider the six linearly independent basis functions e+ilϕx ,
e−ilϕx , e+ilϕy , e−ilϕy , e+ilϕz , e−ilϕz , into which eilϕ can be trans-
formed under the symmetry operations of point group Oh.
For an orientation along different axes, the number of linearly
independent basis functions would differ; thus the following
analysis only holds strictly for the case in which the beam
axis aligns with a coordinate axis. In order to determine the
symmetry of function eilϕ , we analyze how the basis functions
change when undergoing Oh symmetry operations, and calcu-
late the trace of the transformation matrix (characters). For the
complete set of characters, the corresponding symmetry can
be assigned according to the character tables of group Oh. The
case l = 0 needs to be considered separately. As ei(l=0)ϕ = 1,
we cannot find six linear independent basis functions, contrary
to the case l > 0. The symmetry for the dipolar light field
(l = 0) is �+

1 .
A coordinate transformation of order n leads to the original

coordinate after performing the transformation n times, i.e.,
three times for the eight threefold symmetry axes 8C3 of
group Oh: x → y → z → x. It suffices to select one element
per class, i.e., axis (111) in class 8C3, as all elements of the
same class transform the same way. In contrast, it is impor-
tant to perform the symmetry considerations for a complete
basis, i.e., x, y, and z, in order to extract the character of a

TABLE I. Transformations of functions e±ilϕx , e±ilϕy , and e±ilϕz

under Oh symmetry operations.

Operator Ô Ô|e±ilϕx 〉 Ô|e±ilϕy 〉 Ô|e±ilϕz 〉
E e±ilϕx e±ilϕy e±ilϕz

8C3 e±ilϕz e±ilϕx e±ilϕy

3C2 e±il (ϕx+π ) e∓il (ϕy+π ) e∓ilϕz

6C4 e±il (ϕx+π/2) e∓il (ϕz±π/2) e±il (ϕy∓π/2)

6C1
2 e±il (ϕy−π/2) e±il (ϕx+π/2) e∓il (ϕz−π/2)

transformation (trace of transformation matrix). The complete
transformations of the coordinates x, y, z under symmetry
operations of group Oh are listed in Table S1 in the Supple-
mental Material [28]. Knowing how the coordinates behave
under the different symmetry operations, one can write down
the transformations of the basis functions of eilϕ (see Table I).

In order to calculate the transformation matrix diagonal
elements, the transformed functions are decomposed into ba-
sis vectors according to Ô| fi〉 = ∑

k Ni,k| fk〉. The characters
of the OAM light for each symmetry class are then given
by the sum of the results of all six basis vectors, i.e., the
trace χ (Ô) = Tr(Ni,k ) = ∑

k Nk,k . The single transformation
matrix diagonal elements for one representative class element
of all symmetry classes of group Oh as well as the resulting
character set for OAM light (eilϕ ) are listed in Table S2 in the
Supplemental Material [28]. Multiplication of the characters
of eilϕ with the ones of A0 yield the character set of the
complete OAM light field operator A = A0eilϕ . The ampli-
tude A0 is described by symmetry �+

1 , which acts like a 1
in multiplication (identity). Further multiplication with the
characters of the momentum operator p, which is described
by symmetry �−

4 , yields the characters of the optical transition
driving operator A · p. The resulting character sets are listed in
Table II. The assignment of symmetries is done with the help
of the character and multiplication tables for symmetry group
Oh. Both tables as well as additional character sets for OAM
light with different amounts of orbital angular momentum l
as well as their symmetries are listed in the Supplemental
Material in Tables S2–S4 [28].

Electric quadrupole transitions require a change of two
units of angular momentum (� j = 2) in matter and are sen-
sitive to the light field gradient Q∇E. Usually, optical beams
have a longitudinal field gradient, which allows for driving
electric quadrupole transitions, however, with a strength of
three orders of magnitude weaker than the electric dipole
transition. A transverse gradient, due to the spatial structure
of the beam front, such as in OAM light, can drive quadrupole

TABLE II. Character set for OAM light field operator (A =
A0eilϕ) and first-class (dipole, A · p = A0eilϕ · p) and second-class
(A · p = A0 · ikz eilϕ · p) transition driving operator for OAM light
with arbitrary amount of angular momentum l .

Oh E 8C3 3C2 6C4 6C1
2

A = A0eilϕ 6 0 2(−1)l 2cos(lπ/2) 0
A · p (First class) 18 0 −2(−1)l 2cos(lπ/2) 0
A · p (Second class) 54 0 2(−1)l 2cos(lπ/2) 0
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TABLE III. Exciton envelope (�l
env) and total exciton transition (�exc) symmetries [32,43,44].

Envelope lexc Exciton envelope symmetry �lexc

env Exciton total symmetry �exc

S (lexc = 0) �+
1 �+

2 + �+
5

P (lexc = 1) �−
4 �−

2 + �−
3 + �−

4 + 2�−
5

D (lexc = 2) �+
3 + �+

5 �+
1 + 2�+

3 + 3�+
4 + �+

5

F (lexc = 3) �−
2 + �−

4 + �−
5 2�−

1 + �−
2 + 2�−

3 + 4�−
4 + 3�−

5
G (lexc = 4) �+

1 + �+
3 + �+

4 + �+
5 �+

1 + 2�+
2 + 3�+

3 + 4�+
4 + 5�+

5

transitions, too [17,33–37]. However, to make � j > 1 transi-
tions similar in magnitude to standard electric dipole transi-
tions (� j = 1), an atom usually has to be placed precisely in
the vortex center (no further than an atomic size a0) and the
probe beam has to be focused close to the diffraction limit. In
contrast, the micrometer length scales of Rydberg excitons in
cuprite and focused OAM beams match, hence allowing for
the realization of enhanced quadrupole transitions triggered
by the transverse field gradient in the center of the OAM
beam [see Fig. 1(b)] [38]. In order to predict whether such
a second-class transition in excitons is allowed using OAM
light, the symmetries of the optical transition driving operator
are multiplied with the symmetry �−

4 , which accounts for the
additional position vector in the quadrupole field. However,
this way, we obtain the symmetry set for all second-class tran-
sitions, meaning including also magnetic-dipole transitions,
resulting for l = 0 into �+

1 + �+
3 + �+

4 + �+
5 . From Ref. [28]

we know that the only possible quadrupole transitions are of
symmetry �+

3 and �+
5 . The resulting character sets for first-

and second-class transitions for an arbitrary amount of orbital
angular momentum l are listed in Table II. More detailed
information can be found in Table S2 in the Supplemental
Material [28].

B. Symmetry of excitons in cuprous oxide

The total symmetry of an exciton is determined by the
product of valence band (hole), conduction band (electron),
and envelope function (angular momentum lexc) symmetries:
�exc = �h × �e × �env. In cuprous oxide, the electronic con-
figurations of the single atoms (Cu and O) determine that
conduction and valence bands are mainly formed from the Cu
4s and Cu 3d functions, respectively [29,39,40]. In the crystal
field the Cu 4s conduction band obtains symmetry �+

1 . The
Cu 3d valence band splits into an energetically higher-lying,
threefold degenerate band of symmetry �+

5 and a lower-lying,
twofold degenerate band of symmetry �+

3 . Due to the spin-
orbit coupling between the quasispin I and the hole spin

Sh, the now sixfold (including spin) degenerate �+
5 valence

band splits into a higher-lying twofold degenerate band of
symmetry �+

7 and a lower-lying fourfold degenerate band of
symmetry �+

8 by an amount of � = 130 meV [41]. Including
spin, the �+

1 conduction band is now twofold degenerate and
described by symmetry �+

6 . We consider here the yellow exci-
ton series which occurs between the uppermost valence band
(�+

7 ) and the lowest conduction band (�+
6 ) [see Fig. 1(a)]; thus

�exc = �h × �e × �env = �+
7 × �+

6 × �lexc

env .
The symmetry property of the pure Coulomb field between

electron and hole gives rise to the degeneracy of all lev-
els with the same principal quantum number n irrespective
of their angular momentum quantum number lexc, which
is described by the exciton envelope function, expressed in
spherical harmonic functions Y m

l [42]. These are listed in
Table S5 in the Supplemental Material [28] in Cartesian
coordinates for lexc = 0 . . . 4. It suffices to use one represen-
tative function per orbital (symmetry group), i.e., choosing
one magnetic quantum number value m, Y 0

0 for S or Y 1
1

for P, to perform symmetry considerations. In the simplest
case, the orbital functions are pure basis functions, so their
symmetry can be directly assigned according to the character
table of symmetry group Oh. The orbital functions are then
irreducible representations, which is the case for S and P
orbitals: Y 0

0 = 1/
√

4π ∼ 1 → S orbital transforms as �+
1 ;

Y 1
1 = −√

3/8π (x − iy)/r → P orbital transforms as �−
4 . If

the bases cannot be seen directly, one has to apply the different
symmetry operations of group Oh to the orbital function
and decompose them via Nm1,m2 = 〈Y m1

l |Ô|Y m2
l 〉, yielding the

complete character sets (shown in Table S6 in the Supplemen-
tal Material) [28]. The resulting orbital symmetries, known
via comparison of the character sets with the Oh character ta-
ble, are shown in Table III together with the complete exciton
symmetries for different envelope functions. In addition, the
crystal ground state has symmetry �+

1 . Therefore the transi-
tion may be allowed if the symmetry of the excitonic state
appears in the decomposition of the optical transition driving
operator.

TABLE IV. Symmetries of dipole and quadrupole transition driving operator of OAM light with different amounts of orbital angular
momentum l .

Orbital angular momentum l Dipole Quadrupole

0 (Even) �−
4 �+

3 + �+
5

1 (Odd) �+
1 + �+

2 + 2�+
3 + 2�+

4 + 2�+
5 �−

1 + �−
2 + 2�−

3 + 4�−
4 + 4�−

5
2 (Even) �−

2 + �−
3 + 2�−

4 + 3�−
5 2�+

1 + �+
2 + 3�+

3 + 4�+
4 + 3�+

5
3 (Odd) �+

1 + �+
2 + 2�+

3 + 2�+
4 + 2�+

5 �−
1 + �−

2 + 2�−
3 + 4�−

4 + 4�−
5

4 (Even) �−
1 + �−

3 + 3�−
4 + 2�−

5 �+
1 + 2�+

2 + 3�+
3 + 3�+

4 + 4�+
5
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TABLE V. Exciton transition symmetries and OAM light with which they can be excited.

Envelope lexc Exciton total symmetry �exc Parity ldipole lquadrupole

S �+
2 + �+

5 + Odd Even
P �−

2 + �−
3 + �−

4 + 2�−
5 – Even Odd

D �+
1 + 2�+

3 + 3�+
4 + �+

5 + Odd Even
F 2�−

1 + �−
2 + 2�−

3 + 4�−
4 + 3�−

5 – Even Odd
G �+

1 + 2�+
2 + 3�+

3 + 4�+
4 + 5�+

5 + Odd Even
H �−

1 + 2�−
2 + 4�−

3 + 5�−
4 + 6�−

5 – Even Odd

C. Interaction of OAM light with Rydberg excitons:
Modifying dipole selection rules

In Table IV the different light field operators for dipole and
quadrupole OAM light are summarized. “l = 1” and “l = 3”
OAM light exhibit the same symmetry. If the dipolar light field
operator is of positive parity, the corresponding quadrupole
light field operator is of negative parity and vice versa. For
successive increase of OAM l , the parity changes alterna-
tively. When illuminating cuprous oxide with dipolar light
(l = 0), P excitons are visible in the absorption spectrum.
According to our calculations P excitons can also become
allowed transitions in quadrupole excitation using l = 1 or
l = 3 OAM light. In contrast, the usually dipole-forbidden
S-exciton states can not only be driven by the quadrupole field
of even OAM light (l = 0, 2, 4), but also by dipole transitions
with odd OAM light (l = 1, 3). The same holds for D and G
excitons, while F and H excitons follow the excitation rules
of P excitons. These results are summarized in Table V.

D. Exciton and light mode spatial extensions

We would like to predict for which principal quantum num-
ber n a Rydberg exciton in cuprous oxide would most likely
interact with focused OAM light, due to their largest spatial
overlap. Therefore, the S-exciton envelope wave functions are
visualized as a function of n and their spatial overlap with a
light mode of l = 1 orbital angular momentum is discussed.
The excitonic radial wave function r2R2

Cu2O(r) is calculated
in analogy to the hydrogen radial wave function Rnl and the
light mode spatial extension is calculated based on the formula
for Laguerre-Gauss modes for l = 1 at the focal point z = 0:

FIG. 2. Visualization of the spatial overlap between exciton
states and a Laguerre-Gauss mode. The S-exciton (lexc = 0) radial
wave function r2R2

Cu2O(r) is plotted for different quantum states
n = 9 . . . 14. The intensity distribution of the Laguerre-Gauss mode
(l = 1) is shown for a beam waist w0 = 250 nm.

|up=0
l=1 (r, ϕ = 0, z = 0)|2. The results are shown in Fig. 2 for

S-exciton states with principal quantum number n = 9 . . . 14.
From here we see that S-exciton states with principal quantum
number n = 12 show the largest overlap with the spatial
mode of l = 1 OAM light when focused down to a spot
of w0 = 250 nm beam waist, which corresponds to a radius
r = 497 nm. See the Supplemental Material for more details
[28].

IV. CONCLUSION AND OUTLOOK

In the present paper we have given a detailed analysis of
orbital angular momentum (OAM) light and exciton symme-
tries in cuprite. The symmetries of OAM light with different
amounts of OAM l as well as the symmetries of excitons with
different envelope functions (angular momentum quantum
number lexc) have been calculated. Comparing their overlap
with the dipole selection rules allows us to predict that the
alteration of the OAM of light may enable one to modify the
optical transition selection rules and, hence, to excite usually
dipole-forbidden Rydberg excitons in Cu2O. We find that s-
and d-envelope wave-function excitons should be excitable
with l = 1 and l = 3 OAM light. The precise oscillator
strength of the transitions, however, requires further detailed
theoretical investigation, meaning elaborate numerical calcu-
lations, taking the exact band structure, the exciton envelope
wave function, and the exact spatial shape and extension of
the OAM beam into account. However, it has been shown that
the normally weak optical quadrupole interaction in atoms
is enhanced significantly when the atom interacts at near
resonance with an optical vortex [35]. Furthermore, transition
amplitudes have been calculated for excitation of hydrogen-
like atoms by OAM light [34]. If the target atom is located at
distances of the order of atomic size near the phase singularity
in the vortex center, the transition rates into states with OAM
l > 1 become comparable with the rates for electric dipole
transitions. As the Rydberg exciton is located in the center of
the OAM beam and senses its complete light field, we assume
the effect to be substantially enhanced in solids as well.

Using group-theoretical methods, we propose a method
for the observation of dipole-forbidden excitons in cuprite. In
order to test the predictions we would like to implement the
corresponding experiment as follows [see Fig. 1(b)]: Orbital
angular momentum light can be created by imprinting a phase
plate on a fiber facet [45]. Upon transmission through the
phase plate, a beam of wavelength λ is subjected to a phase de-
lay ψ which depends on the azimuthal angle ϕ, where ψ =
(npp − n0)sϕ/λ (s: step height; n0/npp: refractive index of
the surrounding material and phase plate, respectively). A
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screw phase dislocation produced on axis causes destructive
interference leading to the characteristic ring intensity pattern
in the far field. For a pure Laguerre-Gauss mode the total
phase delay around the phase plate must be an integer multiple
of 2π ; thus the physical step height in the spiral phase plate
is given by s = lλ/(npp − n0). The purity of Laguerre-Gauss
modes is limited by the coproduction of higher-order modes.
This OAM light is then focused, for example, by a Fresnel lens
carved into the Cu2O crystal, and transmission measurements
are performed. We are going to analyze the different transition
probabilities as a set of quantum number n and exciton en-
velope wave function (angular momentum quantum number
lexc), as well as orbital angular momentum quantum number
l . In addition, we want to calculate the transition matrix ele-
ments and oscillator strength using DFT. Then we would also
be able to predict how probable an allowed transition will be.

Overall, only a few experiments have been conducted so far
with macroscopic Rydberg excitons in cuprite. Using OAM
light will modify their absorption spectrum. In particular, not
many studies have investigated D excitons (l = 2) in detail in
contrast to S and P excitons [7,32,46,47]. Furthermore, more
work needs to be done on experiments that combine OAM
light and macroscopic quantum objects, such as the Rydberg
excitons in Cu2O.

ACKNOWLEDGMENTS

We gratefully acknowledge funding by the Deutsche
Forschungsgemeinschaft (DFG) (SPP 1929 GiRyd) and the
European Research Council (ERC) (Complexplas). Discus-
sions with T. Pfau, M. M. Glazov, and J. Heckötter are
acknowledged.

[1] T. F. Gallagher, Rydberg atoms, Rep. Prog. Phys. 51, 143
(1988).

[2] M. Saffman, T. G. Walker, and K. Mølmer, Quantum informa-
tion with Rydberg atoms, Rev. Mod. Phys. 82, 2313 (2010).

[3] V. Walther, S. O. Krüger, S. Scheel, and T. Pohl, Interactions
between Rydberg excitons in Cu2O, Phys. Rev. B 98, 165201
(2018).

[4] J. L. Deiss and A. Daunois, Modulated exciton spectroscopy,
Surf. Sci. 37, 804 (1973).

[5] C. F. Klingshirn, Semiconductor Optics (Springer, Berlin,
2012).

[6] E. F. Gross, Optical spectrum of excitons in the crystal lattice,
Nuovo Cimento 3 (Suppl. 4), 672 (1956).

[7] T. Kazimierczuk, D. Fröhlich, S. Scheel, H. Stolz, and M.
Bayer, Giant Rydberg excitons in the copper oxide Cu2O,
Nature 514, 343 (2014).

[8] S. O. Krüger and S. Scheel, Waveguides for Rydberg excitons
in Cu2O from strain traps, Phys. Rev. B 97, 205208 (2018).

[9] F. Schöne, S.-O. Krüger, P. Grünwald, M. Aßmann, J.
Heckötter, J. Thewes, H. Stolz, D. Fröhlich, M. Bayer, and
S. Scheel, Coupled valence band dispersions and the quantum
defect of excitons in Cu2O, J. Phys. B 49, 134003 (2016).

[10] G. M. Kavoulakis, Y.-Ch. Chang, and G. Baym, Fine structure
of excitons in Cu2O, Phys. Rev. B 55, 7593 (1997).

[11] N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett,
Mechanical equivalence of spin and orbital angular momentum
of light: an optical spanner, Opt. Lett. 22, 52 (1997).

[12] M. Padgett, J. Courtial, and L. Allen, Light’s orbital angular
momentum, Phys. Today 57 (5), 35 (2004).

[13] Y. Yan and A. E. Willner, Efficient generation and multiplexing
of optical orbital angular momentum modes in a ring fiber by
using multiple coherent inputs, Opt. Lett. 37, 3645 (2012).

[14] G. A. Turnbull, D. A. Robertson, G. M. Smith, L. Allen, and
M. J. Padgett, The generation of free-space Laguerre-Gaussian
modes at millimetre-wave frequencies by use of a spiral phase-
plate, Opt. Commun. 127, 183 (1996).

[15] N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-
Dunlop, and M. J. Wegener, Laser beams with phase singulari-
ties, Opt. Quantum Electron. 24, S951 (1992).

[16] M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and
J. P. Woerdmann, Helical-wavefront laser beams produced with
a spiral phaseplate, Opt. Commun. 112, 321 (1994).

[17] Ch. T. Schmiegelow, J. Schulz, H. Kaufmann, T. Ruster, U. G.
Poschinger, and F. Schmidt-Kaler, Transfer of optical orbital
angular momentum to a bound electron, Nat. Commun. 7,
12998 (2016).

[18] A. Afanasev, C. E. Carlson, and A. Mukherjee, Two properties
of twisted-light absorption, J. Opt. Soc. Am. B 31, 2721 (2014).

[19] A. Ashkin and J. M Dziedzic, Stability of optical levitation by
radiation pressure, Appl. Phys. Lett. 24, 586 (1974).

[20] N. Rivera, I. Kaminer, B. Zhen, J. D. Joannopoulos, and M.
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