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Ana Predojević,3 Sven Höfling,1,4 and Christian Schneider1

1Technische Physik and Wilhelm Conrad Röntgen Research Center for Complex Material Systems, Physikalisches Institut,
Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

2Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University,
21 Nanyang Link, Singapore 637371

3Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
4SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom

(Received 9 August 2018; revised manuscript received 17 July 2019; published 4 September 2019)

We study the optical properties of coupled quantum dot-microcavity systems with an elliptical cross section.
First, we develop an analytic model that describes the spectrum of the cavity modes that are split due to the
reduced symmetry of the resonator. By coupling the quantum dot (QD) emission to the polarized fundamental
cavity modes, we observe the vectorial nature of the Purcell enhancement, which depends on the intrinsic
polarization of the quantum dot and its relative alignment with respect to the cavity axis. The variable interaction
strength of the QD with the polarized cavity modes leads to the observation of strong and weak coupling. Finally,
we demonstrate the capability of elliptical micropillars to emit single and highly indistinguishable photons
(visibility of 87%).
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I. INTRODUCTION

Compact and high-performance on-demand solid-state
single-photon sources are essential building blocks for sev-
eral applications associated with quantum technologies [1–3].
While there is a variety of systems with the capability to
emit single photons [4–9], the recent development of high-
performance sources based on InGaAs quantum dots (QDs) in
microcavities [10–12] has established a single-photon source
with unprecedented performance. The main engineering focus
in design and fabrication of coupled QD-micropillar devices
was set on optimization of parameters such as single-photon
purity and indistinguishability, as well as the coupling of light
and matter via careful spatial and spectral alignment [7,13].
The most striking breakthrough that allowed for outstanding
performance of QDs in microcavities as bright sources of
indistinguishable photons is associated with pulsed resonant
pumping of the system, which simultaneously provides high
single-photon purities, high photon coherence, and nearly-
deterministic excitation of the QD. Nevertheless, this exci-
tation technique is extremely challenging to apply without
polarization filtering of the pump laser, even in the presence
of additional spatial filtering [14]. As resonantly excited QDs
emit a superposition of orthogonal linearly polarized single
photons, the total rate of a source which is operated under
the cross-polarization excitation geometry will be reduced by
at least 50%. However, a source that by design emits each
photon only in a single linear polarization mode would not
be affected by cross-polarization excitation geometry. Such a
source would allow for achieving single photons on demand
and with unity efficiency, as required for many quantum

technology tasks. In the case of a QD in a micropillar, this
implies extraction efficiencies of close to 95% and a Purcell
enhancement factor of 5–10, hence allowing for single-photon
emission and collection rates in the gigahertz regime. While
approaches for active control of the photon polarization in QD
micropillars have been reported [15–19], a study devoted to
the interplay of dipole anisotropy with the polarization split
cavity modes across the regimes of light-matter coupling, as
well as the principal capability of such devices to emit single,
high-purity coherent photons compatible with requirements
of quantum technologies, is still missing. Here, we provide
such a study based on high-Q as well as moderate-Q fac-
tor elliptical QD micropillars, and we show that the strong
ellipticity that enhances the emission into single linearly
polarized modes of a micropillar cavity does not have a
detrimental effect on the purity and coherence of the emitted
photons.

This paper is structured as follows: First, we introduce
the technology and design of the investigated samples, and
we discuss how the structural properties of the elliptical
micropillars yield the characteristic mode spectrum, resulting
in controllable, linearly polarized resonances. We provide an
analytical model which correctly describes the energy spec-
trum. Next, we show that the coupling of a single quantum dot
emitter to such polarized modes clearly reflects the vectorial
character of the light-matter coupling in both the weak- and
strong-coupling regimes. Finally, we demonstrate that our
elliptical micropillar platform is a promising candidate to,
exploiting resonant excitation, generate single photons with
high indistinguishability.
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FIG. 1. (a) SEM image of a micropillar with an elliptical cross
section and an ellipticity of e = 0.26. The inset displays the top view
onto the pillar with the ellipse axis dimensions a = 2.4 μm and b =
1.5 μm. (b) Elliptical micropillars with perpendicular orientations.

II. EXPERIMENTAL DETAILS

In this work, we study two samples based on GaAs
microcavities grown by molecular beam epitaxy. The first
sample contains two stacks of 23 and 27 AlAs/GaAs mirror
pairs forming the upper and lower distributed Bragg reflec-
tors (DBRs). Between the DBRs we embedded a λ-thick
GaAs cavity with a layer of low-strain In(Ga)As-QDs as the
active medium. The indium content was nominally set to
30%. Circular and elliptically shaped micropillars with varied
diameters and ellipticities were defined by electron beam
lithography and reactive-ion etching. The scanning electron
microscopy (SEM) image in Fig. 1(a) depicts an elliptical
micropillar. A top view onto the micropillar is plotted in the
inset of Fig. 1(a). It shows the ellipticity of the structure, with
dimensions of 2.4 μm in the x direction and 1.5 μm in the y
direction. The ellipticity e can be calculated as e = √ a

b − 1,
in which a and b are the semimajor and semiminor axes
of the ellipse. Figure 1(b) shows several other micropillars
with alternating, 90◦ turned orientations. The second sample,
which was utilized to generate the single, coherent photons
described in the last section, is based on a microcavity with
16 and 25 AlAs/GaAs mirror pairs in the top and bottom
DBRs and a single layer of embedded InGaAs QDs grown via
the indium flush technique [20,21]. After etching the elliptical
micropillars, the sample was planarized by benzocyclobutene
(BCB), and the etch mask was removed to facilitate resonant
spectroscopy on the single-photon level.

III. EXPERIMENTAL RESULTS AND DISCUSSION:
ELLIPTICAL MICROPILLARS

The ellipticity of our micropillar cavities induces a splitting
of the fundamental mode, which is typically degenerate for a
circular cavity. The two emergent modes support orthogonally
linearly polarized light. We study the emergence of the optical
resonances in our cavities by nonresonant microphotolumi-
nescence (μPL) measurements (pump wavelength of 532 nm,
sample temperature of 4.5 K). Exemplary PL spectra of cir-
cular and elliptical micropillars are shown in Fig. 2 for pillars
with a major axis equal to 2 μm and a minor axis ranging
from 2 to 1.4 μm. These μPL measurements clearly illustrate
the increasing splitting between the two fundamental modes
with increased ellipticity as well as the overall blueshift of
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FIG. 2. Polarization-resolved μPL spectra of micropillars with
different values of ellipticity. While circular micropillars do not show
a splitting of the fundamental mode, the mode with an ellipticity
of e = 0.2 reveals a splitting of 369 μeV. Furthermore, the smaller
effective diameter of the micropillar causes a blueshift of the two
orthogonal polarized fundamental modes.

the resonances induced by the decreasing effective (average)
diameter of the micropillars.

We extended the study on a number of devices with var-
ied effective diameter and ellipticity. The measured values
of splitting of the fundamental mode are shown in Fig. 3.
As foreseen, our measurement also revealed that the mode
splitting is strongly sensitive to the micropillar size due to a
greater lateral confinement of the photonic modes at smaller
diameters. As has already been demonstrated [22], the mode
splitting is dependent on the ellipticity factor e.

In Fig. 4, we plot the mode splitting for a series of
micropillars with a fixed value of ellipticity e = 0.1952 as a
function of the length of the major axis of the ellipse. Again,
we observe a clear trend towards smaller mode splitting for
larger pillars. While in the majority of the previous reports the
mode splitting emerging in elliptical pillar cavities was either
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FIG. 3. Experimentally observed fundamental mode splitting of
elliptical micropillars as a function of the ellipticity e with the
micropillar major axis (2a) as the parameter. As can easily be
recognized, a smaller dimension of the micropillar leads to a strongly
increased splitting of the fundamental mode due to higher lateral
confinement.

analyzed numerically [16] or treated by a phenomenological
expression [19,23,24] for the case of a very small ellipticity,
here, we establish an analytical model to describe our data.

Specifically, we follow the approach of Halterman
et al. [25], in which Maxwell’s wave equation is solved
approximately for an elliptical waveguide. In contrast to the
case of a metallic waveguide, with an exact solution [26],
the solution for dielectrics requires matching of Mathieu
functions of the first and second kinds inside and outside
the micropillar, respectively, accounting for continuity of
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FIG. 4. Splitting of the fundamental mode for fixed ellipticity e
as a function of the length of the major axis (2a). The experimental
data are in good agreement with the developed model.

different components of the vector field. Unlike the solution
using Bessel functions in a cylindrical system, there is no
one-to-one matching of Mathieu functions inside and outside
the micropillar as they have different dependences on the
(elliptical) angular coordinate. For this reason, it is necessary
to expand the field as a superposition of Mathieu equations,
and the boundary itself results in coupling between different
components. A truncation scheme, limited to the lowest-order
Mathieu functions, is used to obtain an approximate solution
with approximate field matching across the boundary. More
details of the calculation are given in the Appendix. The
theory, as applied here, is valid only in the limit of small
ellipticity. We use the theory here to confirm that the polariza-
tion splitting emerges naturally from solving Maxwell’s wave
equation and that the splitting decreases with the micropillar
size. The theory also neglects the significant tapering of the
micropillars observed in Fig. 1 and hence is expected to have
limited quantitative accuracy. Yet, despite the notable ellip-
ticity of our system, the corresponding theoretical modeling
describes our data very well. The slight overestimation of the
splitting could be a consequence of truncating the equation to
fulfill the continuity conditions at the microcavity interfaces.
However, in contrast to previous approaches, it provides an
excellent and fully transparent approach to analyze the inter-
play between size, ellipticity, and polarization splitting.

Next, we probe the quality of our elliptical micropillar
cavities by studying the quality factor Q = E /�E of the split
fundamental cavity modes. Figures 5(a) and 5(b) show the
dependency of the Q factors of the higher- and lower-energy
fundamental modes on the major axis of the elliptical mi-
cropillar, plotted for two different ellipticities, e = 0.026 and
e = 0.054, respectively. As can be clearly seen, an increasing
extension of the micropillar leads to a higher Q factor due to
reduced edge scattering losses, which causes fewer intrinsic
losses [23]. Here, one recognizes that in general the Q factor
of the high-energy mode is lower. This can be explained by a
stronger lateral light confinement that opens a loss channel for
cavity photons by sidewall scattering [16,27].

The Q factors of our elliptical devices rise up to experi-
mentally determined values ranging up to the order of Q ≈
24 000, which compares favorably with previously published
values [28,29]. Figure 5(c) depicts the Q factors of the two
fundamental modes as a function of the area of the micropillar
cavity and supports the observations in Figs. 5(a) and 5(b).

IV. EXPERIMENTAL RESULTS AND DISCUSSION:
LIGHT-MATTER COUPLING

Armed with a detailed understanding of the photonic
structure, we turn to the investigation of the coupling of a
single quantum emitter to the polarized modes of the elliptical
cavities. This study was carried out on a micropillar with
a 2-μm-long major axis and a 1.4-μm-long minor axis. In
the selected device, we identified the luminescence from the
neutral exciton of a single QD that at a sample temperature
of 4 K occurs on the high-energy side of the polarization split
cavity resonance. Figure 6(a) depicts a waterfall plot of a non-
resonant μPL spectrum obtained by varying temperature. The
upper right inset indicates the pillar orientation; therefore, Vcav

and Hcav denote the orientation of the vertical and horizontal
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FIG. 5. (a) Q factors as a function of the major axis of the elliptical micropillar. A comparison of the two split fundamental modes reveals
that the high-energy modes of the micropillars systematically yield lower Q factors. The same trend can be recognized in (b) with a higher
micropillar ellipticity as well as by plotting the Q factor as a function of the micropillar area in (c).

polarized components of the fundamental cavity mode, while
X denotes the QD exciton. With increasing the temperature,
the emission of the QD gets redshifted and can be tuned
across both polarization modes. For each resonance case, one
can clearly observe weak light-matter interaction and a strong
enhancement of the emitted QD intensity due to the Purcell
effect.

Since the coupling between the QD exciton and the cavity
mode should be strongly polarization dependent, we further
investigated the linear polarization of our coupled system.
In Fig. 6(b), we plot the emission intensity of both cavity
resonances, as well as the uncoupled QD emission (in the
detuned case) as a function of the polarization angle in a polar
plot. The two linearly polarized fundamental cavity modes are
orientated perpendicular to each other, while the off-resonant
QD emission is clearly coaligned with the low-energy mode,
here Vcav. This indicates a strongly anisotropic dipole moment
of our QD, which hence should yield a strongly enhanced
coupling strength d · E with the coaligned cavity resonance.
Here, we note that the low-strain QDs utilized in this study are
subject to a pronounced elongation [30], which explains the
strongly directional dipole moment, yielding the pronounced
linear polarization in the off-resonant case. Nevertheless,
directional anisotropies are inherent in InGaAs QDs grown

with the Stranski-Kranstanov method; thus, our study is not
restricted to this peculiar case.

Since the strong directional anisotropy is expected to yield
a polarization-dependent coupling strength of our emitter, in
Fig. 6(c) we analyze the integrated intensity of the QD as
a function of the QD-cavity detuning � with the particular
modes under nonresonant pumping well below saturation of
the QD. To extract the Purcell factor FP as a measure of the
coupling strength, we used the following equation:

IX,cav(�) ∝ FP L(�)

1 + FP L(�)
≡ β(�), (1)

where the function β(�) quantifies the overlap of the exciton
emission pattern with the cavity mode [31] and L(�) =
1/(1 + �2/κ2

0 ) is a Lorentzian of width κ0 describing the
empty cavity line shape.

The fit of the integrated intensity indeed reveals a con-
siderably larger Purcell factor for the resonance case with
the lower-energy Vcav mode compared to the Hcav compo-
nent, namely, FP,V = 6.7 ± 0.9 � FP,H = 2.6 ± 0.7. Indeed,
the polarization anisotropy of the Purcell factor reflects the
degree of linear polarization of the bare quantum dot on
the order of 50%–60% and thus can be associated with the
anisotropy of the oscillator strength of the emitter. We point
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FIG. 6. (a) Waterfall plot of the temperature series of the recorded spectra, reflecting weak light-matter coupling. The two resonance cases
are marked in red. In (b) the polarization of both modes and the QD (off resonant case) is depicted. A high polarization overlap of the QD
and the low-energy mode can be seen. (c) Plot of the integrated intensity of the QD emission lines as the emitter is tuned through the two
resonances. The extracted Purcell factor amounts to FP of FP,H = 2.6 ± 0.7 and FP,V = 6.7 ± 0.9.
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out that our result clearly reflects the necessity to engineer not
only spatial and spectral properties of QD-cavity systems to
optimize light-matter coupling [10] but also the polarization
properties via precise dipole alignment.

We further conclude that the provided Q factors and mode
volumes of our micropillars put the regime of strong light-
matter coupling within reach for selected emitters that are well
centered in our devices. Here, we extend our study to a second
selected micropillar cavity with such emission features. The
cavity is characterized by a major axis of 1.6 μm and a minor
axis of 1.12 μm. Figure 7(a) depicts a waterfall plot of nonres-
onant μPL spectra obtained by varying the temperature from
12 to 42 K, where the QD exciton X is tuned into resonance
with both the high- (Chigh) and low-energy (Clow) modes of
a micropillar. The strong coupling of the QD with the high-
energy cavity mode Chigh is evident from a mode anticrossing
on resonance. As reported in Ota et al. (2009) [32], we observe
a slight asymmetry in the split-peak spectrum, which we
attribute to coupling with acoustic phonons (a linewidth and
intensity analysis is provided in the Appendix). By further
heating up the sample, the exciton shifts through resonance
with the low-energy mode Clow, where, contrary to the previ-
ous resonance, a weak enhancement of the emission as the
fingerprint of the weak-coupling regime could be observed
(resonance is marked in red). Here, the shift of the QD exciton
X between the two resonances in the waterfall diagram is due
to a larger temperature step size taken while recording the
spectra.

In order to quantitatively extract the coupling strength of
our system, we plot the extracted peak positions in Fig. 7(b).
With tuning the QD (black dots) into resonance with the
high-energy mode (red dots) one recognizes an unambigu-
ous anticrossing, where the two mode branches are sepa-
rated by the vacuum Rabi splitting. The inset plots the peak
separation of the split doublet, yielding a Rabi splitting as
large as �ERabi = 130 μeV at 20.5 K. Further increasing the

temperature yields a continuous redshift of the QD until the
resonance case is reached with the lower-energy cavity mode,
where the crossing of the two modes is observed.

The extracted values for the Rabi splitting and the
linewidth of the high-energy fundamental mode and the QD
exciton enable us to estimate the value for the coupling
constant g via [33]

g =
√(

�ERabi

2

)2

+ (γC − γX )2

16
. (2)

This allows us to derive the coupling constant to g ≈
0.066 μeV. Relating this result to the boundary condition
to observe strong coupling, which we assess according to
Eq. (2) to g >

γC−γX

4 ≈ 0.017 μeV, these estimates explicitly
support our observation. Further, the coupling strength can be
expressed via the QD’s oscillator strength f and the cavity’s
mode volume VM as follows [33]:

g =
√

1

4πεrε0

πe2 f

m∗VM
, (3)

with m∗ being the free-electron mass. Therefore, by hav-
ing determined the coupling strength to g ≈ 0.066 μeV and
having approximated the effective mode volume to VM ≈
0.24 μm3, we eventually can assess the oscillator strength to
f ≈ 39, confirming previous observations on QDs in micro-
cavities grown via similar techniques [34].

Although the condition for an observation of strong cou-
pling is also fulfilled for the lower-energy cavity mode Clow,
we only observe weak-coupling conditions with a very small
Purcell enhancement, implying that our QD is simultane-
ously well centered in the elliptical micropillar and couples
polarization selectively with the two resonances. Since the
off-resonant case to study the polarization of the uncoupled
QD was not accessible in this particular device, we carried

115305-5



STEFAN GERHARDT et al. PHYSICAL REVIEW B 100, 115305 (2019)

(b)

0 60 120 180 240 300 360
1.36180

1.36185

1.36190

1.36195

1.36200

1.36205

E
ne

rg
y 

(e
V

)

Angle (°)

 cavity mode energy

18
6 

μe
V

X

(a)

1.360 1.364 1.368
0

2000

4000

6000

8000

10000

12000

14000

-1
C

ou
nt

s 
(0

.5
 s

)

Energy (eV)

High excitation power
Low excitation power

912 910 908 906
Wavelength (nm)

C

FIG. 8. (a) Spectra recorded under low and high above-band excitation power. At low excitation power one recognizes several spectrally
sharp single emitters, whereas a strong pumping uncovers the broad fundamental cavity mode C of the micropillar. The neutral exciton line of
interest has been marked X . Since the other pronounced line does not show any fine-structure splitting, there is a high probability that this line
stems from a charged exciton, either of the same or a neighboring QD. (b) The polarization-resolved assessment of the spectral position of the
fundamental cavity mode reveals a splitting of �E ≈ 186 μeV.

out a statistical analysis of the polarizations of other QDs in
the vicinity of the recorded emitter to test our interpretation of
polarization anisotropic light-matter coupling: Indeed, we find
that the majority of the emitters are strongly linearly polar-
ized, with the main polarization axis being coaligned with the
high-energy cavity mode within an angle of 10◦. Additionally,
previous investigations yielded that for this particular type of
QD the oscillator strength tends to increase with temperature;
as a consequence, the dipole in the QD can be thermally
activated to overcome tight spatial localization [35,36].

V. ELLIPTICAL MICROPILLAR AS A SOURCE OF
SINGLE AND INDISTINGUISHABLE PHOTONS

Likely the most important application of anisotropic light-
matter coupling in QD microcavities is the generation of
highly polarized single photons with high interference con-
trast, as required in quantum information. While our high-Q
microcavity, which was discussed in the previous sections, is
very suitable for observing large Purcell factors and strong-
coupling phenomena, a reduction of the Q factor via reducing
the reflectivity of the top DBR is beneficial to increase the
photon extraction in single-photon sources.

Therefore, for this study we used micropillar cavities with
a major axis of 3.1 μm and a minor axis of 2.0 μm based on
the second microcavity wafer which was introduced in Sec. II.
Due to the reduced quality factor, polarization-resolved μPL
spectroscopy is necessary to record the splitting of the funda-
mental mode of the elliptical micropillar. Figure 8(a) shows
both high- and low-excitation-power spectra, allowing us to
assign the spectral position of the cavity modes C to the QD
line X of interest.

Figure 8(b) depicts the polarization-resolved spectral posi-
tion of the fundamental cavity mode. The diagram displays a
clear sinusoidal behavior of the energy of the cavity mode,
which allows us to extract linear polarization splitting of
�E ≈ 186 μeV, which is very much in line with the ellip-
ticity of e ≈ 0.24 of the studied micropillar cavity.

In order to obtain a high visibility of two-photon in-
terference, it is essential to create single photons of high
purity, which here is accomplished by making use of pulsed
resonance fluorescence. We applied polarization filtering to
suppress scattered light from the excitation laser by approx-
imately seven orders of magnitude. Figure 9(a) depicts the
spectrum of the investigated QD, recorded under strictly res-
onant and pulsed conditions. Beneath the resolution-limited
spectral emission, one recognizes a weak laser background,
which could not be filtered by the cross polarization configura-
tion we used. Nevertheless, very good stray-light suppression
in the direct spectral vicinity of the QD is accomplished,
which is mandatory for further measurements concerning
autocorrelation and coherence properties. For these kinds of
measurements further suppression of laser stray light was
established by spectrally separating the QD signal by means
of a monochromator.

The recorded second-order autocorrelation function of the
QD can be seen in Fig. 9(b). The strongly suppressed coin-
cidences around zero delay reflect the purity of the single-
photon emission from our device. To obtain g(2)(0), we in-
tegrated the raw counts in a ±2-ns window around each peak.
This yields g(2)(0) = 0.005 ± 0.002. Fitting the coincidence
histogram with a two-sided exponential decay convolved with
a Gaussian distribution reveals a QD lifetime of T1 ≈ 400 ps,
which supposes a modest Purcell enhancement of our QD.

The high purity of the single-photon emission puts us in the
position to test the coherence of the emitted photons from our
source by studying the quantum interference of consecutively
emitted photons in a Hong-Ou-Mandel (HOM) experiment,
utilizing an unbalanced fiber-based Mach-Zehnder interfer-
ometer (MZI). Analogous to the single-photon correlation
experiment, the HOM experiment was carried out at a temper-
ature of T = 4.5 K and a close to π -pulse excitation power of
PLaser = 800 nW.

In Fig. 9(c), we plot the correlation chart of the two-
photon interference experiment. The central correlation peak
in our study is strongly suppressed, significantly below the
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FIG. 9. (a) Spectrum of the investigated QD using pulsed resonant excitation in a cross-polarization configuration. (b) Second-order
autocorrelation function recorded under resonant conditions, revealing a multiphoton probability of (0.5 ± 0.2)%. (c) Coincidence histogram
of the recorded two-photon interference. The clearly suppressed peak around zero delay proves the high degree of indistinguishability of
the emitted single photons with a TPI visibility of νTPI = (93.0 ± 1.3)% when calculated from raw data and νTPI = (86.9 ± 2.6)% when we
account for power misbalance of the delay interferometer employed in the measurement.

value of 0.5 attainable in the case where the photons would
be fully distinguishable. This clearly indicates that quantum
interference is established in our experiment. Analogous to
the calculation of the g(2)(0) value, we assess the visibility
of the interference contrast by comparing the counts in a
±2-ns window around the central peak for the cases of
indistinguishable and distinguishable photons. The latter is
calculated from both the MZI intensity mismatch and the
average of the five peaks at ±24.4, 36.6, 48.8, and 61.0 ns,
which leads us to a visibility of νTPI = (93.0 ± 1.3)% when
calculated from raw data and νTPI = (86.9 ± 2.6)% when we
account for the power misbalance of the delay interferometer
employed in the measurement. This value is comparable to
previously reported two-photon interferences in high-quality
quantum dot structures embedded in planar low-Q cavities or
circular micropillar structures [7,10,37,38].

VI. CONCLUSION

We have carried out a study of single quantum dots embed-
ded in elliptically shaped micropillar cavities. First, we have
demonstrated the high quality of our fabrication process and
developed an analytic model to describe the eigenmodes in
the system with broken rotation symmetry. We have directly
observed polarization-dependent strong and weak light-matter
coupling of quantum dot excitons with anisotropic dipole
moments in our elliptically shaped pillars. In elliptical mi-
crocavities with reduced Q factors, we have demonstrated
the capability for pulsed resonant injection as well as the
deterministic emission of coherent single photons from our
devices. The anisotropic light-matter coupling in our elliptical
micropillars, in combination with the principal capability for
resonant injection and emission of indistinguishable photons,
puts our device platform at the forefront of engineering high-
performance single-photon sources. We foresee that carefully
engineered devices and pump configurations will not only
solve the problem of undesired photon loss associated with
the commonly applied cross-polarization filtering but will
ultimately lead to devices being capable of emitting linearly

polarized single, coherent photons on demand with emission
rates up to 10 GHz.
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APPENDIX

1. Intensity of the linewidth of the polaritonic resonances

In Fig. 10(a) the linewidths as a function of the temperature
are illustrated. Since the strong-coupling regime provides
a distinct splitting of the coupled modes in the frequency
domain, an extraction of both linewidths γC and γX for the
whole temperature range is possible. Here, a clear exchange
of the exciton and cavity linewidth can be observed [34].

Around a temperatures of 32 K, we reach the weak-
coupling regime, where only the QD’s linewidth could be
evaluated reliably. The increasing temperature raises the
phonon influence, which is expressed as an overall rise of the
linewidth due to phonon-exciton interaction [39,40]. Similar
to the exchange of the linewidths, the integrated intensities of
the QD and higher-energy mode in Fig. 10(b) are exchanges at
the anticrossing, while in the weak-coupling regime only the
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FIG. 10. (a) The linewidths as a function of the temperature are illustrated. At the anticrossing one can observe a clear exchange of
the linewidths of exciton and cavity. In the strong-coupling regime the FWHM of both emission lines can be analyzed, whereas the Purcell
enhancement in the weak-coupling regime enables only the analysis of the QD emission line. (b) depicts the exchange of the integrated intensity
of the QD exciton and the cavity mode in the strong-coupling regime, while for weak coupling only the quantum dot intensity was recordable.

quantum dot intensity could be measured due to the Purcell
effect.

2. Theory of fine-structure splitting in elliptical micropillars

The longitudinal components of the electric field (Ez) and
magnetic field (Hz) follow the wave equation:(

∂2

∂x2
+ ∂2

∂y2

)(
Ez

Hz

)
+ (

k2 − k2
z

)(Ez

Hz

)
= 0, (A1)

where kz = nω/c is the wave vector of the cavity mode in
the growth direction, with n being the refractive index of the
cavity and ω being its resonant frequency. It is convenient to
introduce elliptical coordinates:

x = ρ cosh ξ cos η, (A2a)

y = ρ sinh ξ sin η, (A2b)

where ρ = eca, ec = √
a2 − b2/a is the eccentricity (not

to be confused with ellipticity), and we recall that a and b
denote the semimajor and semiminor axes. In the elliptical
coordinates, the boundary of the ellipse corresponds to
ξ = ξ0 = cosh−1(1/ec), and the wave equation becomes [41]

1

ρ ′(ξ, η)

(
∂2

∂ξ 2
+ ∂2

∂η2

)(
Ez

Hz

)
+ (

k2 − k2
z

)(Ez

Hz

)
= 0, (A3)

where ρ ′(ξ, η) = ρ2

2 [cosh(2ξ ) − cos(2η)] is the differential
area element in elliptical coordinates.

With the knowledge of the fields along the growth (z)
direction, the transverse field components are given by

Eη(ξ, η) = i

4q
√

sinh2 ξ + sin2 η

(
kz

∂Ezi

∂η
− ωμ

∂Hzi

∂ξ

)
,

(A4a)

Eξ (ξ, η) = i

4q
√

sinh2 ξ + sin2 η

(
kz

∂Ezi

∂η
+ ωμ

∂Hzi

∂η

)
,

(A4b)

Hη(ξ, η) = i

4q
√

sinh2 ξ + sin2 η

(
kz

∂Hzi

∂η
+ ωε

∂Ezi

∂ξ

)
,

(A4c)

Hξ (ξ, η) = i

4q
√

sinh2 ξ + sin2 η

(
kz

∂Hzi

∂η
− ωε

∂Ezi

∂η

)
,

(A4d)

where μ and ε are the relative permeability and relative
permittivity, respectively, and q = (k2 − k2

z )ρ2/4.
The field solutions for Ez and Hz can be expanded in terms

of Mathieu functions, which are composed of both angular
and radial parts. The angular parts are given by the Mathieu
cosine function, denoted cen(η; q), and the Mathieu sine func-
tion, denoted sen(η; q). For our problem, these functions must
be periodic in η, with the period being an integer of 2π . The
index n labels the number of nodes in the interval 0 � η < π .
Inside the elliptical pillar the radial solutions are given by
the modified/radial Mathieu functions of the first kind, which
are divided into even functions, denoted Cen(ξ ; q), and odd
functions, denoted Sen(ξ ; q), where n is an integer (n � 0 for
the even functions and n � 1 for the odd functions). Outside
the elliptical pillar boundary, we expect a decaying solution,
and this is given by the modified/radial solutions of the
second kind. These are divided into even and odd functions
(in a way similar to the first-kind solutions). For q > 0, the
solutions are denoted Feyn(η; q) and Geyn(η; q), while for q <

0, the solutions are denoted Fekn(η; q) and Gekn(η; q). Details
of the calculation of the Mathieu functions and determination
of the characteristic values are given in [42]. We note that all
the Mathieu functions can be conveniently expanded in series
of Bessel functions, from which their derivatives can also be
readily calculated.

For our problem, there are two relevant regions. Inside
the micropillar, ξ < ξ0, we have a refractive index

√
εi = ni

and relative permeability μi = 1 (we assume a nonmagnetic
medium), and we will denote the electric and magnetic field
solutions as Ezi and Hzi, respectively. Outside the micropillar,
ξ > ξ0, we can take εo = 1 and μo = 1, and we will denote
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the electric and magnetic field solutions as Ezo and Hzo,
respectively. We can also define q inside and outside the
micropillar, respectively, as

qi =
ω2n2

c2 − k2
z

4
ρ2, (A5a)

qo =
ω2

c2 − k2
z

4
ρ2. (A5b)

It is argued in Ref. [25] that the field solutions divide into
two sets, where the first set has Hz composed of even Mathieu
functions and Ez composed of odd Mathieu functions, while
the second set has Hz composed of odd Mathieu functions
and Ez composed of even Mathieu functions. Let us first
consider the first case, where the field solutions inside the
micro-pillar are

Ee
zi(ξ, η) =

∞∑
m=1

amiSem(ξ ; qi )sem(η; qi ), (A6a)

He
zi(ξ, η) =

∞∑
m=0

bmiCem(ξ ; qi )cem(η; qi ), (A6b)

where {ami, bmi} are coefficients to be determined. Outside the
micropillar, the solutions must decay and are expanded:

Ee
zo(ξ, η) =

∞∑
m=1

amoGekm(ξ ; −qo)sem(η; −qo), (A7a)

He
zo(ξ, η) =

∞∑
m=0

bmoFekm(ξ ; −qo)cem(η; −qo), (A7b)

where {amo, bmo} are coefficients to be determined.
To determine the allowed coefficients, the axial fields Ez

and Hz, as well as the tangential fields Eη and Hη, must
be continuous at the boundary ξ = ξ0. Such conditions give
rise to a hierarchy of equations, where the η dependence
should be integrated out. It is necessary to truncate the re-
sulting infinite hierarchy of equations by limiting the num-
ber of terms in the solutions for the fields. For simplicity,
we will consider only two terms in the field outside the
micropillar.

It will be convenient to introduce the following notation:

Cem(ξ0; qi ) = cm, (A8a)

Sem(ξ0; qi ) = sm, (A8b)

Gekm(ξ0; −q0) = gm, (A8c)

Fekm(ξ0; −q0) = fm, (A8d)

dCem(ξ ; qi)

dξ

∣∣∣∣
ξ=ξ0

= c′
m, (A8e)

dSem(ξ ; qi)

dξ

∣∣∣∣
ξ=ξ0

= s′
m, (A8f)

dGekm(ξ ; −q0)

dξ

∣∣∣∣
ξ=ξ0

= g′
m, (A8g)

dFekm(ξ ; −q0)

dξ

∣∣∣∣
ξ=ξ0

= f ′
m. (A8h)

Then the axial fields at ξ = ξ0 are

Ee
zi(ξ0, η) = a1is1se1(η; qi ), (A9a)

He
zi(ξ0, η) = b1ic1ce1(η; qi ), (A9b)

Ee
zo(ξ0, η) = a1og1se1(η; −qo) + a3og3se3(η; −qo), (A9c)

He
zo(ξ0, η) = b1o f1ce1(η; −qo) + b3o f3ce3(η; −qo). (A9d)

The tangential fields at ξ = ξ0 are

Ee
ηi(ξ0, η)

= i[kza1is1se′
1(η; qi ) − ωμib1ic′

1ce1(η; qi )]

4qi

√
sinh2 ξ + sin2 η

, (A10a)

He
ηi(ξ0, η)

= i[kzb1ic1ce′
1(η; qi ) + ωεia1is′

1se1(η; qi )]

4qi

√
sinh2 ξ + sin2 η

, (A10b)

Ee
ηo(ξ0, η)

= ikz[a1og1se′
1(η; −qo) + a3og3se′

3(η; −qo)]

4qo

√
sinh2 ξ + sin2 η

− iω[b1o f ′
1ce1(η; −qo) + b3o f ′

3ce3(η; −qo)]

4qo

√
sinh2 ξ + sin2 η

, (A10c)

He
ηo(ξ0, η)

= ikz[b1o f1ce′
1(η; −qo) + b3o f3ce′

3(η; −qo)]

4qo

√
sinh2 ξ + sin2 η

+ iω[a1og′
1se1(η; −qo) + a3og′

3se3(η; −qo)]

4qo

√
sinh2 ξ + sin2 η

. (A10d)

First, let us match the fields Ee
zi(ξ0, η) = Ee

zo(ξ0, η):

a1is1se1(η; qi ) = a1og1se1(η; −qo) + a3og3se3(η; −qo).
(A11)

To remove the η dependence, let us first define the follow-
ing overlap integrals, which are the same as those given in
Ref. [43]:

αmn = 1

π

∫ 2π

0
cem(η; −qo)cen(η; qi )dη, (A12)

βmn = 1

π

∫ 2π

0
sem(η; −qo)sen(η; qi )dη, (A13)

τmn = 1

π

∫ 2π

0
se′

m(η; qi )cen(η; −qo)dη, (A14)

ψmn = 1

π

∫ 2π

0
ce′

m(η; qi )sen(η; −qo)dη, (A15)

γmn = 1

π

∫ 2π

0
ce′

m(η; −qo)sen(η; −qo)dη. (A16)

It is important to note that any of the above overlap integrals
vanish when m is even and n is odd or vice versa. Also, when
q0 = ±qi, α = δnm and β = δnm.
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Returning to Eq. (A11), to remove the η dependence, we
can multiply by ce1(η; −qo) or se3(η; −qo) and integrate. This
gives two equations:

a1is1β11 = a1og1, (A17)

a1is1β31 = a3og3. (A18)

Similarly, from the matching of the fields He
zi(ξ0, η) =

He
zo(ξ0, η),

b1ic1α11 = b1o f1, (A19)

b1ic1α31 = b3o f3. (A20)

We also obtain an equation from matching the fields
Ee

ηi(ξ0, η) = Ee
ηo(ξ0, η) [multiplying by ce1(η; −qo) and inte-

grating]:

kzqoa1is1τ11 − ωμiqob1ic
′
1α11

= −kzqia1og1ψ11 − kzqig3a3oγ13 − ωqib1o f ′
1. (A21)

Finally, there is an equation from matching the fields
He

ηi(ξ0, η) = He
ηo(ξ0, η) [multiplying by se1(η; −qo) and

integrating]:

kzqob1ic1ψ11 + ωεiqoa1is
′
1β11

= kzqib1o f1γ11 + kzqi f3b3oγ31 + ωqia1og′
1. (A22)

The field-matching conditions can be neatly cast into ma-
trix form:

⎛
⎜⎝

s1β11 −g1 0 0
0 0 c1α11 − f1

kzs1(qoτ11 + qiβ31γ13) kzqig1ψ11 −ωμiqoc′
1α11 ωqi f ′

1
ωεiqos′

1β11 −ωqig′
1 kzc1(qoψ11 − qiα31γ31) kzqi f1γ11

⎞
⎟⎠

⎛
⎜⎝

a1i

a1o

b1i

b1o

⎞
⎟⎠ = 0. (A23)

The eigenvalues ω give the frequencies of the modes, and the eigenvectors define the coefficients needed to define
the mode in space. While the above treatment is for modes even in H , we can obtain the odd modes in H by in-
terchanging the even and odd functions: cm ↔ sm, gm ↔ fm, c′

m ↔ s′
m, g′

m ↔ f ′
m, αmn ↔ βmn, τmn ↔ ψmn, γmn ↔ ξmn =

(1/π )
∫ 2π

0 se′
m(η; −qo)cen(η; −qo)dη.
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[34] J. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S.
Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A.
Forchel, Nature (London) 432, 197 (2004).

[35] C. Hopfmann, A. Musiał, M. Strauß, A. M. Barth, M. Glässl,
A. Vagov, M. Strauß, C. Schneider, S. Höfling, M. Kamp, V. M.
Axt, and S. Reitzenstein, Phys. Rev. B 92, 245403 (2015).

[36] A. Musiał, P. Gold, J. Andrzejewski, A. Löffler, J. Misiewicz,
S. Höfling, A. Forchel, M. Kamp, G. Sęk, and S. Reitzenstein,
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