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We present a computationally efficient approach to solve the time-dependent Kohn-Sham equations in real
time using higher order finite-element spatial discretization, applicable to both pseudopotential and all-electron
calculations. To this end, we develop an a priori mesh adaption technique, based on the semidiscrete (discrete in
space but continuous in time) error estimate on the time-dependent Kohn-Sham orbitals, to construct an efficient
finite-element discretization. Subsequently, we obtain the full-discrete error estimate to guide our choice of
the time step. We employ spectral finite elements along with special reduced order quadrature to render the
overlap matrix diagonal, thereby simplifying the inversion of the overlap matrix that features in the evaluation of
the discrete time-evolution operator. We use the second-order Magnus operator as the time-evolution operator,
wherein the action of the discrete Magnus operator, expressed as exponential of a matrix, on the Kohn-Sham
orbitals is obtained efficiently through an adaptive Lanczos iteration. We observe close to optimal rates of
convergence of the dipole moment with respect to spatial and temporal discretization, for both pseudopotential
and all-electron calculations. We demonstrate a staggering 100-fold reduction in the computational time afforded
by higher order finite elements over linear finite elements, for both pseudopotential and all-electron calculations.
Further, for similar level of accuracy, we obtain significant computational savings by our approach as compared
to state-of-the-art finite-difference methods. We also demonstrate the competence of higher order finite elements
for all-electron benchmark systems. Lastly, we observe good parallel scalability of the proposed method on many

hundreds of processors.

DOLI: 10.1103/PhysRevB.100.115148

I. INTRODUCTION

Time-dependent density functional theory (TDDFT) ex-
tends the key ideas of ground-state density functional theory
(DFT) to electronic excitations and time-dependent processes.
It relies on the Runge-Gross theorem [1] to establish, for
a given initial state, a one-to-one correspondence between
the time-dependent external potential and the time-dependent
electronic density, thereby making the electronic density the
fundamental variable to define other physical quantities. Sub-
sequently, one invokes the Kohn-Sham ansatz [2] to reduce
the many-electron time-dependent Schrodinger equation to
a set of effective single-electron equations, called the time-
dependent Kohn-Sham (TDKS) equations. For all practi-
cal purposes, it requires the use of approximate exchange-
correlation functionals, analogous to the ground-state case.
However, TDDFT offers a great balance of accuracy and
computational efficiency which have enabled the study of a
wide range of time-dependent phenomena: optical [3] and
higher order responses [4,5], electron transport [6,7], charge-
transfer excitations [8,9], dynamics of chemical bonds [10],
multiphoton ionization [11-13], to name a few.

Given the practical significance of TDDFT calculations,
there has been a growing interest in developing faster and
more accurate numerical methods for solving the TDKS
equations over the past two decades. Broadly, these numer-
ical methods can be classified into two categories, char-
acterized by the strength of the light-matter interaction,
namely, linear-response time-dependent density functional
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theory (LR-TDDFT) [14,15] and real time time-dependent
density functional theory (RT-TDDFT) [16-18]. The LR-
TDDFT pertains to the case of weak interaction between the
external field and the system, wherein the field induces a
small perturbation from the ground state. In such perturbative
regime, one can compute the linear density response from
the ground state itself, which in turn can be used for the
calculation of first-order response functions such as the ab-
sorption spectra. The RT-TDDFT, on the other hand, is a more
generic framework which captures the electronic dynamics in
real time, thereby allowing to handle both perturbative and
nonperturbative regimes (e.g., harmonic generation, electron
transport) in a unified manner. This involves propagating the
TDKS equations in real time without any restriction to the
external field in terms of its frequency, shape, or intensity. This
work pertains to the more general RT-TDDFT.

Despite its generality in dealing with various time-
dependent processes, there are two major challenges associ-
ated with RT-TDDFT. The first stems from the quality of the
time-dependent exchange-correlation approximation used in
the TDKS equations. The exact exchange-correlation func-
tional is, in general, nonlocal in both space and time [19-21]
and has an initial-state dependence [22]. However, the lack
of insight into its time nonlocality and initial-state depen-
dence has necessitated the use of the adiabatic approxima-
tion, wherein the exchange-correlation functional is defined
in terms of the instantaneous electronic density. Although
the applicability of the adiabatic approximation to various
systems and materials properties are yet to be understood,
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they have shown remarkable agreement in estimating the
transition frequencies [3] and, in most cases, is the underlying
approximation in existing RT-TDDFT softwares. As with
most of the numerical implementations in RT-TDDFT, this
work is restricted to the adiabatic approximation. The second
challenge stems from the huge computational cost associated
with the nonlinear TDKS equations. Numerical simulations
for large length scales and timescales are still computationally
challenging, and warrant systematically improvable, accurate,
efficient, and scalable spatiotemporal discretization. Address-
ing these numerical challenges constitutes the main subject of
this work.

Significant efforts have been made toward efficient RT-
TDDFT numerical schemes as extensions to popular ground-
state DFT packages, borrowing from their respective spa-
tial discretization. These include plane-wave basis in QBOX
[23,24]; linear combination of atomic orbitals (LCAO) in
SIESTA [25,26] and GPAW [27]; Gaussian basis in NWCHEM
[28,29]; and finite-difference-based approaches in OCTOPUS
[30] and GPAW [31,32]. The plane-wave basis, owing to its
completeness, provides systematic convergence, and affords
an efficient treatment of the electrostatic interactions through
fast Fourier transforms. However, they remain restricted to
only periodic geometries and boundary conditions, thereby ill
equipped to describe systems with defects, and nonperiodic
systems like isolated molecules and nanoclusters. Addition-
ally, the nonlocality of the basis greatly hinders its parallel
scalability. Atomic-type orbitals, such as LCAO and Gaussian
basis, owing to their atom-specific basis, are well suited to
describe molecules and nanoclusters for both pseudopotential
as well as all-electron calculations. However, owing to the
incompleteness of such basis, systematic convergence for all
materials systems remains a concern. The finite-difference
discretization (FD) provides systematic convergence, can han-
dle a broad range of boundary conditions, and exhibits im-
proved parallel scalability in comparison to plane-wave and
atomic-type orbital basis. However, incorporating adaptive
spatial resolution in FD through a nonuniform grid remains
nontrivial. The lesser flexibility of FD to vary spatial resolu-
tion renders FD less straightforward to employ in the context
of singular potentials (as in the case of all-electron calcula-
tions). On the other hand, the finite-element basis [33,34],
being a local-piecewise polynomial basis, offers several key
advantages: it provides systematic convergence; is amenable
to adaptive spatial resolution, and thereby suitable for both
pseudopotential and all-electron calculations; exhibits excel-
lent parallel scalability owing to the locality of the basis; and
admits arbitrary geometries and boundary conditions. We add
that many of these advantages of finite-element basis are also
shared by the wavelets basis [35]. While, at present, the use
of wavelets basis has been restricted to LR-TDDFT [36], we
expect them to be a competent basis for RT-TDDFT as well.

The efficacy of the finite-element basis in terms of its
accuracy, efficiency, scalability, and relative performance with
other competing methods (e.g., plane waves, Gaussian basis,
FD), have been thoroughly studied in the context of ground-
state DFT, for both pseudopotential [37-51] and all-electron
calculations [37,48,50-58]. A similarly comprehensive study
on the efficacy of the finite-element basis for RT-TDDFT is,
however, lacking. While two recent studies [59,60] demon-

strate the accuracy of finite elements for RT-TDDFT, they
remain restricted to only linear and quadratic finite elements.
As known from prior studies in ground-state DFT [48,53,61],
lower order (linear and quadratic) finite elements require a
large number of basis functions (50 000-500 000 per atom for
pseudopotential calculations) to achieve chemical accuracy,
and hence, perform poorly in comparison to plane waves and
other real-space-based methods. However, this shortcoming
of linear and quadratic finite elements for ground-state DFT
calculations has been shown to be alleviated by the use of
higher order finite elements [48]. In this work, we extend the
use of higher order finite elements to RT-TDDFT calculations
and demonstrate the resulting advantages over lower order
finite elements as well as finite-difference-based methods.

The key ideas in this work can be summarized as fol-
lows: (i) developing an a priori mesh adaption based on
semidiscrete (discrete in space, continuous in time) error
analysis of the TDKS equations, and, subsequently, obtain-
ing an efficient finite-element discretization for the problem;
(i1) use of spectral finite elements in conjunction with Gauss-
Legendre-Lobatto quadrature to render the overlap matrix
diagonal, thereby simplifying the evaluation of the inverse of
the overlap matrix that features in the discrete time-evolution
operator; (iii) obtaining an efficient temporal discretization
using a full-discrete error analysis of the TDKS equations, in
the context of second-order Magnus time-evolution operator;
and (iv) using an adaptive Lanczos iteration to efficiently
compute the action of the Magnus propagator on the Kohn-
Sham orbitals. The a priori mesh adaption in this work
is performed by minimizing the discretization error in the
observable of importance, subject to fixed number of ele-
ments in the finite-element mesh. In particular, we minimize
the semidiscrete error in the dipole moment of the system
with respect to the mesh-size distribution i(r) to obtain an
efficient a priori spatial discretization. Having obtained the
spatial discretization, an efficient temporal discretization is
obtained through a full-discrete error analysis, in the context
of second-order Magnus time-evolution operator. Overall, this
work presents an efficient spatiotemporal discretization for
RT-TDDFT calculations using error estimates.

We study the key numerical aspects of the proposed higher
order finite-element discretization for benchmark systems in-
volving both nonlocal pseudopotential and all-electron cal-
culations. To begin with, we study the numerical rates of
convergence of the dipole moment with respect to spatial
and temporal discretization. We use two benchmark systems,
(i) a pseudopotential calculation on methane molecule and
(i1) an all-electron calculation on lithium hydride molecule,
to demonstrate the rates of convergence for linear, quadratic,
and fourth-order finite elements. We observe numerical rates
of convergence in the dipole moment close to the optimal rates
obtained from our error analysis. Next, we assess the com-
putational advantage afforded by higher order finite elements
over linear finite element, using the same benchmark systems.
We observe an extraordinary 100-fold speedup in terms of the
total computational time for the fourth-order finite element
over linear finite element, for calculations in the regime of
chemical accuracy. We also compare the relative performance
of the finite-element discretization against finite-difference
method for pseudopotential calculations. We use aluminum
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clusters (Al, and Al;3), and the buckminsterfullerene (C60)
molecule as our benchmark pseudopotential systems. The
finite-difference-based calculations are done using the OCTO-
PUS package [30]. Depending on the benchmark system, the
finite-element discretization shows a 3-fold to 60-fold savings
in computational time as compared to the finite-difference
approach for pseudopotential calculations. We also demon-
strate the efficacy of finite elements for systems subjected to
strong perturbation by studying higher harmonic generation
in Mg,. Additionally, we demonstrate the competence of
finite elements for all-electron calculations on two benchmark
systems: methane and benzene molecule. Lastly, we study
the strong scaling of our implementation and observe good
parallel scalability with ~75% efficiency at 768 processors
for a benchmark system of a buckminsterfullerene molecule
containing 3.5 x 10° degrees of freedom.

The rest of the paper is organized as follows. In Sec. II,
we briefly discuss the TDKS equations and the form of
the exact time-evolution operator. In Sec. III, we introduce
the notion of semidiscrete and full-discrete solutions to the
TDKS equation. In Sec. IV, we provide formal spatial- and
time-discretization error estimates in the Kohn-Sham orbitals.
Section V provides an efficient spatiotemporal-discretization
scheme guided by the error estimates. In Sec. VI, we describe
the various numerical implementation aspects pertaining to
spectral finite elements and the discrete second-order Mag-
nus operator. Section VII details the convergence, accuracy,
efficiency, and parallel scalability of the higher order finite
elements along with its relative performance against the finite-
difference method. Finally, we summarize our findings and
outline the future scope in Sec. VIIL.

II. TIME-DEPENDENT KOHN-SHAM EQUATIONS

TDDFT relies on the Runge-Gross theorem [1] and the
Kohn-Sham ansatz [2] to reduce the many-electron time-
dependent Schrodinger equation to a set of effective single-
electron equations, called the time-dependent Kohn-Sham
(TDKS) equations. These equations prescribe the evolution
of an auxiliary system of noninteracting electrons that yield
the same time-dependent electronic charge density p(r,t) as
that of the interacting system. The TDKS equations, in atomic
units, are given as

Y (T,
VD o RO 1)
1
= [_EVZ +VKS[p](rvt;R):|1/fot(r’t)v (1)

where Hgs[p](r, t; R), Vks[p](r, ¢; R), and ¥, (r, ¢) represent
the time-dependent Kohn-Sham Hamiltonian, potential, and
orbitals, respectively, with the index « spanning over all the N,
electrons in the system. R = {R;, Ry, ..., Ry,} denotes the
collective representation for the positions of the N, atoms in
the system. The electron density p(r, ¢) is given in terms of
the Kohn-Sham orbitals as

Ne
pr, 1) =Y 1Y, D, )

a=1

In this work, we restrict ourselves to only nonperiodic (clus-
ters and molecules) as well as spin-unpolarized systems.
However, we note that all the ideas discussed subsequently
can be generalized to spin-polarized systems as well.

The time-dependent Kohn-Sham potential Vks[p](r, ¢; R)
in Eq. (1) is given by

Vikslol(r, £; R) = Vex (r, £;R) + Vg [p](r, 1) + Vxclol(r, 1),
3)
where Ve (1, £; R) denotes the external potential, Vi [p](r, t)
denotes the Hartree potential, and Vxc[p](r,?) represents
the exchange-correlation potential. The exchange-correlation
potential Vxc[p](r, ), in general, is nonlocal in both space
and time [19-21], and has a dependence on the initial many-
electron wave function [22]. However, in absence of the
knowledge of its true form, most of the existing approxima-
tions use locality in time (adiabatic exchange correlation) and
nondependence on the initial many-electron wave function.
This allows for direct use of the existing exchange-correlation
approximations used in ground-state DFT. In this work, we
use the adiabatic local-density approximation (ALDA) [62],
which is local in both space and time. Specifically, we use the
Ceperley-Alder form [63].
In Eq. (3), the Hartree potential is given by

/
, 1
p(r', 1) dr’

Vuloltr.n = [ (=0

“

The external potential comprises of the nuclear potential
Vn(r; R) and the external field Vieq(r, 7). The nuclear poten-
tial is given by

Vy(r:R) = VI\I?E = - Z;vil uf_i{” for all-electron,
’ Vi (R) for pseudopotential,

where Z; and R; represent the atomic charge and position
of the I'th nucleus. For a typical pseudopotential calculation,
V¥SP comprises of a local part V5 and a nonlocal part Vpsp.
For the nonlocal part, the action on a function ¢(r), written in
the Kleinman-Bylander form [64], is given by

Vet (R)g(r)

_NON- v (S 8V g dr
- ZZ Z <fM{m(l'/)(SVZI(I‘/)M{m(I‘/)dl")

I=1 1=0 m=-I

x 8V ()l (r), (6)

where [ and m denote the angular and magnetic quantum
number, respectively. ufm(r) is a pseudoatomic eigenfunction
for the atom at Ry, §V/(r) is the specified / angular component
short-ranged potential for the atom at R;, and L; is the
maximum angular quantum number specified for the atom
at R;. The external field Vgea(r, ¢) is typically provided as a
monochromatic laser pulse of the form

Viela(r, 1) = —Eo(?) - r, @)

where Ey(r) represents the time-dependent electric field.

We note that both the electrostatic potentials, Hartree and
nuclear (all-electron), are extended in real space. However,
using the fact that the ﬁ kernel in these extended interactions
is the Green’s function of the Laplace operator, one can recast
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their evaluation as the solutions to the following Poisson
equations:

1 2
-—V VH(I’,Z) = ,O(I‘,t),

) Vu(r,)lse = f(r,R), (8a)
T

1
—Evzv#(r;R) =b(r,R), ViE(r)se = —f(r,R).

(8b)

In the above equation, b(r;R) = — y;l Z;186(r;Ry),
where §(r; Ry) is a bounded regularization of the Dirac-delta
distribution with compact support in a small ball around R,
and satisfies f(S(r; R))dr =1; f(r,R) = ZIIV;] \r—Z_ﬁ,\; and
02 denotes the boundary of a sufficiently large bounded do-
main Q € R3. We refer to previous works on finite-element-
based ground-state DFT calculations [39,41,44,48,65] for a
detailed treatment of the local reformulation of the electro-
static potentials into Poisson equations.

Formally, the solution to Eq. (1) can be written as

Vo (r,T) = U(T, 10)Yu(r, 1)
T
= Texp{—i/ HKs[,O](l',f)df}I/fa(r, ), (9

where U (T, ty) represents the time-evolution operator (propa-
gator) and 7 denotes the time-ordering operator. Although the
above equation provides a formal way to directly evaluate the
orbitals at any time ¢, resolving the implicit time dependence
of the Kohn-Sham Hamiltonian through the density is too
difficult. However, one can exploit the following composition
property of the propagator:

U, 10) =U, 1)U (1, 1y), 1o <t < B (10)

to accurately resolve the implicit time dependence in
Hgs[p](r, t). To elaborate, the above property allows us to
rewrite the propagator U(T, ty) as

N-1
U(T.to) = [ [Ultipr. 1), (1)
i=0
where ty = T and ;11 — t; = At;, with At; denoting the vari-
able time step. Consequently, one can divide the evaluation of
the orbitals at T into N short-time propagation, given by

Yo(r, t + At)
=U(t + A)Yu(r, 1)

t+At
=TGXP{—i/ HKS[p](rvT)dT}I/fa(r,t)- 12)

In addition to resolving the implicit time dependence in
Hxslp](r, t), the short-time propagation provides the numer-
ical advantage of containing the norm of the exponent in
Eq. (9). To elaborate, any efficient numerical scheme to com-
pute the action of the propagator on a wave function involves
either a power series expansion or a subspace projection of
the propagator, wherein the number of terms in the power
series or the dimension of the subspace required for a given
accuracy are dependent on norm of the exponent. Moreover,
there is a physical upper bound imposed on the time step
based on the maximum frequency wpm.x that one wants to

resolve in their calculations, i.e., Aty = wL Typically,

®max 1S determined by the eigenspectrum of the ground-
state Hamiltonian or by the frequency of the applied field
Viela- We note that, in practice, one uses a time step Ar <
Atmax owing to the need of containing time-discretization
errors that arise in approximating the continuous propagator
Texp{—ift“rm Hgs[pl(r, T)dt}. We discuss these approx-
imations and their associated time-discretization errors in
greater detail in Secs. III and I'V.

III. SEMIDISCRETE AND FULL-DISCRETE SOLUTIONS

In this section, we introduce the notion of semidiscrete
(discrete in space but continuous in time) and full-discrete
solution to the TDKS equation. The full-discrete solution is
provided in the context of second-order Magnus propagator.

To begin with, we provide some of the finite-element
essentials. In the finite-element method, the spatial domain of
interest (2 € R?) is divided into nonoverlapping subdomains,
known as finite elements. Each finite element (¢) is character-
ized by its spatial extent (€2.) and size (k). Subsequently, the
finite-element basis is constructed from piecewise Lagrange
interpolating polynomials that have a compact support on the
finite elements (i.e., on €2,), thus rendering locality to these
basis functions. We note that there is an abundance of choice
in terms of the form and order of the polynomial functions that
can be used in constructing the finite-element basis. We refer
to Refs. [34,66] for a comprehensive discourse on the subject.

A. Semidiscrete solution

To begin with, we express the semidiscrete time-dependent
Kohn-Sham orbitals ¥ (r, 1) as

np,
Yo ) =Y N@YLO). styl =0 V=0
j=1

13)
where {N;(r)} represents the set of finite-element basis func-
tions, each of polynomial order p; and v/ (¢) denote the time-
dependent expansion coefficient corresponding to the N; basis
function. We refer to the Appendix for a formal discussion
on the appropriate function space for ¥/ (r,t). Using the
discretization of Eq. (13) in the TDKS equation [Eq. (1)]
results in following discrete equation:

My, (1) = Hy, (1), (14)

where H and M denote the discrete Hamiltonian and overlap
matrix, respectively, and ¥, (¢) denotes the vector containing
the coefficients ¥ (¢). The solutions to the above equation are
called the semidiscrete solutions to the TDKS equation. In the
above equation, the discrete Hamiltonian H j is given by

1
ij = E/ VN](I') . VNk(I‘)dI‘
Q

+ / Vs [p"1(x, £)N;(r)Ni(r) dr, (15)
Q

where Vléls[ph](r, t) is the discrete Kohn-Sham potential cor-
responding to the semidiscrete density p"(r, 1) [i.e., evaluated
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from the solutions of Eq. (14)]. V]é's [p"1(t) is, in turn, given by
Vsl 1(r, 1) = Vglo"1(e, 1) 4 Vi (r)
+Vxelp"I(e, 1) + Viea(r, 1), (16)

where V[ p"](r, t) and V}/!(r) denote the discrete Hartree and
nuclear potential, respectively. We note that for the pseudopo-
tential case, V! is same as the continuous potential V¥F and
hence Vj! is relevant only in the all-electron case. Similar to
Wl(r, 1), the discrete electrostatic potentials [V/[o"](r, t) and
VA’} (r)] are obtained by discretizing them in the finite-element
basis, i.e.,

np

Vil (e, 1) =Y Nj(®)gy @), (a7
j=1

VBt =Y Nk, (18)
j=1

satisfying the boundary conditions presented in Eq. (8) in
a discrete sense. We refer to the Appendix for a formal
discussion on the appropriate function spaces for V,g’[,oh](r, t)
and V]f,' (r). Subsequently, the expansion coefficients q’)]’;, (t) and
@3, can be obtained by using the above expressions in Eq. (8),
and solving the resulting system of linear equations

K¢y (1) = 4me(), 19)

K¢, = 47d, (20)

where Kj; = fQ VN;(r) - VNi(r)dr; ¢y and ¢y are the vec-

tors containing the coefficients qb,’; (t) and d){,, respectively;
cj(t) = [o p"(r,t)N;(r)dr;and d; = [, b(r, R)N;(r)dr.

B. Full-discrete solution

We now discuss the full-discrete solution to the TDKS
equations, in the context of second-order Magnus propagator.
To begin with, we note that the overlap matrix M, being
positive definite, guarantees the existence of a unique positive-
definite square root M'/2. This allows us to rewrite Eq. (14)
as

iV, (t) = H, (1), @1)

where ¥, (t) = M2 (t) and H = M~'/2ZHM~"/2, To put it
differently, lifa (¢) is the representation of wg(r, 1) in a Lowdin
orthonormalized basis [67]. We remark that the practicality of
the above reformulation in terms of ¥, is contingent upon
the efficient evaluation of M~!/2. To that end, we present an
efficient scheme for computing M~!/2 in Sec. VI.

We invoke the Magnus ansatz to write the solution of
Eq. (21) as

¥, (1) = exp(A(t)¥,(0),

The operator exp(A(z)) is termed as the Magnus propagator,
where A(¢) is given explicitly as [68,69]

Vi>0. (22)

A(t):/ —iH(7)dt
0

— l /T |:/r —iH(o)do, —iI:I(r)i|dr +---, (23)
2Jo Lo

where [X, Y] = XY — YX denotes the commutator. Although
known explicitly, the above equation is not practically useful,
given the difficulty in resolving the implicit dependence of
H(t) on p"(r,t). As mentioned in Sec. II, we resolve the
implicit dependence by using the composition property of a
propagator [cf. Eq. (11)]. This allows us to rewrite the Magnus
propagator as

N
exp(A(1) = [ Jexp(An), (24)

n=1

where A, is given by Eq. (23), albeit with the limits of
integration modified to [#,_1, t,,].

In practice, one replaces the exact A, with an approximate
operator A,,, which involves, first, a truncation of the Magnus
expansion [defined in Eq. (23)], and second, an approximation
for the time integrals in the truncated Magnus expansion.
Truncating the Magnus expansion after the first p terms results
in a time-integration scheme of order 2p. In this work, we
restrict ourselves to the second-order Magnus propagator,
i.e., obtained by truncating the Magnus expansion after the
first term. Furthermore, we use a midpoint integration rule
to evaluate f;_] —iH(t)dt. In particular, the action of the
second-order Magnus propagator, with a midpoint integration

rule, on the set of Kohn-Sham orbitals {17/1, ¥y, oo 'ﬁNe}
which defines the density p"(r, 1), is given by
eA,, '_ﬁa ([) — e—iﬁ[ph(tn—l"!‘%)]At '}o{ (t), (25)

where Ar =1, —t,; and H[p"(t,-; + 5')] is the time-
continuous Kohn-Sham Hamiltonian described by p"(r, 1)
at the future time instance t,_; + A¢/2. We remark that
Hp"(t,—1 + %)], being dependent on a future instance of
the density, is evaluated either by an extrapolation of H
using m(> 2) previous steps or by a second (or higher) order
predictor-corrector scheme.

Thus, time-discrete approximation to ¥, (,), denoted by

lﬁz, is given by

¥ = exp(A)P . (26)

Consequently, the orbitals /" (r) defined by the coefficient

vectors Yl = M~/ 2{02 represent the full-discrete solution to
the TDKS equation.

IV. DISCRETIZATION ERRORS

In this section, we provide the discretization error in the
Kohn-Sham orbitals which will later on form the basis of
our efficient spatiotemporal discretization. To begin with, we
decompose the discretization error in the Kohn-Sham orbitals
into two parts, one arising due to spatial discretization and the
other due to temporal discretization. To elaborate, if wg(r, t,)
and x[fé""(r) represent the semidiscrete (discrete in space but
continuous in time) and full-discrete solution to ¥,(r,t,),
respectively, then one decompose the discretization error in

Yo (r, 1,) as
Va(r, 1) — Y (r)
= (Vo (r, 1) — YL (r, 1)) + (Vi 1) — y2"(). 27)
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In the following two subsections, we present error estimates
on the two right-hand terms in the above equation, respec-
tively.

A. Spatial-discretization error

If 1//£(r, t) denotes the semidiscrete solution to v, (r, 1),
then the following bound holds true (see Appendix for the
derivation):

N,
Z |ve — WSHHI(Q)(I)

cmZhPZ (1Walps10,(51.0)

+ |wot|p+1,52{, (SZ,a) + |1[/a|p+3,9ﬂ (SZ.a ))
+C) Y RVl pr1..(53) + [Vivlpi1.2,)

for some {5} 4}, {s2.4},ands3 € [0, ¢]. (28)

In the above equations, s, and €2, denote the size and
spatial extent of the eth finite element, respectively. C(¢) is
a time-dependent constant independent of the finite-element
mesh. |...|, o is the seminorm in H”(€2,). The importance
of the above equations lies in relating the semidiscrete error to
the mesh parameters (i.e., i, and p) and, hence, is instrumental
in obtaining an efficient spatial discretization (discussed in
Sec. V). In particular, the above equation informs that the
semidiscrete error in ||, — %,'H HI(@) decays as O(h)).

B. Time-discretization error

We now present the formal bounds on the time-
discretization error in ¥, (r, ¢). Assuming each time interval
[t.—1, t,] to be of length A¢, we obtain the following bound

J

|1 (t) — (1) <

a=1

for the time-discretization error for a second-order Magnus
propagator with a midpoint integration rule (see Appendix for
the derivation)

|whit,) — yi

. ||L2(Q) < C(An’, oo I 1/fézl(t)”Hl(Q)' (29)
The essence of the above relation lies in relating the time-
discretization error to || 1//2(t)|| H(Q) which in turn is related to
the spatial discretization. Thus, the above equation is crucial
in selecting an efficient Az, for a given finite-element mesh
(see Sec. V).

V. EFFICIENT SPATIOTEMPORAL DISCRETIZATION

We now utilize our spatial- and temporal-discretization
error estimates [Eqs. (28) and (29)] to obtain an efficient
spatiotemporal discretization. We follow along the lines of
[48,65,70] to obtain an efficient spatial discretization by min-
imizing the semidiscrete error in the dipole moment at a given
time, subject to a fixed number of finite elements. We remark
that the choice of dipole moment as an observable for this
exercise is solely a matter of convenience, and any observable
which can be inexpensively evaluated in terms of the density
or the Kohn-Sham orbitals can be used instead. Representing
the x component of the continuous and the semidiscrete dipole

moments at time ¢ as w,(z) and uﬁ(t), respectively, we have

|Mx(l) - Mx(f)| < Ixlzellp®) — p" Oz
< Cllp@) — Ph(f)||L2(s2)

Ne
<Y Ve =il G0)

a=1

Now, using Eq. (28) in the above equation results in

cmZhI’Z Wl 1.2, 6510) + Walprn0,(52.0) + [Val pi3.0,(52.4))

+Ci ) YR (Valp"llpr1.0.053) + [Vilpi1e,) 31)

for some {s1 4}, {$2.4}, and s3 € [0, t]. We now use the definition of the seminorm (in terms of partial spatial derivative) and
introduce an element size distribution A(r) to rewrite the above equation as

Ne
|a(0) = 1] < Cr o) fg h%r)[Z(DP“m//a(sl,a) + D o (52.0) + D“wa(sz,a))} dr
a=I

+Ci(t) / R (£) (D" 'V [p" + D 'Vy) dr, (32)
Q

where D*f =3, _; ID'f|, with D' being the Ith-order spatial derivative (i.e., D'f = ; o'

with [ = {I;, I, I3} and

axl19y29z53 2

|l| =1 + I, + I3). Thus, obtaining the optimal element size distribution, for a fixed number of elements (Ngem), reduces to

the following minimization problem:

h(r) a=1

h*(r)

Ne
it / W (r) [Z(D"“ Va(s1.0) + D7 i (520) + D7 (52.0)) + DV [p"(53) + DI’*'VN] a
Q

subject to /
Q

dr
= Nelem- (33)
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Solving the Euler-Lagrange equation corresponding to the above optimization problem yields the following element size

distribution:

N,

h(r) =E|:

a=1

where the constant E is evaluated from the constraint on
the number of elements. We remark that although the above
discretization approach requires a priori knowledge of the
unknown ¥, (s1.4), Ve(s2.4), and Vy[p"1(s3), we use the
ground-state atomic solutions to the Kohn-Sham orbitals and
the electrostatic potentials to construct the adaptive finite-
element mesh for all calculations. Although this does not
inform us about the optimal discretization required near the
nuclei, this affords an efficient strategy to accurately handle
the regions away from the nuclei, wherein the time-dependent
Kohn-Sham orbitals, typically, have similar decay properties
as their ground-state counterparts. We note that, in practice,
the finite-element mesh obtained can deviate from A(r) due
to conformity and quality requirements, especially in the
context of hexahedral elements that are employed in this work.
However, the resulting finite-element mesh broadly captures
the optimal coarse-graining rate, and has the general adaptive
characteristics that significantly enhance the computational
efficiency, as demonstrated in Sec. VII. Figure 1 shows an
adaptive mesh for all-electron Al, generated using this ap-
proach.

Having determined the required spatial discretization, a
suitable temporal discretization for the given finite-element
mesh can be estimated by using the time-discrete error bound
for the dipole moment. To elaborate, if uﬁ*” denotes the x
component of the full-discrete dipole moment, then using the
result in Eq. (29) it is straightforward to show

Ne
|{(t) = "] < Cra(Ar)? Zlorgag [Va®l 1 0r G5

As is evident from the above relation, our choice of At
is intrinsically tied to the spatial discretization through
I wé‘(t)n HI(Q)" Furthermore, we remark that although the pres-
ence of t, in the above inequality indicates increasing time-
discretization error with time, it does not pose a limitation

\ /

FIG. 1. Adaptive finite-element mesh for all-electron Al, (slice
shown on the plane of the molecule).

—1/p+3
D D" Yo (s1.0) + D Y (52.0) + D7 Ya(520)) + D7 Vilp"(53) + D”“VN} ’ 34

(

in containing the errors due to the fact that ¢, < T, where,
typically, T lies between 10-30 fs. Now, in order to evaluate
a suitable Ar that can contain the above error bound to a fixed
tolerance, we need to estimate the values of ||w;’(t)|| HIQ)
and the value of the constant C featuring in it. The value of
||1pg(t)|| Hi(g) Can be reliably approximated from its ground-

state value, i.e., ||1//£’(O)|| HI(Q)" The characteristic value of
the constant C is determined from atomic RT-TDDFT cal-
culations at different A¢. To elaborate, the constant can be
evaluated from a linear fit to the log-log plot of the error
| (t,) — "] with respect to At. For a multiatom system,
we use the least At obtained for each of its constituent atomic

species.

VI. NUMERICAL IMPLEMENTATION

We now discuss some of the key numerical aspects in-
volved in our implementation of the finite-element discretiza-
tion of the TDKS equations.

A. Higher order spectral finite elements

Finite elements, with their varied choices of forms and
orders [34,66], have been widely used in several engineering
applications. While the use of linear finite elements remains
popular in engineering applications that warrant moderate
levels of accuracy, it remains computationally inefficient to at-
tain chemical accuracy in electronic structure calculations. To
highlight, the use of linear finite elements have been shown to
require large number of basis functions per atom (~100 000)
to achieve chemical accuracy in ground-state DFT calcula-
tions [53,61]. However, this shortcoming has been demon-
strably mitigated by the use of higher order finite elements
[48,65]. In this work, we explore the possibility of similar
gains from using higher order finite elements for RT-TDDFT
calculations. Unlike conventional finite elements, we employ
spectral finite elements for the spatial discretization of the
TDKS equations. To elaborate, while the conventional finite
elements are constructed from a tensor product of Lagrange
polynomials interpolated through equidistant nodal points in
an element, spectral finite elements employ a distribution of
nodes obtained from the roots of the derivative of Legendre
polynomials or the Chebyshev polynomials [71]. In our work,
we use the roots of the derivative of Legendre polynomials
along with boundary nodes, so as to maintain C° continuity.
The resulting distribution is known as the Gauss-Legendre-
Lobatto node distribution. The spectral finite elements are
known to afford better conditioning with increasing polyno-
mial degree [71], and have been used to gain significant com-
putational efficiency in ground-state DFT calculations [65].
Moreover, a major advantage of the spectral finite elements is
realized when used in conjunction with the Gauss-Legendre-
Lobatto (GLL) quadrature rule for evaluating the integrals
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involved in the overlap matrix M, wherein the quadrature
points are coincident with the nodal points in the spectral finite
elements. Such a combination renders M diagonal, thereby
greatly simplifying the evaluation of M~!/2 that features in
the discrete TDKS equations [cf. Eq. (21)]. We note that while
an n-point rule in the conventional Gauss quadrature rule
integrates polynomials exactly up to degree 2n — 1, an n-point
GLL quadrature rule integrates polynomials exactly only up
to degree 2n — 3. Therefore, we employ the GLL quadrature
rule only in the construction of M, while the more accurate
Gauss quadrature rule is used for all other integrals featuring
in the discrete TDKS equations. We refer to Motamarri et al.
[48] for a discussion on the accuracy and sufficiency of GLL
quadrature in the evaluation of overlap matrix M. For the sake
of brevity, we use the term finite elements instead of spectral
finite elements in all subsequent discussions.

B. Approximating the second-order Magnus operator

The form of the Magnus operator, as shown in Eq. (26),

calls for efficient means of evaluating;xp(zi,,)l]fz_l. Direct
means of evaluating the matrix exp(A,) {emain computa-
tionally prohibitive beyond small sizes of A,. Alternatively,

one can attempt to evaluate the action of exp(A,) on ¢ '
in an iterative fashion. Several such schemes are in use in
RT-TDDFT calculations, namely, Taylor series expansion,
Chebyshev polynomial expansion, split-operator techniques,
and Krylov subspace projection method. We refer to Castro
et al. [72] and references therewithin for a detailed discussion
on each of these schemes. In this work, we adopt the Krylov
subspace projection method for its superior efficiency and
robustness compared to the other methods. To elaborate, the
Krylov subspace projection allows for an a posteriori error
control mechanism based on error estimates that will be
described below. On the other hand, polynomial expansion
methods such as Taylor series or Chebyshev polynomial ex-
pansion offer no such a posteriori mechanism. While one can
use a priori estimates, based on the spectral radius of A,, the
number of terms required in the polynomial expansion, for a
desired accuracy, remain highly overestimated. Furthermore,
in the case of split operator, the efficacy of it rests on operating
back and forth between Fourier and real space, so as to
diagonalize the kinetic and the potential parts of the Kohn-
Sham Hamiltonian in succession. Thus, it involves the use of
fast Fourier transforms (FFTs) which pose serious challenges
to the parallel scalability of the code. The Krylov subspace
projection, on the other hand, involves operations only in real
space and affords good parallel scalability (as will be shown
in Sec. VIID).

We now discuss the details of the Krylov subspace projec-
tion approach for the second-order Magnus operator. To begin
with, a k-dimensional Krylov subspace for the matrix f\n and

the vector ¥ (a generic representation for the Kohn-Sham
—n—1,.
vectors l/lz ) is given by

Ki(A,, ¥) = span{¢, A, 9, A09, ..., A9} (36)

The Lanczos iteration provides a recipe for generating an
orthonormal set of vectors Qi = {q1, q, - -5 Gk} with g, =
¥/||¥|l, that spans the same space as K (A,;, ¥). In particular,

the Lanczos iteration allows for the following approximation
to e* 9, denoted by z; € KCr(A,,, ¥), given by

2% = [1Qre¥ A %e; = ||§|Qee™ey, 37)

where T = QZAan is a tridiagonal matrix, and e; is the
Ist unit vector in C*. As is evident from the above form,
the problem is now reduced to the evaluation of exp(Ty),
wherein T is a small matrix of size k x k and, hence, exp(Ty)
can be evaluated inexpensively either through Taylor series
expansion or exact eigenvalue decomposition of Ty. The error
€; incurred in the above approximation is given by [73]

e = e ¥ — [1Que™er | ~ Brar il Pllle™lal.  (38)

where Biy1 is the (k + 1, k) entry of Ty, = Q/{+1Aan+1~
Thus, the above relation provides a robust and inexpen-
sive scheme to adaptively determine the dimension of the
Krylov subspace by checking if €, is below a set tolerance.
An economic choice for the tolerance for ¢; is determined
from atomic RT-TDDFT calculations, such that it achieves
<10meV accuracy in the excitation energies. For a multiatom
system, we employ the lowest such tolerance obtained for
each of the constituent atomic species.

Finally, we comment upon the numerical details of the
second-order Magnus propagator with midpoint integration
rule. As discussed in Sec. IIIB, the use of second-order
Magnus propagator with midpoint integration rule, i.e., e*r,
requires the knowledge of H at a future time instant, i.e.,
H[t,_, + At /2], which is a priori unknown. A fully consistent

approach involves, for a given 17/"71, the following steps:
(i) approximate H[t,_, + At/2] through extrapolation over
previous instants of Hj; (ii) use it to obtain 17/”, and then
evaluate H[z,]; (iii) reevaluate H[t,_; + At/2] by interpolat-
ing between H[t,_;] and H[t,]; and (iv) repeat steps (ii) and
(iii) until convergence. Although robust and accurate, this
approach comes at a huge computational cost arising out of
the Lanczos procedure at each iterate of the self-consistent
iteration. An efficient and sufficiently accurate approach is
to use a predictor-corrector method to, first, predict H[t,_; +
At /4] through an extrapolation (linear or higher order) from
previous instants of H, use it to propagate "' to ¢/,
which is then used to evaluate H[t,_; + At/2]. We refer to
[74] for the details of the predictor-corrector scheme. We
remark that this predictor-corrector scheme is accurate to
O(Ar?) and, hence, does not affect the results of our time-
discretization error estimates.

VII. RESULTS

In this section, we discuss the accuracy, rate of conver-
gence, computational efficiency, and the parallel scalabil-
ity of higher order finite-element discretization in conjunc-
tion with second-order Magnus propagator, for both pseu-
dopotential and all-electron RT-TDDFT calculations. Based
on the system, we use hexahedral spectral finite elements
of polynomial order 1 to 5, denoted as HEX8, HEX27,
HEX64SPEC, HEX125SPEC, and HEX216SPEC, respec-
tively. For the pseudopotential calculations, we provide com-
parison, in terms of accuracy and performance, of the higher
order finite elements against the finite-difference method. The
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finite-difference-based calculations are performed using the
ocToPUS [30] software package. In all our finite-difference-
based calculations, we have used a stencil of order 4 in each
direction (default stencil order in OCTOPUS). All the pseu-
dopotential calculations are done using the norm-conserving
Troullier-Martins pseudopotentials [75]. For all calculations,
the ground-state Kohn-Sham orbitals are used as the initial
states. We use the Chebyshev filter acceleration technique
(refer [48,76,77]) to efficiently compute the ground state, for
all the calculations done using finite elements. All our scal-
ability as well as benchmark studies demonstrating the com-
putational efficiency are conducted on a parallel computing
cluster with the following configuration: Intel Xeon Platinum
8160 (Skylake) CPU nodes with 48 processors (cores) per
node, 192 GB memory per node, and Infiniband networking
between all nodes for fast MPI communications.

A. Rates of convergence

In this section, we study the rates of convergence of the
dipole moment with respect to both finite-element mesh size
h, as well as time step At. We use methane and lithium
hydride molecules as our benchmark systems for studying
the rates of convergence, for pseudopotential and all-electron
calculations, respectively.

We note that in order to study the convergence with
respect to mesh size, the dominant error must arise from
spatial discretization. To this end, we contain other sources
of error, namely, time-discretization error and Krylov sub-
space projection error, by choosing a very small time step
of At = 1074, and using a small tolerance of 10~'2 for the
Krylov subspace error [cf. Eq. (38)]. In effect, we mimic
a semidiscrete (discrete in space but continuous in time)
error analysis. We employ finite elements of three different
orders (p), HEXS, HEX27, and HEX125SPEC, in all our
convergence studies. For each p, we start with a given Nejem
and use the superposition of ground-state atomic orbitals and
electrostatic potentials, to determine the coarsening rate of the
mesh, as per Eq. (34). The resultant mesh forms the coarsest
mesh. Subsequently, we increase the value of Nejer, to obtain
a sequence of increasingly refined meshes. We remark that
although we propose for using the ground-state electronic
fields to determine the mesh-coarsening rate, it nevertheless
forms a reliable and cost effective way for discretizing the
mesh as opposed to any ad hoc coarsening or using uniform
discretization. Furthermore, it allows us to use large com-
putational domain sizes without significantly increasing the
number of elements. This, in turn, allows us to circumvent the
need for artificial absorbing boundary conditions, otherwise
essential to tackle wave reflection effects that are observed
while dealing with small computational domains.

In order to perform the convergence study with respect to
mesh size, and compare to the semidiscrete error estimate ob-
tained in Eq. (31), we require the knowledge of the continuous
value of the dipole moment u,(¢). To this end, we use the
discrete dipole moment /xﬁ (1), obtained from a sequence of
increasingly refined HEX125SPEC finite-element meshes, to
obtain a least-square fit of the form

o
|1x(t) — o)) o

: 39
|2 (1)) m &

2|/ | el

h
z

‘Mz -

1076 x HEXS8 (¢ =0.99 i
o HEX27 (¢ =2.0
10-7 ) m  HEXI1255PEC (g = 3.61)
10! 100

h

FIG. 2. Rates of convergence with respect to spatial discretiza-
tion for LiH.

to determine w,(t), C, and g. In the above equation Ay,
represents the minimum element size 5, present in the mesh.
The obtained w,(t) represents the extrapolated continuum
limit (continuous in space) for the dipole moment computed
using HEX125SPEC element, and is used as the reference

value to compute W for HEX8 and HEX27 finite

elements.

Next, we consider the convergence with respect to temporal
discretization, i.e., At. To this end, we use a sufficiently re-
fined HEX125SPEC finite-element mesh and use increasingly
refined At to obtain a least-square fit of the form

|1 (t) — |

= C(Ar)? 40
|,ufé(tn)| (Ar) (40)

to determine p”(t,), C, and g. The value of u(t,) obtained
from the above equation represents the extrapolated contin-
uum limit (continuous in time) for the dipole moment at #,,.

1. All-electron calculations: Lithium hydride

In this example, we conduct all-electron RT-TDDFT study
on a lithium hydride molecule (LiH) with Li-H bond length
of 3.014 a.u. A large cubical domain of length of 50 a.u. is
chosen to ensure that the electron density decays to zero on
the domain boundary, thereby allowing us to impose Dirichlet
boundary condition on the time-dependent Kohn-Sham or-
bitals and the Hartree potential. We use the aforementioned
adaptive mesh generation strategy to construct a sequence
of HEX8, HEX27, and HEX125SPEC meshes. For all the
meshes under consideration, we first obtain the ground state
and employ a weak delta kick to excite the system. To elabo-
rate, we use an electric field of the form Ey (1) = «5(¢)X, with
x = 1073 a.u., where §(¢) is the Dirac-delta distribution and %
is the unit vector along the x axis. This amounts to perturbing
the ground-state Kohn-Sham orbitals 15 by a factor e=/*.
Thus, our initial states are defined as 1, (0) = e ¥ 55,
Figure 2 depicts the rates of convergence for the dipole mo-
ment at = 1.0 a.u. for different orders of finite elements. For
all the three types of finite elements under consideration, we
observe close to optimal rates of convergence, O(h”), where
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FIG. 3. Rate of convergence with respect to temporal discretiza-
tion for LiH.

p is the degree of the finite-element interpolating polynomial.
As is evident from Fig. 2, much higher accuracies are obtained
with HEX125SPEC when compared to HEX8 and HEX27 of
the same mesh size. In particular, 200 000 HEX8 elements
(210 644 degrees of freedom) are required to achieve relative
errors of 1072, whereas we achieve relative error of 1073
with just 3000 HEX125SPEC elements (83 156 degrees of
freedom). Next, we study the rate of convergence of the dipole
moment with respect to temporal discretization. To this end,
we used a sufficiently refined HEX125SPEC mesh which
affords 10~ relative error with respect to spatial discretiza-
tion. We then propagate the initial states using second-order
Magnus propagator with different At. Figure 3 depicts the
rate of convergence of the dipole moment with respect to Az
att, = 1.0 a.u. We obtain a rate of convergence of g = 1.96
[defined in Eq. (40)], which agrees remarkably well with
the quadratic rate of convergence for second-order Magnus
propagator [cf. Eq. (35)].

2. Pseudopotential calculations: Methane (CH,)

We now turn to examining rates of convergence for the
pseudopotential case. We use a methane molecule with C-H
bond length of 2.07846 a.u. and a H-C-H tetrahedral angle
of 109.4712° as our benchmark system. Similar to lithium
hydride, we use the ground-state single-atom electronic fields
to obtain a sequence of adaptively refined HEXS, HEX27,
and HEX125SPEC meshes. We, once again, make use of a
large cubical domain of length 50 a.u. to mimic simulations
in R3. For all the meshes, we first obtain the ground state
and then excite the system using a Gaussian electric field
of the form Ey(t) = ke =10/ % with Kk =2 x 1075 a.u.,
to = 3.0 a.u., and w = 0.2 a.u. Figure 4 illustrates the rates of
convergence of the dipole moment at # = 5.0 a.u. for different
orders of finite elements. As in the case of lithium hydride,
we obtain close to optimal rates of convergence, and observe
significantly higher accuracies for HEX125SPEC over HEX8
and HEX27. Next, we study the rate of convergence afforded
by the second-order Magnus propagator with respect to the
time step using a sufficiently refined HEX125SPEC mesh.

100 :

107 =
10-6 x  HEXS8 (¢ =0.98)

O HEX27 (¢ = 1.98)
- m  HEXI255PEC (4 = 3.63)

107! 100
h

FIG. 4. Rates of convergence with respect to spatial discretiza-
tion for CH,.

We propagate the ground-state Kohn-Sham orbitals under the
influence of the same Gaussian electric field using different
At. Figure 5 shows the rate of convergence of the dipole
moment with respect to At at t, = 5.0 a.u. As was the case
with lithium hydride, we obtain a convergence rate of g =
1.98, which is remarkably close to the optimal (i.e., quadratic)
rate of convergence [cf. Eq. (35)].

B. Computational cost

In this section, we investigate the relative computational
efficiency afforded by higher order finite elements over linear
finite element. We consider the previous two systems, lithium
hydride and methane, for all-electron and pseudopotential
calculations, respectively. We use the same mesh adaption
strategy as detailed in Sec. VI A. Since the objective of this
study is to compare the relative performance of various orders
of finite elements, we eliminate any time-discretization effect
by setting At = 10~*. Furthermore, we use a tolerance of
107! for the adaptive Lanczos [cf. Eq. (38)] in order to

107! : :

107 L 1

1072 107!
At

FIG. 5. Rate of convergence with respect to temporal discretiza-
tion for CHy.

115148-10



REAL TIME TIME-DEPENDENT DENSITY FUNCTIONAL ...

PHYSICAL REVIEW B 100, 115148 (2019)

107! @
i

1072
=
=
-~
1078k
|
= .
1074 ¢ "o\
—— HEXS "o
- |- HEX27
10-5 --@-- HEX125SPEC
107° 1074 103 1072 10! 109

Normalized time

FIG. 6. Computational efficiency of various orders of finite ele-
ments for LiH.

eliminate any Krylov subspace projection error influencing
the spatial-discretization error. We repeat the previous numer-
ical studies by exciting the lithium hydride molecule with a
delta kick (see Sec. VII A 1), and the methane molecule with
a Gaussian electric field (see Sec. VII A 2). Figures 6 and
7 show the relative error in the dipole moment against the
normalized computational time, for three different orders of
finite elements. The normalization of the computational time
is done with respect to the longest time among the various
meshes under consideration. As is evident, the relative com-
putational efficiency afforded by higher order finite elements
improves as the desired accuracy is increased. In particular,
for a relative accuracy of 1073, HEX125SPEC outperforms
HEXS8 and HEX27 by factor 150-200 and 10-18, respectively.
This underscores the efficacy of higher order finite elements
for RT-TDDFT calculations, an aspect which had, heretofore,
remained unexplored for RT-TDDFT.

C. Other materials systems

In this section, we investigate the accuracy and compu-
tational efficiency afforded by higher order finite elements

100

1071
g 1072 ¢
~
"Q\QH 10—3 L
|
0t}
-
107 F s HEX8 "o
- B- HEX27
10-6 --@-- HEX125SPEC
104 1073 102 101 100

Normalized time

FIG. 7. Computational efficiency of various orders of finite ele-
ments for CHy.

TABLE I. Simulation details for both pseudopotential (PSP) and
all-electron (AE) benchmark systems: type of the electric field Ey(z);
time step (At in a.u.); tolerance for Krylov subspace projection error
[€, cf. Eq. (38)]; total duration of simulation (7 in fs).

System Field type At € T
Al, (PSP) Weak Gaussian® 0.05 10-8 10
Al; (PSP) Weak Gaussian® 0.05 10-8 10
Ceo (PSP) Weak Gaussian® 0.05 108 10
Mg, (PSP) Strong sinusoidal® 0.025 108 25.33
CH4 (PSP) Weak Gaussian® 0.05 10-8 10
CH,4 (AE) Weak Gaussian® 0.025 10-8 10
C¢Hg (PSP) Weak Gaussian® 0.05 10-8 10
C¢Hg (AE) Weak Gaussian® 0.025 10-8 10

WEo(t) = ke % with ik =2 x 1075, 4, = 3.0, and w = 0.2 (all
in a.u.).

PEo(t) = k sin’(r /T )sin(wt )%, with £ = 0.01, @ = 0.03, T =5 x
(27 /w) (all in a.u.).

for other materials systems, in both pseudopotential and
all-electron RT-TDDEFT calculations. We use Al,, Al;3, and
Mg, as the benchmark metallic systems for pseudopoten-
tial calculations. Furthermore, we use buckminsterfullerene
(Cep) as our benchmark insulating system for pseudopotential
calculations. For the all-electron case, we use methane and
benzene as our benchmark systems. Additionally, for the
all-electron calculations we provide a comparison, in the
absorption spectrum, with their pseudopotential counterparts.
For all the above systems under consideration, except Mg,,
we use weak electric fields to excite them. For Mg,, we use
a strong laser pulse to study the efficacy of higher order finite
elements for nonlinear response. Table I lists the important
simulation parameters, for all the benchmark systems under
consideration. We remark that the Az as well as the tolerance
for Krylov subspace projection error are chosen such that
they achieve <10meV accuracy in the excitation energies.
For pseudopotential systems, we also provide comparison,
wherever possible, against calculations based on a finite-
difference discretization, by employing the same propagator
(i.e., second-order Magnus) and simulation details (as listed
in Table I). To this end, we use the OCTOPUS [30] software
package to perform the finite-difference-based calculations.
We now briefly discuss about the choice of spatial dis-
cretization and domain sizes in our calculations. For both
finite-element- and finite-difference-based calculations, the
spatial discretization and the domain sizes are chosen such
that it attains <10 meV accuracy in the excitation energies.
Typically, one needs a larger domain for RT-TDDFT calcula-
tions than ground-state calculations, so as to avoid reflection at
the domain boundaries. For finite elements, owing to adaptive
meshing capability, choosing a large enough domain has
little bearing on its computational expense. However, for finite
difference, wherein OCTOPUS uses a uniform mesh, the use of
large domain sizes can significantly effect its computational
cost. In order to obtain a suitable grid in OCTOPUS, we
first obtain the optimal grid spacing and domain size that
achieves an accuracy of 10 meV in the ground-state energy
per atom, commensurate with the accuracy targeted in the
finite-element discretization. We then increase the domain
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size until it achieves <10meV accuracy in the excitation
energies (defined in Sec. VIIC 1). The calculation based on
the resulting OCTOPUS mesh is considered as the point of
comparison (for both accuracy and efficiency) against the
corresponding finite-element-based calculation. We add that,
while dealing with uniform mesh, a typical workaround to
the large domain requirement is to use a smaller domain
with absorbing boundary conditions. Hence, to better assess
the effects of absorbing boundary conditions, we employ
them in finite-difference-based calculations for some of the
benchmark systems discussed below.

1. Pseudopotential calculations: Al,

We consider an aluminum dimer (Al,) of bond length
474 au. In order to generate a suitable mesh, we use
an adaptive HEX64SPEC finite-elements discretization that
follows the coarsening rate obtained from Eq. (34) and is
commensurate with an accuracy of 10 meV in the ground-
state energy per atom. We use a cubical domain of length
60 a.u. to ensure that the wave functions decay to zero, and
thereby avoid any reflection effects. We excite the ground state
using the simulation parameters listed in Table I. We use the
Fourier transform of the dipole moment to obtain the dynamic
polarizability o, ,(w), where a is the index of the electric
field’s polarization direction and b is the index of the mea-
surement direction of the dipole. Subsequently, we obtain the
absorption spectrum (dipole strength function) S(w), given by
S(w) = %—;‘;Tr[lm[a(a))]]. The peaks in the absorption spec-
trum correspond to the excitation energies. We also assess
the performance of higher order finite elements by comparing
against the finite-difference scheme of oCTOPUS [30]. In order
to highlight the effects of domain size for the finite-difference
mesh, we use three cubical domains of sizes 38, 46, and
52 a.u., all with a grid spacing of 0.2 a.u. Furthermore, to
understand the effect of absorbing boundary conditions, we
perform an additional finite-difference calculation on the 38-
a.u. mesh with a negative imaginary potential (NIP) near the
boundaries. In particular, we use a potential of the form

Vap(x) = | x| <L
NPT  —ipsin? (281, L < x| <L +AL

with n = 0.4, L = 18.0, and AL = 1.0 (all in atomic units).
For clarity, we refer to the four finite-difference calculations,
namely, with domain size 52 a.u., with domain size 46 a.u.,
with domain size 38 a.u., and with domain size 38 a.u. along
with NIP absorbing boundary condition as FD-52, FD-46, FD-
38, and FD-38-ABS, respectively. We use the same simulation
details, namely, time step, duration of propagation, choice of
propagator, and tolerance for Krylov subspace, as used for the
finite-element case. Figure 8 compares absorption spectrum
obtained from finite elements against finite difference. We
have used a Gaussian window of the form g(z) = e with
o = 0.005 a.u., in the Fourier transform of the dipole moment
to artificially broaden the peaks. As is evident from the figure,
we get good agreement with the finite-difference-based results
for FD-46 and FD-52. The finite-difference calculation with
domain size 38 a.u., with and without the absorbing boundary
condition, provides qualitatively different results with two
peaks around 5 eV. We attribute this discrepancy to possible
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FIG. 8. Absorption spectra for Al,.

reflection effects from the boundary, as a domain size of 38
a.u. may not be sufficient to avoid finite-domain-size effects.
Furthermore, comparing FD-38 and FD-38-ABS curves, we
observe that the use of NIP-based absorbing boundary condi-
tion, on its own, hardly improves the answer. This suggests
that, for the system under consideration, one cannot rely,
solely, on absorbing boundary conditions to avoid reflection
effects and, hence, must use a larger domain. Table II com-
pares the first two excitation peaks, the degrees of freedom
and the total computational time for the finite-element- and
the finite-difference-based (46-a.u. domain size) calculations.
As is evident from the table, both finite-element- and finite-
difference-based results agree to within 10 meV in the ex-
citation energies. Furthermore, in terms of computational
efficiency, we observe a ~65-fold speedup for finite elements
over finite difference. We remark that this superior efficiency
for the finite elements is largely attributed to fewer degrees
of freedom that one can afford in finite elements due to
adaptive resolution of the mesh, as opposed to a uniform mesh
in finite difference. We underline this by noting that while
finite difference requires over 12 x 10° degrees of freedom,
the finite elements require only 31411 degrees of freedom
to attain similar accuracies. Finally, comparing FD-46 and
FD-52 according to the FE results, we observe that although
we achieve convergence in the excitation energies by 46 a.u.,
the convergence of the peak values requires a larger domain.

2. Pseudopotential calculations: Aly;

We now consider a 13-atom aluminum cluster with
an icosahedral symmetry. We use the same characteristic
finite-element mesh as that of Al, but with a cubical domain

TABLE II. Comparison of finite element (FE) and finite differ-
ence (FD) for Al,: first and second excitation energies (E;, E,, re-
spectively, in eV), degrees of freedom (DOF), and total computation
CPU time (in CPU hours).

Method E, E, DOF CPU hrs
FE 2.477 4.325 31411 2.11
FD 2.486 4.332 12326391 138.8
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FIG. 9. Absorption spectra for Al;s.

of length 70 a.u. to avoid reflection effects. We excite the
system from its ground state using the parameters listed in
Table 1. We, once again, provide a comparative study against
finite-difference-based calculation by using a uniform cubical
mesh of size 56 a.u. and grid spacing 0.2 a.u. Figure 9
compares absorption spectrum obtained from finite elements
against finite difference. We have used the same Gaussian
window as in the case of Al,. As is evident from the figure, the
peaks for both finite element and finite difference are in good
agreement. Table III compares the first two excitation peaks,
degrees of freedom, and the total computational time for the
finite-element- and the finite-difference-based calculations.
Both the methods agree to within 10 meV in the first two
excitation energies. In terms of computational efficiency, the
finite elements attain an ~8-fold savings in the computational
time against finite difference, once again, attributed to the
fewer degrees of freedom in finite elements owing to adaptive
resolution of the mesh. In particular, the finite elements afford
~30-fold fewer degrees of freedom as compared to finite
difference.

3. Pseudopotential calculations: Buckminsterfullerene

In this example, we consider the buckminsterfullerene
molecule comprising of 60 carbon atoms (240 electrons)
packed into the shape of a buckyball. As with Al,, we use
an adaptive HEX64SPEC finite-elements discretization that
follows the coarsening rate obtained from Eq. (34) and is
commensurate with an accuracy of 10 meV in the ground-state
energy per atom. We use a cubical domain of length 50 a.u.
to eliminate any reflection effects from the boundaries. We

TABLE III. Comparison of finite element (FE) and finite differ-
ence (FD) for Al;s: first and second excitation energies (E,, E,, re-
spectively, in eV), degrees of freedom (DOF), and total computation
CPU time (in CPU hours).

Method E, E, DOF CPU hrs
FE 2.876 4.280 698 782 82.2
FD 2.880 4.282 22188041 624.6
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FIG. 10. Absorption spectra of buckminsterfullerene.

use the simulation parameters listed in Table I to excite the
system from its ground state. As with previous cases, we
also assess the performance of higher order finite elements
by comparing against the finite-difference-based method, as
implemented in the OCTOPUS package. We assess the effects
of domain size for the finite-difference mesh, by using two
cubical domains of sizes 30 and 36 a.u., both with a grid
spacing of 0.15 a.u. Furthermore, we study the effect of
absorbing boundary conditions by performing an additional
finite-difference calculation on the 30-a.u. mesh with a nega-
tive imaginary potential (NIP) near the boundaries. We use an
NIP of the same form as used in Al, (see Sec. VIIC 1), albeit
with L = 14.0 a.u. We denote these three finite-difference
calculations, namely, with domain size 36 a.u., with domain
size 30 a.u., and with domain size 30 a.u. along with NIP
absorbing boundary condition as FD-36, FD-30, and FD-30-
ABS, respectively. Figure 10 shows the absorption spectrum
obtained from the finite-element-based and the three different
finite-difference-based calculations. We have used the same
Gaussian window of the form g(z) = e“"’z, with ¢ = 0.01
a.u., to artificially broaden the peaks. As is evident from
the figure, there is good agreement between the finite ele-
ment and FD-36 for all the excitation peaks. On the other
hand, while FD-30 and FD-30-ABS have good agreement
with finite elements for the first two peaks, they differ for
the rest, possibly because of reflection effects. Furthermore,
comparing FD-30 and FD-30-ABS, we remark that the use
of NIP-based absorbing boundary condition did not improve
the absorption spectrum. This, once again, indicates that one
cannot always dispense with the need for a larger domain
by, solely, using absorbing boundary conditions. Table IV
compares the first two excitation peaks, degrees of freedom,
and the computational time for finite elements against that
of FD-36. Both finite-element-based and FD-36-based results
match within 30 meV in the first two peaks. Furthermore, the
excitation energies are also in good agreement with results
presented in Ref. [78] (the first two excitation peaks, as we
estimate from the absorption spectrum reported in Ref. [78],
are ~5.6 eV and ~11.5 eV, respectively.). In terms of com-
putational efficiency, finite elements attain a ~3-fold speedup
over FD-36. This higher efficiency of the finite elements is,
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TABLE IV. Comparison of finite element (FE) and finite differ-
ence (FD) for Cg: first and second excitation energies (E;, E;, re-
spectively, in eV), degrees of freedom (DOF), and total computation
CPU time (in CPU hours).

Method E, E, DOF CPU hrs
FE 5.499 11412 1548073 5200
FD 5.476 11.439 13997 521 15361

once again, attributed to a ~9-fold fewer degrees of freedom
required by the finite elements against that of finite difference.

4. Pseudopotential calculations: Mg,

In this example, we study the higher harmonic generation
in a magnesium dimer with bond length of 4.74 a.u. Unlike the
previous examples, we use a strong laser pulse to excite the
system from its ground state (see Table I for the simulation
details). We use an adaptive HEX125SPEC mesh with the
coarsening rate determined by Eq. (34). Furthermore, we
use a cubical domain of length 100 a.u. to eliminate any
reflection effects from the boundaries. We obtain the dipole
power spectrum P(w) of the system by taking the imaginary
part of the Fourier transform of the acceleration of the dipole

moment i (¢). To elaborate, P(w) = Irn(fOT e’”‘”%u(r)dt).
Theoretically, for a system with spatial inversion symmetry,
only odd multiples of the frequency of the exciting laser
pulse must be emitted. We verify this in Fig. 11 wherein the
peaks in the power spectrum coincide with odd harmonics.
Furthermore, we observe that the decay of the intensity of the
peaks flattens beyond the 13th harmonic, which corroborates
well with the plateau phenomenon, typically observed in
experiments [79]. We emphasize that despite the large domain
size used in this calculation, we require only ~60 000 basis
functions. This underlines the efficacy of higher order finite
elements for even nonlinear regime in RT-TDDFT.

5. All-electron calculations: Methane (CH,)

We now examine the competence of higher order fi-
nite elements for all-electron RT-TDDFT calculations by
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FIG. 11. Dipole power spectrum of Mg,.
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FIG. 12. Absorption spectra of methane.

providing a comparative study with its pseudopotential coun-
terpart. In this example, we consider a methane molecule
with the same geometry as described in Sec. VIIA2. We
use HEX64SPEC and HEX125SPEC elements for the pseu-
dopotential and all-electron case, respectively. For both all-
electron and pseudopotential cases, we use the same mesh
adaption strategy as used in all previous examples. For both
the meshes, we use a large cubical domain of length 40 a.u.,
so as to eliminate reflection from the boundaries. Both the
systems are excited from their respective ground states using
the simulation details listed in Table I. The absorption spectra
for both the calculations are shown in Fig. 12. We used the
same Gaussian window as in the case of buckminsterfullerene
(see Sec. VII C 3), to artificially broaden the peaks. As evident
from the figure, we obtain remarkable agreement between the
all-electron and pseudopotential results, i.e., the two curves
are almost identical. In Table V we list the first two excitation
peaks, degrees of freedom, and total computational time for
both the calculations. The first two excitation peaks agree to
within 10 meV. We remark that the all-electron calculation
requires ~100x more computational time as compared to
the pseudopotential case. This large computational expense
for the all-electron calculation stems primarily from the need
of a highly refined mesh near the nuclei, so as to accu-
rately capture the sharp variations in the electronic fields
near the nuclei. This refinement has two major consequences:
(a) an increase in the degrees of freedom; and (b) increase in
||1p§|| HIQ) which, in turn, warrants a smaller time step [cf.
Eq. (35)] as well as a larger Krylov subspace to achieve the
prescribed accuracy. In particular, for the case of all-electron

TABLE V. Comparison of all-electron (AE) and pseudopotential
(PSP) calculations for methane: first and second excitation energies
(E,, E,, respectively, in eV), degrees of freedom (DOF), and total
computation CPU time (in CPU hours).

Method E, E, DOF CPU hrs
AE 8.898 11.238 348 289 13 653
PSP 8.907 11.244 80 185 145
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FIG. 13. Absorption spectra of benzene.

methane, we required ~4x degrees of freedom and ~10x
the size of the Krylov subspace as compared to that of the
pseudopotential case. We emphasize that while finite elements
are expensive for the all-electron calculation, they provide
the desired accuracy and offer systematic convergence (see
Sec. VII A 1). Moreover, one can mitigate the need of a refined
mesh for the all-electron calculation by using enrichment
ideas, wherein the standard (classical) finite-element basis is
augmented with numerical atom-centered functions [57,80—
82]. This idea has successfully attained 100-300x speedup
over the standard (classical) finite elements for ground-state
DEFT calculations [57], and can be extended to RT-TDDEFT to
further the capabilities of finite elements.

6. All-electron calculations: Benzene

In this example, we perform similar comparative stud-
ies between all-electron and pseudopotential calculations for
benzene molecule. As with the methane molecule, we use
HEX64SPEC and HEX125SPEC finite elements for the pseu-
dopotential and all-electron calculation, respectively. Further-
more, we use the same characteristic mesh features (i.e., re-
finement near the nuclei, coarsening rate, simulation domain),
in both the meshes, as their counterparts in the methane calcu-
lation (see Sec. VIIC5). The simulation details, for both the
cases, are listed in Table I. Figure 13 compares the absorption
spectra from the all-electron and pseudopotential calculations.
Both the spectra compare well with the results presented in
Ref. [59], in terms of first two excitation peaks (the first two
excitation peaks, as we estimate from the absorption spectrum
reported in Ref. [59], are ~6.6 eV and ~10 eV, respectively).
We remark that while there is qualitative agreement between
the pseudpotential and all-electron calculations, quantitatively
the predictions from all-electron and pseudopotential calcu-
lations differ. In particular, the first two excitation peaks
(see Table VI) differ up to ~0.2 eV. As in both the pseu-
dopotential and all-electron calculations, the spatiotemporal
discretization parameters have been chosen to be commensu-
rate with an accuracy of ~10meV in the excitation energies;
we attribute this larger discrepancy to the pseudopotential
approximation. This suggests that one should carefully test for

TABLE VI. Comparison of all-electron (AE) and pseudopo-
tential (PSP) calculations for benzene: first and second excitation
energies (Ej, E,, respectively, in eV), degrees of freedom (DOF),
and total computation CPU time (in CPU hours).

Method E, E, DOF CPU hrs
AE 6.521 10.131 989 649 153600
PSP 6.316 10.007 257473 1574

the transferability of the pseudopotential approximation used,
to provide reliable quantitative predictions from RT-TDDFT
calculations. We take note that a more careful comparison
of pseudopotential and all-electron calculations warrants a
scan through a range of pseudopotential approximation. Nev-
ertheless, the objective of this exercise is to highlight the
fact that finite elements, by treating both pseudopotential and
all-electron calculations on an equal footing, allow for a robust
tool for such transferability studies.

D. Scalability

Lastly, we demonstrate the parallel scalability (strong scal-
ing) of the proposed finite-element basis in Fig. 14. We
choose the buckminsterfullerene molecule containing ~3.5 x
10° degrees of freedom (number of basis functions) as our
fixed benchmark system and report the relative speedup with
respect to the wall time on 24 processors. The use of any
number of processors below 24 was unfeasible owing to the
memory requirement posed by the system. As is evident from
the figure, the scaling is in good agreement with the ideal
linear scaling behavior up to 384 processors, at which we
observe a parallel efficiency of 86.2%. However, we observe a
deviation from linear scaling behavior at 768 processors with
a parallel efficiency of 74.2%. This is attributed to the fact
that, at 768 processors, the number of degrees of freedom
possessed by each processor falls below 5000, which is low
to achieve good parallel scalability.
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FIG. 14. Parallel scalability of the higher order finite-element
implementation.
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VIII. SUMMARY

In summary, we have investigated the accuracy, computa-
tional efficiency, and scalability of higher order finite elements
for the RT-TDDFT problem, for both pseudopotential and
all-electron calculations. We presented an efficient a priori
spatiotemporal scheme guided by the discretization errors in
the time-dependent Kohn-Sham orbitals, in the context of
second-order Magnus propagator. In particular, we used the
knowledge of the ground-state electronic fields to determine
an efficient adaptively resolved finite-element mesh. This
adaptive resolution is crucial in affording the use of large
simulation domains without significant increase in the number
of basis functions and, hence, allows us to circumvent the
use of any artificial absorbing boundary conditions. A key
aspect of the finite-element discretization in this work is the
use of higher order spectral finite elements, which while
providing a better conditioned basis also renders the overlap
matrix diagonal when combined with special quadrature rules
for numerical integration. This, in turn, enabled an efficient
construction of the Magnus propagator (or any exponential
time integrator) for finite-element discretization. Furthermore,
we employed an adaptive Lanczos subspace projection to
evaluate the action of the Magnus propagator, defined as
exponential of a matrix, on the Kohn-Sham orbitals.

We demonstrated the accuracy of the proposed approach
through numerical convergence studies on both pseudopo-
tential and all-electron systems, where we obtained close to
optimal rates of convergence with respect to both spatial and
temporal discretizations, as determined by our error estimates.
The computational efficiency afforded by using higher order
finite-element discretization was established, where a stagger-
ing (10-100)-fold speedup was obtained on benchmark sys-
tems by using a fourth-order finite element in comparison to
linear and quadratic finite elements. Furthermore, we assessed
the accuracy and efficiency afforded by our approach against
the finite-difference-based method of the OCTOPUS software
package, for pseudopotential calculations. Across all the
benchmark systems considered, we obtained good agreement
between the absorption spectrum evaluated using the finite-
elements- and finite-difference-based (OCTOPUS) calculations.
In terms of computational efficiency, we obtained (3—60)-fold
speedup over finite difference, which is largely attributed to
the adaptive spatial resolution afforded by our approach. We
also demonstrated the efficacy of finite elements, especially
its efficient handling of large domains, for nonlinear response
by studying the higher harmonic generation under a strong
electric field. We also demonstrated the competence of higher
order finite elements for the all-electron RT-TDDFT calcu-
lations. This underscores the versatility of finite elements in
handling both pseudopotential and all-electron calculations
on an equal footing. Lastly, in terms of parallel scalability,
we obtained good parallel efficiency up to 768 processors for
a benchmark system comprising of the buckminsterfullerene
molecule containing ~3.5 x 10° basis functions.

Thus, the proposed approach offers a computationally ef-
ficient, systematically improvable, and scalable basis for RT-
TDDFT calculations, applicable to both pseudopotential and
all-electron cases. We remark that, for the all-electron case,
the need for a highly refined mesh near the nuclei increases

the computational cost, as observed from the reported studies.
For systems with heavier atoms, the mesh requirements are
expected to become even more exacting. However, this can
be alleviated by employing an enriched finite-element basis
[57], along with efficient numerical strategies to evaluate the
inverse of the resultant overlap matrix as well as handle the
increased quadrature costs [83]. These ideas have been suc-
cessfully used for ground-state DFT [57,80-82], and its ex-
tension to RT-TDDFT is currently being investigated. Further,
assessing the transferability of pseudopotentials for electron
dynamics, enabled by the unified treatment of all-electron and
pseudoptential calculations, is another interesting direction
for future investigation.
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APPENDIX: DERIVATION OF SPATIAL- AND
TIME-DISCRETIZATION ERROR ESTIMATES

In this Appendix we provide the detailed derivation of the
spatial- and time-discretization error estimates presented in
the main text [i.e., Egs. (28) and (29)].

1. Notations, assumptions, and preliminaries

For a bounded closed domain €2 and bounded time interval
[0, T], we denote Q7 = Q x [0, T]. For any two complex-
valued functions f(r,?), g(r,t): Qr — C, the inner prod-
uct (f, g)) = fQ f(r,t)g'(r,t) dr, where g'(r,t) denotes
the complex conjugate of g(r, 7). Correspondingly, the norm

f 2 @) = /(f, f)(). Thus, we extend the definition of
the standard L*(Q2) and H'(Q) spaces to define

L*(Qr) = {f e, OllIfll2(t) < 00, Vite[0,TI},
(Ala)
1 8f 2
H (2r) = {f(l‘,t)lf, E,Df €L (QT)}, (Alb)
Hy(Qr) = {f(r,0)|f € H(Qr), f(r,D)]sq =0,
Vielo,T]), (Alc)
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where Df denotes the spatial partial derivatives of f, and 0€2 denotes the boundary of 2. Additionally, we define two more
spaces relevant to the Poisson problem [Eq. (8)]

N, 7
Hy(Qr) = {f(r, OIf € H'(@r) f(r Db = ) o —IR,| VieloTl, (A22)
I=1
1 1 al —Z
H!,(Q) = [f(r)lf €eH'(Q), fOhe =) r— } (A2b)
I=1

For conciseness of notation, in all our subsequent discussion, we drop the argument ¢ from the inner product as well as all the
L? and H' norms. Thus, any occurrence of (...,...), ... [lzr(2)» and || ... ||g1(q) are to be treated as time-dependent, unless
otherwise specified.

We list certain weak assumptions that we invoke throughout our error estimates.

(1) The time-dependent Kohn-Sham orbitals and their spatial derivatives are bounded and have a compact support on €2,
which, in turn, is a large but a bounded subset of R*. To elaborate, ¥, € Hy(Qr) N L>®(Q7).

(2) The nuclear potential (in the all-electron case), due to the use of regularized nuclear charge distribution b(r; R) [defined
in Eq. (8b)], is bounded, i.e., V]{,*E e L®(R3).

(3) The local part of the pseudopotential is bounded, i.e., Vags € L®(R?).

(4) The short-ranged potentials appearing in the nonlocal part of the pseudopotential are bounded, i.e., BV/ € L*®(2).

(5) The exchange-correlation potential and its derivative with respect to density are both bounded, i.e., Vxc[p], Vxclp] €
L®[R3), Yt e0,T].

(6) The external field is bounded, i.e., Viea € L¥(R?), V1t € [0, T].

(7) The induced operator (or matrix) norm of the Kohn-Sham Hamiltonian and the Laplace operator are equivalent, i.e., 3
time-independent bounded constants Cj, C, such that

G| V20 120 < 1HksOl2@) < C2| V29| 20y ¥ & € Hy(R), V1 €10, T1.

(8) The first and second time derivatives of the Kohn-Sham potential are bounded, i.e., ”j_,VKS(t)” @) < C; and

I j—;VKS Ol @ S G, Vit €0, T], where C;, C, are time-independent bounded constants.

We remark that while the validity of assumptions 1 and 7 are apparent in the case of pseudopotential calculations, for the
all-electron case, it is reasonable to assume the same owing to the use of regularized nuclear charge distribution b(r; R). Using
these assumptions, we derive certain formal bounds that will subsequently be used in deriving the error estimates. To this
end, given two different densities py, (r, ?) and py,(r, ¢) defined by the set of orbitals ¥, = {11, Y12, ..., Y1n,} and ¥y =
{Y2,1, Y22, . . .. Y2,n, }, respectively, we seek to bound [[Vks[pw, V1.0 — Vks[ow, 1¥2,all;2(q) in terms of (Y1, — ¥2,¢) and (py, —
Pw,). We remark that all the subsequent results hold V « € {1, 2, ..., N,}, unless otherwise specified. Moreover, the constants
C, its subscripted forms (i.e., Cy, C, etc.), and primed forms (C’), that appear subsequently, are positive and bounded.

To begin with, we note, through straightforward use of Cauchy-Schwarz and Sobolev inequalities, that

Ne

lpw, = pw [l iy SC D 110 = Vaalizey, (A3a)
a=1
N,

|ow, = Pl 20y SC D M1 — Vaalliie- (A3b)
a=1

L

Furthermore, for the convolution integral of p and Tk

denoted by |r|~! x p = fQ p(x)rlxldx, we have

e~ pllze) < ClIEI ™ 2@ llo Nz (Ada)
el pllzy < ClIEl iz ol (A4b)

where we have used the Young’s inequality along with the fact that |r|~! € L*(Q).

We now bound |[Vksl[pw, 1¥1.6 — Vkslow, ¥l 129 by decomposing Vg into its Hartree (Vy), nuclear (Vy), exchange-
correlation (Vxc), and field (Vieq) components, and bounding each of the components. For the Hartree potential, we have, for
Y v e H)(Qr),

(Vi [ow, J¥1.a = Vi pw [¥2.0. v) = (Vi [pw, |10 — ¥2.0), v) + (Vi [ o, — pw, |20, V). (AS)
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Thus, using result of Eq. (A4b) along with the fact that v, , € L*°(S27) (from assumption 1) and Vy[py,] € L*(227) [from
Eq. (Ada)], it follows that

|(Vir[ o, [¥1.0 — Vi [ 0w, V2,00 v)| < C(I1W1.0 — V2ullizllvllzze) + | 0w, — pu, ”LI(Q)HUHLZ(Q))- (A6)
Next, for the exchange-correlation potential, we use the mean value theorem to note that
Ve[ pw, |¥1.a — Ve[ pw, |¥2.a = (Vxclox] + 2xaViclox]) (Wio — ¥2.0), (A7)

where px is defined by the orbitals x, = Ag¥1.o + (1 — Ay)¥2q, forsome A, € [0, 1]. Using the above relation, we have,
Yve HO1 (27),

|(Vxe[ow, J¥1.e = Ve[ pw: [¥2.0: v)| = |[((Vxelox] + 2x2 Vi lox D(W1a — ¥2.0), v))|
< [ Vaelox ]+ 2xVaelox | e 1 V10 = Ve lliz@ vl
< ClY1e — V2ol Vi g (AB)

where we have used the boundedness assumption on Vxc and Vy (assumption 5).
Similarly, using the boundedness assumptions on V*F (assumption 2), V¥ (assumptions 3 and 4), and Vgelq (assumption 6)
it is easy to observe, V v € HO1 (27),

(VB e — Vit Y0, v) | < Clvte — You iz 011220 (A9)
|(VESPYr1 0 — VP24, v)| < ClYLe — Yool V]2 ), (A10)
| (Vi V1.0 — Vil V2,0, V| < CllY1e — Y2.ullize V29 (Al1)

We now define the weak solution of the TDKS equation (1) as follows: given an initial state ¥, (r, 0) € H} (), we seek
Ve (r,t) € H}(Qr) such that

i(ag;",u) =%(V1ﬂa,Vv)+(VKs[p]1//a,v), YveHy(Qr), and VYtel0,T] (A12)

Similarly, the weak solutions to the Poisson problems defined in Eq. (8) are defined to be Vi (r, 1) € H,(Q27), and V{E(r, R) €
HlZ(Q), satisfying

(VVu, Vo) =4n(p,v), YveH)(Qr), and Vitel0,T], (A13a)
(VV@E, Vo) = 4m(b,v), YveH)(Q). (A13b)

2. Derivation of spatial-discretization error estimate

We denote X"? € H'(S2) to be the finite-dimensional space of dimension n", spanned by finite-element basis functions of
order p. Further, we denote Xoh P = xhrn HOI(SZ). We now define the semidiscrete solution 1//3 (r,t), to Eq. (A12) as follows:
given an initial state ¥/ (r, 0) € Xé"p, we seek ¥'(r, 1) € X(f"p x [0, T] such that

ayl 1
z<% vh> = E(ng, Vo) + (Vislp"wli o), Vo' e X)P x [0,T] and Vi e[0,T], (Al14)

where p"(r,1) = Y 0r, [Yl(r, 0)I* and Vis[p"1(e, 1) = Vil p"1(x, 1) + Vy (5 R) + Vel p"1(x, 1) + Vel (r, 7).

We now elaborate on the different terms appearing in the expression for Vi’[o"](r, 1). First, to define appropriate boundary
ny

conditions for V}*[p"](r, ¢) and V}!(r), we introduce the function f”(r;R) = >0y qjN;(r), with

g = S |1‘_/E—IRI|’ if jth node (positioned at r;) is a boundary node
! 0, otherwise

as an interpolation of the boundary conditions of Eq. (8) into X'+, This allows us to define the discrete counterpart of the weak
solution described in Eq. (A13a) as VH" [p"(r, 1) = Vlli”o[ph](r, 1)+ fh(r; R), with VI_';’O[,oh](r, t) € Xé”p x [0, T], such that

(VVi o, VOl) = dr(p", v") — (V" Voh), Yo' e X" x[0,T], and Yitel[0,T]. (A15)

Similarly, we define the discrete analog of the weak solution defined in Eq. (A13b) as V,{,\E’h(r; R) = Vﬁg’h(r; R) - f hr;R),
with V26" (r; R) € X7, such that

(VVe, Vo) = dr (b, ") + (V" Vo), Vot e X7 (A16)

For the pseudopotential case, V,!(r; R) is same as the continuous function V¥ (r; R).
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We now introduce the concept of Ritz projection P, which will be used in subsequent error estimates. The Ritz projection
P : H(} (Qr) — Xg "’ % [0, T] is defined through the following Galerkin orthogonality condition:

(V@ —Pup), VU") =0, V¢ e H(Qr), VYo" eX” x[0,T], and Viel[0,T] (A17)

This allows us to use some standard finite-element error estimates [34] to bound || — P (| 12(q)-

In order to prove the bound of Eq. (28), we first present a general case with no assumptions on the initial orbitals i, (r, 0).
We then present the special case of the initial orbitals being ground-state Kohn-Sham orbitals, as a corollary to the general case.
Furthermore, we note that the an error estimate for ||y, — wé’ g1 ) in turn, requires an estimate for ||y, — wé' 20 Therefore,

in our subsequent analysis we report estimates for both ||, — ‘M 2 and ||, — w‘i’ 1)) We emphasize that, although the
numerical studies presented in this work have used hexagonal elements, the following results apply to other shapes of finite
element and, hence, in our analysis we denote the mesh using the generic term “triangulation” [84]. In particular, we take a
triangulation 777 of pth-order finite elements covering the domain .

Proposition 1. Assuming uniqueness and existence of the solution to Eqs. (A12) and (A14), we obtain the following bounds
on the finite-element semidiscrete approximation error to the Kohn-Sham orbitals:

N, N,
Y e = ¥l @ < Ce™ @+ DD BT (Walpiie, (1) + Vel prn g, 52.0) + Valpiae.(524))
a=1 e a=I

Ne
+C et Y I (VoM pir0.(53) + Vilprre) + € Y Ve = ¥l 2,0, (Al8a)
e a=1
N, N,
Y e =Vl oy ® < e @+ DY R (1Walpiro.(51.a) + [Valpr1.0,52.0) + Vel pia 0, (524))
a=1 e a=1
Ne
+C3e't Y R (IVulp"lpr1.0.(53) + Vi lprr.a.) + Cse ity Y [Wo — Y] 120, (0), (A18D)
e a=1
where e denotes a finite element of mesh size 4, and cover €2, in the triangulation TP Bin represents the smallest element in
the triangulation ThP and|...| 2.9 is the seminorm in H”(£2,). The arguments s; o, 52,4, and s3 are defined as
0V, 0V,
s1.o¢ = argmax [y — Pptelli2)(s), 2,4 = argmax Vo _ Ph v (s), and
' 0<s<r 0<s<r ot at L2(Q)
s3 = argmax || Vu[p"] = Vii[p"1] 12 0, - (A19)
0<s<r

Proof. Taking v =" € Xé’ P % [0, T] in Eq. (A12) (continuous solution) and subtracting it from Eq. (A14) (semidiscrete
solution), we get

i O = Va) v —1(V(1// — 1), V) + (Vis[olve — Viss[p"IWE "), Vol e X7 < [0, T (A20)
ot ’ —2 o ol KSLP 1V« KsLP w V) v 0o X ’ .

We rewrite v, — 1//;‘ = (Yo — Pu¥o) + (Prvve — wg}) and derive bounds on each of the terms. For simpler notation, we use
Uy = VYo — Prve and wy = (Ppvy — 1//3). Thus, using ¥, — w[fj = Uy + Wy, we rewrite Eq. (A20) as

dwg Oty 1 1
i( g; ,vh) = —i(a—”t, vh> + 5 (Vita, V) 4 3 (Voo Vo) + (Vislolva = Vislo" 107 o). (A21)
Taking v* = w,, we have
[ dwy, [ Ay 1 1 W hyh
l 9t , W | = —1 W’ wy |+ E(Vuou Vwa) + z(vwou Vwoz) + (VKS[:O]Wa - VKS[p ]I)l/aa w()t)' (A22)

Noting that

1d ad
5 7wl = Re{ (5%, wa> } (A23)

and comparing the imaginary parts of Eq. (A22), we have
1d ity 1 1
EZ”“’“”%W = —Re{ <? wa>} - EIm{(Vua, Vuw,)} + EIm{(Vwa, Vuw,)}
+ Im{ (Vks[p1¥a — Vis[0" 19}, wa) }. (A24)
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In the above equation, we note that (Vu,, Vw,) = 0, as a consequence of Eq. (A17). Furthermore, (Vw,, Vw,) is real. Thus,
Eq. (A24) simplifies to

1d

Oy
EE”wa”iZ(Q) = _Re{ (?, wa)} + Im{ (VKS[:O]W()( - V]?S[ph]l//:s w(){)}

Oty
< '(W w)‘ + | (Vkslolve — VLo 1970 wa) |-
We now decompose Vks into its components to rewrite the second term on the right of the above equation as
(Vislplva — Vis[o" Wy wa)

(A25)

(VxclplWa — Vxclp" W2, wa) + (Viulple — Valo" W2, wa)
+ (V"1 = VA" )W, we) + (Ve — V!, we)
+ (Wl = Vawl, wa) + (VielaWa — VeV, wa).

(A26)
We note that the term (VNwé‘ — VA},’ g, wy ), on the right side of the above equation, is relevant only in the all-electron case

(i.e., zero for the pseudopotential case as Vy = V,f,‘). Combining the results from Eqgs. (A6), (A8), (A9), (A10), and (A11), with
v = w,, and using the fact that ¥ € L>(Q), it is straightforward to show that

| (VksoIWa — VisLo" 10, wa)| < Col| Ve — Wi | 12 0y 1Wall ey + Ci (Ve = Wi | 120y + 110 — 2" lrc) Iwallz2ce)

+ C2 || VH [Ioh] - V[{[I [ph] ||L2(Q) ”wa ”LZ(Q) + C3 “VN - V]\}} ||L2(Q) ” Wy ”LZ(Q)
Using the above result in Eq. (A25), we obtain

(A27)
d 8ua h h h
dt ”wa”Lz(Q) < Jat L2(Q) + CO” wﬁt - w(x “LZ(Q) +C (” Wa - W(x ”LZ(Q) + ”10 —-—p ”L‘(Q))
+Ca|Viulp"1 = ViT" | 120y + G [V = Vit 1o
ou h
S 8: 12(9) +Golve =Vl

N,
+CollVulp" = VAo 2 + Cs [V = Vil 20y + Ca D W05 — ¥

LZ(Q) k) (AZS)
p=1

where we have used Eq. (A3a) in the second line to simplify the term involving ||p — p” || Li(9)- Summing the above equation
over all index «, we have

d & Y (1 ou
2 wallzg < 32 (H -
a=1

Z 2 P +Cs|l e — Va LZ(Q)) +GCs ||VH[,Oh] - VHh[ph]HLZ(Q) + G|V — 1%¢ ”LZ(Q)
< (H aau: e + Gslluall2() + C5||wa||L2(Q)> +Cs |[Valp"l = Viglo"] 12y + G|V = Vit | 2y
a=1
(A29)
where in the second line we have split ¥, — ¥ into u, and w,. Now, integrating the above equation gives
N, N, N .
Zl Iallize) ) < Zl 1we llz2(0) (0) + Cs /0 Zl llwe lI(s) ds + Cs /0 Zl (H " ca O ||ua||Lz<Q)<s)> ds

o [ (10" = Vi1 )+ 1 = Vi ) .

Noting that uy = Yy — Py, e = W

— _ Ve
i o = o~ Phy
the above equation as

(A30)

, and using the definitions of s 4, 2.4, and s3 [cf. Eq. (A19)], we can simplify
Ne

¢ N N,
lwellz2()(0) + Cs / D lwali(s)ds + Cst Y (‘
a=1 0 a=1 a=1

+ Cat (| Varlp"1 = V1" 2y (53) + [V = Vit 2

N,
D w2 @) <
a=1

Oty
ot

LX(Q)

(SZ,a) + ”ua ”LZ(Q)(Sl,a ))

(A31)
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Invoking the Gronwall’s inequality on the above equation yields

Ne
D lwall ey @) < e [Z lwellz2@)(0) + Cst Z (

a=1

’814&

LX(Q)

(52,0() + ”ua ||L2(S2)(sl,a )>:|

+Cse™t (| Vulp™ = Vijlp ]||Lz(m(s3) + [V = Vil 2 (A32)
Noting that [|wel;2(0)(0) < [1¥e — wh”Lz(Q)(O) we rewrite the above equation as

Z lwall 2y (1) < Cse™'t Z (

Oty

(52,0) + llug ||L2(Q)(Sl,oz)>

LX)

N,
+Cse™ 1 ([ Valp") = VLM | 2 gy (53) + Vi = Vit o) + €5 D W = Wl ] 120 (0)- - (A33)
a=1
Bounds on the terms involving ||ug|;2(q)s I % 2y IValp" — Vé’[ph]lle(Q), and |Vy — VX}HLZ(Q) can now be obtained using
the Ced’s lemma [84], a standard finite-element error estimate. The Ced’s lemma, in simple terms, is stated as follows. Let
peH 1(Q7) and d)h e Vh c xhr If y=¢ — d)h satisfies the following Galerkin orthogonality condition,

(Vy, V")) =0, Vu"eV" and Vrel0,T], (A34)
then
Iyl 2 < € Z Rl 40, and (A35a)
¥y < C Z h2\Bl,i1.0,- (A35b)
By definition of Ritz projection [Eq. (A17)], y = u, = ¥y — Pr, satisfies Eq. (A34). Further, taking the time derivative of
Eq. (A17), itis easy to verify that y = 3”“ =5t —
to u, and a;: yields
el < C YA Wal pr o, (A36)
e
and ; 5
H ta <C Z 1| e % . (A37)
ot |20 pHLQ.
We further simplify the above inequality, by using Eq. (1):
duy Y 1
el oy 2l e Loz, b vlot,
It Nl . i e, . 2 P12
<CY W (Wal g, + Ve + Vi + Vie + Vi)Vl pi1.0,)
<CY W (1Valpisg, + Walpsro,)- (A38)
which follows from the definition of the | . . . | ,4-3 seminorm and the boundedness assumptions on Vy, Vxc, and Vgelq (assumptions

2-6). Lastly, it is straightforward to observe that both y = Vy[p"] — V{i[p"] and y = Viy — V}! satisfy Eq. (A34) [take the
difference of Eqs. (A15) and (A13a) and Eqs. (A16) and (A13b), respectively). Thus, once again, applying the Ced’s lemma
[Eq. (A352)], we get

[Virlo") = ViiTo" | 2y < € Y1 Vil i, (A39a)
e
[V = Vil 2y S C DB Vil pi .- (A39b)
Using Eqgs. (A36), (A38), and (A39) in Eq. (A33), we have
N, N,
D lwallzaey ) < Coe™'t Z RS (Walpi1.2.(51.0) + [Walpi1.0.(52.0) + [Vl pi3.0.(52.0))
= a=1 .
+Coe™'t Y B (Vilp"pi1.0.(53) + Vilpsra,) + € Y [ Ve = U] 2, 0). (A40)
e a=1
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Finally, expressing ¥, — ¥ = w, + u, and using the result of Eq. (A36) in the above equation, we obtain

Nﬂ N(’
D e = W] iy ® S C DR Wl i1, (1.0)
a=1 e a=l1

Nﬂ
+Coe™'t Y RN (Walpin,(510) + Walpri.a,(52.0) + Walpis 0, (52.0))
e

a=1

Ne
+Coe™'t Y R Vil o™ pi1.0.(53) + Vivlprie,) + € D e = Y2 120y (©)
e a=I

Ne
< Croe® 4+ 1D Y B Y (IWalpere,(510) + Wl pir0,(52.0) + Wl 3.0, (52.0))

a=1

0). (A41)

Ne
+Cioe™'t Yy R IVl lpr1.0.(53) + i lperg,) + € Y [Wa = W] 200

a=1
This concludes the proof of Eq. (A18a).

In order to derive estimates for Zg’;l Ve — ‘ﬁé’” HI(Q)(I), we use the inverse estimate [33] for w, = (Pryy — wé') € Xé’ " to
obtain

lwa llzz1 @) () < Chipgy lwe Il 20 (). (A42)
Additionally, applying the Ced’s lemma [Eq. (A35b)] on u, = (¥ — PrVe ), We have
lua ll g1 ey@) < C Z R\l pir 0, (1) (A43)

Combining Eqs. (A42) and (A43), we get

N, Ne N, N,
D e =21y ® < D lttallarn ey @) + Nlwalla@y(1) < Cia Y Y Wralpar0, () + Crahy Y w20y (@) (Ad4)
o a=1

e a=1 a=1

Finally, using the inequality obtained in Eq. (A40) in the above equation and using the fact that &, /Ay, < C for all the elements
in 77 yields

N, N,
Z ”‘ﬁa - w(il”Hl(Q)(t) < Cll thz |wa|p+1,§25(s1,(1)

a=1
N,
+Cie Y MY (1Walpr, (51.0) + [Valprig, (52.0) + [Valprs.0, (52.4))
e a=1

N('
+Ciae®'t Y R (Vilp" 1.0, (53) + Vilpsr.a,) + Crae™ gty > [V = Y2 120 ()
e a=1

N,
< Cue™ @+ 1Y MY (Walprro,(510) + Walpr.o,(520) + [Walpis.o, (524))
e a=1

N('
+Ciae®t Y RVl 1,0, (53) + Vilpsr.,) + Caehly D [Va = V]l o) 0)-  (A45)
a=1

e

This concludes the proof for Eq. (A18b). |
Corollary 1. If the initial orbitals v, (r, 0) are obtained from a ground-state DFT calculation, wherein [48]
Ve = ¥l 1200y @ < C DB (Walpsro. + Vilo 1 ps1.0, + Valprr.2,), (A46)

the results of Proposition 1 can be simplified, V ¢ € [0, T], to

N, Ne
Y e = ¥l oy < CLe™ @+ DY R (Walprie. (510) + Walprr.e, (2.0 + Walpr3.0,(52.0)

a=1 e a=1

+C@ (1) Y R (V" llpi1.0.(53) + [Vivlprr.2,), (A47a)

e
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N,
ZHwa—w Ly S G @+ DY R (IWalprre,(s16) + Walpi1.0.(52.0) + Walpr3.0,(52.0))

e a=1

+ G 1+ 1) Y R (Vilo" 1.2, (53) + Virlps1.2,)- (A47b)

The last equation concludes the proof of Eq. (28).

3. Derivation of time-discretization error estimate

Before proceeding to the proof for Eq. (29), we note that for an exponential operator of the form "), the partial derivative
with respect to ¢ is given by [68]

0 .
Eeu’) = dexpy,,(L(1))e"", (A48)

where dexpx(Y) = ZSO mad’,} (Y). The operator adl,‘((Y) is defined recursively as
ad{(Y) = adx (ady '(Y)), (A49)

with ady (Y) = XY — YX and ad%(Y) =

We now present the proof for Eq. (29) in the following proposition. In the following analysis, we assume each time interval
[t,—1. t,] to be of length At. Moreover, for simpler terminology, we term e* [cf. Eq. (25)] as the second-order Magnus propagator
without explicitly spelling out the midpoint integration rule invoked in it.

Proposition 2. For a second-order Magnus propagator with a midpoint integration rule, we obtain the following bound for
the time-discretization error in ¥":

[V = v | oy < CCADH max V@) 41 ) (A50)

Proof. To begin with, we introduce the following operators:

k—1
Sk = ehrehet | oM =]_[eAH for0 <k<n, S)=I (A51a)
=0
o B n—k—1 ~
Ry =chett oM = [T et for0<k<n, Ri=I. (A51b)
=0

To elaborate, S0 denotes the exact Magnus propagator from 7y to #, and R}, denotes the second-order Magnus propagator from #;
to t,,. Let ¥, (t,) and ¥, denote the vectors containing the finite-element expansion coefficients for " (¢,) and ¥"", respectively.
Further, let ¥, (t,) = M2y (t,) and 1/f =M 21/r” Thus, we can rewrite the time-discretization error in ¥, (t,,) in terms of the
following telescopic series:

Volta) — ¥y = (RIS; — R3S ¥, (0) = > (RjSE — Ry, S§7") ¥, (0). (A52)

k=1

Noting that S§ = ¢AS{ ™' and R}_, = RkeAk we rewrite the above equation as

Voltn) — ¥y = D (RS — R, S6"),(0)
k=1

n

(RpeMSh~! — RIeMSE1)47,(0)

=~
—_

n

R (™ — M)SE19,(0)

R.
Il

=

R} (M — )P, (). (A53)

»
Il
-
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Since R} is a unitary operator, bounding [, (t,) — %] reduces to finding the bound on (e** — )y, (1_,). To this end, we

extend the proof presented in Ref. [69] to the nonlinear case of the TDKS equations. To begin with, we split (e — A W, (1)
as

(™ — M) (t1) = (M — AP (tn) + (@M — AP, (), (A54)

where A, = f;ﬁ 1 —iH[p(¢)]dt. The two terms on the right-hand side of the above equation denote the error due to truncation of
the Magnus expansion and the time-integral approximation, respectively.
In order to bound the error in the first term on the right side of Eq. (A54), we introduce the following auxiliary function,

) =B, (1), Y1elhi,ul (A55)

where B, (1) = ft;l —iH[p(7)]dt. We remark that E’;(t) denotes the time evolution of fﬁa (tx—1) using the truncated Magnus
expansion, in the time interval [#;,_, #]. Differentiating the above equation and using the result of Eq. (A48) gives

EL (1) = dexpy, BB OE (1)) = —iGL(EL (), Vi€ [y, k] (A56)

where Gi(t) = i dexka(,)(Bk(t)) We observe that G; is Hermitian. This can be proven as follows. First, note that for two

Hermitian (or skew-Hermitian) matrices X, Y, the operator adx(Y) is skew-Hermitian. Second, owing to the Hermiticity of H,
both B, (¢) = ft —iH[p(7)]ldt and Bk(t) = —iH(t) (Yt € [ty_1, t;]) are skew-Hermitian. Thus, by expanding dexme)(Bk(r))

k—
and using the above two arguments, it can be shown that G, is Hermitian. We now introduce the function ya(t) = 1#0( @) —

S’; (), Yt € [ti_1, t]. It is important to note that
Yt = Vo) — E(0) = (™ — M), (0, (A57)
where the second equality follows from the definition of Ef[ [Eq. (AS5)] and the fact that B (#;) = tﬁ 1 —iH[p(v)ldT = A¢.

I

Thus, the problem of bounding (e — e’_‘k)fha (tx—1) [the first term in Eq. (A54)] reduces to bounding y’;(tk). To this end, we
proceed, by first expressing the time derivative of y’; as

yot) = —iGr()yk (1) — ilH(E) — GO, (1), Y1 € [tro1, 1] (AS8)
which follows from Eqs. (21) and (A56). Now, taking the dot product with y’; ()" on both sides yields

Ve Vh(t) = —ivh ) Gy, (1) — ive () TH() — G (1P, (). (A59)
We note that 2Re{y’(§(t)le’;(t )} = %Ily’;llz, where | ... | represents the Euclidean norm of a vector. Further, we note

YE (@) Gr(t)yk (t) is real, owing to the Hermiticity of G. Thus, comparing the real parts of the above equation results in

Sar Ly P = m{ph )" 1RE) - G, 0). (A60)
Consequently,
d _ _ -
vl < IHO - G, 0l (A61)
Time integrating the above equation yields
|75 @0 = [ a0 — E@)]| = 1™ — )P, (ol < f () — GO, (Dlld, (A62)

where we have used the result of Eq. (A57) along with the fact that ||y§ I(to1) = ¥, (ti1) — §§ (tx—1) = 0 [by the definition
of § (1), cf. Eq. (A55)]. Thus, the problem of bounding ||(e** — eAk)IZI (tx—1)|| further simplifies to finding a bound for
ftk ] I[H(z) — Gk(‘t)]lll (1)|ldt. To this end, we use the fact that G;(t) = zdexka(T)(Bk(t)) and the definition of the operator
dexpx (Y) to obtain

H(t) — Gi(7) = —é[Bk(r), B(1)] + h.o.t. = —% f ’ [H(z), H(o)ldo + h.o.t, (A63)

where h.o.t. stands for higher order terms.
In order to bound [H(t), H(c)], we begin by rewriting H in terms of U and V, i.e., 1ts kinetic and Kohn-Sham
potential components. To elaborate, U= M~"2UM~"/? and V =M~"2VM~'2, with Uy = 1 [, VN;(r) - VNi(r)dr and

Vik = fg Vhs[ph](r 1)N;(r)Ni(r) dr. Noting that U is time independent, we Taylor expand H(o ) about 7 to rewrite [H(t), H(c )]
as

[H(z), H(0)] = [H(z), V'()(0 — 7) + Ol(0 — 7)’], (A64)
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where V'() = £ (V(t))|o—. Thus, using the above relation in Eq. (A63) we get

[H(t) — Gi (DY, (r) = %([ﬁ, V@O, ()T — t-1)* + Ol(x — tr-1)’].

(A65)

We now invoke the boundedness assumption on V' (assumption 8), and the norm equivalence of U and H (assumption 7), to

obtain

ITH(7) = Gx ()P, (Dl < C(x = i1 1P (Dllg + OL(x — 1)’

(A66)

Thus, substituting the above result into Eq. (A62) provides the following bound:

(e — )P, ()l < C(ADY max ([P, ()llg-
1 SISK

(A67)

This provides a bound for the first term (truncation error) on the right side of Eq. (A54). In order to bound the second term on
the right side of Eq. (A54), i.e., the error due to midpoint quadrature rule, we begin with the following identity:

dx

- L g o 1 — 5 _
eMo— M = / — (1A gy = / U9 — Ap)e™ dx.
0

(A68)
0

Furthermore, we note that for a function f(x) if F;,, denotes the midpoint approximation to F = fa b f(x)dx, then |F — Fi | <
C(b—a)’*f"(n), for some n € [a, b]. Thus, for the midpoint integration rule, Ay — Ag|| < C(A1)?|| & (H)|,/|| for some ¢’ €

ar?

[tc_1, t;]. Using this result along with the unitarity of the operators eU=9A and e"Ak, we obtain
g g y p

d2

Noting that 7~

I = M), (DIl < Ak — Al < C(AN? %(ﬁm for some 1" € [t—1, 1]. (A69)
H= %\7, V't € [tr—1, 1], and invoking the boundedness assumption on %\7 (assumption 8), we get
™ = M), (-l < C(an’. (A70)
Thus, using the results of Eqs. (A67) and (A70) in Eq. (A53) along with the unitarity of the operators R} yields
[V =¥ | < CCanty max 197, @llg- (AT1)

Finally, noting that the coefficient vectors for the spatial fields ¥ (r, #,) and ¥/»"(r) are given by M~'/2¢,,(t,) and M~"/29"
respectively, it is now trivial to arrive at Eq. (29) from the above equation. |
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