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Density functional theory plus dynamical mean-field theory with natural atomic orbital projectors
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We introduce natural atomic orbitals as the local projector to define the correlated subspace for DFT + DMFT
(density functional theory plus dynamical mean-field theory) calculation. The natural atomic orbitals are found to
be stably constructed against the number and the radius of basis orbitals. It can also be self-consistently updated
inside the DFT+DMFT loop. The spatial localization, electron occupation and the degree of correlation are
investigated and compared with other conventional techniques. As a “natural” choice to describe the electron
numbers, adopting natural atomic orbitals has advantage in terms of electron number counting. We further
explore the reduction of computation cost by separating correlated orbitals into two subgroups based on the
orbital occupancy. Our new recipe can serve as a useful choice for DFT+DMFT and related methods.

DOI: 10.1103/PhysRevB.100.115151

I. INTRODUCTION

The calculation of real materials with strong electronic
correlations poses an important problem in condensed matter
physics and material science. While the first-principles band
structure method based on density functional theory (DFT)
provides a powerful theoretical framework for real materi-
als, the sizable on-site correlation invalidates the standard
approximations such as local density approximation (LDA)
and generalized gradient approximation (GGA). To over-
come this limitation, the combined methods of LDA/GGA
with many-body techniques have been suggested and made
tremendous success such as the early attempts of so-called
LDA+U or DFT+U [1,2] and the more recently suggested
LDA+Gutzwiller [3–6]. GW type of self energy within the
self-consistent framework [7–9] can also be useful with
the limited purposes of, e.g., describing the model parame-
ters and the metallic Fermi surfaces [10,11]. Among them,
DFT+DMFT (dynamical mean-field theory) has become one
of the standard choices providing the unique feature by cap-
turing the “dynamic” correlations [12–18].

Along with its great success, many of formal and tech-
nical issues in the implementation have received much
attention [19–31]. Typically, any attempt to combine
LDA/GGA-type of scheme with Hubbard-like model ap-
proach requires a step to define the correlated subspace within
which Coulomb interaction (“Hubbard U”) comes in to play.
In other words, the correlated orbitals span the bands near
the Fermi level (EF ) where the on-site correlation becomes
important. They are expected to be reasonably well localized,
site-centered and atomic-like. In literature, many different
suggestions to define the correlated orbital space are found:
maximally localized Wannier functions (MLWF) [32,33],
muffin-tin orbitals [34,35], and other projection meth-
ods [31,36].
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Considering the ambiguity in this choice of “projector,”
we take a special note of recent studies that emphasize the
correlated orbital occupancy Nd being the critical variable to
describe the correlation effect [37,38]. Here it should first
be noted that estimating or determining Nd is a nontrivial
issue. It depends on the form of so-called double count-
ing form [37,38] as well as the choice of the correlated
orbitals [36]. In fact, it is not straightforward already in
DFT-LDA level, leading to many different possible choices
suggested for atomic orbitals or charge counting schemes such
as Mulliken population analysis [39,40], Löwdin orthogonal-
ization method [41], and natural population analysis [42].

In this paper, we suggest the implementation of
DFT+DMFT with natural atomic orbitals (NAOs) as the local
projector. In our DFT formulation based on the linear combi-
nation of nonorthogonal pseudo-atomic orbitals (PAOs) [43],
the use of NAOs provides a ‘natural’ way of estimating
Nd from the orthogonalized orbitals. The NAO construction
process is not only well plugged in between DFT and DMFT
self-consistent loop, but it also stable with respect to the
numerical parameters such as the range of energy window
and the number of basis sets. Our calculations show that the
localization and the covalency are reasonably well described
with NAO compared with the other choices including PAO,
Löwdin orthogonalized orbital (LOO), and MLWF. Further,
the possibility of reducing computation cost is explored by
separating the correlated subspace into two different parts.

The paper is organized as follow. In Sec. II, we briefly
review the DFT+DMFT procedure which is followed by our
NAO-based formalism. In Sec. III, the calculation results are
presented for a correlated metal SrVO3 and a charge-transfer
insulator NiO. Summary and conclusion are given in Sec. IV.

II. FORMALISM

A. DFT+DMFT and the basis issue

So-called DFT+DMFT is a scheme that combines the
standard band theory such as LDA and GGA with a nonper-
turbative many-body technique, DMFT. In DMFT, the lattice

2469-9950/2019/100(11)/115151(9) 115151-1 ©2019 American Physical Society

https://orcid.org/0000-0002-8089-7991
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.115151&domain=pdf&date_stamp=2019-09-25
https://doi.org/10.1103/PhysRevB.100.115151


JAE-HOON SIM AND MYUNG JOON HAN PHYSICAL REVIEW B 100, 115151 (2019)

self-energy �̂latt (iωn, k) is approximated by local self-energy
�̂DMFT

latt (iωn) = ⊕
R �̂loc(R). The nonlocal contribution is

projected out by a local projection; �̂loc(R) = PR�̂latt =∑
αβ∈d |χαR〉 �αβ (R) 〈χβR|, where “d” refers to the correlated

subspace such as transition-metal d orbitals and R the atomic
position. The on-site Coulomb interaction is applied onto the
localized orbitals |χα〉. The interacting Green’s function is
given by

Ĝ(iωn, k) = 1

iωn + μ − Ĥ (k) − �̂loc(iωn) + �̂dc(iωn)
,

(1)

where �̂dc refers to the double-counting term. Once PR, or
correlated subspace {|χα〉} is specified, �̂loc is determined
by solving the impurity model with the self-consistently-
constructed hybridization function [12–14,16]:

�̂(iωn) = PR=0

⎡
⎣iωn − Ĥloc − �loc(iωn) + �dc(iωn)

−
(

1

Nk

∑
k

Ĝ(k, iωn)

)−1
⎤
⎦. (2)

Many issues can arise in solving this problem. The first
thing is to choose “impurity solver” for which several stan-
dard techniques are available such as (continuous-time) quan-
tum Monte Carlo [(CT)QMC] [44,45], exact diagonaliza-
tion [46,47], NRG (numerical renormalization group) [48,49],
and others [50], each of which has both advantage and dis-
advantage. Another important issue is related to �̂dc(iωn)
for which many different recipes have been discussed in
literature [1,2,37,51,52] In the current study, we take so-called
“fully localized limit” as suggested in Ref. [2].

Our main concern here is about the projection for defining
the correlated subspace {|χα〉} in the line of previous discus-
sion [36–38]. Note that different projection method can lead
to the different self-energy. Several different ways to construct
localized orbitals have been suggested. For example, maxi-
mally localized Wannier function (MLWF) method is widely
used in combination with different type of codes [53–55].
One can also take LMTO (linearized muffin-tin orbitals) [56],
NMTO (nth order muffin-tin orbitals) [53], or resort to the real
space embedding method [31].

As an alternative possible choice, we pay a special atten-
tion to “projective Wannier function (PWF)” method which
is a straightforward way to define correlated orbitals [19,57].
It has been adopted in some standard computation schemes
including LMTO [20], APW [58–60], and PAW [19,57]. The
main idea of PWF is to project the localized atomic-like
orbitals {|χ̃α〉} onto the low-energy Bloch states

|χα〉 = 1

N

εkn∈W∑
k,n

|kn〉 〈kn〉 χ̃α,

followed by orthogonalization procedure [19]. Here, N =
‖∑εkn∈W

k,n |kn〉 〈kn〉 χ̃α‖ is the normalization factor and W en-
ergy window within which the hybridization function �(iωn)

is defined. Thus the result depends not only on the energy
window W but also on the choice of initial local orbitals
{|χ̃α〉}. While the ambiguity related to the W range can be
removed, at least in principle by taking the large enough
energy window [36], the choice of the |χ̃α〉 is not straight-
forward. The different initial choice can lead to the different
final result [59].

A purpose of our current work is to construct the optimal
|χ̃α〉 for the nonorthogonal local orbital basis method. As
mentioned above, the result of DFT+DMFT can critically
depend on the choice of |χ̃α〉. Nonorthogonality can introduce
an ambiguity in the estimation of key physical quantities such
as the number of electrons in d orbitals Nd . This poses a highly
nontrivial issue not only because the correlated orbitals often
get significantly hybridized with ligands but also because
the numerical orthogonalization process usually introduces
the undesirable mixing between the two. Here we suggest
NAOs [42] as a set of the local correlated orbitals |χ̃α〉 for
DFT+DMFT calculation. As illustrated in Fig. 1, this process
can be inserted as an intermediate step between DFT and
DMFT to complete the self-consistent loop. While “natural
orbital” has been adopted for the basis set to solve the impurity
model [61], we emphasize that the use of |χNAOs

α 〉 as |χ̃α〉 has
never been reported for the first-principles DFT+DMFT.

The use of NAO as a local projector has notable advan-
tages. As will be discussed in the below, this choice can
certainly give the more intuitive charge counting for the
correlated orbitals. Further, the construction of NAOs is found
to be numerically stable. In the case of MLWF, for example,
achieving the convergence can be an issue when the bands
are strongly entangled. As for muffin-tin orbitals or PAOs,
basically the similar ambiguity can be manifested in terms
of the choice of local orbital radius. In this sense, the use of
NAO can be a ‘natural’ choice regardless of the DFT basis
types.

B. Natural atomic orbital as a projector

The numerical PAOs basis in our DFT code, OPENMX, is
constructed in a controlled way and therefore its localization
is well identified [62,63]. The nonorthogonality issue, on the
other hand, needs to be dealt with care. One straightforward
way is just to take |χ̃α〉 = |φPAOs〉 as correlated orbitals and to
reconstruct the ligand orbitals to be orthogonal with respect
to |χ̃α〉 through, e.g., Schmidt orthogonalization procedure.
This choice corresponds to “full” local projector in the previ-
ous DFT+U implementation [64]. Not surprisingly, however,
this procedure overestimates the electron occupation in the
correlated orbitals as discussed in the below (see Sec. III).
Another possible choice, namely, Löwdin symmetric orthog-
onalization, is not the desirable method either because it treats
the important atomic set (the AO with large occupations) and
the less important AO (the almost empty AO) on the equal
footing.

Here we note that NAOs can be determined in a phys-
ically motivated way and suitable for local orbitals of the
given materials [42]. Mathematically, NAOs are defined by
the eigen-orbitals of any given local occupation matrix [65].
For a given occupation matrix NPAOs

αβ = 〈c†
αcβ〉 NAOs are

constructed through a three-step process. In the below, orbital
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FIG. 1. A schematic illustration of our DFT+DMFT calculation by using NAO as local projector. Kohn-Sham DFT Hamiltonian is solved
within LDA or GGA which provides the charge density and overlap matrix. With those, one can construct NAOs which then serve as correlated
orbitals for DMFT impurity model. As in the conventional DFT+DMFT, Kohn-Sham Hamiltonian Hk obtained from LDA/GGA is regarded
as noninteracting H0 for DMFT calculation. The computed Green’s function Gimp and the self-energy �imp complete the self-consistent loop
by providing the updated charge density ρ(�r) for DFT-LDA/GGA.

index α ≡ (il p) specifies the site index i, angular momentum
quantum number l , and multiplicity number of radial basis
function p. First, we construct the atom-centered local orbitals
|φpre〉 called as “pre-NAOs” which are the eigenstates of the
subblock (Ni,l )pp′ corresponding to the occupation matrix
projected onto the atomic site i and the angular momentum
l subshells. To preserve the invariance of the occupation
with respect to the coordinate transformation, the symmetry
averaging should be carried out over the (2l + 1) diagonal
blocks of Ni,l

pp′ . Since the pre-NAO transformation matrix T̂ i,l
pre

considers only the subblocks of the occupation matrix, pre-
NAOs centered on different atoms are nonorthogonal to one
another.

The second and third steps concern about the proper elim-
ination of inter-atomic wave function overlaps. To obtain a
stable result, we divide pre-NAOs into two subsets, namely,
“minimal” and “Rydberg” set [42]. The minimal set is the
atomic (n, l ) subshells with finite formal occupancy whereas
the Rydberg set consists of the remaining (formally unoc-
cupied) orbitals. Then the Rydberg sets are Schmidt orthog-
onalized to the manifold spanned by minimal orbitals. We
represent this orthogonalization by a matrix Ŝ. This step is es-
sential to avoid the over-counting problem in the occupancy-
weighted symmetric orthogonalization (OWSO) process in
the next step.

In the third step, we orthogonalize pre-NAOs orbitals by
means of OWSO method in which the occupancy-weighted
difference between orthogonalized basis and original pre-
NAOs ∑

α

Nαα

∥∥ ∣∣χNAOs
α

〉 − ∣∣φpre
α

〉 ∥∥2
(3)

is minimized. Here, N is expressed within pre-NAOs basis.
The transformation having this property is written as∣∣χNAOs

α

〉 = ∣∣φPAOs
β

〉
Wβα, (4)

where Ŵ = Ñ (ÑOÑ )−1/2 with the overlap matrix of pre-
NAOs (O), and the diagonal part of N (Ñ). The final form of
transformation matrix from PAOs to NAOs can then be written
as T̂N = Ŵ ŜT̂Pre.

Natural orbital methods, including NAO and natural bond
orbital, have been used typically to calculate atomic charge
population [42,66]. Recently, natural orbitals have also been
used to solve impurity problem of strongly correlated electron
systems [67,68]. For example, natural orbitals can provide
the adaptive basis set to reduce the dimension of Hilbert
space [67]. In Ref. [68], model parameters for Anderson
impurity problem have been obtained based on NAOs. In the
current study, we used NAO as a basis or a projector for
representing correlated subspace. We also demonstrate that
the use of NAO can provide a way of reducing computation
costs by separating the correlated orbitals into two subsets and
adopting two different levels of solvers as will be discussed in
the below.

III. APPLICATION

A. Computation details

First-principles band calculations have been carried out
based on DFT within LDA [69,70]. We used OPENMX

code [43,62,63] for DFT calculation. Experimental lattice
parameters have been used [71,72], and the k-point meshes of
13 × 13 × 13 and 23 × 23 × 23 adopted for SrVO3 and NiO,
respectively. Double valence and single polarization orbitals
were used as a basis set for DFT. These numerical atomic
basis orbitals (i.e., PAOs) were generated with cutoff radius
of 10.0, 6.0, 6.0, and 5.0 a.u. for Sr V, Ni, and O atoms,
respectively [62]. The DFT-LDA calculation results serve as
the noninteracting Hamiltonian H0, and the interaction Hamil-
tonian containing the density-density interaction is parameter-
ized by U and JH for on-site Coulomb repulsion and Hund
interaction, respectively. The Hamiltonian is solved within
the single-site DMFT by employing hybridization expansion
CT-QMC algorithm [73,74]. For “impurity solver,” we used
the software package as implemented in Refs. [75,76], and
the results were double checked by using ALPS library [29].
Our DFT+DMFT interface code is available online [28]. The
real frequency self-energy and spectral function are obtained
from the matsubara Green’s function and the self-energy
by analytic continuation using maximum entropy method
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FIG. 2. (a) The calculated density of states projected onto the
V-t2g-like orbitals for SrVO3 with U = 0 eV. The results from the
different local orbitals, namely, MLWF (green), PAOs (black), LOOs
(blue), and NAOs (red), are compared. (b) The calculated spectral
function A(ω) projected onto the local orbitals with U = 6 eV and at
inverse temperature β = 20 eV−1. (c) The integrated density of states
for different local orbitals. (d) The calculated occupancy of each t2g

orbitals within LDA+DMFT calculation (orange) and the spread of
the orbitals as defined in the text (purple).

(MEM) [77,78]. For this process we used our recent method
as reported in Ref. [79]. The large enough energy windows of
W = [−10, 10] eV around EF has been considered [36,71].
For comparison, we also present the results of MLWF as local
projectors where the initial projections onto three atomic V-t2g

and nine O-2p orbitals were used for SrVO3 [32,33].

B. SrVO3

SrVO3 has been serving as a test bed for
DFT+DMFT [59,80–83] and the related methods such
as LDA+DCA [84] and GW +DMFT [85–89]. With cubic
SrVO3 as our first example, we investigated the properties of
NAO as a local projector. Figures 2(a) and 2(b) show the LDA
(U = 0 eV) and the LDA+DMFT density of states (DOS)
projected onto the V-t2g-like orbitals, respectively. Two main
peaks are clearly identified; the Op–Vd bonding complex
locating at around [−7 eV,−3 eV], and the antibonding
states across EF which are mainly of Vd character. The results
of four different projectors are presented in different colors,

namely, the green, black, blue, and red lines refer to the
MLWF, PAO, LOO, and NAO result, respectively.

Not surprisingly, the degree of hybridization depends on
the choice of projectors. For example, the direct use of
PAOs notably overestimates d-p hybridization compared to
the other projection methods. This feature is reflected in
that the more states of the lower-lying bonding complex are
assigned as Vd orbitals; see Figs. 2(a) and 2(b). Also, it
naturally affects the electron number counting. With PAO
projector, nLDA

eg
= ∑εnk<εF

n,k | 〈nk〉 χ̃PAO
α |2 = 0.55 and nLDA

t2g
=∑εnk<εF

n,k | 〈nk〉 χ̃PAO
β |2 = 0.50, where α ∈ eg and β ∈ t2g. Both

values of nLDA
t2g

and nLDA
eg

are notably larger than those of

NAOs; nLDA
eg

= 0.29 and nLDA
t2g

= 0.35. The nominal values

(t1
2g configuration of V4+) are neg = 0 and nt2g = 1/6. Note

that nLDA
t2g

< nLDA
eg

in PAO projection whereas nLDA
t2g

> nLDA
eg

in
NAO.

The same feature can also be noted in the integrated DOS
(IDOS) as presented in Fig. 2(c). The calculated IDOS at
EF clearly shows that the Vd occupation or its valency is
markedly larger in the PAO estimation than in others. The
calculated IDOS at E = EF is 0.34, 0.50, 0.31, and 0.35
for MLWF, PAO, LOO, and NAO, respectively. The largest
value of PAO projector reflects the greatest d-p hybridization
while the value of NAO is smaller than that of PAO and
comparable with MLWF. Another notable feature is that the
IDOS calculated from LOOs does not reach to but remains
far below 1.0 even up to ω = +10 eV; 	 0.78. On the other
hand, the use of PAO and NAO projector satisfies the sum
rule, yielding the IDOS 	 0.96 and 0.97 (i.e., close to 1.0),
respectively, as ω becomes large.

This feature remains stable even when the number of basis
orbitals (not the projector orbitals) changes. The calculation
with the more basis orbitals of s2p2d2 f 1 (i.e., double orbital
sets for s, p, d , and single for f states), for example, gives
nLDA

t2g
= 0.31 by using NAO projector. The calculated IDOS

up to high energy remains as 0.97. On the other hand, the
IDOS result of LOO, 0.72, shows the sizable dependence on
the basis set choice due to the mixing between the correlated
orbitals near EF and the atomic orbitals in the higher energy.
These features can certainly be useful for both practically and
physically.

In order to see and compare the degree of spatial local-
ization of correlated orbitals produced by different projectors,
we computed the “spread function” [33] defined by � =√

〈r2〉 − 〈r〉2 where 〈r〉 = ∫
r|χ̃α∈t2g (r)|2dr. The results of the

energy window W = [−10, 10] eV are presented in Fig. 2(d).
The calculated � for NAOs is 0.891 Å which is slightly

larger than that of MLWF (0.870 Å), and smaller than PAO
(0.905 Å) and LOO (0.910 Å). Our analysis shows that
the NAO projector produces a moderately localized spatial
subspace of correlation.

The DFT+DMFT result of A(ω) = −1/π
Gloc(ω) is pre-
sented in Fig. 2(b). The calculations were performed with
the inverse temperature β = 20 eV−1, U = 6.5 eV, and JH =
0.65 eV [19]. The effect of correlation is clearly seen in the
bandwidth renormalization and the upper Hubbard-like peak
developed at around ω = +2 eV, both of which clearly show
that the correlation effect is gradually reduced as the more
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localized projector is adopted. The use of NAO gives the
moderate degree of correlation in between MLWF and PAO.
Focusing on the lower and upper Hubbard peak, identified
at around ω = −1 and +2.5 eV, respectively, they are more
pronounced in the result of MLWF than PAO. Once again, the
result of NAO is in the middle being consistent with the above
analysis. A systematic trend of correlation strength depending
on the local projectors is also observed in the calculated
spectral weight of the bonding orbital complex. The calculated
A(ω) with PAO projector has the much greater weight in this
region of energy reflecting the larger hybridization between
V-t2g and O-p states. This is attributed to the extended and
nonorthogonal nature of PAO.

Figure 2(d) also shows the electron occupancy in Vt2g

orbitals, nDMFT
t2g , obtained from LDA+DMFT calculation with

different local projectors. The NAO shows the comparable
value with that of MLWF which is noticeably smaller than the
other projection results. The use of more localized projector
results in the smaller occupation which is consistent with the
previous studies on covalency issue [36–38].

A straightforward and quantitative way to measure the cor-
relation effect is to estimate the quasi-particle renormalization
factor

Z ≈
[

1 − 
�(iω1)

ω1

]−1

. (5)

The calculated value by NAO projector is ZNAO = 0.60 which
is comparable with that of MLWF (ZMLWF = 0.58). The re-
sult of PAO and LOO is ZPAOs = 0.62 and ZLöwdin = 0.61,
respectively. While these calculation results are in overall
good agreement with the previous DFT+DMFT calculation
of 0.61 [59] and ARPES (angle-resolved photoemission spec-
troscopy) of 0.56 [90], the degree of correlation effect is once
again follow the same trend discussed above.

One big advantage of using our NAO projector is to reliably
separate the correlated subspace into two parts. It enables us to
use an elaborate technique only for the one part of correlated
orbitals while, for another part, a computationally cheaper
approximation can be utilized; or high-level approximation
can be adopted for both parts, which are then embedded by
the self-energy obtained from the cheaper approximation as
shown in recent model studies [61,91,92]. In this scheme, nat-
ural orbitals were used as a basis set to represent the correlated
subspace by taking only the orbitals whose occupations are
close to 1.0.

We apply this type of capability to the first-principles
DFT+DMFT framework. In order to see its effect, we ex-
tend the correlated subspace from three t2g orbitals to the d
complex (i.e., both t2g + eg). The former is certainly more
relevant to the correlation effect and basically determines the
most of electronic properties while the latter is less important.
Therefore we adopted CTQMC solver for t2g orbitals and
the second-order perturbation theory (2PT) for eg, which
significantly reduces the computation cost. For more details
of our 2PT method, see Appendix.

The calculation result of spectral function is presented
as a blue line in Fig. 3. The red line in Fig. 3 represents
the CTQMC-only result; namely, all of five V-d orbitals are
solved with CTQMC. In spite of much less computation cost

FIG. 3. The calculated spectral function for SrVO3 projected
onto the V-eg (dashed line) and t2g (solid line) orbitals. The result
presented in red color is obtained with CTQMC solver for five
V-d orbitals. The blue colored lines present the result obtained by
CTQMC solver for three V-t2g orbitals whose self-energy is then
embedded into the second-order perturbation theory (2PT) solution.

(i.e., five- versus three-orbital impurity problem for CTQMC),
the hybrid solver of 2PT+CTQMC gives a reasonable
agreement with the CTQMC-only result especially for the
near-EF region. For example, Hubbard bands and the d-p
hybridization part are well reproduced. Simultaneously, some
deviations are also clearly noticed. For example, the intensity
of the Hubbard bands are reduced in 2PT+CTQMC calcu-
lation. This reduced correlation in t2g manifolds is attributed
to the inability of 2PT to accurately describe the screening
effect [93,94]. As expected, the difference between the two
computation results is more pronounced in high energy eg

spectra.

C. NiO

As the second example, we chose a classical charge-
transfer insulator NiO. Due to the sizable hybridization be-
tween Ni-d and O-p, the electronic property depends on the
choice of local correlated orbital projector. Note that the
projector affects both Hubbard U and charge-transfer energy
� in this type of materials [37,38,95]. The inverse temperature
of β = 10 eV−1 (corresponding to 1160.45 K higher than
Neel temperature TN = 525 K [96,97]) and the interaction
parameters of U = 8 eV and JH = 1 eV were used following
the previous studies [1,51,98]. Figure 4 shows the electronic
structures which were calculated by two different projectors;
(a) PAO and (b) NAO. As expected, LDA (U = 0; black
solid line) gives the unphysical metallic solution while the
experimental gap is ∼4.3 eV [99].

The DFT+DMFT spectral function A(k, ω) calculated
with PAO projector is presented as a false-color band in
Fig. 4(a). Interestingly the system remains metallic in a
sharp contrast to the previous calculations of DFT+U [1,64]
and DFT+DMFT [51,98]. This result demonstrates the fact
that the effect of correlations depend on the choice of local
projector. Note that the Ni-eg energy level εeg = 〈Ĥ〉χPAOs =
−7.58 eV is significantly lower than that of NAO (see be-
low) which results in the large number of Ni-d electrons,
Nd = 8.72. In combination with the conventional FLL double
counting, it leads to a significant change of chemical potential.
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FIG. 4. The calculated band dispersion of NiO. DFT+DMFT
result (color map) is compared with that of LDA (black solid lines).
Two different projection methods are adopted for DFT+DMFT
calculation; (a) PAOs and (b) NAOs.

This effect is clearly noticed, for example, in the bands at
around ± ∼ 2.5 eV being deviated from LDA bands.

The result of NAO projector is presented in Fig. 4(b)
(false color plot) in comparison with LDA (black line). A
well developed band gap is clearly identified. The on-site
energy is significantly increased compared to PAO result,
ε

eg
d = −7.21 eV, and therefore the charge transfer energy is

increased. The d orbital occupancy is also reduced Nd =
8.21. It is found that the electronic structure is overall quite
consistent with previous theoretical studies [51,64,98].

IV. SUMMARY

We introduce NAO as a local projector to define the
correlated subspace in DFT+DMFT procedure. Our imple-
mentation is based on the systematic construction of projector
from the original nonorthogonal PAO basis set. We apply this
method to a correlated metal SrVO3 and insulator NiO. From
the comparison with other projector methods, we found that
NAO not just serves as another possible choice, but it also
has some advantage particularly in the charge counting. First,
it provides a reliable electron number Nd for the correlated
orbitals and does not require any additional convergence or
minimization procedure. No arbitrary numerical parameter
needs to be introduced such as cutoff or muffin-tin radius, and
the application to the entangled band structure is also straight-
forward. Finally, we emphasize that the use of NAO projector
provides a viable way to separate correlated subspace into two
parts; one for which the elaborate technique can be used for

describing correlations, and for another part one can resort to
a computationally cheaper approximation.
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APPENDIX: DETAILS OF THE SECOND-ORDER
PERTURBATION APPROACH

Our DFT+DMFT iteration procedure with 2PT+CTQMC
solver is summarized as follows.

(1) We start with the initial guess for self-energy
��(iωn) = �weak + �strong − �DFT

DC = 0. The local Green’s
function of a given material (or lattice problem) is

Gloc (iωn) = 1

Nk

∑
k

[iωn − Hk + μ − ��(iωn)]−1, (A1)

where Hk is the Kohn-Sham Hamiltonian and the chemical po-
tential μ is adjusted to obtain the correct number of electrons.

(2) Calculate Weiss mean-field G−1 = G−1
loc + �imp. Equiv-

alently one can calculate the impurity energy level and the
hybridization function from Himp = Hloc − �DFT

DC and � =
iωn − Hloc + μ − �� − G−1

loc , respectively.
(3) Now we solve the impurity problem with an approx-

imate way. Here we adopted the second-order perturbation
theory:

�(2)(iωn) = �HF[Gloc] + �′(2)[GHF](iωn), (A2)

where �HF is the Hartree-Fock contribution and

�
′(2)
i j [G](iωn) = (−Gkl (τ )Gmn(τ )Gpq(−τ )

+Gkn(τ )Gml (τ )Gpq(−τ ))UiqmkUlnp j .

(A3)

Here the summation over the repeated indices is assumed and
Ui jkl = 〈i j|U |kl〉.

(4) Calculate the double counting term, �
(2)
DC =

�HF[P̂cGloc] + �′(2)[P̂cGHF](iωn). Here P̂c is the projector
onto the strongly correlated orbitals, namely, t2g orbitals for
SVO3. Then we have �weak(iωn) = �(2)(iωn) − �

(2)
DC(iωn).

(5) CTQMC impurity solver is adopted to obtain the
impurity self-energy �strong describing the correlated
subspace c. Again, we construct the impurity problem
from the Weiss field Gstrong

−1 = (PcGloc)−1 + �strong.
Alternatively, we can define the impurity site energy
H strong

imp = Hloc + �weak(∞) − �DFT
DC and the hybridization

�strong = iωn − H strong
imp + μ − �strong − (PcGloc)−1 ≈ iωn −

Hloc + μ − Pc(��) + �′
weak − (PcGloc)−1.

(6) Update ��(iωn) = �weak + �strong − �DFT
DC and go

back to step 2.
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