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Incommensurate grain boundary in silicon and the silver-ratio sequence
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A scheme is proposed to solve the structure of incommensurate interfaces, starting from high-resolution
images of electron microscopy, supplemented by adapted simulation techniques, and complemented by theo-
retical tools. Direct silicon bonding is a way to produce artificial interfaces, in particular incommensurate ones.
We focus on a technology-driven tilt grain boundary in silicon. While the Fibonacci sequence, linked to the
golden ratio, is a prototype of the quasicrystalline structures, a silver-ratio sequence allows us to analyze this
incommensurate interface. The fourfold coordination of the Si atoms is kept at the interface.
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I. INTRODUCTION

Direct wafer bonding [1,2] is a pathway to produce grain
boundaries that may not occur naturally. In particular, attrac-
tive structures for semiconductor technology can be produced
by bonding together a Si{011} wafer and a Si{100} one, with
the [001] direction of the first wafer aligned with the [110]
direction of the second one [3–7]. Indeed, in this system with
mixed orientations, the hole mobility and the electron mobility
have opposite enhancement in the wafers, leading to important
technological advancements [8].

However, the resulting 90°〈1 1 0〉 tilt boundaries are incom-
mensurate, since the two aligned directions [001] and [110]
have periodicities with a ratio

√
2 between them. Because

of this lack of periodicity of the grain boundaries, solving
their atomic structures is not simple, though necessary to fully
understand their properties. Several attempts have already
been conducted [5,9], but without considering their incom-
mensurate nature.

Although more complex than the periodic cases, the theo-
retical background to describe incommensurate grain bound-
aries was quickly provided as an extension of the quasicrystal
understanding [10–15]. However, nowadays, high-resolution
electron microscopes, as well as mature and precise simula-
tion techniques [16–18], can be pursued to give accurate char-
acterizations and quantitative analyses of the incommensurate
grain boundaries.

In this work, we focus on the 90◦ 〈1 1 0〉 tilt boundary,
but the approach is general to incommensurate interfaces in
covalent materials. Our purpose is not to completely explain
the atomic structure of the 90◦ 〈1 1 0〉 tilt grain boundary
by energy considerations [19], but rather to extract the lo-
cal atomic structures from high-resolution experiments. In-
deed, through pattern matching, the characteristics of the
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interface are highlighted and two-dimensional coordinates
are extracted. In principle, for a nonperiodic interface, a
large area of the material should be analyzed to determine
the subtle crystalline-site distortions at the interface. In our
case however, two elemental units can be selected and ar-
ranged to produce infinite sequences relative to the silver
ratio 1 + √

2, thanks to the quasicrystalline framework (see
Sec. VII). From the 2D coordinates extracted from the exper-
imental images of these units, we introduce a two-step energy
minimization to retrieve the tridimensional atomic coordinates
of the interface elements (see Sec. V). The atomic structures
are then refined by nowadays precise DFT calculations (den-
sity functional theory).

Finally a complete atomic description of this incommensu-
rate grain boundary in silicon is given. Note that a similar but
metallic incommensurate boundary has been described with
the same level of details [20]. However, we address here a
different class of incommensurate grain boundaries where the
structural unit model [14,15] is well adapted to describe them.

II. GRAIN-BOUNDARY DESCRIPTION

A 90◦ 〈1 1 0〉 tilt grain boundary in a cubic material is an in-
terface between two crystalline grains having a common crys-
tallographic direction 〈1 1 0〉 but where one grain is rotated by
90◦ with respect to the other one, around this common axis.
Because the cubic cell of side a is projected into a rectangle
of sides a and

√
2a onto a {1 1 0} plane, the two grains have

no coincidence site lattice in this plane. If there was one, the
site coordinates of this lattice expressed respectively in both
2D rectangular cells would imply relations na = m

√
2a with

n and m being integers. The grain boundary is thus called
incommensurate.

The orientation of the boundary itself is fixed by the grain
bonding. In this study, the interface is parallel to the common
axis and to one of the sides of the 2D rectangular cells
(see Fig. 1). More precisely, [1 1̄ 0] is the common axis of the
two grains and taken as our z axis. This axis is therefore a
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FIG. 1. Crystalline grain orientations on both side of the grain
boundary. The Miller indices are relative to the cubic cell. The plan
view is perpendicular to [1 1̄ 0], which is the common direction of
both grains (z axes here). The shades of the spheres indicate their
altitude z = 0 or z = a/(2

√
2). The light-shade rectangles of sides

a and a/
√

2 represent the silicon orthorhombic cells with the lattice
vectors corresponding to [001], [110], and [1 1̄ 0]. The cubic cell is
projected onto (1 1̄ 0) as a rectangle of sides a (side of the cube) and√

2a (diagonal of the face). The vector [001] of one of the crystal
is parallel to the vector [110] of the other one, and thus the grain
boundary is incommensurate. In this study, the interface is parallel to
the xz plane.

commensurate direction of the interface. The interface con-
tains the [110] direction of one grain, let’s say grain I, and
thus contains the [001] direction of grain II. This direction is
the incommensurate direction of the interface and is chosen to
be our x axis. The y axes is perpendicular to the interface.

III. APPROXIMANTS

The periods of grains I and II along the incommensurate
direction (x) are denoted s and �, respectively (s for short
and � for long). Grains I and II are, respectively, the lower
and upper grains in figure 1. In the ideal incommensurate
grain boundary, s = a/

√
2 and � = a, where a is the cubic lat-

tice parameter of silicon. However, the atomic configurations
considered for computation usually correspond to periodic
approximants of the incommensurate grain boundary. In the
same way that a sequence of rational numbers ns/n� can tend
to an irrational number, a sequence of periodic approximants
can approach better and better an incommensurate structure.
In the context of this paper, a “ns : n� approximant” is a
periodic boundary where ns periodic cells of grain I are
facing n� cells of grain II. The best matches between the
two grains are obtained when the ideal lengths n� � and ns s
have close values. This corresponds precisely to the strong
condition to be verified by ns and n� for ns/n� to be among
the best rational approximations of the ideal value of �/s, i.e.,√

2 here:

�[ns, n�] ≡ |n�

√
2 − ns| < |q

√
2 − p| (1)

for any rational number p/q so long as q < n�. With this
condition, the best approximations are the continued-fraction
convergents of

√
2. These convergents are 1/1, 3/2,

7/5, 17/12, and more generally pk/qk = (2pk−1 +

FIG. 2. Scanning transmission electron microscopy (STEM) im-
age of the incommensurate grain boundary. Si atoms, individual or
in adjacent pairs (dumbbells), are all resolved in this image. More
precisely, each spot corresponds to an atomic column perpendicular
to the plane view. Vertical lines indicate a possible decomposition
into 7:5 and 10:7 approximants of the grain boundary (thinner and
thicker strips, respectively). Note the good atomic match between
atomic patterns at the different line locations making possible peri-
odic boundary conditions for each approximant, or combinations of
several 7:5 and 10:7 approximants.

pk−2)/(2qk−1 + qk−2) at step k > 2. In our calculations,
the period P of the ns : n� approximant is the arithmetic mean
of the corresponding ideal grain periods:

P = a (n� + ns/
√

2)/2. (2)

The residual strains in grains I and II in the approximant are
then respectively

εx,I = (P − nss)/(nss) =
(

n�

ns
− 1√

2

)
/
√

2,

εx,II = (P − n��)/(n��) =
(

ns

n�

−
√

2

)
/(2

√
2) (3)

= −εx,I + O
((

ns

n�

−
√

2

)2
)

,

and thus the minimal strains are also obtained by the best
rational approximations ns/n� of

√
2. Note that a convergent

ns/n� of
√

2 corresponds to the convergent n�/ns of 1/
√

2.

IV. ELECTRON MICROSCOPY RESULTS

Figure 2 is an electron-microscopy (STEM) image of the
grain boundary observed along the common [11̄0] direction
of the two grains. The experimental details are given in Ref.
[5]. An atomistic model of the periodic 7:5 approximant of
this grain boundary had already been proposed [5]. Indeed, a
repeating pattern can be recognized with a pseudo periodicity
corresponding to ns = 7 periods of grain I and n� = 5 periods
of grain II. However, even if 7/5 is only 1 % smaller than√

2, this would correspond to a tensile strain in grain I and
a compressive strain in grain II of ±5 × 10−3 [Eq. (3)],
impossible for the material to sustain macroscopically. In
fact, a similar but longer pattern can also be identified in the
microscopy images. It corresponds to a 10:7 approximant, i.e.,
ns = 10 and n� = 7. While 10/7 does not belong to the best
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approximations of
√

2, this approximant has about the same
strain amount than the 7:5 one, but with an opposite sign for
each grain. Thus, combining them together, as in figure 2,
can reduce the strains to ±9 × 10−4. Indeed, 17/12 = (7 +
10)/(5 + 7) is the next best rational approximation after 7/5.
In the following, we will consider the 7:5 and the 10:7 ap-
proximants as the structural units of the grain boundary. Their
3D structures will be solved by combining image analyses and
numerical energy minimizations. The general way to combine
them in a sequence of best approximants and thus to describe
the infinite grain boundary will be discussed in Sec. VII.

V. FROM 2D TO 3D

A. Pattern recognition

The resolution of the experimental images is high enough
to deduce with a good precision the x and y atomic coordinates
of the Si atomic columns perpendicular to the image plane.
To automatically extract a large number of coordinates, a
pattern recognition technique [21] based on cross-correlation
functions has been used. From the experimental image, three
small portions representative of three material characteristics
are selected: The individual atomic column and the two pos-
sible orientations of Si dumbbells composed of two columns.
Three cross-correlation functions are first calculated between
the image and each of the three templates. As described in Ref.
[21], three smoother patterns are obtained by averaging image
sections located at high correlation maximums (see Fig. 3). A
second set of correlation functions is then calculated. Taking
advantage of the three-dimensional nature of the color image
coding, we introduce here a way to gather these three func-
tions and get a direct visualization of the information. For all
pixels, each color component red, green, or blue, is associ-
ated with the value of one of the cross-correlation functions.
Figure 3 shows that the different constituents of the grain
boundary are now clearly identified. Then, isolated columns,
or pairs of them, are associated with Gaussian functions that
are fitted on the initial image using the locations of the correla-
tion maxima as initial guesses. To improve the recognition of
the atom positions, the low intensity around each image spot
was assigned to zero thanks to an apodization function. The
2D Si positions finally extracted from the experimental image
are also shown in Fig. 3.

B. Stillinger-Weber atomic interaction

The 2D atomic coordinates, say x and y, extracted from ex-
perimental images need to be completed by the z coordinates,
corresponding to the hidden component perpendicular to the
image plane. We introduce here a technique involving, in two
steps, two energy-minimization calculations. These calcula-
tions are done with the widely used and successfully tested
Stillinger-Weber potential [22] and with the parametrization
of Ref. [23].

Far from the interface, the crystal structures of both grains
are known and in particular the Si dumbbells correspond to
atoms with two different altitudes z along the [1 1̄ 0] direction,
common to both grains. The crystal period along this direction
is s = a/

√
2. We first assign a constant altitude z = 1/2 s to

all atoms except for the Si dumbbells far enough from the

FIG. 3. Illustration of the pattern recognition technique. (Top
left) Small part of an image, with grain II on top of grain I. (Top right)
Three patterns corresponding to grains I, II, and to isolated atomic
columns. (Bottom left) Color image representing the three correla-
tion functions corresponding to the three patterns. Each correlation
function represents one component of the RGB image coding (red,
green, blue). A gamma correction of 4 has been applied to enhance
the highest values of the correlations, i.e., a power-law function with
exponent 4 is applied to the components (normalized between 0
and 1). (Bottom right) x and y atomic positions obtained by fitting,
in the first image, individual or paired Gaussian functions, initially
located at the maximum of the correlation functions. The individual
atomic columns are distinguished by the color cyan.

interface to clearly belong to crystal sites. For these dumb-
bells, we set z = 1/4 s and z = 3/4 s to their respective two
atoms. The isolated Si columns in Fig. 3 correspond to atoms
linked by bonds parallel to [1 1̄ 0] in order to be tetrahedrally
bonded. This is incompatible with a single-period structure
along this direction and instead the fourfold coordination
symmetry implies a doubling of the period. To get the initial
atomic configuration, the atomic layers of two periods are
therefore stacked together along z, resulting in a periodicity of
2s. Periodic boundary conditions are set along the z direction
and free surface boundary conditions are set for x and y.

Doing a mere energy minimization starting from this
configuration would be impossible because of the short in-
teratomic distances resulting from the unrealistic identical
z value settings. The configuration would be unpredictably
destroyed during the minimization. In a first step, we instead
minimize the energy taking the z coordinates as the only
variables. Consequently, only the forces along z are involved
and they are initially zero by symmetry except for the few
atoms in the crystal grains that have been given different z
values. At the beginning of the minimization, the surrounding
of these few particularized atoms start to move, and then
all the z coordinates are progressively revealed. When the z
coordinates were first assigned, it made no difference which
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atom in a dumbbell is up and which atom is down as long as
they are coherently displaced in the crystal. However, we have
here two crystals and so we have a choice for the second grain
once the first one is set. Considering the two possibilities,
we have actually constructed two initial configurations that
both have had their energy minimized with respect to the z
coordinates. Despite these two possibilities, only one correct
configuration is obtained. Depending on the cases, either both
configurations converge to the same final configuration, or
one can be easily discarded because of a residual antiphase
boundary inside one of the grains.

As a second step, a regular energy minimization with
respect to all coordinates is performed. This regularizes the
crystalline structure of the grains since the experimental x and
y data where extracted with some random fluctuations around
the equilibrium atomic positions.

With the result obtained from an entire experimental im-
age, two slices are cut from the final atomic configuration. The
first one corresponds to a 7:5 approximant, the second one
to a 10:7 approximant. For each structure, the slice width is
chosen to be its ideal periodicity P introduced above [Eq. (2)].
Subsequent energy minimizations are performed to adjust the
atomic positions to the new boundary conditions, but now
with periodic boundary conditions for the x and z directions
and free surface boundary conditions for y. As shown in Fig. 4,
the final atomic configurations are in very good agreement
with the corresponding parts of the experimental images. The
coordinate files are available in Ref. [24]. Our numerical
method has been able to resolve the pentagon and heptagon
structures as well as the connectivity of the atoms correspond-
ing to individual spots in the images. All the atoms are now
tetra-coordinated.

VI. FIRST-PRINCIPLE CALCULATIONS

BigDFT calculations

The approach presented in the previous section for recov-
ering the atomic z coordinates can in principle be done with
first-principal calculations in the density functional theory
(DFT) framework. This is not possible in this study because of
the large number of atoms to consider. However, the interface
structure is far from the regular lattice structure of silicon. For
instance, there are pentagonal and heptagonal Si loops instead
of the usual hexagonal loops. Thus, to confirm the stability of
the atomic configurations found with the effective interaction
potential, we perform DFT calculations with the two approx-
imants. This will also give us reliable interface energies. In
this section, the configurations stable with Stillinger-Weber
interactions are now the starting points for computing the
electronic and atomic structures.

We have used BIGDFT code [17], which has the particularity
of expressing the electronic wave functions with a set of
wavelet basis functions. This characteristic makes it possible
to control the computational precision in a systematic way,
as with plane-wave basis functions, but furthermore gives
a local decomposition of the wave functions. Besides the
strong compression of the data and the excellent efficiency
for parallel calculations both made possible by this locality,
a variety of boundary conditions can be used, from isolated

FIG. 4. Electron microscopy images overlaid by the atomic
configurations of the 5:7 and 10:7 approximants stable with the
Stillinger-Weber interactions (respectively top and bottom images).
For the bottom image, two images has been combined to get a sharper
contrast. The light vertical lines indicate the periodicity along the
interface. The coordinates z perpendicular to the images are color
coded from red (lower z) to yellow (higher z). All Si atoms are tetra-
coordinated. Atoms connected by bonds orthogonal to the images are
surrounded by cyan circles.

molecules to periodic crystals. This point is important here
because we need to consider periodic conditions along x
and z, but free boundary conditions along y. Indeed, the
configurations are periodic approximant along x, the direction
z of the interface is commensurate, and the y free boundary
conditions correspond to a material slab with surfaces parallel
to the interface. As usual, the perturbation by these external
surfaces on the bulk electronic structure is minimized here by
terminating the dangling bonds with hydrogen atoms. For the
same purpose, no surface reconstruction is considered and the
external Si atoms are set on their perfect lattice sites. Keeping
these atoms fixed on both surfaces would be possible but
would preclude any relative global shift of the grains, which
is an important parameter of the grain-boundary structures.
Instead, free-bloc conditions are used, i.e., all H atoms and
the Si atoms in the two outermost external atomic layers at
each surface are fixed all together, but their center of gravity
follows the resultant of the forces applied to them. This feature
has been implemented in the BIGDFT code [25] for this study.

To check the independence of the results on the slab width,
two different sizes along the y direction are considered. In
the 5:7 approximant, there are 48 H atoms and either 312

115307-4



INCOMMENSURATE GRAIN BOUNDARY IN SILICON AND … PHYSICAL REVIEW B 100, 115307 (2019)

FIG. 5. Cross-section of the valence-electron density and ball-
and-stick model of the 5:7 approximant. White and black in the gray-
scale represent respectively the highest and the lowest electron den-
sity. (Left) Oblique view showing the location of the cross-section,
which is perpendicular to the commensurate direction of the interface
(common [11̄0] direction). Along this direction, the periodicity of the
structure is

√
2 a, where a is the cubic lattice parameter of silicon.

(Right) Plane view. The horizontal axis is the [001] direction of
the upper grain and the [110] direction of the lower one. It is the
opposite for the vertical axis. Along the incommensurate direction,
P is the periodicity of the approximant. The logarithmic scale of the
density plot is indicated by the gray-scale bar. The average density
is Ne/V = 196 nm−3. The lattice parameter a = 547 pm gives the
length scale. The free surfaces are passivated by hydrogen atoms.

or 408 Si atoms depending on the slab width. In the 10:7
approximant, there are 68 H atoms and either 440 or 576
Si atoms. Pseudopotentials [26,27] are used to simulate the
core electrons. The Perdew-Burke-Ernzerhof (PBE) exchange
correlation functional [28] is used in the calculation. The
choice of the code, of the pseudopotentials, and of the PBE
functional has been assessed in a general study [16] and gives
high precision results. The k-point grid for calculations with
the Si cubic cell is a 4 × 4 × 4 Monkhorst Pack mesh. A
6 × 4 × 6 mesh has been used for the orthogonal cell with
paramerters a/

√
2, a and a/

√
2 (see Fig. 1). The real-space

grid spacing between the wavelet-function centers, hgrid, is
set to 21 pm corresponding to a high length resolution. With
these conditions, the calculated value of the stable Si lattice
parameter is 0.5466 nm in agreement with the nowadays DFT
results [16]. For the grain-boundary calculations, the model
periodicity along the z axis corresponds to two [1 1̄ 0] periods
and thus three k points are used in this direction. Because
of the large value of the periodicity along x and the free-
boundary conditions along y, no grid of k points is necessary
for both of these axes.

The density functional calculations consist in minimizing
the energy with respect to both the atomic positions and the
electronic structure. The energy minimization is stopped when
forces on the atoms are lower than 10 meV/Å. In the final
configurations, all the Si atoms at the interface have kept their
covalent bonding. The electronic density of the relaxed 7:5
approximant is shown in Fig. 5 and the coordinates of both
approximants are available in Ref. [24].

The interface energy γI is estimated by removing the other
energy contributions from the total potential energy Epot of the

TABLE I. Interfaces energies (J/m²) obtained in this work with
DFT calculations and different parametrizations of the Stilling-
Weber potential: γI,[7:5], γI,[10:7], and γI,[577:408], respectively, for the
periodic interfaces [7:5], [10:7], and [577:408]; γI for the incommen-
surate interface. Note that to compute these energies, the bulk terms
have been removed, in particular the elastic energy of the periodic
approximants. While γI,[7:5] < γI < γI,[10:7], the total energy is lower
for the incommensurate interface, which has no long range elastic
stress.

Atomic interactions γI,[7:5] γI,[10:7] γI,[577:408] γI

DFT 0.652 0.667 0.660
S-W–Stillinger-Weber [22] 0.921 0.953 0.939 0.937
S-W–Vink et al. [23] 1.038 1.075 1.058 1.056
S-W–Pizzagalli et al. [41] 1.019 1.064 1.044 1.042

configurations: Bulk energy εSi, the residual elastic energies
due to the residual strains [Eq. (3)], and hydrogenated-surface
energies γH{1 0 0} and γH{1 1 0}. To calculate the surface energies,
we also consider slab geometries for each of the two grain
orientations (see Appendix and Fig. 11). Along y, the thick-
ness of the slabs are similar to those of the grain-boundary
configurations. Free surfaces are hydrogenated too. Complete
density functional calculations are done for all slabs. Now
by considering the same geometry for each grain, but with
additional atomic layers to thicken the slabs, we can extract
the bulk energy from their total energy differences. This way,
we finally get three estimates of the bulk energy, one for
each of the grain orientations plus one calculated merely from
the cubic cell. The maximum discrepancy between them is
only 2 meV per atom. This procedure is actually most useful
to obtain all together bulk energy plus elastic energies of
the slightly constrained grains. Indeed, the elastic constrains
on the slabs are particular, with fixed strains along x and
z (corresponding to imposed periodic conditions) and null
stress along y (free-bloc conditions). Taking into account
these auxiliary calculations, the computed interface energies
γI are 0.652 and 0.667 J/m², respectively for the 7:5 and
10:7 approximants. The discrepancy between the thickest
and thinnest slabs is less then 0.007 J/m². An estimate of
γI for the infinite incommensurate grain boundary, and not
approximants, will be given in Sec. VII and Table I.

Another quantity, the adhesion energy γA is the gain per
surface unit between the energy Epot of the configuration and
the energy it would have if the two grains would be separated.
So here, the higher energy γA, the more stable is the interface.
In our case, this last energy is deduced from slab calculations
with a clean free surface on one side and hydrogenated surface
on the other side. No complex surface reconstructions are
taken into account, except the inter-plane relaxations, which
are direct outputs of the calculation. The adhesion energy γA

is equal to 3.26 J/m² for the 7:5 approximant. Though very
close, the gain corresponds to a lower energy than the reported
value γA = 3.2 J/m² for an alternate structure of the 7:5
approximant [9]. For the 10:7 approximant, γA is found equal
to 3.21 J/m². The energy γA for separating the grains can be
compared to the energies 4.65 and 3.38 J/m² obtained in this
work for cleaving Si crystal at (1 0 0) and (1 1 0) surfaces, re-
spectively. These values are similar to those found in Ref. [9].
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VII. FROM APPROXIMANTS TO A COMPLETE
DESCRIPTION OF THE INTERFACE

A. Hyperspace description and substitution rules

The Fibonacci tiling, or Fibonacci word, is a prototype of
1D quasicrystals [29]. It is regularly presented to illustrate the
strip and projection method [30,31], the cut method [32,33]
or the inflation-rule method [12,29,34]. These methods gener-
ate or describe the quasicrystalline structures. The Fibonacci
tiling is closely related to the golden ratio, i.e., the irrational
number ϕ = (1 + √

5)/2. Here, to combine together replicas
of the two approximants described in the previous sections
and get an incommensurate grain boundary, we derive similar
properties for a tiling now based on

√
2 and associated with

the silver ratio δS = 1 + √
2 instead of the golden ratio ϕ. To

comply with the usual notations and broaden the scope of the
discussion, we denote S = [7 : 5] and L = [10 : 7] the two
approximants now regarded as structural units, with respective
numbers NS and NL in a given sequence (S for small and L for
large).

First of all, why a grain boundary should be associated
with such a tiling related to

√
2? The answer is given by

Eqs. (3). They show that the sequence of structural units
should maintain, locally and globally, the ratio ns/n� the
closest as possible to

√
2 in order to minimize the strain and

thus the stress in the grains. It can be easily tested that for a
sequence of NS and NL units with NS + NL → ∞, the limit
of ns/n� = (7NS + 10NL)/(5NS + 7NL) is

√
2 when the limit

of NS/NL is itself
√

2. The lengths PL and PS of the two units
are identified with their periods along x [see Eqs. (2)] and the
ratio PL/PS is equal to

√
2.

The strip and projection method is a method of choice to
generate an incommensurate tiling (or sequence) of S and
L units. To get a

√
2 tiling, a strip of slope

√
2 is used to

select points of coordinates (NL, NS) from a 2D simple square
lattice. This is illustrated in Fig. 6 with the strip derived
from the elementary lattice cell. This correspond to a very
simple algorithm using the deviation � introduced in Eq. (1).
Starting from no units, we add them one by one with the
following rule: From NS and NL units, add one new S unit if
�[NS + 1, NL] < 1, if not add a L unit. In the last case, the
numbers satisfied the relation �[NS, NL + 1] �

√
2. These

two inequalities are linked to the strong condition for the best
rational approximation seen in Sec. III. Figure 7 shows the
relation between the strip-method and the residual strain due
to the lattice misfit at the interface.

In these
√

2 tilings, the units can be grouped into larger tiles
L1 and S1, which have a length ratio of

√
2 too. This gives the

substitution rules:

L → L1 ≡ SLS, (4a)

S → S1 ≡ LS, (4b)

where, in the context of this paper, L1 and S1 are pe-
riodic grain boundaries corresponding to juxtapositions of
elementary periods of the grain boundaries L ≡ L0 and S ≡
S0. Grain boundary S1 corresponds to the convergent structure
[17 : 12] and L1 to the semi-convergent structure [24 : 17].
Starting from an initial unit and iterating the substitution rules
(4) generates periodic tilings of increasing period. Equivalent

0 2 4 6

NL

0

1

2

3

4

5

6

7

N
S

FIG. 6. Strip and projection method to generate a
√

2 tiling from
the square lattice. The gray strip has a slope equal to

√
2 fixing the

ratio NS/NL = √
2. The lower limit of the strip goes through the point

(1, 0) and the upper limit through (0,1). The strip is half-bounded
with the upper limit excluded here. The square edges and the sites
of the square lattice inside the strip are selected. Once projected
onto a straight line, they correspond respectively to the tiles and
vertices of the tiling. If projected onto a line of slope

√
2 identical

to the slope of the strip, the length of the segments would be in
the ratio PL/PS = 1/

√
2. To get the ratio PL/PS = √

2, they are
projected onto a line of slope 1/

√
2. The equivalence with the cut

method is also sketched: A line segment is periodically set on every
site of the lattice (for clarity only those selected by the strip are
drawn). The vertices of the tiling are now the intersection points
between all segments and the line of slope

√
2 going through the

origin. To get the correct length ratio, the segments are perpendicular
to the line with slope 1/

√
2. The common length of the segments

is the width of the strip along this direction. The white disks inside
the strip correspond to the best rational approximations NS/NL of

√
2,

i.e., |NS/NL − √
2| < |p/q − √

2|, ∀ q�NL. Among them, those with
a central black dot correspond to the continued-fraction convergents,
which are solutions of the stronger condition Eq. (1).

by construction, an alternative method consists of using the
recurrence relations

Ln = Sn−1Ln−1Sn−1, (5a)

Sn = Ln−1Sn−1, (5b)

and generating two sets of sequences in parallel. Since at
step zero the ratio PL/PS of the tile lengths is

√
2, these

relations show that the length ratio of Ln and Sn is still
√

2 for
any generation n, and that these lengths increase by a factor
δS = 1 + √

2 after each substitution. The original substitution
rules leading to the Fibonacci tiling are L → LS and S → L,
with the transformation of the numbers NS and NL from one
generation to the other strongly linked to the golden ratio ϕ.
For the

√
2 tiling, the matrix M that relates the column vector

(NL; NS) before and after one substitution is

M =
(

1 1
2 1

)
. (6)
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FIG. 7. Density plot of the strain εx,II in grain II for sequences
made of NL tiles L and NS tiles S due to the misfit between the pe-
riodicities along the incommensurate direction of the two crystalline
grains [see Eqs. (3)]. Strain εx,I in grain I is the opposite. The red line
(bold polygonal curve) represents S3 = LSSLSLSSLSLS [Eqs. (4)],
a sequence that minimizes the strain field locally and on average.

The two eigenvalues of M are the silver ratio δS = 1 + √
2

and its conjugate 1 − √
2 = −1/δS . Since they are the solu-

tions of a quadratic equation, i.e., the characteristic equation
(1 − x)2 − 2 = 0, with a module greater than unity for the first
one and smaller than unity for the second one, the eigenvalue
δS is a Pisot number. This property is coherent with the fact
that we are constructing a quasicrystalline tiling [34–36]. The
vector (1,

√
2) is an eigenvector of M corresponding to the

largest eigenvalue δS . Therefore the ratio NS/NL and thus
the ratio ns/n� tend to

√
2 when the number of successive

substitutions tends to ∞. Thus, in both grains and away from
the interface, the residual strain due to the lattice parameter
mismatch actually tends to zero [see Eq. (3)].

Note 1. The
√

2-sequence described in this work is very
closely related to the octonacci sequence [37–40]:

L′ → S′L′L′ and S′ → L′ (7)

(different orders in the tile concatenations in
Refs. [37,39,40]). Indeed, both sequences have the recurrence
relation

Sn = Sn−2Sn−1Sn−1 (8)

deduced here from Eqs. (5a) and (5b). One sequence is related
to the other by choosing L′ = LS and S′ = S. So, getting
one or the other is a matter of the choice of the two basic
tiles, L in the

√
2 sequence being smaller than L′. Since the

elementary blocks L and S are directly extracted from the
electron micrographs, the

√
2 sequence appears as a natural

choice here.
Note 2. For simplicity in the Fibonacci tiling, the length

ratio of the L and S tiles are usually set to ϕ, i.e. the same
value as the tile proportion NL/NS. That way, in the strip-and-
projection method on a square 2D-lattice, the strip selects the
tiles and a projection orthogonal to it gives directly the tiles.
Here, in the

√
2 tiling, the length ratio is fixed to

√
2 by the

periodicity of the approximants L = [10 : 7] and S = [7 : 5]
observed by microscopy, while their proportion NL/NS is
the inverse 1/

√
2 to minimize the strain in the Si crystals.

Thus the strip and the direction of the projection are not
orthogonal as shown in Fig. 6. Equivalently in the cut method,
the segment motif of the 2D-unit cell is not orthogonal to the
strip direction, as shown in Fig. 6 too. A similar result could
be obtained from a rhombic 2D lattice.

Note 3. While the infinite quasicrystalline
√

2 tiling cor-
responds to the slope

√
2, finite sequences Ln or Sn can be

obtained from the square 2D lattice with slopes NS/NL. That
way, the strip-and-projection method leads to periodic 1D
lattices with Ln or Sn as the unit cells. Since in our case, the
tiles L and S are periodic approximants at the atomic scale,
we can build atomistic structures with periodic boundary
conditions along the interface. These structures are thus well
suitable for simulations at the atomic level.

Note 4. From Fig. 7, we can deduce that a random sequence
of L and S units would increase the material strain and thus its
elastic energy. This would also be the case, for instance, for se-
quences generated by the rules L → LSLSL and S → SLSS
whose substitution matrix has the same eigenvectors than
matrix M Eq. (6) leading to the same tile ratio NS/NL = √

2.
However its largest eigenvalue, 3 + √

2, is not a Pisot number;
the smallest, 3 − √

2, is larger than unity. As a consequence
[34–36], the extension perpendicular to the strip diverges in
the square lattice of Fig. 7 and would thus correspond to a
material with a larger strain.

B. Application of the substitution rules

With the recurrence rules and the atomistic configurations
of the structural units, large models of the grain boundary
can now be generated. Figure 8 shows part of a 41:29-
approximant overlaying the experimental image of figure 2 in
a very satisfactory way (sequence LSSLS equivalent to S2 by
periodicity). These larger models can be easily relaxed with
the Stillinger-Weber potential [23], which we started with in
Sec. V. The agreement is satisfactory too and Fig. 8 shows
a correlation between the highest atomic energies and the
fuzziness of the experimental spots.

The interface energy γI of the incommensurate grain
boundary can now be estimated too (see Appendix). Indeed,
neglecting the correlation effects between structural units, the
interface energies per 2D unit cell of the 7:5 and 10:7 approx-
imants (Sec. VI) can be weighted by their respective concen-
trations,

√
2/δS and 1/δS . The 2D-unit cell areas

√
2 a P7:5 and√

2 a P10:7 are averaged with the same respective weights (the
z periodicity,

√
2 a, corresponds to two [1 1̄ 0] periods because

of the interface reconstruction; the x periodicity corresponds
to P in equation 2). Dividing the weighted energy average
by the weighted area average yields to γI = 0.660 J/m².
Calculated in the same way, the calculated adhesion energy
of the incommensurate grain boundary is γA = 3.23 J/m².

For reference, we also have computed the interface en-
ergy γI obtained with the Stillinger-Weber potential [23].
This value, as well as the value obtained with the original
parametrization by Stillinger and Weber [22] are given in
Table I. A recent potential parametrization [41] has also been
tested and the result is included in table I. Since much larger
configurations can be considered using Stillinger-Weber in-
teractions than by DFT calculations, the interface energy of
the 577:408 approximant has also been calculated for these
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FIG. 8. (Top) Overlay of the experimental image by a sequence
of S and L tiles, i.e., respectively, the [7 : 5] and [10 : 7] approxi-
mants, each one calculated by DFT. The vertical lines indicate the
tile boundaries. (Bottom) Overlay of the experimental image by a
[41 : 29] approximant corresponding to the sequence S2, now relaxed
with the Stillinger-Weber potential [23]. The energy of the atoms
with this potential is color coded (online version) from blue (bulk
energy) to red and yellow (highest energy). Note that the image
contrast is correlated with the atom energies: When a high energy
has been found the contrast is lower, probably indicating structure
perturbations like a higher vacancy concentration or larger atomic
moves.

interatomic potentials. This approximant corresponds to the
sequence S5 made of 41 S and 29 L units. It has a period P
equal to 221.6 nm along the incommensurate direction. This
gives the opportunity to check the validity of partitioning the
whole grain boundary into S and L units to compute the inter-
face energy, while neglecting the correlation effects. Indeed,
the relative difference is only 0.2% between γI and γI,[577:408]

taking into account long range elastic stresses as discussed in
Ref. [15] (see Table I). With the large 577:408 approximant
and the Stillinger-Weber potential [23], we can also test the
energy difference resulting from alternative sequences of S
and L units. We have tested a random sequence of 41 S and 29
L and the extreme case where the S and L units are segregated.
In both cases, the energy minimizations lead to a deformation
of the layer due to the strain. The interface is not flat anymore
and the buckling is larger for the segregated sequence than
for the random one. To avoid this artifact, the minimization
has been redone with constrains. The y and z coordinates of
the first layer at each surface have been fixed, while the x
coordinates were unconstrained to let the strain field adjust to
the S and L stacks along x. The incommensurate sequence has
the lowest energy, while the random and the segregated ones
have a surplus of 1 and 7 mJ/m², respectively. These results
are coherent with the strain analysis illustrated in Fig. 7. The
random and the segregated sequences have excursions far
from the ideal S and L concentrations, the segregated one
being the extreme case.

FIG. 9. Atomic-configuration visualization highlighting the cal-
culation of the hull functions �x and �y plotted in Fig. 10. Only
one atomic layer perpendicular to z is not shaded by a transparent
mask. Far from the interface, the atoms selected by the two lowest
horizontal lines are representative of a crystalline atomic row, i, of
grain I. In the same way, the two highest horizontal lines correspond
to an atomic row, ii, of grain II. At the interface, the horizontal lines
correspond to an atomic row, iii, that has been chosen for calculating
its hull plots. Any atomic row could be selected, however this one is
the closest to the interface with atoms having the same first-neighbor
environment than those of grain I. That way, the influence of grain
II on grain I can be analyzed. The opposite would be possible by
choosing an atomic row in grain II. To simplify the discussion, row i
has been chosen to select crystallographically equivalent lattice sites
than those of row iii. The atomic configuration has been relaxed
with the Stillinger-Weber potential [23] to get atomic energies. These
energies are color coded with two successive color gradients. From
zero to 15 meV, the first scale shows the energy range in rows iii.
From 15 to 550 meV, the second scale highlights the high energy
spots at the interface.

C. Hull plots

Sharing the same cubic misorientation than the present Si
grain boundary, the 90◦ 〈1 1 0〉 tilt grain boundary in gold is
therefore also an incommensurate grain boundary. For gold, it
has been shown that this grain boundary has a frictionless—
or superglide—property [20,43,44]. Such a property was first
introduced for a unidimensional theoretical model of atoms
in a periodic potential field [45,46]. Then, it was theoretically
studied and experimentally found in several studies on friction
[42,43,47–61].

The frictionless property is unlikely for this silicon inter-
face, because of its reconstruction extension with faceting
clearly visible on the calculated-structure image (Fig. 9)
as well as on the experimental images (Fig. 2 and
in Refs. [5,6,19]). However, Aubry hull-function analysis
[45,62] is the way to get a clear signature of this dynam-
ical property from the static structure of an incommensu-
rate atomic configuration. The hull function characterizes the
atomic relaxation from a periodic lattice when the atoms are
subject to a periodic potential having a different and incom-
mensurate periodicity. Depending on the strength of the inter-
actions, two regimes exist separated by an Aubry transition
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FIG. 10. Hull plots of the first atomic row of grain I at the
incommensurate interface (see row iii of the lower grain in Fig. 9).
The lattice parameter a is also the periodicity � of grain II. (Top)
Atomic relaxation �x along the incommensurate direction. (Bottom)
Relaxation �y perpendicular to the interface. The �y origin corre-
sponds to the average of the y coordinates in row iii. These hull plots
are calculated with 17 Si atoms of the [17:12] approximant (large
circles) and 577 atoms of the [577:408] approximant (small dots).
Function discontinuities cannot be revealed by inspecting the [17:12]
results. However, note that the atomic relaxations of the [17:12]
approximant are representative of those of the [577:408] one, the
small-model data following the trends of the large-model ones. The
discontinuities and the apparent fuzziness of the [577:408] curves are
intrinsic to this type of incommensurate interface. The curves could
be continuous for another material, but here they are discontinuous
everywhere. It is a pinned-state characteristic [42].

corresponding to a “breaking of analyticity” [45] when going
from the unpinned states to the pinned one. Since the original
unidimensional Frenkel-Kontorova case, the hull function has
been generalized to more complex systems [20,51,63].

At a grain boundary, each crystal row parallel to the
incommensurate direction is perturbed by the other crystal
and we consider the displacements of the atoms from their
ideal lattices positions. Thus we need these lattices positions,
and a reference can be selected far from the interface. This is
illustrated in Fig. 9 where rows i and ii are representative of
the lattice grains I and II, respectively.

To represent the hull modulation function �x (see Fig. 10),
the atomic displacements are plotted versus the place of their
ideal sites relative to the perturbation, i.e., the other lattice
periodicity. In grain I with period s along x, the ideal coordi-

nate of an atom with a lattice index j ∈ Z, is x0 j = j s + α.
The shift α is the x coordinate of one arbitrary atom of row
i, the origin being set here on one arbitrary atom of row
ii. The relaxation displacement of an atom in row iii, i.e.,
its modulation from the ideal lattice site, is �x j = x j − x0 j .
This displacement �x j is plotted versus χ j = (x0 j modulo �),
where � is the periodicity of grain II. The system being invari-
ant by a shift � of grain I because of the grain II periodicity,
the modulo function wraps the complete relaxation behavior
of the atoms in a function defined on [0, �[. The relaxation
�y j perpendicular to the interface versus χ j is also plotted in
Fig. 10. Here, �y j = y j − ȳ, where ȳ is the average of the y j in
row iii. Using a lattice reference rather than ȳ for calculating
�y j is also possible and would only result in a shift of the
origin for �y j .

The discontinuous nature of the hull functions is clearly
visible in Fig. 10. An infinitesimal glide of grain I relative
to grain II, would correspond to an infinitesimal change of
the coordinates x0 j and consequently to the quantity χ j (∈
[0, �[). Discontinuities of �x(χ ) would lead to finite jumps
of the atomic displacements, and thus the system would have
to overcome energy barriers. Therefore this Si grain boundary
has a pinned behavior and not a superglide one. The “broken
analyticity” is particularly visible in the �y hull plot.

VIII. CONCLUSION

A general description of an incommensurate grain bound-
ary in silicon has been given. While this paper is focused on a
precise structure, it illustrates a general methodology for semi-
conductors different from the analysis of incommensurate
boundaries in metals [20,42,43]. This differences are mainly
related to the behavior of the atomic bindings. Because of the
covalent bonds, the boundary here is a quasicrystalline se-
quence of two elementary units with opposite internal strains:
The 7:5 approximant S and the 10:7 approximant L. First,
these units have been selected since they are present in the
experimental electron-microscopy images. Second, the unit
S corresponds to the ratio 7/5, one of the first best rational
approximants of

√
2, while the unit L is a kind of complemen-

tary unit to S because of its almost opposite residual strain.
Unit L corresponds to the semiconvergent ratio 10/7 of

√
2.

So, in the material, these two units can be combined together
in a suitable way to reduce the strain and stress resulting
from the incommensurate periodicities of the crystals on
both sides of the boundary. For instance, concatenating L
with S gives LS, which corresponds to the next best rational
approximant 17/12.

For both elementary units, we have conducted a detailed
analysis of the 2D images obtained by electron microscopy.
A pattern recognition technique has been applied on high
resolution images and has given reliable in-plane coordinates
of the atomic spots. Taking advantage of the three components
of color coding, the three correlation functions of the char-
acteristic patterns—two orthogonal dumbbells and one single
spot—can be combined together to give a comprehensive
image of the grain-boundary. The three-dimensional atomic
coordinates have been resolved with atomic-forces calcula-
tions using a Stilling-Weber potential and a two-step method.
A first energy minimization is conducted, restricted only to the
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FIG. 11. Schematic view of the configurations constructed with grains I and II to compute the interface energy γI . The solid lines represent
the periodic boundary conditions. The dashed lines show the interfaces and the free surfaces of types (001) or (110). Configurations a and b
are the 7:5 and 10:7 approximants, respectively. The tensile and compressive residual strains are shown in blue and red colors, respectively.
These strains are due to the incommensurability between grain I and grain II periodicities. For taking into account their effects on the elastic
energy and on the surface energies, these strains have been applied to configurations h to o. More precisely, the strains present in the 7:5
approximant (configuration a) have been used in configurations h to k, while those of the 10:7 approximant (configuration b) have been used
in l to o. The different layer widths, for instance, between configurations n and o, allow us to separately determine the strained-bulk energy
and the strained-surface energy. Indeed, only the numbers of bulk atoms are different, while the free-surface areas are identical. Configuration
c is a simple crystalline cell used to compute the reference bulk energy. Without applied strain too, configurations d to g provide us with two
other ways to compute the bulk energy, as well as the values of the surface energies γ{0 0 1} and γ{1 1 0}.

atomic coordinates perpendicular to the plane view. Once the
third coordinates are recovered, the second step is an usual
minimization that rectifies coherently all the coordinates of
the structure. Finally, the structure has been refined with elec-
tronic structure calculations. The resulting S and L structures
are fourfold-coordinated silicon networks and are perfectly
periodic in the two dimensions of the boundary.

To give a complete atomic description of the incommen-
surate boundary, the elementary units should form a sequence
that reduces the interface stress. With tools adapted for qua-
sicrystals, the atomic structures of S and L units can be
combined together. In particular, we have given inflation rules
related to the silver ratio and suitable for S and L tilings. Si
atoms are still fourfold-coordinated in the resulting interfaces.

Suitable for incommensurate structures, the hull function
of the grain boundary has been calculated, thanks to the large
systems that can be constructed with the inflation rules. It
demonstrates that no hypofriction property can be expected
here.

This paper describes a structure corresponding to a perfect
incommensurate interface minimizing the residual stress in
the grains. However, defects of this ideal structure should
be present in real materials, depending on the elaboration
process. This is indeed what has been observed by electron
microscopy and a rich variety of situations can be imagined.
It is however out of the scope of this paper to describe them
here.
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APPENDIX: INTERFACE-ENERGY CALCULATION

To extract the interface energy γI of a grain boundary
from the total energy Etotal of a configuration made of two

crystalline grains, one must separately compute the bulk en-
ergy εatom and the free surfaces ones γsurfaces to remove their
contributions from Etotal:

γI SI = Etotal − Ntotal εatom − γsurfaces SI ,

where SI is the area of the grain boundary and Ntotal is
the number of atoms in the configuration. In this paper, we
determine γI of an incommensurate grain boundary from the
contributions of its periodic grain-boundary units. These units
are slightly constrained due to the incommensurate periodic-
ities of the grains, while the incommensurate grain boundary
itself has no intrinsic long range strain. Thus, to carefully
calculate γI , we must generalize the previous equation. The
configurations taken into account are shown schematically in
Fig. 11. For instance, from the total energy Etotal of the 7:5
configuration (“a” in Fig. 11), we calculate

γI,[7:5] SI,[7:5] = Etotal − NI εh,i − NII εj,k

− γh,i SI,[7:5] − γj,k SI,[7:5],

where εh,i and γh,i are the strained bulk and surface energies
calculated from configurations “h” and “i” in Fig. 11. Sim-
ilarly, εj,k and γj,k are derived from configurations “j” and
“k.” Area SI,[7:5] is the interface area of the 7:5 unit. In the
same way, γI,[10:7] can be calculated with the energies of
configurations “b” and “l” to “o.”

Finally, taking into account the respective frequencies cS =√
2/δS and cL = 1/δS of units S = 7 : 5 and L = 10 : 7, the

interface energy of the incommensurate grain boundary is

γI = cS γI,[7:5] SI,[7:5] + cL γI,[10:7] SI,[10:7]

cS SI,[7:5] + cL SI,[10:7]
.
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