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We study the localization and decay properties as well as the thermal conductance of one-dimensional
plasmons. Our model contains a Luttinger-liquid part with spatially random plasmon velocity and interaction
parameter as well as a nonlinearity that is cubic in density. The scaling of the decay rate of plasmons is obtained
in several regimes. At sufficiently high frequencies, it describes the inelastic lifetime of localized plasmon
excitations that crosses over to the clean result with lowering frequencies. For higher frequencies, we analyze
implications of many-body-localization effects that lead to a suppression of the decay rate. We find that the
thermal conductance depends in a nontrivial fashion on the system size L. Specifically, it scales as L−1/2 for
sufficiently short wires and crosses over to L−2/3 scaling for longer wires.
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I. INTRODUCTION

One-dimensional (1D) quantum systems show plenty of
fascinating phenomena [1]. Interaction effects are often strong
in 1D, so that the proper elementary excitations of the sys-
tems are plasmons (collective density fluctuations) and not
the genuine constituent particles (fermions or bosons). The
resulting state of matter is referred to as the Luttinger liquid
(LL). Due to advances in technological fabrication processes,
many physical realizations of quantum interacting 1D systems
are experimentally available.

A research direction that has attracted a considerable
amount of interest in recent years is the thermal transport and
energy relaxation in various 1D setups, including systems of
photons [2] and of cold atoms [3,4] as well as quantum Hall
edges with counterpropagating modes [5–13]. The quantum
Hall structures provide a particularly suitable experimental
platform for the exploration of this class of phenomena.
Recent realizations of synthetic quantum Hall edges [14,15]
allow for unprecedented control of the system parameters.

Another prominent example of quantum 1D systems is
the Josephson junction (JJ) chains. They were studied ex-
tensively during the last two decades in the context of the
superconductor-insulator transition [16–19] and as a platform
for quantum computations [20–23] and metrology [24]. The
relaxation of plasmonic waves in JJ chains was probed re-
cently via spectroscopic measurements [25], which has trig-
gered intensive theoretical studies [26–28] of the mechanisms
responsible for the broadening of bosonic states in these
systems in various parameter regimes.

Disorder is inevitable in physical systems and is particu-
larly important in low dimensions. It induces the phenomenon
of Anderson localization [29] that can have a dramatic impact
on transport properties. An interplay of disorder and interac-
tion is in general a difficult problem, with various facets. In

particular, the interaction-induced inelastic processes tend to
establish decoherence of excitations, thus reducing the effect
of Anderson localization that is crucially based on quantum
coherence. It has been realized, however, that this delocalizing
effect of interaction may be suppressed (strongly or even
completely) due to quantum localization in the many-body
space. This has has opened a new research area of many-
body localization (MBL) [30,31], see Refs. [32–34] for recent
reviews. The MBL implies nonergodicity, i.e., the complete
breakdown of the conventional statistical mechanics.

The precise nature of disorder and its physical conse-
quences may vary. In a generic 1D conductor, impurities
cause backscattering of charge carriers. Their interplay with
interactions is highly nontrivial [35,36]. On the one hand,
interactions strongly renormalize disorder seen by low-energy
electrons. On the other hand, the real (as opposed to virtual)
scattering processes enabled by the interactions pave the way
to energy relaxation and dephasing. The interaction-induced
dephasing then cuts off the singular Anderson localization
corrections and is responsible for the finite electric conduc-
tivity of the system at not too strong disorder and moderate
temperatures.

In the context of the JJ chain, the disorder that is commonly
considered are the random stray charges. Their relevance to
the properties of the system stems from the fact that they
can couple directly (via the Aharonov-Casher effect) to the
quantum phase slips (QPS) [37,38] that are the driving force
of the quantum superconductor-insulator transition.

A disorder of a different kind can also be present and, under
special circumstances, play the major role in the aforemen-
tioned systems. Specifically, if the impurity potential experi-
enced by the electrons in a quantum wire is smooth on the
scale of the Fermi wavelength, the associated backscattering
is strongly suppressed and can be ignored in a wide range of
parameters. On the other hand, the induced inhomogeneities
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of the average electronic density cause the spatial variations of
effective interaction between particles. Those variations trans-
late then into the inhomogeneities of the Luttinger parameter
entering the LL description of the system and lead to backscat-
tering (and, as a result, to localization) of plasmons [39,40].
While the low-frequency charge transport is unaffected by
the plasmon backscattering, the latter has a profound impact
on the energy propagation in the system [41,42] causing in
particular strong violation of the celebrated Wiedemann-Franz
law.

In a similar manner, in JJ chains with sufficiently strong
Josephson couplings, the QPS are strongly (exponentially)
suppressed. The system is then superconducting from the
point of view of the charge transport (at least up to expo-
nentially low temperatures and exponentially large lengths
[43] that are often beyond the practical reach). Yet, the local
fluctuations of the parameters of the system (Josephson and
charging energies) create disorder for plasmonic waves and
alter their dynamics.

Beyond the harmonic approximation, the plasmons in the
aforementioned physical setups typically interact via a local
cubic interaction. For example, in quantum wires, such an
interaction originates from the quadratic curvature of the
dispersion relation of the genuine electrons [41,44,45]. In
the clean case, the effects of the plasmonic interactions on the
dynamical correlation functions were intensively discussed
in recent years, leading to the emergence of the concept of
nonlinear Luttinger liquids [46]. In particular, it was shown
recently [47] that the cubic interaction of plasmons governs
the thermal conductance of a clean LL at lowest temperatures.
The resulting thermal conductance displays a nontrivial scal-
ing with the size of the system G(L) ∝ L−2/3, the behavior
also known [48,49] to occur in classical translationally invari-
ant nonlinear 1D systems.

In this paper we investigate a LL with a spatially random
Luttinger parameter and plasmon velocity as well as with a
cubic interaction of bosons. Our work is largely motivated
by experimental developments and prospects discussed above.
The model that we consider is expected to be relevant to
various realizations of correlated 1D systems. We explore the
interaction-induced decay of the plasmons in its dependence
on the frequency and temperature. We find that at lowest fre-
quencies the disorder plays a minor role, and the correspond-
ing decay rate coincides with the one found [50] previously
in a clean LL, 1/τ ∝ ω3/2. At higher frequencies, the disorder
effects become crucially important. The relaxation rate grows
linearly with frequency and eventually saturates due to a weak
form of MBL effects. Furthermore, joint effect of disorder and
plasmonic anharmonicity manifests itself in the behavior of
the thermal conductance as a function of the system length L.
In a short system the thermal conductance is fully controlled
by disorder, yielding G ∝ L−1/2. Upon increase of L, the
system crosses over to the regime where G is governed by
an interplay of disorder and interaction G ∝ L−2/3.

The paper is organized as follows. In Sec. II we give a
precise definition of our model. A brief discussion of the local-
ization of the noninteracting plasmons is presented in Sec. III.
In Sec. IV we investigate the interaction-induced lifetimes
of plasmons in various regimes. Section V is devoted to the
analysis of the thermal conductance. Finally, Sec. VI contains

a summary of our results and a discussion of prospective
research directions.

II. MODEL

The Hamiltonian of our model describing plasmons in a
disordered one-dimensional system consists of two parts,

H = H0 + H1. (1)

The quadratic part

H0 = 1

2π

∫
dx

[
v(x)K (x)(∂xθ )2 + v(x)

K (x)
(∂xφ)2

]
(2)

is a generic Luttinger-liquid Hamiltonian with space-
dependent plasmon velocity v(x) = v0 + δv(x) and Lut-
tinger parameter K (x) = K0 + δK (x). The random fluctua-
tions δv(x) and δK (x) are assumed to have zero mean and
Gaussian statistics with

δK (x)δK (x′) = DKδ(x − x′),

δv(x)δv(x′) = Dvδ(x − x′),

δv(x)δK (x′) = DvKδ(x − x′). (3)

The fields ∂xφ and ∂xθ are related to the particle density and
current, respectively,

∂xφ = −πρ, vK∂xθ = π j. (4)

They satisfy the commutation relations

[φ(x), ∂x′θ (x′)] = iπδ(x − x′). (5)

One particular instance of such a model is a quantum
wire with smooth (on the scale of the Fermi wavelength)
disorder considered in Refs. [39–41], see also Appendix A.
Here the smoothness of the disorder suppresses backscattering
of electrons, whereas the spatial variations of the equilibrium
fermionic density translate into fluctuations of the velocity v

and the effective interaction K . The parameters of our model
can in this case be expressed in terms of the amplitude U0

and the correlation length lU of the disorder potential, see
Appendix A. In particular, under the assumption of a moderate
strength of the electron-electron interaction (K0 ∼ 1), we get

DK ∼ U 2
0

ε2
F

lU , (6)

where εF stands for the Fermi energy.
Another physical realization of the Hamiltonian (2) is

the low-energy limit of a JJ chain with sufficiently strong
Josephson couplings precluding quantum phase slips [37,38].
In this case, the variances DK , Dv , and DKv can be expressed in
terms of the disorder in local Josephson and charging energies.

The interaction effects are described in our model by the
cubic coupling of bosons

H1 = − 1

6πm

∫
dx[3(∂xθ )2∂xφ + (∂xφ)3]. (7)

The origin of this interaction term is particularly transparent
in the case of a quantum wire. Equation (7) expresses in
the bosonization language the quadratic correction δε(k) =
k2/2m to the spectrum of the constituent fermions near the
Fermi points [44,45]. It can be traced back to the dependence
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of the ground state energy density of fermions with mass
m [51] on the particle density and macroscopic velocity V ,
E (ρ,V ) = π2ρ3/6m + mρV 2/2.

If the Hamiltonian (1) is viewed as an effective low-energy
field theory of a JJ chain, the anharmonicity (7) is also natural.
Indeed, any perturbation allowed by symmetry is expected to
appear in such an effective description, and the two terms in
the square brackets in Eq. (7) are precisely the two possible
perturbations of the lowest scaling dimension that can be
added to the fixed-point LL Hamiltonian. Unlike the case of
fermions with quadratic spectrum where the Galilean invari-
ance enforces the equality of the coefficients in front of the
aforementioned terms, no such connection exists generically
in the context of JJ chains. This distinction in the description
of the two systems is, however, irrelevant for us as it can
only alter numerical coefficients in our results. As to the
microscopic value of the “mass” m (or, more generally, of
the two allowed coupling constants) in the case of JJ chains,
it can be related to the ground state energy of the system,
cf. discussion after Eq. (7) as well as Refs. [52,53] where a
similar problem was discussed in the context of the XXZ spin
model. The cubic anharmonicity (7) is thus expected to be a
perturbation generically present in systems described by LL
theory. In this work we treat the mass m as a model parameter,
leaving aside the question of its microscopic description.

Let us emphasize that, throughout this work, we limit our
consideration to the case of weak uncorrelated disorder. The
strong-disorder effects (e.g., the situation of a heavy-tailed
distribution of the Josephson couplings in a JJ chain [54]) or
the effects of correlated disorder (arising, e.g., in the descrip-
tion of plasmonic modes existing on top of a pinned charge-
density wave [28,55,56]) may alter significantly [54–57] the
density of states and the properties of wave functions of low-
energy plasmons. Their interplay with the anharmonicities
in the system constitute an interesting direction for future
research but is beyond the scope of the present work.

III. LOCALIZATION LENGTH OF
NONINTERACTING PLASMONS

In the absence of the anharmonic term (7), the plasmons
are noninteracting and get localized due to the disorder, with
the localization length equal to the mean free path with
respect to backward scattering. In order to evaluate the latter,
we decompose the Hamiltonian into the homogeneous and
disorder parts H0 = HLL

0 + Hdis
0 , given by

HLL
0 = 1

2π

∫
dx

[
v0K0(∂xθ )2 + v0

K0
(∂xφ)2

]
(8)

and

Hdis
0 = 1

2π

∫
dx δv(x)

[
K0(∂xθ )2 + 1

K0
(∂xφ)2

]

+ v0

2π

∫
dx δK (x)

[
(∂xθ )2 − 1

K2
0

(∂xφ)2

]
. (9)

We then compute the transport scattering rate for plasmons,
treating the disorder perturbatively.

To this end, we expand the plasmonic fields φ and θ into
normal modes according to [1]

φ(x) = − iπ

L

∑
q �=0

(
K0L|q|

2π

)1/2 1

q
e−iqx (b†

q + b−q),

θ (x) = iπ

L

∑
q �=0

(
L|q|

2πK0

)1/2 1

|q|e−iqx (b†
q − b−q ), (10)

where L is the system size and b(†)
q are standard annihilation

(creation) operators of bosonic states with momentum q. The
homogeneous part of the Hamiltonian (2) takes the diagonal
form

HLL
0 =

∑
q

v0|q|b†
qbq + const. (11)

The rate of scattering induced by the random fluctuations
δv(x) and δK (x) can be extracted from the collision integral

I[ f ] = −
∑

q′
Wqq′ [ f (q) − f (q′)], (12)

with the transition probability given by the golden rule

Wqq′ = 2π |〈0|bq′Hdis
0 b†

q|0〉|2 δ(v0|q| − v0|q′|). (13)

Here |0〉 is the plasmonic vacuum, f (q) is the plasmonic
distribution function, and Hdis

0 is the random part of the
Hamiltonian, Eq. (9). The overline denotes the average with
respect to the random fluctuations of K (x) and v(x) according
to Eq. (3).

After the disorder averaging, the modulus square of the
matrix element takes the form

|〈0|bq′Hdis
0 b†

q|0〉|2 = 1

4L
|qq′|

{
Dv[1 + sgn(qq′)]2

+ v2
0

K2
0

DK [1 − sgn(qq′)]2

}
. (14)

Note that the correlations between v(x) and K (x) do not
contribute. Moreover, the fluctuations of the velocity con-
tribute only to forward scattering and, due to the structure of
the collision integral (12), drop out of the kinetic equation.
As a result, the kinetic equation describing the evolution of
the distribution function of the plasmons in the presence of
disorder in the parameters of the quadratic Hamiltonian H0 is
given by

∂ f (q)

∂t
= −v0DK

K2
0

q2[ f (q) − f (−q)]. (15)

From this equation we extract the elastic scattering time τel(ω)
which leads to the localization length (mean free path) of the
plasmons,

ξ (ω) = v2
0K2

0

2DKω2
. (16)

The result (16) agrees with the one obtained previously in
Refs. [39–41] for a less general [58] model of disordered
Luttinger liquid.

Before closing this section, let us stress that, as follows
from Eq. (16), these are spatial variations of the Luttinger
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parameter K (x) that are responsible for the localization of
plasmons that is crucial for the physics explored in this
work. This makes our model drastically different from the
“random conformal symmetry” models (see, e.g., Ref. [59]
and references therein) that have received much attention re-
cently. In the present language, those models are characterized
by disorder in v(x) alone and thus lack the localization of
plasmons.

IV. DECAY OF PLASMONIC STATES

In this section we explore the impact of the nonlinear
term (7) that gives rise to finite lifetime of the localized
plasmonic states discussed in Sec. III. We treat the anhar-
monicity perturbatively, which is justified if the temperature
and the considered plasmonic energies are much smaller than
the (effective) Fermi energy ω, T � mv2

0 .
Throughout this section we assume that the disorder is

weak from the point of view of plasmons involved in the
scattering processes: the localization length of each plas-
monic state is much longer than the corresponding de Broglie
wavelength v0/ω. Comparing the de Broglie wavelength with
the localization length (16), we find that this weak-disorder
condition holds for all the plasmons with frequency below the
threshold

ω∗ ≡ v0K2
0

DK
. (17)

Correspondingly, at low temperatures

T < ω∗ (18)

the disorder is weak for all the plasmons relevant to the
transport phenomena (i.e., those with the energy smaller than
temperature).

The structure of this section is as follows. In Sec. IV A we
compute the decay rate of localized plasmons perturbatively
by using the Fermi golden rule. We then analyze the limits of
applicability of this golden-rule calculation and show that it
is applicable within a (generically) broad range of frequencies
[determined by Eqs. (29) and (30)] but fails both at sufficiently
low and sufficiently high frequencies. The inelastic scattering
of plasmons in those two regimes is discussed in Secs. IV B
and IV C, respectively. In Sec. IV D we summarize the results
of this section, focusing on the subthermal plasmons relevant
for the energy transport, and analyze the mechanism of the
motion of these plasmons through the system.

A. Golden-rule analysis

In a clean Luttinger liquid, the perturbation theory in the
cubic interaction of bosons is highly singular. If the linear
bosonic spectrum is assumed, the cubic nonlinearity induces
the one-into-two bosonic decay processes of the type shown in
Fig. 1. Within the Fermi golden-rule approximation, the cor-
responding rate diverges due to the equivalence of the energy
and momentum conservation. On the other hand, an arbitrarily
small bending of the plasmonic spectrum makes it impos-
sible to satisfy simultaneously the energy and momentum
conservation in the one-into-two decay within the perturbative
calculation [60]. This singularity of the golden-rule analysis

FIG. 1. Inelastic relaxation of a plasmonic mode at frequency ω1

via (a) decay into two plasmons; (b) collision with another plasmon.

in a clean system requires a more sophisticated self-consistent
analysis. We will return to this issue in Sec. IV B.

In our system, the presence of disorder breaks the momen-
tum conservation, which makes the lowest-order golden-rule
calculation well defined (i.e., not singular). Such a calculation
was earlier performed in Ref. [41] where the condition ω � T
(opposite to the regime of our main interest in this work)
was implicitly assumed. We proceed now by performing
the golden-rule calculation of the decay rate of localized
plasmons in various ranges of frequency. After this, we will
analyze the actual applicability of the golden-rule results.

We start from noninteracting plasmonic modes localized
by disorder with the localization length given by Eq. (16).
The quadratic Hamiltonian (2) can be diagonalized by a linear
transformation of bosonic fields

φ(x) =
∑

μ

√
πv(x)K (x)

2�μ

[ψμ(x)bμ + ψ∗
μ(x)b†

μ],

∂xθ (x) = 1

i

∑
μ

√
π�μ

2v(x)K (x)
[ψμ(x)bμ − ψ∗

μ(x)b†
μ], (19)

where ψμ(x) are the eigenfunctions of the operator D
defined by

Dψμ = −
√

v(x)K (x)∂x

[
v(x)

K (x)
∂x(

√
v(x)K (x)ψμ(x))

]

= �2
μψμ, (20)

and bμ, b†
μ are usual bosonic operators. In this basis, the

quadratic Hamiltonian takes the form

H0 =
∑

μ

�μ

[
b†

μbμ + 1

2

]
. (21)

The eigenfrequencies of plasmonic states �μ are random and
possess Debye (constant in 1D) density of states at low energy
(cf. discussion at the end of Sec. II).

Under the assumption of weak disorder |q|ξ � 1, we
model the wave functions ψμ(x) by

ψμ(x) = 1√
ξ (ω)

e−|x−x0|/ξ (ω)eiqx, ω = v0|q|, (22)

i.e., as plane waves modulated by an exponential factor re-
flecting the disorder-induced localization. The index μ in
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Eq. (22) comprises two parameters: the energy ω and the
center of the localized state x0. While the precise form of wave
functions in a disordered 1D media varies from one eigen-
states to another, their general features are well understood.
Specifically, the eigenstates can be viewed as plane waves
modulated by envelopes with a characteristic scale given by
the localization length ξ . It is important that ξ is the only
characteristic scale for the envelopes of localized states: it de-
termines both the exponential decay rate and the extension of
the core part of the wave function [61]. Thus, the ansatz (22)
captures the most important features of the localized wave
functions: oscillation on short length scales with a wave vector
q modulated by an envelope function characterized by a single
scale ξ and exponentially decaying at distances larger than
ξ . In particular, Eq. (22) captures correctly the uncertainty in
momentum of the plasmon and the associated broadening of
the δ function expressing the momentum conservation in the
scattering process. This is sufficient for our analysis in which
we ignore numerical prefactors of order unity.

The inelastic scattering processes contributing to the re-
laxation of a bosonic mode at frequency ω1 are shown in
Fig. 1. At temperatures satisfying the inequality (18) (regard-
less of the relation between ω1 and T ) the processes shown
in Fig. 1(b) contribute at most the same order of magnitude
as the one-into-two plasmon decay shown in Fig. 1(a) (see
Appendix C for details). We thus concentrate on the latter.
The kinetic equation associated with the scattering processes
depicted in Fig. 1(a) is given by [62]

∂ f (μ1)

∂t
= −

∫
dx2

L

dx3

L

∑
q2,q3

W μ2,μ3
μ1

{ f (μ1)[1 + f (μ2)]

× [1 + f (μ3)] − [1 + f (μ1)] f (μ2) f (μ3)}, (23)

where L is the system size, and f (μi ) denotes the plasmon
distribution function. Here μi ≡ [xi, ω(qi )] characterizes a
plasmon centered in the real and momentum space around xi

and qi, respectively. The transition probability for the process
reads

W μ2,μ3
μ1

= 2π
∣∣Mμ2,μ3

μ1

∣∣2
δ(ω1 − ω2 − ω3) (24)

with the matrix element

Mμ2,μ3
μ1

= 〈0|bμ3 bμ2H1b†
μ1

|0〉. (25)

In order to extract the decay rate, we linearize the kinetic
equation (23) with respect to the equilibrium state by intro-
ducing the deviation from the equilibrium (Bose) distribution,
δ f (μi ) = f (μi ) − nB(ωi ). Within the relaxation-time approx-
imation, the decay rate 1/τ is then extracted from the diag-
onal part of the linearized collision integral [∝δ f (μ1)]. It is
given by

1

τ
=

∫
dx2

L

∫
dx3

L

∑
q2,q3

W (x2,ω2 ),(x3,ω3 )
(x1,ω1 )

× [1 + nB(ω2) + nB(ω3)]. (26)

Employing now Eq. (22) and estimating the resulting
integrals (see Appendix B for details), we find that the

high-energy plasmons with ω > T relax at the rate

1

τ (ω)
∼

(
3 + K2

0

)2
ξ (ω)

K0m2v5
0

ω4, ω > T . (27)

Here and subsequently the symbol “∼” stands for the equality
up to a factor of order unity (evaluation of which requires
using exact statistics of wave functions of the localized plas-
mons). The result (27) agrees with the one found previously
in Ref. [41] [see Eq. (12) of that work].

Within the linear-response regime, the thermal transport is
controlled by subthermal plasmons ω < T . In this regime we
find the golden-rule decay rate (see Appendix B)

1

τ (ω)
∼

(
3 + K2

0

)2
ξ (ω)

K0m2v5
0

ω3T, ω < T . (28)

Equation (28) will be used below in the analysis of the thermal
conductance.

We turn now to the discussion of the applicability condi-
tions of the golden-rule calculation. The picture of localized
plasmonic states decaying due to anharmonicities is only valid
if the elastic scattering time τel(ω) ≡ ξ (ω)/v0 is shorter than
the inelastic time (28). The comparison of Eqs. (16) and
(28) (we focus here on the subthermal plasmons relevant
for transport) reveals that this only holds for not too low
frequencies,

ω > ω̃ ≡ K3
0

(
3 + K2

0

)2
T

m2v2
0D2

K

. (29)

For plasmons with lower frequencies ω < ω̃, the inelastic time
is shorter than the elastic one. In view of this, the disorder can
be ignored (in the leading approximation) when one evaluates
the rate of inelastic collisions for such low frequencies. We
will analyze the inelastic relaxation of plasmons in this regime
in Sec. IV B.

Remarkably, the naive golden-rule approach fails not only
at low ω but also at high enough frequencies. Specifically, the
golden-rule treatment is justified provided that the obtained
rate is larger than the level spacing of final states into which
a plasmon decays, see the related discussion in the context of
MBL in quantum dots [63,64] and in strongly disordered 1D
electronic conductors [30,31]. In particular, for the decay pro-
cesses of Fig. 1, the final states are the two-particle states (they
are characterized by two frequencies ω2 and ω3 specifying
the plasmonic modes that change their occupation as a result
of the relaxation of the mode ω1). The golden rule approach
breaks down at high frequencies because the localization of
plasmons becomes stronger there and the two-particle level
spacing grows with frequency. In Sec. IV C we will compute
the associated level spacing and show that the result (28)
remains valid for

ω < ω̄ ≡
(

K7
0

(
3 + K2

0

)2
T

D4
K m2

)1/3

. (30)

The plasmons with higher energies cannot decay via the
interaction with plasmons of similar energy and are in this
sense in a “quasi-MBL” regime. The true MBL is, however,
absent because of the possibility to relax via the interaction
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with the “bath” of low-energy plasmons with frequencies
ω < ω̄, see Sec. IV C.

B. Low frequencies: From disordered to clean regime

As discussed in Sec. IV A, our perturbative treatment of the
decay rate essentially relies on the broadening of plasmonic
energy levels by disorder and breaks down at low frequencies
ω < ω̃. In this low-frequency regime, the localization length
is longer than the inelastic mean free path, so that disorder is
essentially of no importance for the inelastic collision rate.

We have also mentioned previously that the perturbative
treatment of the plasmonic decay in a clean LL is singular. The
problem can be circumvented by a self-consistent treatment of
the one-into-two decay channel [50]. The result of Ref. [50]
translated to our notations reads [65]

1

τ (ω)
∼

(
3 + K2

0

)
T 1/2ω3/2

√
K0mv2

0

. (31)

It matches smoothly the rate (28) at ω = ω̃. Combining the
both rates (28) and (31), we find

1

τ (ω)
∼

⎧⎨
⎩

(3+K2
0 )T 1/2ω3/2

√
K0mv2

0
, ω � min(T, ω̃),

K0(3+K2
0 )2T ω

DK m2v3
0

, ω̃ � ω � T .

(32)

In Eq. (32) we implicitly assume that ω satisfies the inequality
(30) such that the quasi-MBL effects discussed at the end of
Sec. IV A (and in more detail in Sec. IV C below) do not
matter. Note also that for very weak disorder the frequency
ω̃, Eq. (29), becomes larger than the temperature, so that the
clean result, Eq. (31), holds for all plasmons with ω � T .

It is worth noting that both lines of the result (32) can
be obtained from a single self-consistent calculation. Specifi-
cally, let us introduce self-consistency in Eq. (28) by replacing
ξ (ω) (that essentially represents the disorder broadening of
the plasmonic levels) by (1/ξ + 1/v0τ )−1. Solving the emerg-
ing equation for 1/τ , one recovers Eq. (32).

C. “High” frequencies: Quasi-MBL regime

The golden rule used in Sec. IV A is only applicable if
the two-particle level spacing is smaller than the decay rate.
In this section we estimate the single-particle as well as the
two-particle level spacing (cf. a related calculation in Supple-
mental Material of Ref. [66]). This allows us to establish the
inequality (30) marking the onset of the quasi-MBL regime
where the relaxation of high-energy plasmons (those with ω >

ω̄) is governed by the interaction with a bath of low-energy
excitations with ω < ω̄. We then analyze the inelastic decay
of those high-energy plasmons.

The number of plasmon modes per unit energy interval that
have a finite overlap with a localized mode with energy ω at
position x1 is given by

N1(ω) ∼
∫

dx2

∫
dq2

2π
e−|x1−x2|/ξ (ω2 )δ(ω − v0|q2|) (33)

= ξ (ω)

πv0
. (34)

The single-particle level spacing in the localization volume is
thus given by

�1(ω) ∼ 1

N1(ω)
∼ v0

ξ (ω)
, (35)

in agreement with the flat density of plasmonic modes.
For the two-particle level spacing, we consider the number

of different plasmon pairs that can emerge in a one-into-two
decay of a plasmon with frequency ω:

N2(ω) ∼
∫

dx2

∫
dx3

∫
dq2

2π

dq3

2π
e−|x1−x2|/ξ (ω2 )

× e−|x1−x3|/ξ (ω3 )δ(ω − ω2 − ω3) (36)

=
∫ ∞

0

dω2

πv0

∫ ∞

0

dω3

πv0
ξ (ω2)ξ (ω3)δ(ω − ω2 − ω3).

(37)

The energy integrations should be cut on the lower limit at
the single-particle level spacing �1 in order to cure the formal
divergence. Evaluating the integral over ω3 with the help of
the δ function and using Eq. (16), we obtain

N2(ω) ∼
∫ ω−�1(ω)

�1(ω)
dω2

ω2
∗

(2π )2

1

ω2
2(ω − ω2)2

(38)

= ω2
∗

2π2

∫ ω/2

�1

dω2
1

ω2
2(ω − ω2)2

, (39)

where ω∗ is given by Eq. (17). The integral is dominated by
the lower limit, yielding

N2(ω) ∼ ω2
∗

ω2�1(ω)
∼ ω3

∗
ω4

. (40)

Using Eq. (40), we find the corresponding two-particle
level spacing:

�2(ω) ∼ 1

N2(ω)
∼ ω4

ω3∗
∼ D3

Kω4

v3
0K6

0

. (41)

Comparison of Eq. (41) to the golden-rule relaxation rate
in the frequency range ω̃ � ω � T where the disorder is
important [second line in Eq. (32)] gives the criterion (30).

We conclude that at low enough temperatures,

T < T0 ≡ K7/2
0

(
3 + K2

0

)
mD2

K

, (42)

the relaxation of all the subthermal plasmons is correctly
described by Eq. (32). On the other hand, for T > T0, the
relaxation of high-frequency modes with ω > ω̄ is different:
it is governed by scattering off low-frequency excitations. It
is clear however that the analysis leading to Eq. (28) (see
Appendix B) can be straightforwardly adapted to the present
situation. Specifically, treating the scattering processes shown
in Fig. 1 in the golden-rule manner, we should restrict the pos-
sible final states to those that contain a low-energy plasmon.
On the technical level this corresponds to the restriction of the
integration over the momentum q2 in Eq. (B3) by q2 < ω̄/v0.
Proceeding along this direction, we find that in the frequency
range

ω̃ < ω̄ < ω < T, (43)
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FIG. 2. Schematic behavior of the inelastic scattering rate as a
function of frequency, see Eqs. (32) and (44). We omit the depen-
dence of τ (ω) on the interaction constant K0 (assuming interaction
strength of order unity). We also assume that T > T0 with temper-
ature T0 given by Eq. (42). The characteristic frequency scales are
ω̃ ∼ T0T/εF and ω̄ ∼ (T T 2

0 )1/3; they separate (from left to right) the
clean, disordered, and quasi-MBL regimes.

the plasmonic decay is described by

1

τ (ω)
∼ K0

(
3 + K2

0

)2
T ω̄

DK m2v3
0

, ω̃ < ω̄ < ω < T . (44)

Thus, the linear growth of the decay rate seen in the second
line of Eq. (32) saturates at high frequencies due to the quasi-
MBL effect. Still, the rate is finite and no genuine MBL of
plasmons occurs.

D. Subthermal plasmons: Decay of plasmonic states and
plasmon diffusion

In Secs. IV A, IV B, and IV C we have presented a detailed
analysis of the inelastic relaxation of plasmons in a disordered
LL. We now summarize the main results obtained in these sec-
tions, focusing on the subthermal plasmons. We then establish
a qualitative picture of plasmon dynamics that will allow us to
analyze the thermal transport in the system in Sec. V.

We assume throughout this section and in the sequel that
the disorder is not too weak in the sense that the characteristic
temperature T0 defined in the inequality (42) is smaller than
the high-energy scale (“Fermi energy”) εF ≡ mv2

0/2 � T ,

T0 � εF, (45)

implying [see Eq. (29)] that the frequency ω̃ < T . In the
opposite limit of very weak disorder, the latter is irrelevant for
relaxation of thermal plasmons [see discussion after Eq. (32)].

Figure 2 shows the schematic behavior of the inelastic
scattering rate as a function of frequency for ω < T . Our
results for the decay rate are expressed there in terms of the
characteristic energy scales T0, ω̃, ω̄ [see Eqs. (42), (29), and
(30)], and the high-energy scale εF. At high frequencies ω >

ω̄, the plasmons are in the quasi-MBL regime. Interaction
with low-energy plasmons is necessary for relaxation and the
relaxation rate does not depend on frequency, see Eq. (44).
The quasi-MBL regime is pushed above temperature (ω̄ > T )
at low enough temperatures, T < T0.

At lower frequencies ω < ω̄ (or, if T < T0, for all subther-
mal bosons), the relaxation rate is given by Eq. (32). Here
two regimes can be distinguished. At intermediate frequencies
ω̃ < ω < ω̄ the relaxation of plasmons is appropriately de-
scribed in terms of the decay of localized plasmonic modes. At
lowest frequencies ω < ω̃ one can neglect the disorder in the
calculation of the inelastic lifetime, viewing these plasmons

just as plane waves. [We will have, however, to recall about
the presence of disorder when analyzing the contribution of
these plasmons to thermal transport; see the discussion around
Eq. (47).]

In Sec. V we will analyze the thermal conductance in its
dependence on the system size. For that purpose it is useful to
discuss first the mechanism of the bosonic transport.

At frequencies larger than ω̃, disorder leads to local-
ization of plasmons if the anharmonicity H1 is neglected.
The relaxation induced by H1 goes via decay of a plasmon
into two plasmons of similar energy (or recombination of
two such plasmons). Typically, new plasmons are located
a distance ∼ξ (ω), Eq. (16), apart from the location of the
original plasmons, and the characteristic time for such a decay
process is τ (ω) as given by Eqs. (32) and (44). We can thus
(somewhat loosely) think about the plasmon motion as hops
between the localized states and characterize this dynamics
by a (frequency-dependent) effective “diffusion coefficient”
Deff (ω) estimated as

Deff (ω) ∼ ξ 2(ω)

τ (ω)
∼

⎧⎪⎪⎨
⎪⎪⎩

v2
0 T 3/2

0 T

ε
1/2
F ω3

, ω̃ < ω < ω̄,

v2
0 T 3/2

0 ω̄T

ε
1/2
F ω4

, ω̄ < ω < T .

(46)

In Eq. (46) and in the sequel, we omit the dependence on the
interaction constant K0 (assuming interaction strength of order
unity). It is worth noting that the energy of plasmons with
given frequency is not a conserved quantity, so that Deff (ω)
is not a diffusion coefficient in a strict sense. Rather, it is an
effective quantity that characterizes the dynamics of plasmons
with frequency ∼ω at not too long timescales and thus their
contribution to the thermal transport.

Let us now discuss the dynamics of plasmons at lowest en-
ergies ω < ω̃. Here plasmons are plane waves with velocity v0

that experience inelastic collisions (decay or recombination)
within the time τ (ω) given by the first line in Eq. (32). The
corresponding mean-free path is l in(ω) = v0τ (ω). As in the
case of higher frequencies, we ascribe to these low-frequency
plasmons an effective diffusion coefficient Deff (ω),

Deff (ω) ∼ v0l in(ω) = v2
0τ (ω) ∼ v2

0 εF

T 1/2ω3/2
, ω < ω̃. (47)

While Eq. (47) looks pretty standard at first sight, it is not
entirely trivial. Indeed, the scattering processes that we con-
sidered while calculating the inelastic time τ (ω) conserve the
total momentum and thus the energy current. They are thus
not sufficient to establish the heat diffusion, since the lat-
ter requires some mechanism of momentum relaxation. In
a clean LL the relaxation of the total plasmon momentum
is established via the plasmon Umklapp scattering [47,67]
that in the fermionic description of the LL corresponds to
the equilibration of the number of left- and right-moving
fermions. The latter is possible only via the diffusion of a deep
hole in a Fermi sea through the bottom of the energy band
and is thus exponentially suppressed at low temperatures. In
the present case of a disordered LL there is a much more
efficient mechanism of relaxing the bosonic momentum: the
backscattering of a plasmon by randomness. The crucial role
of this mechanism is obvious in Eq. (46) which describes a
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FIG. 3. Schematic behavior of the effective diffusion coefficient
as predicted by Eqs. (47) and (46). We omit the dependence of
Deff (ω) on the interaction constant K0 (assuming interaction strength
of order unity). We also assume that T > T0 with temperature T0

given by Eq. (42). The characteristic frequency scales are ω̃ ∼
T0T/εF and ω̄ ∼ (T T 2

0 )1/3.

hoppinglike relaxation of localized states. Correspondingly,
the strength of the disorder enters explicitly Eq. (46) via T0 and
ω̄. But where is the disorder in the derivation of Eq. (47)? The
answer is as follows. Considering the evolution of an initial
low frequency plasmon with ω < ω̃, we make two important
observation: (i) in an inelastic scattering process contributing
to τ (ω), the plasmons that are created or annihilated can
typically have energies that are larger than ω by a factor ∼2;
(ii) the rate of inelastic scattering grows with frequency as
ω3/2. It follows that the energy of the ω plasmon is transported
to higher frequencies ∼ω̃ within a time ∼τ (ω). Since the
disorder-induced backscattering time ξ (ω̃)/v0 is equal to τ (ω̃)
and thus is much shorter than τ (ω), the overall “transport”
scattering time at which the relaxation of the momentum
of the ω plasmon takes place is ∼τ (ω). This provides a
justification to Eq. (47). It is worth stressing that, in this
argument, we have used the condition ω̃ < T , which implies
that the disorder is not too weak.

The behavior of the effective diffusion coefficient as pre-
dicted by Eqs. (46) and (47) is summarized in Fig. 3. In
the next section we will use these results to explore the
dependence of the thermal conductance of the disordered LL
on the length of the system.

Before closing this section, let us discuss the feasibility of
probing the relaxation of disordered plasmons experimentally.
The characteristic energy scales related to the plasmon dy-
namics (ω∗, T0, ω̃, and ω) may vary significantly depending
on the specific experimental setup and on parameters of
disorder. In particular, in the case of quantum wires realized in
the GaAs/AlGaAs heterostructures, details of the fabrication
process (such as position of the doping layer) can alter dramat-
ically both the magnitude and the smoothness of the disorder
potential, see, e.g., Refs. [68–75] and references therein.
Taking as an example heterostructure parameters discussed
(in close connection to experiments) in Refs. [76,77], we
observe that they were characterized by the disorder potential
comparable to the Fermi energy (εF ∼ 5 meV) and the dis-
order correlation length lU exceeding the Fermi wavelength
by a factor of ∼5. This implies T0 ∼ εF(λF/lU )2 ∼ 1 K [see
Eqs. (6) and (42)] and [see Eq. (17)] ω∗ ∼ T0lU /λF ∼ 10 K.
Assuming now the temperature T to lie in between T0 and
ω∗, e.g., T ∼ 5 K, one obtains the frequencies ω̃ and ω̄ in
the GHz range: ω̃ ∼ T0T/εF ∼ 100 mK ∼ 2 GHz and ω̄ ∼

(T T 2
0 )1/3 ∼ 1.5 K ∼ 30 GHz. These values of the character-

istic temperature and of the frequency scales separating differ-
ent regimes (see Fig. 2) demonstrate that the plasmonic relax-
ation studied in this work should be experimentally accessible.
Furthermore, the aforementioned flexibility of parameters of
fabricated structures is favorable for tuning the characteristic
scales in order to optimize experimental measurements. While
we have presented explicit values only for semiconductor
quantum wires, we expect that experimental studies of the
plasmon relaxation should be feasible also in other realiza-
tions of interacting 1D systems discussed in Sec. I.

V. THERMAL CONDUCTANCE

We are now in a position to study the thermal transport
in a disordered LL. Let us consider a system of length L
connected to two reservoirs with slightly different tempera-
tures TR − TL = �T . In the linear-response regime that we
are considering, the thermal current jE is proportional to the
temperature difference

jE = G�T, (48)

where G is the thermal conductance. Our goal in this section
is to determine the behavior of G and, in particular, its
dependence on L.

The thermal current induced by the temperature gradient
can be divided into two parts. First, since the scattering pro-
cesses become progressively weaker with lowering frequency,
plasmons with a sufficiently low energy

ω < ωc(L) (49)

traverse the whole system ballistically. Here ωc(L) is the cut-
off frequency for the ballistic motion that will be determined
below. The energy current carried by the ballistic plasmons is
given by

jbal
E = 2

∫ ωc

0

dω

2π
ω[nL(ω) − nR(ω)], (50)

where nR and nL denote the Bose distributions in the reser-
voirs. Using the low-frequency asymptotics of the Bose dis-
tribution ni(ω) � Ti/ω, we find that the corresponding contri-
bution to the thermal conductance is given, up to a numerical
coefficient, by the cutoff frequency:

Gbal(L) = ωc(L)

π
. (51)

It remains to understand the cutoff for the ballistic motion. For
comparatively short systems, L < ξ (ω̃), the process that cuts
off the ballistic propagation is the elastic scattering, so that
ωc(L) is defined by the equation

ξ (ωc) = L , L < ξ (ω̃). (52)

On the other hand, in a longer system the ballistic contribution
is cut off by the inelastic length l in(ω) = v0τ (ω) with τ given
by the first line of Eq. (32). This length limits the ballistic
motion of a low-frequency plasmon due to a combined effect
of the anharmonicity and disorder, see Eq. (47) and discussion
after it. We thus get the condition on ωc(L) for long systems:

v0τ (ωc) = L, L > ξ (ω̃). (53)
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Employing Eqs. (16), (32), and (51), we finally obtain the
contribution of ballistic plasmons to the thermal conductance:

Gbal(L) ∼
⎧⎨
⎩

T 1/4
0 ε

1/4
F v

1/2
0

L1/2 , L < ξ (ω̃),

ε
2/3
F v

2/3
0

T 1/3L2/3 , L > ξ (ω̃).
(54)

The bosons with frequency larger than ωc(L) provide the
second contribution to the thermal transport. As they travel
diffusively, their contribution is characterized by a thermal
conductivity κ that can be related to the effective diffusion
coefficient Deff (ω), Eqs. (46) and (47),

κ (L) � T
∫ T

ωc (L)
dω Deff (ω). (55)

The corresponding contribution to the thermal conductance of
the sample is

δG(L) = κ (L)

L
. (56)

It is now easy to verify that the integration in Eq. (55)
is dominated by the lower limit and reproduces the ballis-
tic contribution (54). The full thermal conductance G(L) =
Gbal(L) + δG(L) of the system is thus correctly described
by the ballistic result, Eq. (54), governed by plasmons with
frequencies ω ∼ ωc(L) (i.e., those on the upper border of
the ballistic range of frequencies). The plasmons with ω �
ωc(L) contributing to δG yield in addition only subleading (in
powers of 1/L) terms.

We thus conclude that the dependence of the thermal con-
ductance of a disordered [in the sense of K (x)] nonlinear LL
on the size of the system is given by Eq. (54). In comparatively
short samples, it is determined solely by the elastic scattering
and our result reproduces the L−1/2 scaling found previously
[41,57,78] within the harmonic approximation. In longer sys-
tems, L > ξ (ω̃), the anharmonicity (or, equivalently, the plas-
mon interaction) plays a crucial role. We find that G(L) scales
in this regime as G(L) ∝ L−2/3. The same scaling, known
from studies of clean classical systems at high temperature
[48,49], was recently predicted to occur in a clean LL [47]
but only for exponentially long system sizes (larger than the
plasmon Umklapp mean free path).

VI. SUMMARY AND DISCUSSION

We have studied the relaxation of plasmonic modes and
thermal transport in a Luttinger liquid with spatially random
velocity and interaction parameter as well as a cubic anhar-
monicity. Within the harmonic approximation, the disorder
in K leads to localization of plasmons with the localization
length ξ ∝ 1/ω2, in agreement with previous findings.

The anharmonicity leads to the interaction among plas-
mons, which induces relaxation of plasmonic modes. Figure 2
summarizes our results for the plasmonic decay rate at low
temperatures. At low frequencies, ω < ω̃, the localization
length is longer than the inelastic mean free path. The result-
ing scaling of the relaxation rate 1/τ ∝ ω3/2 coincides with
the corresponding result for a clean LL [50]. At higher fre-
quencies the disorder effects set in, and the rate scales linearly,
1/τ ∝ ω, until saturation above the frequency ω̄ [given by

Eq. (30)] where the plasmons enter the quasi-MBL regime.
Such “high-energy” (ω � ω̄) plasmons cannot relax via inter-
actions with plasmons of similar frequency due to MBL-like
physics. The true MBL cannot develop, however, because of
the interaction with the plasmonic bath at low energies. This
mechanism of the destruction of MBL bears a certain similar-
ity to the one known [79] for continuous disordered fermionic
models where the unbounded growth of the single-particle
localization length at high energies paves the way for relax-
ation. An important difference in our case in comparison to the
fermionic models is the presence of the bath at low energies.
The relaxation assisted by such a bath does not require expo-
nentially rare events and is thus suppressed only in a power-
law fashion in comparison to the naive golden-rule result.

We have analyzed the plasmon dynamics and demonstrated
that it can be characterized by an effective diffusion coefficient
Deff (ω) whose frequency dependence is summarized in Fig. 3.
At low frequencies, ω < ω̃, where ω̃ is given by Eq. (29),
the fastest scattering mechanism is the inelastic scattering that
transports the plasmon energy flux towards higher frequencies
where it is backscattered by disorder. As a result, Deff (ω)
is determined by the inelastic scattering rate. At higher fre-
quencies, ω > ω̃ the plasmon dynamics can be visualized as
interaction-induced hops between localized states.

The thermal conductance G(L) of the disordered LL shows
a nontrivial scaling with the size of the system L, see Eq. (54).
The conductance G(L) is dominated by the low-frequency
plasmons that are ballistic on the scale of the system size.
Upon increase of the size of the system, the scaling of G(L)
crosses over from G(L) ∝ L−1/2 (effectively noninteracting
plasmons) to G(L) ∝ L−2/3. The latter result does not contain
the disorder explicitly as it derives from the inelastic scatter-
ing length in a clean system. However, the disorder enters
implicitly through the condition ω̃ � T , which implies that
the disorder is not too weak.

Before closing this paper, let us discuss possible exten-
sions of our work. First, as was pointed out in Secs. II and
IV, we have limited our consideration to the case of not
too strong, uncorrelated disorder and weak anharmonicity.
The strong-disorder effects and/or the correlated nature of
disorder may alter significantly [54–57] the density of states
and the localization properties of the single-particle wave
functions of the low-energy plasmons. Implications of the
anharmonic coupling of plasmons in such systems as well
as effects of stronger plasmonic interactions constitute an
interesting direction for future research.

Second, one can include in the model the fermionic
backscattering (or, equivalently, QPS in the context of the JJ
chains). We remind the reader that we have not included such
terms in view of their exponential smallness, see Sec. I. On
the other hand, the fermionic backscattering in a LL grows
under the renormalization group for a repulsive interaction (or
a not too strong attraction). In this situation it will modify the
ultimate infrared behavior of the system.

A further ingredient that was discarded in our analysis
is the curvature of the plasmonic spectrum. While it is not
expected to affect the low-frequency (and thus large-L) be-
havior, it may influence significantly the inelastic relaxation
of plasmons at intermediate frequencies, cf. Ref. [47]. In the
context of JJ chains, both the curvature of plasmons and the
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QPS are of direct relevance to spectroscopy of real physical
systems [25].

Finally, and on a more general note, it would be interesting
to explore possible connections between the model of the K-
disordered nonlinear LL and problems of the generalized 1D
hydrodynamics [80–87] that currently attract much attention.
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APPENDIX A: RELATION TO MODEL OF FLUCTUATING
ELECTRON DENSITY

In this Appendix we give a brief account of the derivation
of the Hamiltonian (1) in the context of a quantum wire
with smooth disorder potential [39–41] and establish the
correspondence of our notations to those of Ref. [41].

We consider a quantum wire subject to an external disorder
potential U (x) that is smooth on the scale of the Fermi wave-
length λF. The backscattering of electrons by the disorder
requires momentum transfer of 2kF and is exponentially small
in this case. The disorder induces however spatial variations
of the equilibrium electronic density

neq(x) = n0 + δneq(x) (A1)

that can alter significantly the dynamics of plasmonic excita-
tions in the system.

The density fluctuations δneq(x) are assumed to be small
and thus Gaussian. Furthermore, we assume that, while the
correlation length lU of potential fluctuations is much longer
than the Fermi wavelength (lU � λF), it is still small com-
pared to the wavelength of the thermal plasmons. Under these
assumptions, the statistics of δneq is fully specified by the
correlation function

δneq(x)δneq(x′) = n2
0lDδ(x − x′), (A2)

where the parameter lD (with dimension of length) measures
the strength of the fluctuations. It can be expressed in terms
of the amplitude U0 of the potential fluctuations and the
correlation length lU ,

lD ∼ 1

ε2
F

∫
dx〈U (x)U (0)〉 ∼

(
U0

εF

)2

lU . (A3)

Here εF is the Fermi energy and we assume that U0 � εF.
Within the hydrodynamic approximation the dynamical

state of the electronic fluid is described by the momentum
density (momentum per unit volume) p(x) and the displace-
ment field u(x) (displacement of fluid particles from their
equilibrium positions) that is related to the (dynamical) den-
sity of the electronic fluid by

n(x, t ) − neq(x) = − d

dx
[nequ]. (A4)

The momentum density p and displacement u are canonically
conjugate variables and on the quantum level satisfy the
commutation relation

[û(x), p̂(x′)] = iδ(x − x′). (A5)

In the harmonic approximation, the Hamiltonian of the
system can be written as HFHK

0 = ∫
dxHFHK

0 (x) [41] with

HFHK
0 (x) = p2

2mneq(x)
+ 1

2

(
V0 + π2

m
neq(x)

)(
d[nequ]

dx

)2

.

(A6)

The first term in Eq. (A6) represents the kinetic energy of the
fluid motion while the second term gives the energy arising
due to variations of the density of the fluid. It consists of
two contributions. The first one is due to electron-electron
interaction and (under the assumption of good screening) is
proportional to the zero-momentum component of the inter-
action V0. The second contribution originates from the density
dependence of the ground-state energy of the noninteracting
Fermi gas.

The fields p and u in Eq. (A6) are related to the fields θ and
φ introduced in the main text by

1

π
φ(x) = neq(x)u(x), ∂xθ (x) = 1

neq(x)
p(x). (A7)

With this identification of variables one immediately sees that
Eq. (A6) is a special case of our general model (2) where
both K (x) and v(x) are expressed in terms of a single random
function n(x):

v(x) = 1

m

√
n(x)[π2n(x) + mV0],

K (x) = π
√

n(x)√
π2n(x) + mV0

,

K0 = π
√

n0√
π2n0 + mV0

= g,

DK = K2
0

4

(
1 − K2

0

)2
lD = g6V 2

0 lD
4π2v2

F

. (A8)

Here vF ≡ πn0/m denotes the Fermi velocity. Equations (A8)
provide the explicit correspondence between the notations of
the present work and that of Ref. [41].

Up to now we were discussing the Hamiltonian of the
system within the harmonic approximation. The anharmonic
corrections originate from the curvature of the fermionic spec-
trum in the quantum wire near the Fermi level. To derive them,
one can neglect the (small) fluctuations of the equilibrium
density. The result is given by Eq. (7) of the main text (see
discussion after Eq. (7) as well as Refs. [44,45]). Using
the identification of the dynamical variables and the basic
parameters of the models, as given by Eqs. (A7) and (A8), one
can check that Eq. (7) is identical [88] to Eq. (11) of Ref. [41].

APPENDIX B: DETAILS OF THE PERTURBATIVE
CALCULATION OF THE DECAY RATE

In this Appendix we present details of the golden-rule
calculations of the plasmon decay rate leading to Eqs. (28)
and (27).

We begin by explicitly computing the matrix element (25).
Making use of the transformation (19), we express the non-
linearity (7) in terms of bosonic operators. [Here we can set
v(x) = v0 and K (x) = K0 in Eq. (19).] The evaluation of the
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vacuum expectation value in Eq. (25) yields

〈0|bμ3 bμ2H1b†
μ1

|0〉 � i
√

π

2
√

2m
√

K0

(
3 + K2

0

)√|q1q2q3|

×
∫

dx ψμ1 (x)ψ∗
μ2

(x)ψ∗
μ3

(x). (B1)

We have assumed here that the disorder is not too strong, in
the sense of the condition (18), i.e., the localization lengths of
involved states are larger than the corresponding wavelengths
|qi|ξ (ωi ) � 1. In view of this, we have the approximations
ψ ′

μi
(x) � iqi ψμi (x) as well as �μi � ω(qi ). Inserting this

result for the matrix element into Eq. (26) and performing the
integrations over x2 and x3 yields

1

τ (q1)
= π2

(
3 + K2

0

)2

4v0K0m2L2

∑
q2,q3

|q1q2q3|δ(|q1| − |q2| − |q3|)[1 + nB(ω2) + nB(ω3)]
∫

dxdx′ei(q1−q2−q3 )(x−x′ )

×
(

1 + |x − x′|
ξ2

)
e−|x−x′|/ξ2

(
1 + |x − x′|

ξ3

)
e−|x−x′|/ξ3

1

ξ1
e−|x−x1|/ξ1 e−|x′−x1|/ξ1 , (B2)

where ωi = ω(qi ) = v0|qi| and ξi = ξ (ωi). After introducing
relative (r = x − x′) and center-of-mass [R = (x + x′)/2] co-
ordinates, we perform the integration over R and estimate the
integration over r by cutting the integral at the upper limit at
ξ1. In the limit L → ∞, the sums over q2 and q3 are replaced
by the integrations and we get

1

τ (q1)
∼

(
3 + K2

0

)2

v0K0m2

∫
dq2

∫
dq3|q1q2q3|

× sin[(q1 − q2 − q3)ξ1]

q1 − q2 − q3
δ(|q1| − |q2| − |q3|)

× [1 + nB(ω2) + nB(ω3)]. (B3)

The integration over q3 can be performed by exploiting the
delta function, the remaining integral over q2 can be estimated
in different limits. In the case of ω1 = v0|q1| � T , the Bose
functions can be approximated by their low-frequency behav-
ior nB(ω) � T/ω. Characteristic values of q2 in the above
integral are of the order of q1. We obtain in this limit

1

τ (ω1)
∼

(
3 + K2

0

)2
ξ (ω1)

K0m2v5
0

ω3
1T, ω1 � T, (B4)

which is Eq. (28) of the main text. In the opposite limit of high
frequencies, ω1 � T , unity is a dominant term in the square
brackets in Eq. (B3) and characteristic values of q2 are of the
order of q1. We thus arrive at

1

τ (ω1)
∼

(
3 + K2

0

)2
ξ (ω1)

K0m2v5
0

ω4
1, ω1 � T, (B5)

which is Eq. (27) of the main text.

APPENDIX C: SCATTERING PROCESS INVOLVING A
COLLISION WITH ANOTHER PLASMON

In this Appendix we study the processes depicted in
Fig. 1(b), which involve a collision with another plasmon.
We show here that processes of this kind contribute at most
the same amount to the decay rate as the processes where the
plasmon decays into two plasmons [depicted in Fig. 1(a)].

The analysis of this kind of processes goes along the lines
of Sec. IV A and Appendix B. In comparison to Eq. (23), the
collision integral has a slightly different structure with respect

to the distribution functions,

∂ f (μ1)

∂t
= −

∫
dx2

L

dx3

L

∑
q2,q3

W̃ μ3
μ1,μ2

{ f (μ1) f (μ2)[1 + f (μ3)]

− [1 + f (μ1)][1 + f (μ2)] f (μ3)}. (C1)

Here the transition probability for the process is given by [cf.
Eq. (24)]

W̃ μ3
μ1,μ2

= 2π
∣∣M̃μ3

μ1,μ2

∣∣2
δ(ω1 + ω2 − ω3),

μi = [xi, ω(qi )], (C2)

with the matrix element [cf. Eq. (25)]

M̃μ3
μ1,μ2

= 〈0|bμ3Hintb
†
μ2

b†
μ1

|0〉 = (
Mμ2,μ1

μ3

)∗
. (C3)

Linearizing the collision integral by expanding in δ f (μi ) =
f (μi ) − nB(ωi ) and extracting the diagonal part yields the
golden-rule-type expression for the decay rate associated with
the processes depicted in Fig. 1(b),

1

τ
=

∫
dx2

∫
dx3

∫
dq2

2π

∫
dq3

2π

∣∣W̃ μ3
μ1,μ2

∣∣2

× [nB(ω2) − nB(ω3)]. (C4)

The main differences to the expression of the decay rate
corresponding to the processes depicted in Fig. 1(a), Eq. (26),
are the combination of the Bose functions and the delta
function associated with the energy conservation [compare
Eqs. (24) and (C2)]. Inserting the expression for the transition
probability (C2) and the matrix element (B1), we arrive at

1

τ (q1)
∼

(
3 + K2

0

)2

v0K0m2

∫
dq2

∫
dq3|q1q2q3|

× sin[(q1 + q2 − q3)ξ3]

q1 + q2 − q3
δ(|q1| + |q2| − |q3|)

× [nB(ω2) − nB(ω3)], (C5)

which is a counterpart of Eq. (B3). Note also the difference
in the argument of the sine function compared to Eq (B3).
Here the shortest of the three localization lengths (ξ1, ξ2, ξ3)
enters. In the case of the processes shown in Fig. 1(b) it is
ξ3, while for those in Fig. 1(a) it is ξ1 [cf. the discussion
before Eq. (B3)]. The integration over q3 can be performed
by exploiting the energy conservation.
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Finally, the remaining integral over q2 can be estimated
in different regimes: At low temperatures T � ω1, the Bose
function of plasmon 3 does not contribute significantly. The
characteristic value in the integral is q2 = T/v0 and the Bose
function of plasmon 2 can be approximated by T/ω2. As a
result, we obtain

1

τ (ω1)
∼

(
3 + K2

0

)2

K0m2v5
0

ξ (ω1)ω2
1T 2, T � ω1. (C6)

Thus, at energies much higher than the temperature, the
processes depicted in Fig. 1(b) are subleading compared to
the ones in Fig. 1(a), cf. Eq. (27).

In the case of high temperatures, ω1 � T , the character-
istic value in the integral is q2 = q1. Both Bose functions
contribute and can be approximated by nB(ωi) = T/ωi. We
find

1

τ (ω1)
∼

(
3 + K2

0

)2

K0m2v5
0

ξ (ω1)ω3
1T, ω1 � T . (C7)

As can be seen, in the high-temperature regime, ω1 � T ,
we find the same behavior as for the processes depicted in
Fig. 1(a), Eq. (28).
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