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Tuning topological surface states by cleavage angle in topological crystalline insulators
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The conducting states, recently discovered at the surface of two special class of insulators—topological
insulators and topological crystalline insulators—are distinguished by their insensitivity to local and nonmag-
netic surface defects at a level of disorder, sufficiently small to be described within the perturbation theory.
However, the behavior of the surface states in case of nonlocal macroscopic imperfections is not clear. Here, we
propose a systematic study of the topological surface states on vicinal planes (deviations from perfect surface
cleavage) in a topological crystalline insulator of the tin telluride family, by using realistic first-principles-derived
tight-binding models. The theoretical framework proposed is quite general and easily permits the extensions to
other topological insulator families.
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I. INTRODUCTION

Topological surface states (TSS), occurring in topological
insulators (TI), are, probably, the most exciting and exotic
discoveries in condensed matter physics in recent years [1,2].
Experimental realization of the TI [3,4] paves the way to
numerous potential technological applications: The quantum
spin Hall effect, the dissipationless spin current, the magneto-
electric effect [5–8], etc. The discovery of TSS has opened
a race to search for topological states protected by some
other symmetries. Along this line, the theoretical proposal of
Fu about the TSS protected by crystalline symmetry [9–13]
has soon found experimental confirmation [14–16] in the tin
telluride (IV-VI) family and stimulated intense work on the
search for materials in the new class of topological crys-
talline insulators (TCI). At variance with the conventional TI,
where the protection of the TSS comes from time-reversal
symmetry, in TCI the protection is ensured by the crystalline
symmetry, usually the mirror symmetry. TCI are characterized
by a new topological invariant—the so-called mirror Chern
number nM—analogously to the TI, which are characterized
by the Z2 topological invariant. A system can be a trivial TI,
but possess a nonzero nM, which is exactly the case of tin
telluride SnTe—a prototypical TCI. For the firm observation
of topological states in experiments it is crucial to know how
the defects of various types, always present in real materials,
could influence the TSS. Thanks to the topological protection,
the TSS should be quite robust against the local (nonmag-
netic) surface defects. Moreover, it was demonstrated recently
that the TSS are also insensitive to the disorder in the bulk
[17].

A different type of defect can be described as a slight
deviation of the surface cut from the most common and highly
symmetric one. Indeed, the particularity of the TSS lies in
the fact that they only appear on the particular cuts of the
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bulk crystal (e.g., in SnTe, the topological surfaces are (001),
(111), and (110), cf. Ref. [18]). In the real experiment, the
surface might not be cleaved precisely at the right angle and,
therefore, a legitimate question arises: To what extent can
the crystal surface deviate from the ideal one so that the
TSS are still present? For completeness, we note that in the
case of Z2 topological insulators the answer is quite clear:
Strong topological insulators will have SS on every surface,
while weak ones only on some of them depending on how
the time-reversal symmetry (TRS) points are projected on the
surface [19], while no conclusion a priori can be made for
TCI. It was pointed out in Ref. [15] that TSS arise in SnTe
if the projections of the TRS points on the surface possess
the mirror symmetry. Thus, one needs not only to trace the
projections of the TRS points, but also to make sure that these
projections lie within a mirror plane.

To answer the above question, realistic, material-specific
calculations of large systems are needed. The ab initio meth-
ods can easily reach their computational limits due to the
mandatory use of the spin-orbit coupling in the simulations
and the need to well exceed the critical slab thickness to
observe the TSS. Thus, one resorts to the realistic tight-
binding models with the parameters chosen so as to reproduce
the ab initio band structure. In this way, large super-cell calcu-
lations can be easily afforded at low computational cost, while
conserving the predictive power of ab initio approaches. In
such a study, the tin telluride family (SnTe, Pb1−xSnxSe, and
Pb1−xSnxTe) represents almost an ideal playground thanks to
the simplicity of the unit cell and the richness of the phase
diagram.

In SnTe and in other tellurides, vicinal planes represent a
commonly occurring example of a nonideally cleaved surface
[20–22]. In this article we study the TSS on vicinal surfaces,
which deviate from the ideal ones. To achieve this, we con-
struct the super-cells with the so-called tilted boundary condi-
tions, so that one of the boundaries of the super-cell appears
to make a finite angle with respect to the crystallographic axes
of the unit cell. As we will show below, in this case, there
is always at least one mirror plane, which is perpendicular
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to the tilting axis and to the tilted surface and which passes
through some of the projections of TRS points, thus ensuring
the mirror symmetry in those projections.

In this setup, some of the TSS will have the topological
protection, since they are projections of bulk TRS and have a
mirror plane, although their precise positions and the form of
band dispersion is to be determined. We combine high perfor-
mance slab calculations with the TRS projection analysis and
show how the topologically protected and unprotected states
evolve upon changing the cleavage angle with respect to the
three topological surfaces in SnTe.

This article is organized as follows: In Sec. II, we describe
the computational methods used; in Sec. III, we present the
numerical results, while further discussions and conclusions
are given in Sec. IV.

II. METHODS

We perform density functional theory (DFT) simulations
using the Vienna ab initio simulation package (VASP) [23]
and the generalized gradient approximation (GGA) [24] in the
Perdew-Burke-Ernzerhof (PBE) formalism for the exchange-
correlation potential. We use an energy cutoff for the plane
wave basis of 400 eV and a 16 × 16 × 16 Monkhorst-Pack
k-point mesh [25]. Here we consider [001], [110], and [111]
surfaces in the cubic phase. To calculate TSS in the slab geom-
etry, the number of layers has to be sufficiently large to prevent
the interaction between TSS of the two slab surfaces, which
makes ab initio approaches prohibitive. We, therefore, resort
to an effective tight-binding (TB) model. The TB hopping
matrix elements are determined by projection of the ab initio
VASP Hamiltonian onto the atomiclike orbitals through the
WANNIER90 package [26]. In these projections we retain
s- and p-type basis functions. As for structural parameters,
we employ those optimized within DFT-GGA. For the cubic
structure, we use lattice constant a = 6.42 Å, rhombohedral
angle α = 60◦ in the unit cell with center of inversion (see
Supplemental Material in Ref. [27]).

To safely conclude about the presence of TSS, we plot
the 2D band structure for the slabs with maximal possible
thickness. This essentially stands for many diagonalizations
(as many as the number of surface k-points) of rather large
complex Hermitian matrices (up to 30 000 × 30 000 in this
work). We solve this technical problem by employing par-
allel GPU diagonalization routines and CUDA/C/Fortran
interfaces.

We explain now the geometry conventions used in the
present work to define the tilted or vicinal planes. It is
well known that in SnTe the TSS are only present on three
crystallographic surfaces. These are (001), (111), and (110)
[18]. Each of these cases corresponds to a unit cell, which
possesses the corresponding surface. Here we consider each
of these unit cells V with unit vectors {a1,, a2, a3} and build a
new unit cell V ′ with unit vectors {b1, b2, b3}, so that each
bi is a linear combination of {a j} with integer coefficients,
so that V ′ always contain an integer number of original cells
V . We choose the original cells to be orthorhombic and
double if necessary the primitive cell. For completeness we
report below both the original cell V and the tilted one V ′
geometries.

III. RESULTS

A. Tilted (001) surfaces

The case of tilted (001) surfaces is the most straightforward
one. We start from a tetragonal unit cell (V ) which has
the following unit vectors (in Cartesian coordinates): a1 =
a
2 (1, 1, 0), a2 = a

2 (1,−1, 0), a3 = a(0, 0, 1), so that a3 is
perpendicular to (001) surface. Here a is the SnTe lattice
constant. The unit vectors {bi} of m × n (001) tilted cell V ′
are expressed in Cartesian coordinates as follows:

b1 = a

⎛
⎝n

n
m

⎞
⎠, b2 = a

2

⎛
⎝ 1

−1
0

⎞
⎠, b3 = a

⎛
⎝−m/2

−m/2
n

⎞
⎠.

It is easy to see that b1 = 2na1 + ma3, while b3 = −ma1 +
na3, and V ′ is rotated by an angle ϑ around b2 with respect to
V . This cleavage angle ϑ can be found as: tan ϑ = m/

√
2n.

This choice of basis ensures the orthorhombicity of the unit
cell and allows us to build up a sequence of surfaces with
the cleavage angle gradually approaching zero. Such a choice
ensures minimal cluster size at a given angle ϑ . The val-
ues of n and m explored in the present work are listed in
Table I.

At ϑ = 0 (the pristine (001) surface), there are two mirror
planes: (11̄0) and (110). It is easy to see that at finite ϑ the
mirror plane (110) is lost, while the (11̄0) is preserved since
the rotation axis b2 is normal to it. Therefore, we conclude
that the projections of the TRS points on a tilted (001) surface
will have the topological protection if they lie within the (11̄0)
mirror plane. We will show below that this is indeed the case
and derive the general rule describing the location of TSS for
given n and m. An example of the slab dispersion containing
TSS in the case of n = 3, m = 1 is shown in Fig. 1.

The surface states appear at high-symmetry points of the
surface Brillouin zone depending on the parity of m and
independently on n. Namely, for even m, the surface states
are located at � and Y = (0, π ), while for odd m they are at
X = (π, 0) and M = (π, π ). This alternation rule holds for all
values of m and can be understood if one takes into account
how L points of the original rhombohedral BZ are projected
onto the surface BZ of (001) tilted unit cell. Nevertheless, the
topological protection is only ensured for the � and X points
as they are crossed by the (11̄0) mirror plane, while Y and M
are not protected by the mirror symmetry. We report the 3D
plots of such projections for m = 1, 2, 3 in Fig. 2.

TABLE I. Tilted unit cells (001) summary. First column: Tilting
angle, {n, m} characteristic doublet for a given unit cell; Nstates,
number of states per unit cell V ′. The two rightmost columns show
the position of surface states in each case: TP means topologically
protected, while TNP means topologically nonprotected.

ϑ, ◦ n m Nstates TP TNP

23.00 5 3 1888 X M
19.47 4 2 1152 � Y
13.26 3 1 608 X M
10.03 8 2 4224 � Y
8.05 5 1 1632 X M
6.72 12 2 9344 � Y
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FIG. 1. Surface band structure for a slab with tilted (001) surface
along the path M-X -� zoomed around X (left panel), and Y -M-X
zoomed around M (right panel). The line color reflects the orbital
character of the bands: Red, predominantly Sn; blue, predominantly
Te. n = 3, m = 1, which corresponds to the angle of α = 13.26◦. 30
layers. For full details of the unit cell see Table I. Note the topological
protection in the left panel and the absence thereof in the right one.

It can be seen from Fig. 1 how the lack of topological
protection changes the low-energy physics. Namely, at M, a
tiny gap opens, while at X there are topological states. The
reason for this tiny gap is the numerical round-off errors
inevitable in any numerical calculation. Mirror symmetry at X
make the TSS insensible to these errors, while at M there is no
such protection. It is interesting to note that each of the eight
L points of the first primitive BZ is projected onto a different
Y (or M) point in different folded surface BZ. Moreover,
already at minimal m = 1 the projections of some of the L
points in the first bulk BZ belong to higher surface BZs. As
n → ∞ (and ϑ → 0), the projections move more and more
towards higher surface BZs. On the other hand, as n → ∞,
the extension of the surface BZ along x direction tends to zero
as well as the difference between Y and M and between � and

TABLE II. Tilted unit cells (111) summary. First column: Tilting
angle, {n, l, m} characteristic triplet for a given unit cell; Nstates,
number of states per unit cell V ′. The two rightmost columns show
the position of surface states in each case: TP means topologically
protected, while TNP means topologically nonprotected.

ϑ, ◦ n l m Nstates TP TNP

54.74 1 2 1 288 X Y
35.26 2 1 1 288 X M
25.24 3 2 3 1056 X Y
19.47 4 1 2 864 X M
15.79 5 2 5 2592 X Y
13.26 6 1 3 1824 X M
8.93 9 2 9 7968 X Y
6.72 12 1 6 7008 X M

X . In addition, in this limit the (110) mirror plane is restored.
Therefore, in the limit ϑ = 0 each surface TRS point acquires
the projections from two L points, which then form a bonding
and anti-bonding combinations—a well known fact for (001)
TSS in SnTe [15,28]. Thus, studying (001) tilted states allows
us to approach this limit gradually and observe the progressive
transformation of TSS.

B. Tilted (111) surfaces

In the case of tilted (111) surfaces, the original (non-
tilted) unit cell is hexagonal and has the following unit
vectors in Cartesian coordinates: ã1 = a(0, 1

2 ,− 1
2 ), ã2 =

a(− 1
2 , 0, 1

2 ), ã3 = a(1, 1, 1). However, this cell is not or-
thorhombic, therefore, we double and rotate it by 45◦ (a1 =
ã1 − ã2, a2 = ã1 + ã2) to end up with an orthorhombic unit
cell V having, a1 = a( 1

2 , 1
2 ,−1), a2 = a(− 1

2 , 1
2 , 0), a3 =

a(1, 1, 1). As above, we rotate V around a2, which becomes
the new b2. We require that b1 ⊥ b3, then, in general,

b1 = na1 +m′a3,

b3 = −la1 +ma3.
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FIG. 2. The projections of L TRS points of the rhombohedral Brillouin zone to a (001) tilted surface 3 × 1 (left panel); 4 × 2 (middle
panel); 5 × 3 (left panel). The corresponding folded BZs are also drawn in red. Note the projecting on M and X for cases (a) and (c), while
projecting on Y and � for case (b). Shown in yellow is the (11̄0) mirror plane.
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FIG. 3. Surface band structure for a slab with tilted (111) surface
along the path � − X − M (left panel) and M − Y − � (right panel).
The line color reflects the orbital character of the bands: Red,
predominantly Sn; blue, predominantly Te. n = 1, l = 2, m = 1,
which corresponds to the angle of α = 54.74◦, 110 layers. For full
details of the unit cell see Table II. Note the topological protection in
the left panel and the absence thereof in the right one.

The condition of orthogonality imposes only one equation for
four unknowns. To minimize the size of V ′, we set m′ = 1,
and since |a1|2 = 3a2

2 , while |a3|2 = 3a2, we arrive at the
constraint

nl = 2m (1)

for the remaining three parameters. In Cartesian coordinates,
the unit vectors {bi} of (111) tilted cell V ′ are expressed as
follows:

b1 = a

⎛
⎜⎝

1 + n
2

1 + n
2

1 − n

⎞
⎟⎠, b2 = a

⎛
⎜⎝

− 1
2
1
2

0

⎞
⎟⎠, b3 = a

⎛
⎜⎝

m − l
2

m − l
2

m + l

⎞
⎟⎠,

with the constraint Eq. (1). This choice of basis ensures the
orthorhombicity of the unit cell V ′ and allows us to build

up a sequence of surfaces with the cleavage angle gradually
approaching zero. The cleavage angle in this setting depends
only on n as follows: tan ϑ = l√

2m
=

√
2

n , thanks to the
constraint Eq. (1).

At ϑ = 0 (the pristine (111) surface), there are three mirror
planes: (11̄0), (1̄01), and (01̄1). It it easy to see that at finite ϑ

the mirror planes (1̄01) and (01̄1) are lost, while the (11̄0) is
preserved since the rotation axis b2 is normal to it. Therefore,
we conclude that the projections of the TRS points on a tilted
(111) surface will have the topological protection if they lie
within the (11̄0) mirror plane. As we will show below, there
are always such TSS along with those without topological
protection. We also derive the general rule describing the
location of TSS for given n, m, and l .

The values of {n, l, m} explored in the present work are
listed in Table II. An example of the slab dispersion with
and without topological protection in the case of n = 1, l = 2
and m = 1 is depicted in Fig. 3. Once again, there is a nice
odd-even alternation rule: For even n the surface states appear
at M = (π, π ) and X = (π, 0), while for odd n, at Y = (0, π )
and X , as illustrated in Fig. 4. Nevertheless, the topological
protection is only ensured for the X points as they are crossed
by the (11̄0) mirror plane, while Y , and M are not protected
by the mirror symmetry. When n increases, the area of the first
surface Brillouin zone progressively diminishes, while the
projections of the TRS points L move towards higher surface
Brillouin zones, as in the case of the tilted (001) surfaces. In
the limit n → ∞ the TRS projections turn to the usual picture
seen on (111) surfaces. We notice that the alternation rule for
TSS on (111) surface does not depend on values of l and m
but only on n.

It is interesting to see how the lack of topological protec-
tion at Y on Fig. 3 leads to opening of a gap between the anion
and cation topological states on the left of Y point.

C. Tilted (110) surfaces

The original cell V in this case reads as: a1 =
a(0, 0, 1), a2 = a

2 (1,−1, 0), a3 = a
2 (1, 1, 0), so that it has

FIG. 4. The projections of L TRS points of the rhombohedral Brillouin zone to a (111) tilted surface. The corresponding folded BZs are
also drawn in red. Three surface types are shown. Note the projection of L points onto X and Y for (b), while projecting onto X and M for
(a) and (c) cases. Shown in yellow is the (11̄0) mirror plane.
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TABLE III. Tilted unit cells (110) summary. First column: Tilt-
ing angle, {n, m} characteristic doublet for a given unit cell; Nstates,
number of states per unit cell V ′. The two rightmost columns show
the position of surface states in each case: TP means topologically
protected, while TNP means topologically nonprotected.

ϑ, ◦ n m Nstates TP TNP

5.39 1 15 7264 X M
8.05 1 10 3264 � Y
13.26 1 6 1216 � Y
22.00 2 7 1824 X M
25.24 3 9 3168 X M
29.50 4 10 4224 � Y

the pristine a3 perpendicular to the (110) surface. This unit cell
can be viewed as a unit cell from Sec. III A with the vectors
a1 and a3 interchanged. We have used the following unit cell
basis sets for this family of surface states

b1 = a

⎛
⎝n

n
m

⎞
⎠, b2 = a

2

⎛
⎝ 1

−1
0

⎞
⎠, b3 = a

⎛
⎜⎝

m
2
m
2

−n

⎞
⎟⎠

in Cartesian coordinates. It means that

b1 = ma1+2na3,

b3 = −na1 +ma3.

This choice of basis ensures the orthorhombicity of the unit
cell and allows us to build up a sequence of surfaces with
the cleavage angle gradually approaching zero. The cleavage
angle in this setting reads as follows: tan ϑ = √

2n/m. It is
easy to see that ϑ(110) = π

2 − ϑ(001) as the unit cell in this case
is the same as in Sec. III A. The pristine unit cell is recovered
in the limit m = 1, n = 0. The values of {n, m} explored in the
present work are listed in Table III.

Since b1 and b2 are the same as in Sec. III A, the ap-
pearance of the surface states follow the same rule outlined
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FIG. 6. Surface band structure for a slab with tilted (110) surface
along the path Y -�-Y zoomed around � (left panel) and �-Y -M
zoomed around M (right panel). The line color reflects the orbital
character of the bands: Red, predominantly Sn; blue, predominantly
Te. n = 1, m = 6, which corresponds to the angle of α = 13.26◦.
18 layers. For full details of the unit cell see Table III. Note the
topological protection in the left panel and the absence thereof in
the right one.

therein, namely independently on n, and depending on parity
of m. The difference with respect to the case of Sec. III A is
that the limit of small ϑ now is realized at m � n as opposed
to n � m. We report the 3D plots of such projections for
n = 2, 3, 4 in Fig. 5. It is interesting to note that each of
the eight L points of the first primitive BZ is projected onto
a different high symmetry point in different folded surface
BZ. Moreover, the projections of some of the L points in the
first bulk BZ belong to higher surface BZs. As n → ∞ (and
ϑ → 0), the projections move more and more towards higher
surface BZs. On the other hand, as n → ∞, the extension of
the surface BZ along x direction tends to zero as well as the
distance between Y and M. We emphasize, that only � and X

FIG. 5. The projections of L TRS points of the rhombohedral Brillouin zone to a (110) tilted surface. The corresponding folded BZs are
also drawn in red. Three surface types are shown. Note the projecting on � and Y for (a), while projecting on M and X for (b) and (c). Shown
in yellow is the (11̄0) mirror plane.
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surface states have the topological protection, while M and Y
do not. An example of the slab dispersion containing TSS in
the case of n = 1 and m = 6 is depicted in Fig. 6.

IV. CONCLUSION

In this manuscript we performed a systematic study of
topological surface states on vicinal planes with finite cleav-
age angle of the TCI tin telluride, by using the ab initio
derived effective tight-binding model. We have set up TB
calculations of slabs thick enough to observe the topological
surface states. We showed that the choice of vicinal plane
has a direct consequence on the observed topological states,
and in particular on the number of the surface states and their
positions. We also discuss the limits ϑ → 0 and recovered the
usual TSS in SnTe. In particular, we found an alternation rule,
determining the position of the TSS based on the parity of one
of the integers, used to construct the folded unit cell. These
integers, in turn, can be related to the cleavage angle ϑ of
the surface. In all the cases, the TSS appear at high-symmetry
points � and X as opposed to the limiting case ϑ = 0 and
(001) where an exact coincidence of the projections of two L
points with a subsequent hybridization and a shift off the high
symmetry point occurs. In the case of the vicinal plane surface

states, only some of the states are topologically protected
by the mirror plane symmetry and are thus the topological
surface states, contrarily to the case of the pristine surfaces
where all the TRS projections are topological surface states.
Our conclusions hold for arbitrary angles and orientations of
the tilted surfaces. The direct calculation of the mirror Chern
numbers for the vicinal planes is in progress.

A singular feature of the TSS projected onto the tilted
vicinal planes consists in the fact that at small angles ϑ ,
the bulk TRS L points from the first bulk Brillouin zone are
projected not only onto the first surface Brillouin zone but also
to the higher ones.

ACKNOWLEDGMENTS

This work was supported by EPSRC (Grant No.
EP/R02992X/1). C.W. gratefully acknowledges the support
of NVIDIA Corporation with the donation of the Tesla K40
GPUs used for this research. For computational resources,
we were supported by the ARCHER UK National Supercom-
puting Service and the UK Materials and Molecular Mod-
elling Hub for computational resources (EPSRC Grant No.
EP/P020194/1).

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[3] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil,

D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys.
5, 398 (2009).

[4] H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, and S.-C.
Zhang, Nat. Phys. 5, 438 (2009).

[5] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 146802 (2005).
[6] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314,

1757 (2006).
[7] C. Xu and J. E. Moore, Phys. Rev. B 73, 045322 (2006).
[8] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78,

195424 (2008).
[9] L. Fu, Phys. Rev. Lett. 106, 106802 (2011).

[10] R.-J. Slager, A. Mesaros, V. Juričić, and J. Zaanen, Nat. Phys.
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