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We examine the interplay of symmetry and topological order in 2 + 1-dimensional topological quantum
phases of matter. We present a precise definition of the topological symmetry group Aut(C), which characterizes
the symmetry of the emergent topological quantum numbers of a topological phase C, and we describe its
relation with the microscopic symmetry of the underlying physical system. This allows us to derive a general
framework to characterize and classify symmetry fractionalization in topological phases, including phases that
are non-Abelian and symmetries that permute the quasiparticle types and/or are antiunitary. We develop a theory
of extrinsic defects (fluxes) associated with elements of the symmetry group, extending previous results in the
literature. This provides a general classification of 2 + 1-dimensional symmetry-enriched topological (SET)
phases derived from a topological phase of matter C with on-site symmetry group G. We derive a set of data and
consistency conditions, the solutions of which define the algebraic theory of the defects, known as a G-crossed
braided tensor category C×

G . This allows us to systematically compute many properties of these theories, such
as the number of topologically distinct types of defects associated with each group element, their fusion rules,
quantum dimensions, zero modes, braiding exchange transformations, a generalized Verlinde formula for the
defects, and modular transformations of the G-crossed extensions of topological phases. We also examine
the promotion of the global on-site symmetry to a local gauge invariance (“gauging the symmetry”), wherein
the extrinsic G defects are turned into deconfined quasiparticle excitations, which results in a different topological
phase (C×

G )G. We present systematic methods to compute the properties of (C×
G )G when G is a finite group.

The quantum phase transition between the topological phases (C×
G )G and C can be understood to be a “gauge

symmetry breaking” transition, thus shedding light on the universality class of a wide variety of topological
quantum phase transitions. A number of instructive and/or physically relevant examples are studied in detail.
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I. INTRODUCTION

The last two decades of research in condensed matter
physics have yielded remarkable progress in the understand-
ing of gapped quantum states of matter. In the absence of
any symmetry, gapped quantum systems at zero temperature
may still form distinct phases of matter that exhibit topo-
logical order, which is a new kind of order characterized
by patterns of long-range entanglements [1,2]. Topologically
ordered phases possess numerous remarkable properties, in-
cluding quasiparticle excitations with exotic, possibly non-
Abelian, exchange transformations (statistics), robust patterns
of long-range quantum entanglement, robust topology-
dependent ground-state degeneracies, and protected gapless
edge modes.

Recently, a number of exciting new directions have
emerged in the study of topological phases of matter, one of
which is the study of extrinsic defects [3–21]. This includes
the study of extrinsically imposed pointlike defects, which
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are not finite-energy quasiparticle excitations, but neverthe-
less have a nontrivial interplay with the topological order.
These pointlike defects can themselves give rise to topolog-
ically protected degeneracies, non-Abelian braiding exchange
transformations, and exotic localized zero modes. From a
practical standpoint, they might be useful in enhancing the
computational power of a topological phase used for topo-
logically protected quantum information processing [2,22–
27]. For example, one may engineer non-Abelian defects in
an Abelian topological phase, or even defects that realize a
computationally universal braiding gate set in a non-Abelian
phase that otherwise would not have computationally univer-
sal braiding [12]. Several microscopic realizations of such
defects have been proposed in the past few years, rang-
ing from lattice dislocations in certain microscopic models
[4,6,7,11,13,17,19,20] to unconventional methods of coupling
fractional quantum Hall (FQH) edge states [6,8–10,12,14,15].
In addition to pointlike extrinsic defects, topological phases
also support a rich variety of extrinsic linelike defects. These
may either be gapped or gapless, and in both cases there is
necessarily a nontrivial interplay with the topological order. In
particular, gapped linelike defects, such as gapped boundaries
[5,14,15,28–33], have recently been proposed to be used
for robust experimental signatures of certain topologically
ordered states, such as fractionalization in spin liquids and
topological degeneracy in FQH states [34–37].
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A second direction that has generated intense research
is the interplay of symmetry with topological order. In the
presence of symmetries, gapped quantum systems acquire
a finer classification [38–60]. Specifically, it is possible for
two phases of matter to be equivalent in the absence of the
symmetry, but distinct in the presence of symmetry. These
are referred to as symmetry-protected topological (SPT) states
if the gapped phase is trivial in the absence of symmetry,
and as symmetry-enriched topological (SET) states if the
gapped phase is topologically nontrivial, even when all sym-
metries are broken. One-dimensional Haldane phases in spin
chains [61,62], two-dimensional quantum spin Hall insula-
tors [63–65], and three-dimensional time-reversal-invariant
topological insulators [66–68] are all well-known examples
of SPT states. In contrast, FQH states and gapped quantum
spin liquids are examples of SET states, because they possess
symmetries (particle number conservation or spin rotational
invariance) together with topological order.

In the presence of symmetries, quasiparticles of a
topological phase of matter can acquire fractional quantum
numbers of the global symmetry. For example, in the
ν = 1

3 Laughlin FQH state [69], the quasiparticles carry
charge in units of e/3; in gapped Z2 quantum spin liquids
[70], the quasiparticles can carry unit charge and no spin
(chargeons/holons), or zero charge and spin 1

2 (spinons).
With symmetry, an even larger class of extrinsic defects is
possible, as one can always consider a deformation of the
Hamiltonian that forces a flux associated with the symmetry
into a region of the system, even if this flux is not associated
with any deconfined quasiparticle excitation.

When a Hamiltonian that realizes a topological phase of
matter possesses a global symmetry, it is natural to consider
the topological order that is obtained when this global sym-
metry is promoted to a local gauge invariance, i.e., “gaug-
ing the symmetry.” This is useful for a number of reasons.
(1) The properties of the resulting gauged theory can be used
as a diagnostic to understand the properties of the original,
ungauged system [71–74]. (2) Gauging the symmetry pro-
vides a relation between two different topological phases of
matter and can give insight into the nature of the quantum
phase transition between them [75–78]. (3) Understanding the
relation between such phases may aid in the development of
microscopic Hamiltonians for exotic topological phases (de-
scribed by the gauged theory), by starting with known models
of simpler topological phases (described by the ungauged
theory).

Although a remarkable amount of progress has been made
on these deeply interrelated topics, a completely general
understanding is lacking, and many questions remain. For
example, although there are many partial results, the current
understanding of fractionalization of quantum numbers,
along with the classification and characterization of SETs is
incomplete. Moreover, while there have been many results
towards understanding the properties of extrinsic defects in
topological phases, there has been no general systematic
understanding and, in particular, no concrete method of
computing all the rich topological properties of the defects
for an arbitrary topological phase. The study of topological
phase transitions between different topological phases is also
missing a general theory.

In this paper, we develop a general systematic framework
to understand these problems. We develop a way to char-
acterize the interplay of symmetry and topological order in
2 + 1 dimensions, thus leading us to a general understanding
of how symmetries can be consistently fractionalized in a
given topological phase. Subsequently, we develop a math-
ematical framework to describe and compute the properties
of extrinsic pointlike defects associated with symmetries of
the topological phase. Our construction utilizes results and
ideas from recent mathematical literature [79–82]. However,
since our focus is on concrete applications to physics, our
approach and formalism are quite different from the more
abstract categorical formalism that has been presented in the
mathematical literature. Our framework for understanding the
topological properties of extrinsic defects then provides us
with a way to systematically classify and characterize SETs
(including SPTs) in 2 + 1 dimensions. Finally, we again build
on results from the mathematics literature [80,83] to provide a
systematic prescription for gauging the symmetry of a system
in a topological phase of matter.

A. Summary of main results

Due to the length of this paper, we will briefly summarize
the main results of our work here. Before we proceed, we note
that our starting framework to describe a topological phase
without symmetry is in terms of an anyon model C, for which
we provide a detailed review of the general theory in Sec. II.
Mathematically, C is referred to as a unitary modular tensor
category (UMTC). Physically, it can be thought of as the set
of topological charges, which label the topologically distinct
types of quasiparticles (anyons), together with data that self-
consistently specifies their fusion, associativity, and braiding
exchange transformations. As this paper draws upon a number
of technical mathematical concepts, we have made an effort to
include precise definitions and explanations of most of these
concepts, in order to make it as self-contained as possible.

1. Symmetry and fractionalization

Symmetry fractionalization refers to the manner in which
topologically nontrivial quasiparticles carry quantum numbers
that are (in a sense) fractions of the quantum numbers of the
underlying local constituents of the system, such as electrons
or spins. We show that for a symmetry G (continuous or
discrete, unitary or antiunitary), symmetry fractionalization is
characterized by a pair of objects, ρ and η, which we briefly
describe here. There are nonphysical redundancies, i.e., a sort
of gauge freedom, associated with these objects that should
be factored out, and the resulting equivalence classes provide
a classification of symmetry fractionalization.

We first define the group of topological symmetries, de-
noted Aut(C), of a topological phase of matter described by
C. Roughly speaking, this corresponds to all of the different
ways the theory C can be mapped back onto itself, including
permutations of topological charges, in such a way that the
topological properties are left invariant. A subset of such
autoequivalence maps called “natural isomorphisms,” which
do not permute topological charges and leave all the basic data
unchanged, provide the redundancy under which one equates
the autoequivalence maps to form the group Aut(C). Simple
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examples of autoequivalence maps include layer permutations
in multilayer systems that consist of multiple identical copies
of a topological phase, or electric-magnetic duality in phases
described by a ZN gauge theory.

We next consider a physical system in a topological phase
described by C, which also has a global symmetry described
by the group G acting on the physical degrees of freedom.
One must specify how G acts upon the topological degrees of
freedom and thus interplays with the topological symmetry.
This is characterized by a group action

[ρ] : G → Aut(C). (1)

The notation means that we assign an autoequivalence map
ρg to each group element g ∈ G and take the equivalence
classes of these maps under natural isomorphism. (It is useful
to work with a specific choice ρ ∈ [ρ] when deriving results,
and then demonstrate invariance within the equivalence class
for certain quantities at the end.)

Once [ρ] is specified, we examine the symmetry action in
an underlying physical system described by a microscopic
Hamiltonian. We show that symmetry fractionalization is
possible only when a certain object [O] ∈ H3

[ρ](G,A) van-
ishes. This object [O] is uniquely defined by [ρ], and hence
called the fractionalization obstruction class of [ρ]. Here A
corresponds to the group whose elements are the Abelian
topological charges in C, where group multiplication is de-
fined by fusion. H3

[ρ](G,A) is the third cohomology group
of G with coefficients in the group A, where the subscript
[ρ] indicates the inclusion of the symmetry action in the
definition of the cohomology, which, in this context, is a
potential permutation of the topological charge values in A
(and, hence, is independent of the choice of ρ ∈ [ρ]).

When the obstruction vanishes, it is possible to consistently
fractionalize the symmetry in the system, meaning one can
specify a local projective symmetry action that is compati-
ble with the symmetry action on the topological degrees of
freedom. This local projective symmetry action has associated
projective phases ηa(g, h) for each topological charge a.
There is also nonphysical redundancy in how the localized
symmetry operators are defined, which transforms the cor-
responding projective phases. Factoring out this redundancy
yields symmetry fractionalization classes corresponding to the
equivalence classes [η]. The different ways (up to redundancy)
in which the symmetry can be fractionalized is shown to
be classified by the second cohomology group H2

[ρ](G,A),
with there being a distinct fractionalization class for each
element [t] ∈ H2

[ρ](G,A). More precisely, the set of symmetry
fractionalization classes form an H2

[ρ](G,A) torsor, which
means the classes are not themselves elements of H2

[ρ](G,A),
but rather the distinct fractionalization classes are related to
each other by an action of distinct elements H2

[ρ](G,A). The
precise definitions of these mathematical objects will appear
in the main text and Appendices.

2. Extrinsic defects

When the physical system has a symmetry G, one can
consider the possibility of pointlike defects associated with
group elements g ∈ G, which may be thought of as fluxes.

In many ways, a defect behaves like a quasiparticle. How-
ever, an important distinction is that when a quasiparticle
is transported around a g defect, it is acted upon by the
corresponding symmetry action ρg, possibly permuting the
quasiparticle’s topological charge value. Another important
distinction is that, since G describes a global symmetry and
not a local gauge invariance in this context, these defects
do not correspond to finite-energy excitations of the system.
Thus they must be extrinsically imposed by modifying the
Hamiltonian in a manner that forces the g flux into the system.
If the position of the defects are allowed to fluctuate quantum
mechanically, the energy cost of separating such defects will
grow either logarithmically or linearly in their separation.
Therefore they may also be viewed as confined excitations of
the system.

The extrinsic defects of a topological phase have many
rich topological properties, and one purpose of this paper is
to develop a concrete algebraic formalism, analogous to the
algebraic theory of anyons, that can be used to characterize
and systematically compute the many topological proper-
ties of such defects. For this, we begin by generalizing the
notion of topological charge to apply to defects, with distinct
types of g defects carrying distinct values of topological
charge. We then extend the description of the original anyon
model C, describing the topological phase, to a G-graded
fusion theory

CG =
⊕
g∈G

Cg, (2)

where each sector Cg describes the topologically distinct types
of g defects and the fusion and associativity relations respect
the group multiplication of G, i.e., a g defect and an h defect
fuse to a gh defect. In this way, the quasiparticles of the
original topological phase correspond to the 0 defects, i.e.,
C0 = C.

Subsequently, we introduce a generalized notion of braid-
ing transformations that incorporates the symmetry action ρg
on topological charges as a quasiparticle or defect passes
around a g defect. This is referred to as “G-crossed braiding”
and defines a G-crossed braided tensor category (BTC), which
we denote as C×

G . Additionally, the symmetry action on states
and fractionalization (ρ and η) are incorporated when consid-
ering fusion spaces. Similar to anyon models, we provide a
diagrammatic representation of the states and operators of the
theory and identify the basic data that fully characterizes the
theory. We introduce consistency conditions on the basic data,
which generalize the famous hexagon equations for braiding
consistency to “heptagon equations” for G-crossed braiding,
and impose consistency of the incorporation of the symmetry
action and its fractionalization within the theory.

Given the basic data of the G-crossed theory, we are
able to compute all properties of the defects, including their
fusion rules, quantum dimensions, localized zero modes, and
braiding statistics. We find that topological twists, which
characterize the braiding statistics of objects, is not a gauge
invariant quantity for defects, which meshes well with the
notion that the defects are associated with confined objects.
Another important property that we derive is that the total
quantum dimension Dg of the sector Cg is the same for all
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g ∈ G, i.e., Dg = D0 (this holds generally for a G-graded
fusion category). We also find that the number of topologically
distinct g defects, |Cg|, is equal to the number of g-invariant
topological charges [i.e., those for which ρg(a) = a] in the
original UMTC C0.

We describe the notion of G-crossed modular transforma-
tions when the system inhabits a torus or surfaces of arbitrary
genus. These extend the usual definition of modular transfor-
mations, generated by S and T matrices, to cases where there
are defect branch lines wrapping the cycles of the torus or
higher genus surface. We derive a G-crossed generalization of
the Verlinde formula, which relate the fusion rules of defects
(and quasiparticles) to the G-crossed S matrix.

For every 2 + 1-dimensional SET phase, one can construct
a corresponding G-crossed theory C×

G describing the defects in
the topological phase, which also incorporates the symmetry
fractionalization. Therefore the G-crossed defect theories C×

G
provide both a classification and a characterization of SET
phases in 2 + 1 dimensions. In this way, one can classify SETs
by solving the G-crossed consistency relations. Topological
invariants that can distinguish different SET phases are asso-
ciated with gauge-invariant quantities of the G-crossed theory
C×

G . A partial list of such topological invariants is presented in
Table I of Sec. IX.

Importantly, not every fractionalization class corresponds
to a well-defined SET in 2 + 1 dimensions. In some cases,
there can be an additional obstruction that prevents the
existence of a solution of the G-crossed consistency relations
(such as the heptagon equations). The inability to solve these
consistency conditions and, thus, to construct a consistent
defect theory C×

G indicates that the symmetry fractionalization
class is anomalous. Similar to the classification and possible
obstruction of symmetry fractionalization for a topological
phase when the symmetry action is specified, the classification
and possible obstruction of defectification (i.e., the existence
of a consistent defect theory) for a topological phase when
the symmetry action and fractionalization are specified can be
reduced to a simpler cohomological structure. In particular,
it has been proven [81] that, for a finite group G, which
describes unitary on-site symmetries, the defectification
obstruction takes values in H4(G, U(1)). Moreover, this
obstruction only depends on C0, the symmetry action, and the
symmetry fractionalization class. Using the formalism of our
paper, we explicitly derive an expression in Eq. (485) for such
an obstruction to solving the G-crossed consistency conditions
for the case where the symmetry action [ρ] does not permute
quasiparticle types. A number of recent examples have shown
that anomalous realizations of symmetry fractionalization,
while they cannot exist in 2 + 1 dimensions, can instead exist
as a surface termination state of a 3 + 1-dimensional SPT
state [84–94].

Furthermore, it has been proven [81] that, when there are
solutions of the G-crossed consistency relations (i.e., when
the defectification obstruction vanishes) for a specified C0,
symmetry action, and symmetry fractionalization, the set of
gauge inequivalent solutions, i.e., the defectification classes,
form a H3(G, U(1)) torsor. More specifically, this means that
distinct G-crossed theories (with the same C0, symmetry ac-
tion, and fractionalization class) are related to each other by an
action of the distinct elements of H3(G, U(1)). This action by

[α] ∈ H3(G, U(1)) is essentially “gluing” a SPT state, whose
symmetry group is G and associativity is defined by [α], onto
the G-crossed theory such that the group labels of the defects
of both theories match up. Whether gluing on a SPT state in
this way actually produces a distinct G-crossed theory can be
determined in our framework by checking whether the old and
new G-crossed theories are equivalent under relabeling the
defect topological charge values. Thus these results imply that
the possible G-crossed extensions C×

G , i.e., the possible sym-
metry enrichments of a 2 + 1-dimensional topological phase
described by C for finite on-site unitary G symmetry, are fully
classified (possibly up to relabeling topological charges) by
three properties: (1) the symmetry action [ρ] : G → Aut(C);
(2) the symmetry fractionalization class, which is an element
of an H2

[ρ](G,A) torsor; and (3) the defectification class,
which is an element of an H3(G, U(1)) torsor.

3. Gauging the symmetry

Given a topological phase of matter C, together with its
symmetry-enriched class, i.e., its G-crossed defect theory C×

G ,
one can promote the symmetry G to a local gauge invariance
(“gauging the symmetry”). This results in a different topo-
logical order, which we denote (C×

G )G, in which the g defects
become deconfined quasiparticle excitations. Importantly, the
gauged theory (C×

G )G depends on the particular G-crossed
extension C×

G of C, which thus forms the input data necessary
to construct the gauged theory. The topological properties of
the gauged theory (C×

G )G can alternatively be viewed from a
different perspective as topological invariants of the associ-
ated SET, which is described by C×

G .
We first examine the question of how one may obtain a

microscopic Hamiltonian that realizes the topological phase
(C×

G )G, given a Hamiltonian that realizes a topological phase
C. Along this line, we provide a concrete model demonstrating
how this may be done in the case where G is an Abelian finite
group.

Next, we provide a review of some known results from
the mathematics literature for obtaining the properties of
(C×

G )G from those of C×
G , in particular the topological charge

content, quantum dimensions, and fusion rules. It follows
from these results that the total quantum dimension of the
gauged theory (C×

G )G is always related to the total quantum
dimension of the original theory C and its G-crossed extension
by D(C×G )G = |G| 1

2 DCG = |G|DC . We further provide a formula
for the topological twists of quasiparticles in (C×

G )G, which
were not previously given in the literature. We confirm the
validity of this expression based on physical considerations
and consistency. Using the expression for the topological
twists of the gauged theory, we show that the chiral central
charge (mod 8) is the same in these theories. We also derive
an expression for the topological S matrix of (C×

G )G in terms
of the data of C×

G . Finally, we discuss how to compute the
ground-state degeneracy of (C×

G )G on higher genus surfaces
in terms of the properties of C×

G , without needing to derive
the full fusion rules of (C×

G )G. This is useful for practical
computations of the number of topological charge types and
their quantum dimensions.

We close the discussion of gauging the symmetry by
observing that, since (C×

G )G and C are related to each other by

115147-4



SYMMETRY FRACTIONALIZATION, DEFECTS, AND … PHYSICAL REVIEW B 100, 115147 (2019)

gauging G, the topological quantum phase transition between
them can be understood as a discrete G “gauge symmetry
breaking” transition. This point of view provides insight into
the universality class of the topological phase transitions
between a wide variety of distinct topological phases.

4. Examples

After developing the general theory, summarized above,
we study many concrete examples. We focus on examples
that are physically relevant and/or which illustrate different
technical aspects and subtleties of using the theory and meth-
ods developed in this paper to derive the various properties
of G-crossed extensions and gauged theories. One large class
of examples for which we have obtained all the basic data of
C×

G by solving the consistency conditions is the case where
C0 is a MTC and the symmetry action [ρ] does not permute
quasiparticle types. Another particularly interesting example
that we examine is the “three-fermion theory,” also known as
SO(8)1, with the non-Abelian symmetry group G = S3 acting
nontrivially. Gauging the S3 symmetry of the three-fermion
theory results in a rank 12 (weakly integral) UMTC that has
not been previously described elsewhere.

B. Relation to prior work

The background context of our work is closely related to
a large number of works spanning many different fields. Here
we briefly comment on the relation to some of the most closely
related works.

A framework, called the projective symmetry group (PSG),
to address the problem of classifying SETs was originally
introduced in Ref. [38]. As we discuss in Sec. IX B, the
PSG framework only captures a subset of possible types of
symmetry fractionalization and, Thus misses a large class of
possible SETs for a given topological phase. Our results on the
general classification of symmetry fractionalization in terms
of H2

[ρ](G,A) extends the previous result of Ref. [51], which
specifically applies to Abelian topological phases where the
symmetries do not permute the topological charge values. A
preliminary consideration of some of these ideas can also be
found at a more abstract level in the discussion in Appendix F
of Ref. [95].

The notion of a G-crossed braided tensor category (BTC)
was originally introduced in the mathematics literature in
Refs. [79,82]. Similarly, the classification and possible ob-
structions of G-crossed extensions, which we summarized in
the previous section, has previously appeared in the mathe-
matics literature [81] in the problem of extending a fusion
category or a braided fusion category by a finite group G.

With respect to these prior mathematical results, our results
can be viewed as both providing (1) a new and detailed
concrete formulation of the theory of G-crossed BTC, and
(2) providing the physical context and interpretations of the
abstract mathematical results by directly linking them to their
physical realizations. In particular, we provide a physical
interpretation of these mathematical objects in terms of the
fusion and braiding properties of extrinsic defects associated
with group elements g ∈ G. Moreover, since the mathematical
constructions are highly abstract, they may obscure many of

the important details that are of interest for physical appli-
cations. For example, we provide concrete definitions of the
symmetry action [ρ], the fractionalization obstruction [O],
and local projective phases [η] that classify fractionalization
in terms of the symmetry action on the states of quasiparticles.
The mathematical treatment that we utilize in this paper,
working directly with the topologically distinct classes of
simple objects (quasiparticles and defects), their basic data (F
symbols, R symbols, etc.), and their consistency conditions,
is referred to in mathematical parlance as a “skeletonization”
of a category. Our work may, Thus also be viewed as a
new mathematical result that introduces the skeletonization of
G-crossed BTCs and provides a new definition of the theory
of G-crossed BTCs.

Extrinsic defects in topological phases of matter have been
increasingly studied in various examples in the condensed
matter physics literature [4–21]. One purpose of our work is
to provide a totally general treatment of extrinsic twist defects
that captures all of their topologically nontrivial properties,
provides a framework for computing them, and can be applied
to arbitrary topological phases of matter. In recent years, such
defects have also been studied in the mathematical physics
literature, both for conformal field theory (CFT) [96] and
for topological quantum field theory (TQFT) [97,98]. While
our work has some overlap with these, our approach is quite
different. Our emphasis is on developing concrete methods
that can be used to compute various topological properties of
the defects and direct physical interpretations that apply in the
condensed matter physics setting.

The idea of “gauging” a discrete symmetry of a topological
phase of matter is closely related to the concept of “orbifold-
ing” in rational CFT [99,100]. However, while there are often
close relations between CFTs and topological phases of mat-
ter, they are distinct physical systems, and so they each require
their own physical understanding. Many of our general results
and examples go beyond the analogous problem that has been
studied in the CFT literature, for which the general results are
limited. For example, much of the CFT work on orbifolding
is typically focused on holomorphic CFTs, which correspond
to only a small class of possible topological phases. The
important classifying objects (the symmetry action, fraction-
alization class, and defectification class) summarized above
also have not, to our knowledge, been generally discussed in
the CFT literature on orbifolding. On the other hand, a CFT
possesses a great deal of structure that does not exist in the
corresponding MTC. As such, the orbifold construction can
be applied to CFTs in ways that do not correspond to gauging
the corresponding MTC. This distinction is highlighted by the
fact that applying the orbifold construction multiple times to
a CFT can result in the original CFT, whereas applying the
gauging construction multiple times to a MTC cannot result
in the original MTC.

Our work on gauging topological phases of matter is
closely related to work of Refs. [80,101], which sets out to
find a mathematical formulation in terms of MTCs of the
concept of orbifolding in CFTs. For example, Ref. [80] also
contains results on the extended Verlinde algebra. Again, our
results extend some of these mathematical results and put
them into more concrete terms with direct physical context.
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In recent years, the notion of gauging symmetries of a
topological phase has been increasingly studied in the con-
densed matter literature. The resulting non-Abelian topolog-
ical phases that are obtained by gauging either the layer
exchange symmetry of bilayer Abelian FQH states, or the
electric-magnetic duality of ZN toric code models were stud-
ied in Refs. [77,102,103]. In studies of SPT phases, the notion
of gauging the symmetry of the system has been powerful
in developing an understanding of the distinction between
SPT states [71,74]. While those were isolated classes of
examples, our work provides a concrete prescription to derive
the properties obtained when any topological phase of matter
C is gauged by any finite group G.

While gauging a discrete global symmetry G of a topo-
logical phase C gives rise to a new topological phase (C×

G )G,
there is an inverse process, known as topological Bose
condensation [75], which takes (C×

G )G to C. The quantum
phase transition between (C×

G )G and C corresponds to a
confinement/deconfinement transition or, in other words, a
“gauge symmetry breaking” transition. The notion of con-
densation was discussed mathematically in Refs. [104,105].
This has been studied in the context of topological phases in
Refs. [28,75,106,107]. In the topological Bose condensation
picture, there is an intermediate stage between (C×

G )G and C,
referred to as the T theory in Ref. [75], which includes the
objects that are confined by the condensate. These confined
objects are g defects and the G-crossed theory C×

G provides
a complete description of the topological properties of the T
theory, including their braiding transformations, which have
not been previously identified. Most of the prior work along
these lines has focused on the nature of the topological phase
that is obtained when topologically nontrivial bosons of a
topological phase are condensed. However, Refs. [76–78] fo-
cused on the nature of the universality class of quantum phase
transitions associated with topological Bose condensation by
studying some simple classes of examples when G = Z2. We
generalize these results to an understanding of the universality
class of topological Bose condensation transitions between
(C×

G )G to C for general finite G.

II. REVIEW OF ALGEBRAIC THEORY OF ANYONS

This section provides a summary review of anyon mod-
els, known in mathematical terminology as unitary braided
tensor categories (UBTC) [108,109]. We use a diagrammatic
representation of anyonic states and operators acting on them,
following Refs. [95,110–112]. (Many relations in this review
section are stated without proof. For additional details and
proofs, we refer the reader to the references listed here or,
in some cases, to Secs. VI and VII where one may find
the generalized versions.) This formalism encodes the purely
topological properties of anyons, i.e., quasiparticle excitations
of topological phases of matter, independent of any particular
physical realization.

A. Fusion

In this section, we describe the properties of fusion tensor
categories, and will introduce braiding in the next. We begin

with a set C of superselection sector labels called topological
or anyonic charges a, b, c . . . ∈ C.1 (We will often also use
the symbol C to refer the category itself.) These conserved
charges obey an associative fusion algebra

a × b =
∑
c∈C

Nc
abc (3)

where the fusion multiplicities Nc
ab are non-negative integers

which indicate the number of different ways the charges a and
b can be combined to produce the charge c. We require that
fusion is finite, meaning

∑
c Nc

ab is a finite integer for any fixed
a and b. Associativity requires these to satisfy∑

e

Ne
abNd

ec =
∑

f

Nd
a f N f

bc. (4)

In the diagrammatic formalism, each line segment is ori-
ented (indicated with an arrow) and ascribed a value of
topological charge. Each fusion product has an associated
vector space V c

ab with dim V c
ab = Nc

ab, and its dual (splitting)
space V ab

c . The states in these fusion and splitting spaces
are assigned to trivalent vertices with the appropriately cor-
responding anyonic charges, with basis states written as

(dc/dadb)
1/4

c

ba

μ = a, b; c, μ| ∈ V c
ab, (5)

(dc/dadb)
1/4

c

ba

μ = |a, b; c, μ V ab
c , (6)

where μ = 1, . . . , Nc
ab. (Many anyon models of interest have

no fusion multiplicities, i.e., Nc
ab = 0 or 1 only, in which

case the trivial vertex labels μ will usually be left implicit.)
The bra/ket basis vectors are orthonormal. The normalization
factors (dc/dadb)1/4 are included so that diagrams will be in
the isotopy invariant convention, as will be explained in the
following. Isotopy invariance means that the value of a (la-
beled) diagram is not changed by continuous deformations, so
long as open endpoints are held fixed and lines are not passed
through each other or around open endpoints. Open endpoints
should be thought of as ending on some boundary (e.g., a
timeslice or an edge of the system) through which isotopy
is not permitted. We note that the diagrammatic expressions
of states and operators are, by design, reminiscent of particle
worldlines, but there is not a strict identification between the
two. The anyonic charge lines are only a diagrammatic expres-
sion of the algebraic encoding of the topological properties
of anyons, and interpreting them as worldlines is not always
correct.

1It is often assumed that the set of topological charges C is finite,
but we may allow it to be infinite in the definition of a fusion tensor
category or a braided tensor category, as long as fusion is finite.
However, for a modular tensor category, we will require C to be a
finite set.
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Diagrammatically, inner products are formed by stacking
vertices so the fusing/splitting lines connect

a b

c

c

μ

μ

= δcc δμμ
dadb

dc

c

, (7)

which can be applied inside more complicated diagrams. Note
that this diagrammatically encodes charge conservation. Since
we want to use this to describe the states associated with
anyonic quasiparticles (in a topological phase of matter), we
require the inner product to be positive definite, i.e., da are
required to be real and positive.

With this inner product, the identity operator on a pair of
anyons with charges a and b is written (diagrammatically) as
the partition of unity

11ab =

ba

=
c,μ

dc

dadb

c

ba

ba

μ

μ
. (8)

A similar decomposition applies for an arbitrary number of
anyons.

More complicated diagrams can be constructed by con-
necting lines of matching charge. The resulting vector
spaces obey a notion of associativity given by isomorphisms,
which can be reduced using the expression of three anyon
splitting/fusion spaces in terms of two anyon splitting/fusion

V abc
d

∼=
⊕

e

V ab
e ⊗V ec

d
∼=
⊕

f

V bc
f ⊗V a f

d , (9)

to isomorphisms called F moves, which are written diagram-
matically as

a b c

e

d

α

β
=

f,μ,ν

F abc
d (e,α,β)(f,μ,ν)

a b c

f

d

μ

ν
. (10)

The F moves can be viewed as changes of bases for the states
associated with quasiparticles. To describe topological phases,
these are required to be unitary transformations, i.e.,[(

F abc
d

)−1]
( f ,μ,ν )(e,α,β ) =

[(
F abc

d

)†]
( f ,μ,ν)(e,α,β )

= [
F abc

d

]∗
(e,α,β )( f ,μ,ν ). (11)

In order for this notion of associativity to be self-consistent,
any two sequences of F moves applied within an arbitrary
diagram which start from the same state space and end in
the same state space must be equivalent. MacLane’s co-
herence theorem [113] establishes that this consistency can
be achieved by imposing the constraint called the Pentagon
equation:∑

δ

[
F f cd

e

]
(g,β,γ )(l,ν,δ)

[
F abl

e

]
( f ,α,δ)(k,μ,λ)

=
∑

h,σ,ψ,ρ

[
F abc

g

]
( f ,α,β )(h,ψ,σ )

[
F ahd

e

]
(g,σ,γ )(k,ρ,λ)

× [
F bcd

k

]
(h,ψ,ρ)(l,ν,μ) (12)

e

g

c d

e

f

c db

e

g

a c db

F
k

a db
e

c dbFba
l

F

f

e

F F
c

a

a

k
l

hh

FIG. 1. The Pentagon equation enforces the condition that dif-
ferent sequences of F moves from the same starting fusion basis
decomposition to the same ending decomposition gives the same
result. Equation (12) is obtained by imposing the condition that the
above diagram commutes.

which equates the two sequences of F moves shown in Fig. 1.
In other words, given a set of fusion rules, one can find all
consistent fusion categories by solving the Pentagon equations
for all consistent sets of F symbols.

We require the existence of a unique “vacuum” charge
0 ∈ C for which fusion (and braiding) is trivial. In particular,
the fusion coefficients must satisfy Nc

a0 = Nc
0a = δac, charge

lines can be added and removed from diagram at will (in other
words, there are canonical isomorphisms between V a0

a , V 0a
a ,

and C), and the associativity relations must obey [F abc
d ] = 1

if any one of a, b, or c equals 0 when the involved fusions
are allowed (this enforces the compatibility of F moves with
the previously mentioned canonical isomorphism and corre-
sponds to choosing the basis vectors of V a0

a and V 0a
a such

that they map to 1 in the canonical isomorphisms mentioned
above). Note that it is not required that [F abc

d ] = 1 when
d = 0, nor is this even generally possible. We often specially
denote vacuum lines as dotted lines.

For each a ∈ C, we require the existence of a conjugate
charge, or “antiparticle,” ā ∈ C, for which [F aāa

a ](0,α)(0,μ) �= 0.
It follows that N0

ab = δbā, i.e., ā is unique and dim V 0
aā = 1.

Also, 0 = 0̄ and ¯̄a = a. Thus we can write[
F aāa

a

]
00 =

κa

da
, (13)

where we have defined the quantum dimension da of charge a
to be

da =
∣∣[F aāa

a

]
00

∣∣−1
(14)

and κa is a phase. It follows that d0 = 1, and

da = dā = a . (15)

Here we have introduced the convention of smoothing out the
charge a line at |a, ā; 0〉 vertices to form a “cup” when we
remove the vacuum charge 0 line, and similarly forming a
“cap” from 〈a, ā; 0|.

We also define the total quantum dimension of C to be

D =
√∑

a∈C
d2

a . (16)
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In the diagrammatic formalism, reversing the orientation of
a line is equivalent to conjugating the charge labeling it, i.e.,

a
=

ā
. (17)

Isotopy invariance is essentially the ability to introduce and
remove bends in a line. Bending a line horizontally (so that
the line always flows upward) is trivial (in that it utilizes the
canonical isomorphisms of adding/removing vacuum lines),
but a complication arises when a line is bent vertically. To
understand this, consider the F move associated with this type
of bending

a ā a

0

0

= κa a. (18)

(Notice the vertex normalization comes into play here.) In
general, the phase κa = κ∗

ā is not equal to 1, but for a �= ā,
it is gauge dependent and can be fixed to 1 by a gauge choice.
For a = ā, κa = ±1 is a gauge invariant quantity, known as
the Frobenius-Schur indicator. Thus we see that one needs
more than just diagrammatic vertex normalization to produce
isotopy invariance for this kind of bending. This can be dealt
with using flags that keep track of nontrivial κa phases and
unitary transformations (which can be defined in terms of
the F symbols) when the legs of a vertex are bent up or
down, which can be used, for example, to prove the pivotal
property. (We refer the reader to Refs. [95,111] for details.) It
follows that the dimension of fusion/splitting spaces related
by bending lines are equal, so

Nc
ab = Nb

āc = Na
cb̄ = Nā

bc̄ = Nb̄
c̄a = Nc̄

b̄ā. (19)

We can also define a diagrammatic trace of operators
(known as the “quantum trace”) by closing the diagram with
loops that match the outgoing lines with the respective incom-
ing lines at the same position

TrX = Tr

⎡
⎢⎣ X

. . .

. . .

⎤
⎥⎦ =

a1,...,an

X

. . .

. . .

. . .

a1 an

. (20)

Connecting the endpoints of two lines labeled by different
topological charge values violates charge conservation, so
such diagrams evaluate to zero. One can equivalently take
the trace either by looping the lines around to the right (as
shown above) or to the left (with their equality following from
da = dā).

By taking the trace of 1ab and using isotopy, together with
Eqs. (7) and (8), we obtain the important relation

dadb =
∑

c

Nc
abdc. (21)

Let us define fusion matrices Na using the fusion coef-
ficients to be [Na]bc = Nc

ba. We note that the bending re-
lations indicate that NT

a = Nā. From Eq. (21), we see that
the vector v with components vc = dc/D is a normalized
eigenvector of each matrix Na with corresponding eigen-
value da. Moreover, the Perron-Frobenius theorem assures us
that v is the only eigenvector (up to overall multiplicative
factors) of Na with all positive components and that da is
the largest (in absolute value) eigenvalue of Na. Thus the
dimension of the state space asymptotically grows as powers
of da as one increases the number n of a quasiparticles, i.e.,∑

c dim V a...a
c =∑

c [Nn
a]0c ∼ dn

a as n → ∞. If da = 1, we
call charge a Abelian, which is equivalent to saying it has
unique fusion with all other charges (

∑
c Nc

ab = 1 for all b).
Otherwise, da > 1 and we call it non-Abelian.

Given fusion rules specified by Nc
ab, we can define the

corresponding Verlinde algebra spanned by elements va which
satisfy vā = v†

a and

vavb =
∑

c

Nc
abvc. (22)

Notice that va may be (faithfully) represented by Na.

B. Braiding

The theory described in the previous section defined a
unitary fusion tensor category with positive-definite inner
product. We now wish to introduce braiding. For this, we
require the fusion algebra to also be commutative, i.e.,

Nc
ab = Nc

ba, (23)

so that the dimension of the state space is unaltered when the
positions of anyons are interchanged.

We note that this, together with associativity, implies
NaNb = NbNa, i.e., all of the fusion matrices commute with
each other. Hence, the fusion matrices are also normal and
simultaneously diagonalizable by a unitary matrix P. Specifi-
cally, Na = P�(a)P−1, where [�(a)]bc = λ

(a)
b δbc and the eigen-

values are λ
(a)
b = Pab/P0b. The eigenvalues form the fusion

characters of the Verlinde algebra, i.e., for each b the map
λb : a �→ λ

(a)
b is a fusion character satisfying the relations

λ(a)
e λ(b)

e =
∑

c

Nc
abλ

(c)
e , (24)∑

a

λ
(a)
b λ(a)∗

c = δbc|P0b|−2. (25)

Moreover, we have the relation

Nc
ab =

∑
x

PaxPbxP∗
cx

P0x
. (26)

The counterclockwise braiding exchange operator of two
anyons is represented diagrammatically by

Rab =
a b

=
c,μ,ν

dc

dadb
Rab

c μν
c

ba

ab

ν

μ , (27)

where the R symbols are the maps Rab
c : V ba

c → V ab
c that result

from exchanging two anyons of charges b and a, respectively,
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F

R

F

R

F

d

e

a cb

d

e

a b c d

c

g

a cb

g

d

f

a cb

d

a cb

R

a b

f

d

R−1R−1

F

F Fd

ca b d

a cb

d

a cb

ge

e

d

a cb

f
R−1

d

f

a cb

g

d

a cb

FIG. 2. The Hexagon equations enforce the condition that braiding is compatible with fusion, in the sense that different sequences of F
and R moves from the same starting configuration to the same ending configuration give the same result. Equations (33) and (34) are obtained
by imposing the condition that the above diagram commutes.

which are in the charge c fusion channel. This can be written
as

c

ba

μ =
ν

Rab
c μν

c

ba

ν . (28)

Similarly, the clockwise braiding exchange operator is

Rab −1
=

b a

. (29)

In order for braiding to be compatible with fusion, we re-
quire that the two operations commute. Diagrammatically, this
means we can freely slide lines over or under fusion/splitting
vertices

x

c

ba

μ

=
x

c

ba

μ

(30)

x

c

ba

μ

=
x

c

ba

μ

. (31)

These relations imply the Yang-Baxter equations for braid-
ing operators, Rj, j+1Rj−1, jR j, j+1 = Rj−1, jR j, j+1Rj−1, j , where
Rj, j+1 is the operator that braids the strands in the jth and
( j + 1)th positions in the counterclockwise sense, which are
equivalent to the property that lines can slide over braids, since
the ability to freely slide lines over/under vertices allows lines
to slide over/under braiding operators. Diagrammatically, this
is written as

= . (32)

Requiring consistency between fusion and braiding, we
find conditions that must be satisfied by the F and R symbols,
which may be expressed as the Hexagon equations:∑

λ,γ

[
Rac

e

]
αλ

[
F acb

d

]
(e,λ,β )(g,γ ,ν)

[
Rbc

g

]
γμ

=
∑

f ,σ,δ,ψ

[
F cab

d

]
(e,α,β )( f ,δ,σ )

[
R f c

d

]
σψ

[
F abc

d

]
( f ,δ,ψ )(g,μ,ν ),

(33)∑
λ,γ

[(
Rca

e

)−1]
αλ

[
F acb

d

]
(e,λ,β )(g,γ ,ν)

[(
Rcb

g

)−1]
γμ

=
∑

f ,σ,δ,ψ

[
F cab

d

]
(e,α,β )( f ,δ,σ )

[(
Rc f

d

)−1]
σψ

[
F abc

d

]
( f ,δ,ψ )(g,μ,ν ).

(34)

These relations are represented diagrammatically in Fig. 2.
MacLane’s coherence theorem [113] establishes that if the
Pentagon equation and Hexagon equations are satisfied, then
any two sequences of F and R moves (braiding) applied within
an arbitrary diagram which start from the same state space
and end in the same state space are equivalent, which is to say
that fusion and braiding are consistent. The F and R symbols
completely specify a braided tensor category (BTC).

Given the trivial associativity of the vacuum charge 0
(F abc

d = 1 when a, b, or c = 0), the Hexagon equations imply
that braiding with the vacuum is trivial, i.e., Ra0

a = R0a
a =

(Ra0
a )−1 = (R0a

a )−1 = 1.

If we further require unitarity of the theory, then (Rab)
−1 =

(Rab)
†
, which can be expressed in terms of R symbols

as [(Rab
c )

−1
]μν = [Rab

c ]
∗
νμ (which are simply phases when

Nc
ab = 1).

An important quantity derived from braiding is the topo-
logical twist (or topological spin) of charge a

θa = θā =
c,μ

dc

da
[Raa

c ]μμ =
1
da a

, (35)
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which is a root of unity [114]. This can be used to show that
the R symbols satisfy the “ribbon property”∑

λ

[
Rab

c

]
μλ

[
Rba

c

]
λν

= θc

θaθb
δμν. (36)

Another important quantity is the topological S matrix

Sab = D−1

c

N c
āb

θc

θaθb
dc =

1
D a b . (37)

It is clear that Sab = Sba = S∗
āb and S0a = da/D. A related

invariant quantity

Mab = S∗
abS00

S0aS0b
(38)

is the monodromy scalar component, which plays an impor-
tant role in anyonic interferometry [112,115,116] and which
will show up later in the classification of symmetry fraction-
alizations and group extensions of categories. If Mab = eiφ(a,b)

is a phase, then the braiding of a with b is Abelian in the sense
that

a b

= eiφ(a,b)

ba

. (39)

Moreover, when this is true, it follows that MabMac = Mae

whenever Ne
bc �= 0.

An important property that follows from the definition
of the S matrix is the ability to remove closed loops that
encircle other line, which is done by acquiring an amplitude
determined by the S matrix. In particular, we have

a

b

=
Sab

S0b

b
(40)

which can be verified by taking the trace of both sides, closing
the b charge line into a loop.

Using Eq. (40) for a diagram with two loops of topological
charge a and b, respectively, linked on a line of topological
charge x, together with Eqs. (7) and (8) and isotopy, we obtain
the important relation

Sax

S0x

Sbx

S0x
=
∑

c

Nc
ab

Scx

S0x
. (41)

This relation shows that λ
(a)
[x] = Sax/S0x is a character of the

Verlinde algebra. Here, we wrote [x] to indicate an equiv-
alence class of topological charges that correspond to the
same character, reflecting the fact that the S matrix may be
degenerate.

When the S matrix is nondegenerate, it is unitary, and this
is equivalent to the condition that braiding is nondegenerate,
which means that for each topological charge a �= 0 there is
some charge b such that RabRba �= 1ab.

Indeed, when the S matrix is unitary, the equivalence
classes [x] of topological charges corresponding to the same
Verlinde algebra character are singletons and all the fusion
characters of the Verlinde algebra are specified by the S
matrix and given by λ(a)

x = Sax/S0x. In this case, we can

also write Pab = Sab, which is often phrased as “the S matrix
diagonalizes the fusion rules.” In this case, we can use the
inverse of the S matrix with Eq. (41) to determine the fusion
rules from the S matrix, as specified by the Verlinde formula
[117]

Nc
ab =

∑
x∈C

SaxSbxS∗
cx

S0x
. (42)

When the S matrix is unitary, the braided tensor category
is called a modular tensor category (MTC). Such theories
can be consistently defined for 2D manifolds of arbitrary
genus and are related to (2 + 1)D TQFTs. In this case, the S
matrix together with the T matrix, Tab = θaδab, and the charge
conjugation matrix Cab = δab̄ obey the modular relations

(ST )3 = �C, S2 = C, C2 = 1, (43)

where

� = 1

D
∑
a∈C

d2
a θa = ei 2π

8 c− (44)

is a root of unity and c− ≡ c − c̄ is the chiral central charge.
These correspond to the TQFT’s projective representation of
the respective modular transformations on a torus.

Another useful property of a UMTC is that, if a given
topological charge a has Abelian braiding with all other
charges, i.e., if Mab = eiφ(a,b) is a phase for all charges b ∈ C,
then a is Abelian in the sense that it has da = 1 (and hence
Abelian fusion and associativity). This follows from unitarity
of the S matrix, which implies that

1 =
∑

b

|Sab|2 =
∑

b

∣∣∣∣S0aS0b

S00
Mab

∣∣∣∣2

=
∑

b

∣∣∣∣dadb

D eiφ(a,b)

∣∣∣∣2 = d2
a . (45)

In other words, non-Abelian topological charges (those with
da > 1) necessarily have non-Abelian braiding in a UMTC.

Finally, we establish the following property for MTCs,
which will be very useful for establishing the classification
of symmetry fractionalization. If there are phase factors eiφa

(defined for all charge values) that satisfy the relation

eiφa eiφb = eiφc (46)

whenever Nc
ab �= 0, then it must be the case that

eiφa = M∗
ae (47)

for some Abelian topological charge e. To verify this claim,
we write λ(a) = daeiφa and notice that

λ(a)λ(b) =
∑

c

Nc
abλ

(c). (48)

Hence, it is a fusion character and must be given by λ(a) =
Sae/S0e for some topological charge e. Thus we have

eiφa = λ(a)

da
= SaeS00

S0eS0a
= M∗

ae, (49)

and since this makes Mae a phase for all values of a, it follows
that e must be an Abelian topological charge. In this case,
M∗

ae = Sae/S0a.
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C. Gauge transformations

Distinct sets of F and R symbols describe equivalent
theories if they can be related by a gauge transformation given
by unitary transformations acting on the fusion/splitting state
spaces V ab

c and V c
ab, which can be though of as a redefinition

of the basis states as

˜|a, b; c, μ〉 =
∑
μ′

[
�ab

c

]
μμ′ |a, b; c, μ′〉, (50)

where �ab
c is the unitary transformation. Such gauge transfor-

mations modify the F symbols as[
F̃ abc

d

]
(e,α,β )( f ,μ,ν )

=
∑

α′,β ′,μ′,ν ′

[
�ab

e

]
αα′
[
�ec

d

]
ββ ′

× [F abc
d

]
(e,α′,β ′ )( f ,μ′,ν ′ )

[(
�bc

f

)−1]
μ′μ

[(
�

a f
d

)−1]
ν ′ν (51)

and the R symbols as[
R̃ab

c

]
μν

=
∑
μ′,ν ′

[
�ba

c

]
μμ′
[
Rab

c

]
μ′ν ′
[(

�ab
c

)−1]
ν ′ν . (52)

One must be careful not to use the gauge freedom associated
with �a0

a and �0b
b to ensure that fusion and braiding with

the vacuum 0 remain trivial. More specifically, one should
fix �a0

a = �0b
b = �00

0 . (One can think of this as respecting
the canonical isomorphisms that allow one to freely add
and remove vacuum lines. Alternatively, one could allow
the use of these gauge factors and compensate by similarly
modifying the canonical isomorphisms.) It is often useful to
consider quantities of the anyon model that are invariant under
such gauge transformation. The most relevant gauge invariant
quantities are the quantum dimensions da and topological
twist factors θa, since these, together with the fusion coeffi-
cients Nc

ab, usually uniquely specify the theory (there are no
known counterexamples).

III. SYMMETRY OF TOPOLOGICAL PHASES

We would like to consider a system that realizes a topo-
logical phase described by a UMTC C and which has a
global unitary or antiunitary symmetry of the microscopic
Hamiltonian described by a group G. In this section, we
do not require G to be discrete, nor do we assume that the
symmetry is on-site. In order to characterize the interplay of
symmetry and topological order, we first define the notion
of the “topological symmetry” of C, which is independent
of the group G. We then consider the action of the global
symmetry on the topological properties through its relation
to the topological symmetry (via a homomorphism from the
global symmetry group to the topological symmetry group).

A. Topological symmetry

The symmetries of a category C are described by invertible
maps ϕ : C → C from the category to itself. Each such map
ϕ can be classified according to whether it is unitary or
antiunitary, and whether it preserves or reverses the spatial
parity. We will first consider unitary, parity-preserving sym-
metries. Such maps are called autoequivalences, or braided
autoequivalences for a BTC, and may permute the topological

charge labels

ϕ(a) = a′, (53)

in such a way that all of the topological properties are left
invariant. In particular, the vacuum must always be left invari-
ant under symmetry, so 0′ = 0, and gauge invariant quantities
will be left invariant under these permutations of topological
charge, so that

Nc′
a′b′ = Nc

ab, (54)

da′ = da, (55)

θa′ = θa, (56)

Sa′b′ = Sab (57)

under autoequivalence maps.
Quantities in the theory that are not gauge invariant must

be left invariant by autoequivalence maps, up to some gauge
transformation. At a more detailed level, an autoequivalence
ϕ maps basis state vectors of fusion/splitting spaces to
(possibly different) basis state vectors of the corresponding
fusion/splitting spaces

ϕ(|a, b; c, μ〉) = ˜|a′, b′; c′, μ〉
=
∑
μ′

[
ua′b′

c′
]
μμ′ |a′, b′; c′, μ′〉, (58)

where [ua′b′
c′ ] is a unitary transformation that is included so

that the map will leave the basic data exactly invariant, rather
than just gauge equivalent to their original values. Notice
that this mapping to new basis states is generally the same
as applying a permutation of labels together with a gauge
transformation, so we have used a similar notation to that of
the previous section describing fusion/splitting vertex basis
gauge transformations.

Under such mappings of the fusion/splitting basis states,
the basic data map to

ϕ
(
Nc

ab

) = Nc′
a′b′ = Nc

ab, (59)

ϕ
([

F abc
d

]
(e,α,β )( f ,μ,ν )

) = [
F̃ a′b′c′

d ′
]

(e′,α,β )( f ′,μ,ν )

= [
F abc

d

]
(e,α,β )( f ,μ,ν ), (60)

ϕ
([

Rab
c

]
μν

) = [
R̃a′b′

c′
]
μν

= [
Rab

c

]
μν

. (61)

We see that this would generally result in gauge equivalent
values of the F and R symbols without the factors ua′b′

c′ , but
including these factors in the definition of symmetry maps
gives the stronger condition that the F symbols and R symbols
are left exactly invariant.

The collection of all such maps ϕ that leave all properties
of C invariant form the set of braided autoequivalences of
C. However, there is redundancy in these maps given by the
“natural isomorphisms,” which, in this context, are the braided
autoequivalence maps of the form

ϒ (a) = a, (62)

ϒ (|a, b; c, μ〉) = γaγb

γc
|a, b; c, μ〉, (63)

for some phases γa. It is straightforward to see that such maps
always leave all the basic data exactly invariant. Hence, one
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can think of these natural isomorphisms as vertex basis gauge
transformations of the form [�ab

c ]μν = γaγb

γc
δμν , which leave

the basic data unchanged.2

Consequently, we wish to consider braided autoequiva-
lence maps as equivalent if they are related by a natural
isomorphism, and doing so defines a group, which we denote
as Aut0,0(C). (The 0, 0 here indicates unitary and parity pre-
serving, as we will further explain.) In particular, if ϕ̌ = ϒ ◦ ϕ

for a natural isomorphism ϒ , then the braided autoequiva-
lence maps ϕ̌ and ϕ represent the same equivalence class
[ϕ̌] = [ϕ]. In this way, group multiplication in Aut0,0(C) is de-
fined by composition up to natural isomorphism [ϕ1] · [ϕ2] =
[ϕ1 ◦ ϕ2]. In other words, [ϕ3] = [ϕ1] · [ϕ2] if for any repre-
sentatives ϕ1, ϕ2, and ϕ3 of the corresponding equivalence
classes, there are natural isomorphisms ϒ1, ϒ2, and ϒ3 such
that ϒ3 ◦ ϕ3 = ϒ1 ◦ ϕ1 ◦ ϒ2 ◦ ϕ2, or, equivalently, if there is
a natural isomorphism κ such that ϕ3 = κ ◦ ϕ1 ◦ ϕ2. (These
definitions are related by κ = ϒ−1

3 ◦ ϒ1 ◦ ϕ1 ◦ ϒ2 ◦ ϕ−1
1 .)

There is yet another level of redundancy that arises in the
decomposition of the natural isomorphisms into topological
charge dependent phase factors, as in Eq. (63). Specifically,
there is freedom to equivalently choose

ϒ (|a, b; c, μ〉) = γ̆aγ̆b

γ̆c
|a, b; c, μ〉, (64)

γ̆a = ζaγa, (65)

2In fact, we believe that all vertex basis gauge transformations
of a BTC that leave the basic data unchanged must take this form
and thus they are actually natural isomorphisms, so that the two
concepts are synonymous for BTCs. This property is equivalent to
the statement that specifying the permutation of topological charges
ϕ(a) for an autoequivalence map uniquely determines the associated
unitary transformation uab

c up to natural isomorphism. We assume
that this property is true for all BTCs in this paper. If it were not true,
statements of equivalence up to natural isomorphism would need to
be modified to hold up to braided autoequivalences that leave the
basic data invariant. It is straightforward to verify that this property
is true for some simple non-Abelian BTCs, such as the Fibonacci
and Ising BTCs. We can also prove it is true for a general Abelian
BTC in the following way. Let us view the topological charges as
elements of an Abelian group A whose multiplication is defined by
the fusion rules and the vertex basis gauge transformation phase
factors �ab

a×b as 2-cochains with U(1) coefficients. The condition
that a gauge transformation leaves the F symbols unchanged is
simply the cocycle condition �ab�(a×b)c = �a(b×c)�bc. The condition
that a gauge transformation is a natural isomorphism is simply the
coboundary condition that �ab = γaγb

γa×b
for some 1-cochain γa. It fol-

lows that taking the quotient of gauge transformations that leave the
F symbols unchanged by those that are natural isomorphisms results
in the second cohomology group H2(A, U(1)), which is known to
classify the projective representation of the group A. The condition
that a gauge transformation leaves the R symbols unchanged, i.e.,
�ab = �ba, implies that multiplication in the corresponding projec-
tive irrep π (for which �ab is the factor set) is strictly commuta-
tive, i.e., π (a)π (b) = �abπ (a × b) = �baπ (b × a) = π (b)π (a). By
Shur’s lemma, it follows that π (a) are scalars for all a ∈ A, and we
can thus write �ab = π (a)π (b)

π (a×b) , which shows that the vertex basis gauge
transformation is a natural isomorphism.

for phases ζa that satisfy ζaζb = ζc whenever Nc
ab �= 0. In

other words, the phase factors ζa that obey this condition
provide a way of decomposing the completely trivial natural
isomorphism ϒ = 1 into topological charge dependent phase
factors. As explained at the end of Sec. II B, phase factors that
obey this condition are related to some Abelian topological
charge z through the relation

ζa = M∗
az. (66)

As such, this redundancy of natural isomorphisms between
braided autoequivalence maps (the natural isomorphisms
themselves being a redundancy of the braided autoequiva-
lences) is classified by the subset A ⊂ C of Abelian topologi-
cal charges of the UMTC C, which can also be considered an
Abelian group where multiplication in this group is given by
the fusion rules.3

We may also consider antiunitary symmetries of the BTC
C, which we called braided antiautoequivalences. These were
previously examined in the context of time-reversal symme-
tries in Refs. [89,118]. For antiunitary symmetries, the map
ϕ is antiunitary, which means it is a bijective, antilinear map,
i.e.,

ϕ(Cα|α〉 +Cβ |β〉) = C∗
α ϕ(|α〉) +C∗

β ϕ(|β〉), (67)

for any states |α〉 and |β〉 and complex numbers Cα,Cβ ∈ C,
that also obeys the condition

〈ϕ(α)|ϕ(β )〉 = 〈α|β〉∗. (68)

Any antiunitary operator A can be written as A = UK , where
U is a unitary operator and K is the complex conjugation
operator. Its inverse is A−1 = A† = KU−1 = KU †.

The vertex basis states transform as in Eq. (58) when ϕ

is antiunitary, though any (complex-valued) coefficients in
front of such states would be complex conjugated. Under such
antiautoequivalence mappings of the fusion/splitting basis
states, the basic data map to

ϕ
(
Nc

ab

) = Nc′
a′b′ = Nc

ab, (69)

ϕ
([

F abc
d

]
(e,α,β )( f ,μ,ν )

) = [
F̃ a′b′c′

d ′
]

(e′,α,β )( f ′,μ,ν )

= [
F abc

d

]∗
(e,α,β )( f ,μ,ν ), (70)

ϕ
([

Rab
c

]
μν

) = [
R̃a′b′

c′
]
μν

= [
Rab

c

]∗
μν

. (71)

Antiunitarity similarly introduces complex conjugation for the
gauge invariant quantities, so that

θa′ = θ∗
a , (72)

Sa′b′ = S∗
ab. (73)

As mentioned above, when including both unitary and an-
tiunitary topological symmetries (braided autoequivalences),

3In mathematical parlance, the braided autoequivalence maps ϕ

are 1-automorphism functors, the natural isomorphisms ϒ are 2-
isomorphisms between the autoequivalence functors, and the decom-
position freedom of natural isomorphisms (given by the phase factors
ζa) are the automorphisms of the identity functor.
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it is useful to define a function

q(ϕ) =
{

0 if ϕ is unitary
1 if ϕ is antiunitary , (74)

which specifies when a braided autoequivalence map is uni-
tary or antiunitary. When we form equivalence classes of maps
related by natural isomorphism, the combined set of unitary
and antiunitary topological symmetries is again a group. The
function q provides a homomorphism from this group to Z2,
i.e., q([ϕ1 ◦ ϕ2]) = q([ϕ1])q([ϕ2]), since the composition of
a unitary transformation and an antiunitary transformation
is antiunitary and the composition between two antiunitary
transformations is unitary. This homomorphism defines a Z2

grading of the group of unitary and antiunitary autoequiva-
lences.

We can also include spatial parity symmetry, which is a
unitary symmetry, by introducing an additional Z2 grading
structure. The action of spatial parity on the topological state
space and basic data is a somewhat complicated matter, be-
cause the quasiparticles may, in principle, exist in a 2D surface
of arbitrary topology, and the action of parity depends on both
how one chooses to linearly order the quasiparticles for the
purposes of writing a fusion tree decomposition of the states,
and what is the line across which one performs the parity
reflection. The full details of such parity transformations will
not be used in this paper, so we will not present them here.
However, it is simple to state the transformation of the gauge
invariant quantities

ϕ
(
Nc

ab

) = Nc′
a′b′ = Nc

ab, (75)

ϕ(θa) = θa′ = θ∗
a , (76)

ϕ(Sab) = Sa′b′ = S∗
ab, (77)

which holds for any parity reflection transformation, regard-
less of the details of quasiparticle ordering or reflection line.

With this in mind, we introduce the function

p(ϕ) =
{

0 if ϕ is spatial parity even
1 if ϕ is spatial parity odd . (78)

Forming equivalence classes of symmetry transformations
under natural isomorphisms, this provides another Z2 grading
of the resulting group, since the composition of two parity
reversing (odd) transformations is obviously parity preserving
(even), and thus p([ϕ1 ◦ ϕ2]) = p([ϕ1])p([ϕ2]).

We write the full group of quantum symmetries of the
topological theory as

Aut(C) =
⊔

q,p∈{0,1}
Autq,p(C), (79)

where Autq,p(C) is the set of equivalence classes (under
natural isomorphisms) of braided autoequivalence maps that
are unitary for q = 0 or antiunitary for q = 1, and parity
preserving for p = 0 or parity reversing for p = 1.

We consider Aut(C) to be the topological symmetry group
of C, because it describes the symmetry of the emergent
topological quantum numbers of the topological phase, as
described by C. This is in contrast to and independent of
any global symmetry of the underlying physical system, as
described by the microscopic Hamiltonian.

B. Global symmetry action on the topological state space

We now consider the case where a physical system that
realizes a topological phase described by the UMTC C, has
a global symmetry group G of the microscopic Hamiltonian.
We restrict our attention to the case where the elements of
G correspond to symmetries that preserve the orientation of
space, i.e., those with p = 0. Since the elements of G act
as symmetries on C, their action must correspond to a group
homomorphism

[ρ] : G → Aut(C), (80)

to the topological symmetry group Aut(C), which is to say
that [ρg] · [ρh] = [ρgh]. In other words, for each element
g ∈ G, the action of g can be described by a (unitary or
antiunitary) braided autoequivalence map ρg, which is a topo-
logical symmetry of C, that respects group multiplication by
satisfying

κg,h ◦ ρg ◦ ρh = ρgh, (81)

where κg,h is the corresponding natural isomorphism nec-
essary to equate ρg ◦ ρh with ρgh. We denote the identity
element of G as 0 and let ρ0 = 1 be the completely trivial
transformation. Clearly, this gives κg,0 = κ0,h = 1.

The group action on topological charge labels is sim-
ply permutation [with ρgh(0) = 0], and so must satisfy ρg ◦
ρh(a) = ρgh(a). Consequently, κg,h is trivial with respect to
the action on topological charge labels, i.e., κg,h(a) = a. It
will be convenient to introduce the shorthand notations

ga = ρg(a), (82)

ḡ = g−1, (83)

q(g) = q(ρg). (84)

We emphasize that the transformation factors ua′b′
c′ asso-

ciated with ρg acting on vertices need not be the same for
different g, and, in general, may require nontrivial action of
the natural isomorphism κg,h in order to respect the group
multiplication. We denote the transformation factors ua′b′

c′ for a
given ρg that leaves the basic data invariant as Ug(ga, gb; gc).
Thus, with this symmetry action, we have

ρg(|a, b; c, μ〉) =
∑
μ′

[Ug(ga, gb; gc)]μμ′Kq(g)|ga, gb; gc, μ′〉,

(85)

ρg
(
Nc

ab

) = N
gc
gagb = Nc

ab, (86)

ρg
([

F abc
d

]
(e,α,β )( f ,μ,ν )

)
=

∑
α′,β ′,μ′ν ′

[Ug(ga, gb; ge)]αα′ [Ug(ge, gc; gd )]ββ ′

× [F gagbgc
gd

]
(ge,α′,β ′ )(g f ,μ′,ν ′ )[Ug(gb, gc; g f )−1]μ′μ

× [Ug(ga, g f ; gd )−1]ν ′ν

= Kq(g)
[
F abc

d

]
(e,α,β )( f ,μ,ν )K

q(g), (87)

115147-13



BARKESHLI, BONDERSON, CHENG, AND WANG PHYSICAL REVIEW B 100, 115147 (2019)

ρg
([

Rab
c

]
μν

) = ∑
μ′,ν ′

[Ug(gb, ga; gc)]μμ′
[
R

gagb
gc

]
μ′ν ′

× [Ug(ga, gb; gc)−1]ν ′ν

= Kq(g)
[
Rab

c

]
μν

Kq(g), (88)

which produce the corresponding

κg,h(|a, b; c, μ〉) =
∑

ν

[κg,h(a, b; c)]μν |a, b; c, ν〉, (89)

[κg,h(a, b; c)]μν

=
∑
α,β

[Ug(a, b; c)−1]μαKq(g)[Uh(ḡa, ḡb; ḡc)−1]αβ

×Kq(g)[Ugh(a, b; c)]βν. (90)

We note that, to account for the possibility of antiunitary sym-
metries, we have inserted the complex conjugation operators
K in such a way that has the effect of complex conjugating
the F , R, or Uh symbol that is sandwiched between a pair of
K operators when g corresponds to an antiunitary symmetry,
which has q(g) = 1. It is often convenient to choose basis
states such that K|a, b; c, μ〉 = |a, b; c, μ〉, which can be done
with a vertex basis gauge transformation.

Since κg,h is a natural isomorphism, its action on vertices
takes the form

[κg,h(a, b; c)]μν = βa(g, h)βb(g, h)

βc(g, h)
δμν, (91)

where βa(g, h) are phases that only depend on the topological
charge a and the group elements g and h.

As discussed in the previous section, there is redundancy
due to the freedom of choosing how one decomposes a natural
isomorphism into the topological charge dependent phase
factors. Specifically, it is always possible to transform the
βa(g, h) phases into

β̆a(g, h) = νa(g, h)βa(g, h), (92)

while leaving κ̆g,h(a, b; c) = κg,h(a, b; c) unchanged, if the
phases νa(g, h) satisfy νa(g, h)νb(g, h) = νc(g, h) whenever
Nc

ab �= 0. Moreover, it is clear that whenever two sets of phase
factors βa(g, h) and β̆a(g, h) give the same κg,h(a, b; c), they
must be related by νa(g, h) of this form. Therefore the derived
properties of βa(g, h) and β̆a(g, h) related in this manner
should be considered equivalent, and this redundancy should
be viewed as a sort of gauge freedom.

Requiring the symmetry action on vacuum to be trivial
imposes the conditions

Ug(0, 0; 0) = Ug(a, 0; a) = Ug(0, a; a) = 1, (93)

which makes the symmetry action compatible with intro-
ducing and removing vacuum lines at will. Clearly, ρ0 = 1
requires U0(a, b; c) = 1.

Equation (93) requires

κg,h(0, 0; 0) = β0(g, h) = 1. (94)

Since κg,0 = κ0,h = 1, it follows that

βa(g, 0)βb(g, 0) = βc(g, 0), (95)

βa(0, h)βb(0, h) = βc(0, h) (96)

whenever Nc
ab �= 0. Given the gauge freedom described in

Eq. (92), it is always possible to freely modify such terms to
be trivial, so we will always impose on them the simplifying
condition

βa(0, 0) = βa(g, 0) = βa(0, h) = 1, (97)

as a choice of gauge.
We can use Eq. (81) to write the decomposition of ρghk in

the two equivalent ways related by associativity (leaving the ◦
symbols implicit from now on)

ρghk = κg,hkρgρhk

= κg,hkρgκh,kρhρk

= κg,hkρgκh,kρ
−1
g ρgρhρk

= κgh,kρghρk

= κgh,kκg,hρgρhρk. (98)

This gives the consistency condition on κg,h

κg,hkρgκh,kρ
−1
g = κgh,kκg,h. (99)

We emphasize that the ρg transformation here may be an-
tiunitary, so that it applies complex conjugation (as well
as the topological charge permutation) to the κh,k which it
conjugates.

Since we consider braided autoequivalence maps to be
equivalent when they are related by natural isomorphisms,
we may equivalently choose to use the autoequivalence maps
ρ̌g = ϒg ◦ ρg for the global symmetry action. With this choice
of action, we have the redefined quantities

[Ǔg(a, b; c)]μμ′ = γa(g)γb(g)

γc(g)
[Ug(a, b; c)]μμ′ . (100)

These result in a correspondingly redefined κ̌g,h, for which we
may choose the redefined vertex decomposition factors

β̌a(g, h) = γa(gh)

Kq(g)γḡa(h)Kq(g)γa(g)
βa(g, h). (101)

We emphasize that it is not always possible to set
[Ug(a, b; c)]

μμ′ = δμμ′ by using gauge transformations, see,
e.g., Eq. (789). We also emphasize that the transformation of
the F and R symbols are precisely the same for ρ̌g and ρg,
since they are related by a natural isomorphism. In order to
preserve the trivial action on the vacuum charge and the trivi-
ality of the factor βa(0, 0)= 1, we must fix γ0(g)= γa(0)= 1.
We may think of the relation between autoequivalence maps
by natural isomorphisms as a sort of gauge transformation for
the symmetry action, which is a notion that will be made more
clear in Sec. VI C.

C. H3
[ρ](G,A) invariance class of the symmetry action

Given the global symmetry action [ρ] described in
Sec. III B, we wish to find an invariant that would allow us to
determine whether or not it would be possible to fractionalize
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the symmetry action. In this section, we will define such
an invariant [O] ∈ H3

[ρ](G,A), and in the following section,
we will demonstrate that the symmetry can be fractionalized
when [O] = [0], whereas [O] �= [0] indicates that there is an
obstruction to fractionalizing the symmetry. (See Appendix A
for a review of group cohomology.)

We begin by defining (for a particular choice of ρ ∈ [ρ])
the quantity

�a(g, h, k) =
Kq(g)βρ−1

g (a)(h, k)Kq(g)βa(g, hk)

βa(gh, k)βa(g, h)
, (102)

which is a phase from which we will obtain the desired
invariant. From this definition, it immediately follows that

Kq(g)�ρ−1
g (a)(h, k, l)Kq(g)�a(g, hk, l)�a(g, h, k)

�a(gh, k, l)�a(g, h, kl)
= 1.

(103)
By using Eqs. (91) and (99), we see that

�a(g, h, k)�b(g, h, k) = �c(g, h, k) (104)

whenever Nc
ab �= 0. As explained in the end of Sec. II B, this

implies

�a(g, h, k) = M∗
aO(g,h,k) (105)

for some O(g, h, k) ∈ A, where A ⊂ C is the subset of topo-
logical charges in C that are Abelian. (One can also think of
A ⊂ C as a subcategeory of C.) More precisely, O(g, h, k) ∈
C3(G,A) is a 3-cochain, since it is a function of three group
elements g, h, k ∈ G to A, which we can now consider to
be the Abelian group whose elements are the Abelian topo-
logical charges of C with group multiplication given by their
corresponding fusion rules. Moreover, through this relation,
Eq. (103) maps to the condition

1 = Kq(g)Mρ−1
g (a)O(h,k,l)K

q(g)M∗
aO(gh,k,l)

×MaO(g,hk,l)M
∗
aO(g,h,kl)MaO(g,h,k)

= Maρg[O(h,k,l)]M
∗
aO(gh,k,l)MaO(g,hk,l)M

∗
aO(g,h,kl)MaO(g,h,k)

= Maρg[O(h,k,l)]MaO(gh,k,l)MaO(g,hk,l)MaO(g,h,kl)MaO(g,h,k)

= Ma,ρg[O(h,k,l)]×O(gh,k,l)×O(g,hk,l)×O(g,h,kl)×O(g,h,k), (106)

Here, we used the symmetry property Sρg (a)ρg (b) =
Kq(g)SabKq(g), the relation S∗

ab = Sab̄, and the fact that if
Mab is a phase, then MabMac = Mae whenever Ne

bc �= 0. Since
this condition holds for all a, the nondegeneracy of braiding
implies that

dO(g, h, k, l) = ρg[O(h, k, l)] × O(gh, k, l) × O(g, hk, l)

×O(g, h, kl) × O(g, h, k) = 0. (107)

In other words, O(g, h, k) satisfies the 3-cocycle condition,
when treated as a 3-cochain. Thus there is an invertible map
between the phase �a(g, h, k) and the 3-cocycle O(g, h, k) ∈
Z3

ρ (G,A).
As explained in the discussion around Eq. (92), there

is gauge freedom to modify the phases βa(g, h) to
β̆a(g, h) = νa(g, h)βa(g, h), for phase factors νa(g, h) that
satisfy νa(g, h)νb(g, h) = νc(g, h) whenever Nc

ab �= 0. The

correspondingly modified

�̆a(g, h, k) =
Kq(g)β̆ρ−1

g (a)(h, k)Kq(g)β̆a(g, hk)

β̆a(gh, k)β̆a(g, h)

=
Kq(g)νρ−1

g (a)(h, k)Kq(g)νa(g, hk)

νa(gh, k)νa(g, h)
�a(g, h, k)

(108)

is to be considered in the same equivalence class as
�a(g, h, k) and obeys the same properties as �a(g, h, k),
except �̆a(g, h, k) = M∗

aŎ(g,h,k)
maps to a potentially different

Ŏ(g, h, k), which should therefore be considered to be in
the same equivalence class as O(g, h, k). To find the relation
between these, we note that we similarly have the condition
that

νa(g, h) = M∗
av(g,h), (109)

where v(g, h) ∈ C2(G,A) is a 2-cochain taking values in the
set of Abelian topological charges. Using this in Eq. (108) and
employing the same properties utilized in Eq. (106), we obtain
the corresponding relation

Ŏ(g, h, k) = ρg[v(h, k)] × v(gh, k)

×v(g, hk) × v(g, h) × O(g, h, k)

= dv(g, h, k) × O(g, h, k), (110)

which shows that O(g, h, k) and Ŏ(g, h, k) in the same
equivalence class are related by fusion with a 3-coboundary
dv(g, h, k) ∈ B3

ρ (G,A). Thus the equivalence classes [O] are
elements of the third cohomology group given by taking the
quotient of 3-cocycles by 3-coboundaries

[O] ∈ H3
ρ (G,A) = Z3

ρ (G,A)

B3
ρ (G,A)

. (111)

We emphasize that the equivalence class [O] is uniquely
defined entirely in terms of ρ (which defines κg,h). We further
emphasize that [O] = [0] does not necessarily imply that
βa(g, h)βb(g, h) = βc(g, h) whenever Nc

ab �= 0 nor, equiva-
lently, that κg,h = 1.

We can also see from the definitions that the equivalence
class [O] is actually an invariant of the equivalence class [ρ]
of symmetry actions that are related by natural isomorphisms.
In particular, if we instead used the action ρ̌g = ϒgρg, where
ϒg is a natural isomorphism, and the corresponding modified
vertex decomposition factors β̌a(g) as given in Eq. (101), then
we would find that the corresponding quantity �̌a(g, h, k) =
�a(g, h, k) is unchanged. Thus any such symmetry actions
related by natural isomorphisms define the same equivalence
class [Ǒ] = [O], so we actually have

[O] ∈ H3
[ρ](G,A). (112)

We note that if the symmetry action is unitary and does
not permute topological charges, i.e., ρg(a) = a for all a and
g, then it is always the case that [O] = [0]. To demonstrate
this property, we observe that ρg are actually natural isomor-
phisms when this is the case. It follows that we can write
[Ug(a, b; c)]μν = χa(g)χb(g)

χc (g) δμν , where χa(g) are phases, and
that we can make a choice within the equivalence class for
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which βa(g, h) = χa(gh)
χa(h)χa(g) . Using this with the definition, we

find �a(g, h, k) = 1 and hence [O] = [0]. Alternatively, we
could have used the gauge transformation of Eqs. (100) and
(101) with γa(g) = χa(g)−1 to set [Ǔg(a, b; c)]

μν
= δμν , and

β̌a(g, h) = 1, which obviously gives �̌a(g, h, k) = 1.
Given C and G, there are many different possible choices

of ρ. These different choices correspond to different ways
that the global symmetry (of the microscopic Hamiltonian)
and the topological order can interplay with each other. From
the above discussion, we see that clearly the first important
choice is how ρg permutes the various anyons. The next
important choice depends on more subtle properties of the
gauge transformations that are required when implementing
ρg. In the next section, we examine how these properties lead
to a concept known as symmetry fractionalization, whereby
the quasiparticles have the ability to form a sort of projective
representation of the symmetry group. We will classify the
ways in which the symmetry can fractionalize and, in doing
so, find that [O] �= [0] indicates that there is an obstruction to
fractionalizing the symmetry.

IV. SYMMETRY FRACTIONALIZATION

Before carrying out the detailed derivation, we will state
the result of this section and provide a summary overview
of the arguments (and direct the reader to Appendix A, if a
review of group cohomology is needed):

For a system that realizes a topological phase described by
the UMTC C and which has the global symmetry group G with
corresponding group action [ρ] : G → Aut(C). (1) There is an
obstruction to symmetry fractionalization if [O] �= [0], where
[O] ∈ H3

[ρ](G,A) was the invariant of [ρ] defined in Sec. III C.
(2) When [O] = [0], symmetry fractionalization may occur
and is classified by the cohomology group H2

[ρ](G,A), where
A is defined to be the finite group whose elements are the
Abelian topological charges of C with group multiplication
given by their corresponding fusion rules. More precisely,
the set of distinct symmetry fractionalization classes is an
H2

[ρ](G,A) torsor.4

We emphasize that H3
[ρ](G,A) does not classify obstruc-

tions to fractionalization. In particular, the object [O] is
uniquely defined by the symmetry action [ρ] : G → Aut(C),
and it indicates whether or not the symmetry can be fraction-
alized when C, G, and [ρ] are specified.

In this section, we assume that the global symmetry acts in
an on-site or “locality preserving” fashion on the underlying
physical system, where locality preserving action is a gener-
alization of the notion of on-site action that may include sym-
metries that act nonlocally, such as antiunitary, time-reversal,
translation, rotation, and other space-time symmetries. The
on-site and locality preserving properties of symmetry actions
are fundamental requirements for symmetry fractionalization,

4Given a group G, a G torsor is a nonempty set X upon which G acts
freely and transitively. In other words, it is what you get if the group
G had lost its identity. In the context of classification, this means that
distinct symmetry fractionalization classes are related to each other
by the action of distinct elements of H2

[ρ](G,A).

so we will define precisely what we mean when we use these
terms. We do not restrict the symmetry group G to be discrete.

In order to explain the above mathematical statement of
symmetry fractionalization, we begin by examining the ac-
tion of a unitary on-site symmetry on the physical Hilbert
space of the underlying physical system and its microscopic
Hamiltonian. We argue that, for on-site symmetry, the action
of the global symmetry operator Rg on the physical states
|�a1,...,an〉, corresponding to the system with n quasiparticles
carrying topological charges a1, . . . , an, respectively, (which
must collectively fuse to vacuum topological charge 0,) can
always be written as

Rg
∣∣�a1,...,an

〉 = n∏
j=1

U ( j)
g ρg

∣∣�a1,...,an

〉
. (113)

Here, we have separated local unitary transformations U ( j)
g

from the nonlocal unitary transformation ρg that acts as the
symmetry action on the topological quantum numbers.

Since Rg are the physical symmetry transformations,
RgRh = Rgh (at least projectively). Writing out the localized
forms explicitly leads to the relation

n∏
j=1

U ( j)
g ρgU ( j)

h ρ−1
g =

n∏
j=1

U ( j)
gh κg,h. (114)

We can also argue that the local operators U ( j)
g satisfy the

projective multiplication relation

U ( j)
g ρgU ( j)

h ρ−1
g

∣∣�a1,...,an

〉 = ηa j (g, h)U ( j)
gh

∣∣�a1,...,an

〉
(115)

when acting on quasiparticle states, for some phase factors
ηa j (g, h) that only depend on the topological charge aj and
group elements g and h. Then the condition RgRh = Rgh
yields

κg,h(a1, . . . , an) =
n∏

j=1

βa j (g, h) =
n∏

j=1

ηa j (g, h), (116)

where βa(g, h) are the phase factors that decompose the
natural isomorphism κg,h, as in Sec. III B. This provides a
strong constraint relating the phases ηa(g, h) and βa(g, h) for
different values of topological charges a.

The associativity of the local operators leads to the cocy-
clelike relation

ηρ−1
g (a)(h, k)ηa(g, hk)

ηa(gh, k)ηa(g, h)
= 1. (117)

This imposes a required condition on βa(g, h) factors, which
defines an obstruction given by the previously described in-
variance class [O] ∈ H3

[ρ](G,A).
When the obstruction class is trivial, one is guaranteed

to have at least one set of ηa(g, h) which can satisfy both
Eqs. (116) and (117). It follows that there are actually
many solutions, since, given one solution with phase factors
ηa(g, h), another solution η′

a(g, h) = τa(g, h)−1ηa(g, h) is ob-
tained from it by dividing by phases τa(g, h) that satisfy the
conditions

τρ−1
g (a)(h, k)τa(g, hk)

τa(gh, k)τa(g, h)
= 1, (118)

τa(g, h)τb(g, h) = τc(g, h), if Nc
ab �= 0. (119)
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However, there is some redundancy in these solutions that
is due to the freedom to redefine the operators U ( j)

g by local
operators Z ( j)

g that do not affect Rg, which means
∏

j Z ( j)
g = 1.

This property requires that the action on quasiparticle state
Z ( j)

g |�{a j}〉 = ζa j (g)|�{a j}〉, where ζa(g) are phases that satisfy
ζa(g)ζb(g) = ζc(g) whenever Nc

ab �= 0. This redefinition of
local operators changes the phases ηa(g, h) in the following
way:

η̂a(g, h) = ζa(gh)

ζρ−1
g (a)(h)ζa(g)

ηa(g, h). (120)

Thus, if two sets of solutions are related by such a transforma-
tion, they should be considered physically indistinguishable,
so they belong to a single equivalence class of solutions.

Since C is modular, the factors τa(g, h) uniquely define
a 2-cocycle t ∈ Z2

ρ (G,A) and the factors ζa(g) uniquely de-
fine a 1-cochain z ∈ C1(G,A), which makes the equivalence
classes related by 2-coboundaries dz ∈ B2

ρ (G,A). Taking the
quotient (and noting the invariance of the results under the
choice of ρ ∈ [ρ]) results in the classification of solutions by
H2

[ρ](G,A).
After these arguments, we will generalize the results to

the case where the global symmetry action is a projective
representation. Finally, we will introduce the notion of locality
preserving symmetry and explain how the on-site symmetry
arguments and results are generalized to apply to such sym-
metries.

A. Physical manifestation of on-site global symmetry

We wish to examine the quantum states of the underlying
physical system in which there are quasiparticles present.
Initially, let us consider the case when there are two quasi-
particles, and we will subsequently generalize to an arbitrary
number. We assume the two quasiparticles possess topological
charges a and ā, respectively, and that they are respectively
localized within the well-separated, simply-connected regions
R1 and R2. Well-separated means that the minimum distance
r12 ≡ minr j∈R j |r1 − r2| between any two points of the distinct
regions is much larger than the correlation length ξ of the
system, i.e., r12 � ξ . (We typically think of R j as a disk
centered at the quasiparticle coordinate r j with a radius that
is a few correlations lengths.)

For concreteness, we consider the system to be defined
on a sphere (or any genus zero surface) and assume that
there are no other quasiparticles nor boundaries that carry
topological charge, so this pair must fuse to vacuum. (The
analysis can be generalized to surfaces of arbitrary genus with
any number of boundaries, but we will not do so in this paper.)
In general, since N0

aā = 1, there is a single topological sector
in such a setup, which is described by |a, ā; 0〉 in the topo-
logical state space. However, this topological state represents
a universality class of many microscopic states that share its
topological properties and which differ by the application of
local operators. Such a state in this universality class can be
obtained by starting from the uniform Hamiltonian H0 of the
system in the topological phase, adiabatically creating a pair
of quasiparticles with charges a and ā from vacuum by tuning
the Hamiltonian to locally favor the existence of such quasi-

particles that are not well-separated, and then subsequently
moving the quasiparticles individually to regions R1 and R2,
respectively, through a sequence of similar modifications of
the Hamiltonian (which return the Hamiltonian to its original
form in the regions away from the quasiparticles positions).

The corresponding Hamiltonian resulting after this process
is of the form

Hα
a,ā;0 = H0 + h(1)

a;α + h(2)
ā;α, (121)

where h( j)
a;α is a modification of the Hamiltonian whose non-

trivial action is localized within R j and which favors the
localization of a quasiparticle of charge a in this region. The
label α is a parameter which simply identifies these terms as
one of many that favors localization of a quasiparticle of this
type. We write the ground state of this Hamiltonian Hα

a,ā;0
as |�α

a,ā;0〉 (which is in the |a, ā; 0〉 universality class). We
emphasize that |�α

a,ā;0〉 with different values of the parameter
α are not necessarily orthogonal; in fact, we expect that they
may have very high overlaps for some different values of
α. However, such states with different values of topological
charge will be orthogonal, up to exponentially suppressed
corrections, i.e., 〈�α

a,ā;0|�β

b,b̄;0
〉 ≈ 0 whenever a �= b.

Let us now assume that the symmetry acts on the system
in an on-site manner, with Rg being the unitary operator
representing the action of g. By on-site, we mean that if
we decompose the space manifold M =⋃

k∈I Mk into a
collection of simply connected disjoint regions Mk (a subset
of which can be taken to be the regions R j) with index set I ,
the symmetry operators take the form

Rg =
∏
k∈I

R(k)
g , (122)

where R(k)
g is a unitary operator that has nontrivial action

localized in region Mk . Since g is a symmetry of the system
that acts on C by ρg, the Hamiltonians should transform as

RgH0R−1
g = H0, (123)

RgHα
a,ā;0R−1

g = Hg(α)
ga,g ā;0, (124)

where

h( j)
ga;g(α) = Rgh( j)

a;αR−1
g (125)

of the new Hamiltonian remains an operator that is localized
in the region R j , but now favors the localization of a quasi-
particle of charge ga = ρg(a). Indeed, since the symmetry is
on-site, any operator O( j) whose nontrivial action is localized
in a region R j remains localized in this region when acted
upon by the symmetry transformation, i.e.,

gO( j) ≡ RgO( j)R−1
g = R( j)

g O( j)R( j)−1
g (126)

is localized in R j . We stress that the label g(α) of the
Hamiltonian defined with h( j)

ga;g(α) obtained from the symmetry
transformation indicates that this Hamiltonian need not equal
the Hamiltonian defined with the modification h( j)

ga;α for local-
izing a charge ga quasiparticle, to which we already ascribed
the label α. In other words, while the universality class of
states transforms as

|a, ā; 0〉 �→ ρg|a, ā; 0〉 = Ug(ga, gā; 0)|ga, gā; 0〉 (127)
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under the action of g, the ground state of the Hamiltonian
transforms as ∣∣�α

a,ā;0

〉 �→ Rg
∣∣�α

a,ā;0

〉 = ∣∣�g(α)
ga,g ā;0

〉
, (128)

where |�g(α)
ga,g ā;0〉 is not necessarily equal (nor proportional) to

|�α
ga,g ā;0〉.
In fact, we have not yet made clear what it even means

to have states |�α
a,ā;0〉 and |�α

ga,g ā;0〉 in different topological
charge sectors with the same label α. For this, we make a
choice of complete orthonormal basis states |ϕs

a,ā;0〉 for each
topological charge sector. Then, given a state∣∣�α

a,ā;0

〉 =∑
s

As

∣∣ϕs
a,ā;0

〉
, (129)

we identify the corresponding state in the different topological
charge sector to be∣∣�α

ga,g ā;0

〉 =∑
s

As

∣∣ϕs
ga,g ā;0

〉
. (130)

We can now define the unitary operator Ug via the basis
states of each subspace (with respect to which the operator is
block diagonal)〈

ϕr
ga,g ā;0

∣∣Ug
∣∣ϕs

ga,g ā;0

〉 = 〈
ϕr

ga,g ā;0

∣∣Rg
∣∣ϕs

a,ā;0

〉
. (131)

This gives the relation

Rg
∣∣�α

a,ā;0

〉 = Ug
∣∣�α

ga,g ā;0

〉
(132)

for any state |�α
a,ā;0〉 in the |a, ā; 0〉 universality class. We

emphasize that Ug is independent of α, but it does depend on
the choice of basis, and simply provides the relation between
the orthonormal basis given by the states |ϕs

ga,g ā;0〉 and the
orthonormal basis given by the states Rg|ϕs

a,ā;0〉.
Since the quasiparticles are localized at well-separated

positions, the system has exponentially decaying correlations,
and the system is locally uniform and symmetric away from
the quasiparticles, the states in the |a, ā; 0〉 universality class
will be locally indistinguishable from the ground state |�0〉
of H0 in (simply-connected) regions well-separated from the
quasiparticles’ R1 and R2. More specifically, we expect that
any two such states |�α

a,ā;0〉 and |�β

a,ā;0〉 in this universality
class can be related by unitary operators acting independently
in regions R1 and R2, i.e., there exist unitary operators V ( j)

whose nontrivial action is localized within R j such that∣∣�β

a,ā;0

〉 ≈ V (1)V (2)
∣∣�α

a,ā;0

〉
. (133)

The approximation in this expression is up to O(e−r12/ξ )
corrections, which we will leave implicit in the following.5

Thus it follows that we can write the symmetry action as

Rg|�a,ā;0〉 = U (1)
g U (2)

g Ug(ga, gā; 0)
∣∣�ga,g ā;0

〉
, (134)

for any state |�a,ā;0〉 in the |a, ā; 0〉 universality class (we
now drop the inconsequential label α). In this expression,

5We note that, given Hα
a,ā;0 and its ground state |�α

a,ā;0〉, it is always

possible to construct a Hamiltonian for which another state |�β

a,ā;0〉
in this universality class is the ground state. In particular, one can use
h( j)

a;β = V ( j)[h( j)
a;α + H ( j)

0 ]V ( j)−1 − H ( j)
0 , where H ( j)

0 is the sum of the
terms in H0 that act nontrivially in R j .

U (1)
g and U (2)

g are unitary operators whose nontrivial action
is localized within R1 and R2, respectively. The quantity
Ug(ga, gā; 0) is precisely the transformation on the topological
state space from Eqs. (85)–(90) that leaves the basic data
invariant. In particular, Ug(ga, gā; 0) is an overall phase that
depends only on the universality class of the state. Normally,
one would safely ignore such an overall phase, but we include
it here to match with the symmetry action on the topological
degrees of freedom, as this will play an essential role in the
subsequent generalization to n quasiparticles. In this way, we
have decomposed Ug = U (1)

g U (2)
g Ug(ga, gā; 0) into terms that

act locally around the quasiparticles and the term that acts on
the topological state space. Clearly, U (1)

g and U (2)
g commute

with each other, since their respective nontrivial actions are in
two well-separated regions.

Given Eq. (134), we can define the operator

ρg = U (1)−1
g U (2)−1

g Rg (135)

acting on the physical Hilbert space that has the same action
on states |�a,ā;0〉 in the |a, ā; 0〉 universality class as does
the previously defined symmetry operator ρg(see Sec. III B)
acting on |a, ā; 0〉 in the topological state space, i.e.,

ρg|�a,ā;0〉 = Ug(ga, gā; 0)
∣∣�ga,g ā;0

〉
. (136)

We note that, similar to Rg, this operator also has the form
ρg =

∏
k∈I ρ (k)

g .6

We now generalize to consider the system in a configu-
ration with n quasiparticles with corresponding topological
charges a j localized in well-separated regions R j (for j =
1, . . . , n), with corresponding Hamiltonians

Hα
a1,...,an;0 = H0 +

n∑
j=1

h( j)
a j ;α. (137)

The same steps can be followed as above, though one must
be more careful to properly account for fusion degeneracies.
In particular, there will be Nc

ab distinct ways to create two
quasiparticles with respective charges a and b from a single
quasiparticle of topological charge c, and this will be reflected
in the corresponding states and Hamiltonians. For a system
with n quasiparticles, the topological state space may be
degenerate, with the dimensionality given by

N0
a1...an

=
∑

c12,c123,...,c1...n−1

Nc12
a1a2

Nc123
c12a3

. . . N0
c1...n−1an

, (138)

where here we use the standard basis decomposition of the
topological state space where topological charges are fused
together successively in increasing order of j, and c1...k is the
collective topological charge of quasiparticles 1, . . . , k. The
states will correspondingly carry the labels c12, . . . , c1...n−1,
as well as the fusion space basis labels μ12, . . . , μ1...n−1. (We
can, of course, write the states in a different basis related
by F moves.) We write all these topological charges and

6From this, we can see that |�α
ρg (a),ρg (ā);0〉 is the ground state of the

Hamiltonian Hα
ρg (a),ρg (ā);0 = ρgHα

a,ā;0ρ
−1
g , for which the corresponding

h( j)
ρg (a);α = ρg[h( j)

a;α + H ( j)
0 ]ρ−1

g − H ( j)
0 is again localized within R j ,

where H ( j)
0 is the sum of the terms in H0 that act nontrivially in R j .
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FIG. 3. The global on-site symmetry action on states containing
quasiparticles takes the form given in Eq. (139), where the global
action Rg factorizes into the global symmetry action operator ρg,
which acts only on the topological quantum numbers, and local
transformations U ( j)

g , each of which only acts nontrivially within
a region R j well-localized around the jth quasiparticle carrying
topological charge aj .

fusion basis labels of the state collectively as {a; c, μ}, with
the understanding that the overall fusion channel of the n
quasiparticles is vacuum (i.e., c1...n = 0), so we can more
compactly write a state in this universality class as |�{a;c,μ}〉.
Following the same arguments given above, we find that the
symmetry action on such states will take the form

Rg|�{a;c,μ}〉 = U (1)
g . . .U (n)

g ρg|�{a;c,μ}〉, (139)

where the unitary operator U ( j)
g has its nontrivial action local-

ized within R j . This is shown schematically in Fig. 3. (Again,
the operators U ( j)

g depend on a choice of basis within the
universality class, but not on the particular state it is acting
upon.) Here, we use the generalized definition of the operator
(in the physical Hilbert space)

ρg =
n∏

j=1

U ( j)−1
g Rg, (140)

which acts on physical states |�{a;c,μ}〉 in the universality class
|{a; c, μ}〉 precisely as the operator ρg acts on states |{a; c, μ}〉
in the topological state space. Explicitly, this is given by

ρg|�{a;c,μ}〉
=

∑
μ′

12,...,μ
′
1...n−1

[Ug(ga1,
ga2; gc12)]μ12μ

′
12

× [Ug(gc12,
ga3; gc123)]μ123μ

′
123

× . . .

× [Ug(gc1...n−2,
gan−1; gc1...n−1)]μ1...n−1μ

′
1...n−1

×Ug(gc1...n−1,
gan; 0)

∣∣�{ga;gc,μ′}
〉
. (141)

Given the physical states containing quasiparticles and the
symmetry transformations Rg acting upon them, one may
use these expressions as a means of determining the global
symmetry action ρg on the topological state space.

We can consider symmetry transformations taking the form
in Eq. (139) when acting on states in the physical Hilbert
space containing quasiparticles in a topological phase to be
the fundamental condition from which the symmetry fraction-
alization arguments follow, regardless of the particular form
of the Hamiltonian.

B. Obstruction to fractionalization

We will allow the global symmetry action to form either
linear or projective representations of the symmetry group
when acting on the physical Hilbert space, but first consider
the case of linear representations of the global symmetry,
and then return to the case of projective representations in
Sec. IV E. For linear representations, the symmetry operators
will satisfy Rgh = RgRh. However, the local operators U ( j)

g can
nonetheless take a projective form, and we wish to classify the
types of projective forms that they can realize. We compare
the action of gh, which is given by

Rgh|�{a;c,μ}〉 =
n∏

j=1

U ( j)
gh ρgh|�{a;c,μ}〉

=
n∏

j=1

U ( j)
gh κg,hρgρh|�{a;c,μ}〉, (142)

where κg,h = ρghρ
−1
h ρ−1

g (as in Sec. III B), and the successive
actions of g and h, which is given by

RgRh|�{a;c,μ}〉 = Rg

n∏
j=1

U ( j)
h ρh|�{a;c,μ}〉

= Rg

n∏
j=1

U ( j)
h R−1

g Rgρh|�{a;c,μ}〉

= Rg

n∏
j=1

U ( j)
h R−1

g

n∏
k=1

U (k)
g ρgρh|�{a;c,μ}〉

=
n∏

j=1

gU ( j)
h U ( j)

g ρgρh|�{a;c,μ}〉, (143)

where gU ( j)
h = RgU ( j)

h R−1
g = R( j)

g U ( j)
h R( j)−1

g has its nontrivial
action localized within the region R j , and we used the fact
that operators whose nontrivial actions are localized in dif-
ferent regions commute with each other. Comparing these
expressions, we see that

n∏
j=1

U ( j)−1
g

gU ( j)−1
h U ( j)

gh κg,h = 1 (144)

when acting in the subspace of states of the form |�{a;c,μ}〉
corresponding to the system with n quasiparticles. We note
that

gO( j)U ( j)
g = U ( j)

g ρgO( j)ρ−1
g , (145)

for any operator O( j) localized in R j , so we could rewrite
these expressions using U ( j)

g ρgU ( j)
h ρ−1

g instead of gU ( j)
h U ( j)

g ,
if desired.

Since the action of ρg on the physical states of the form
|�{a;c,μ}〉 is precisely the same as the action of ρg on the states
|{a; c, μ}〉 in the topological state space, we know that the
action of κg,h on physical states of the form |�{a;c,μ}〉 also
matches the action of κg,h in the topological state space, and
thus takes the form

κg,h|�{a;c,μ}〉 =
n∏

j=1

βa j (g, h)|�{a;c,μ}〉, (146)
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where βa(g, h) are the phases defined in Sec. III B that
depends only on the topological charge value a, and group
elements g and h. Let us define a unitary operator B( j)

g,h
localized in region R j whose action on a quasiparticle state
produces the phase βa j (g, h) of the topological charge con-
tained in the region R j , that is7

B( j)
g,h|�{a;c,μ}〉 = βa j (g, h)|�{a;c,μ}〉. (147)

We can now define the unitary operators

W ( j)
g,h = U ( j)−1

g
gU ( j)−1

h U ( j)
gh B( j)

g,h

= ρgU ( j)−1
h ρ−1

g U ( j)−1
g U ( j)

gh B( j)
g,h. (148)

Since the U ( j)
g and B( j)

g,h are all unitary operators with nontrivial

action localized within the region R j , this is also true for W ( j)
g,h .

From the above relations, we see that
n∏

j=1

W ( j)
g,h = 1 (149)

when acting in the subspace of n quasiparticles states of the
form |�{a;c,μ}〉, for any values of {a; c, μ}.

Since the respective regions R j where W ( j)
g,h act nontrivially

are well-separated from each other, each one of these opera-
tors can, at most, change a state of the form |�{a;c,μ}〉 by an
overall phase factor. Hence, we have

〈�{a;c,μ}|W ( j)
g,h |�{b;e,ν}〉 = ωa j (g, h)δ{a;c,μ}{b;e,ν}, (150)

where the phase ωa j (g, h) only depends on the topological
charge a j contained in the region R j .

In order to see that the phases ωa j (g, h) do not depend on
anything else, we first note that the phase factor can obviously
depend, at most, on the group elements g and h, and the
properties of the state |�{a;c,μ}〉 that are local to the region
R j . In order to see that the only property of the state that
the phase depends on is the topological charge contained
in the region R j , we must show that the phase is actually
independent of the specific state |�{a;c,μ}〉 taken from the
|{a; c, μ}〉 universality class. For this, assume that the phase
may depend on the specific state, which we indicate by writing
it as ω(g, h; �{a;c,μ}). Then consider any two orthonormal
states |�α

{a;c,μ}〉 and |�β

{a;c,μ}〉 from this universality class,
and their normalized superposition |�γ

{a;c,μ}〉 = Cα|�α
{a;c,μ}〉 +

Cβ |�β

{a;c,μ}〉. The above expression yields the relation

ω
(
g, h; �γ

{a;c,μ}
) = |Cα|2ω

(
g, h; �α

{a;c,μ}
)

+|Cβ |2ω
(
g, h; �β

{a;c,μ}
)
, (151)

which can only be true for arbitrary Cα and Cβ if

ω
(
g, h; �γ

{a;c,μ}
) = ω

(
g, h; �α

{a;c,μ}
) = ω

(
g, h; �β

{a;c,μ}
)

(152)

7Such an operator localized in R j can be defined, for example,
by taking B( j)

g,h =∑
a,b βa(g, h)S0aSabWb(∂R j ), where Wb(∂R j ) is a

Wilson loop of topological charge b whose path follows the loop
delineated by the boundary ∂R j (or just inside the boundary) of the
region in a counterclockwise fashion.

which shows that the phase is the same for all states in
the universality class. Since the only universal property of
the state that is local to the region R j is the topological
charge a j contained in that region, this establishes the claimed
dependence of the phase.

It follows that, within the subspace of states of the form
|�{a;c,μ}〉, the operators W ( j)

g,h , W ( j)
k,l , B( j)

g,h, and B( j)
k,l all commute

with each other. It also follows that

ηa j (g, h)U ( j)
gh |�{a;c,μ}〉 = U ( j)

g ρgU ( j)
h ρ−1

g |�{a;c,μ}〉
= gU ( j)

h U ( j)
g |�{a;c,μ}〉, (153)

where the projective phases are given by

ηa(g, h) = βa(g, h)

ωa(g, h)
. (154)

Equation (153) exhibits a characteristic property of symmetry
fractionalization, which is that the action of the symmetry
can be broken up into topological and local actions, where
the local actions are locally consistent in a projective fashion.
Of course, the topological action is topologically consistent,
and the local and topological actions must also be consistent
with each other. For this, we have already decomposed the
consistency of the topological action into terms βa j (g, h)
that only depend on the localized topological charge values,
and must now examine the phases ωa j (g, h) to analyze the
consistency of the interplay between the local and topological
actions of the symmetry.

It is clear that we should have

η0(g, h) = 1, (155)

since the symmetry action on the ground state is trivial (and
any region R j containing total topological charge a j = 0 can
be locally transformed into the ground state). Additionally, we
will always fix

ηa(0, 0) = ηa(g, 0) = ηa(0, h) = 1, (156)

since we can always freely set U ( j)
0 = 1 as a gauge choice,

which we will describe in more detail in Sec. IV C. It follows
that we also have ωa(0, 0) = ωa(g, 0) = ωa(0, h) = 1.

Given Eq. (149), the phases ωa j (g, h) must obey the con-
straint

n∏
j=1

ωa j (g, h) = 1. (157)

We emphasize that this does not mean that the product of
the phases

∏n
j=1 ηa j (g, h) is equal to 1, nor that the product

of the phases
∏n

j=1 βa j (g, h) is equal to 1. These products
would only individually equal 1 when κg,h = 1, which is not
generally true (though, this condition is often satisfied by
examples of physical interest).

Considering the case of n = 2 quasiparticles with respec-
tive topological charges a and ā, we find the relation

ωā(g, h) = ωa(g, h)−1. (158)

Considering the case of n = 3 quasiparticles, with respective
topological charges a, b, and c̄, for which Nc

ab �= 0, and using
the result from the n = 2 case, we find the relation

ωa(g, h)ωb(g, h) = ωc(g, h) (159)
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for any charges a, b, and c with Nc
ab �= 0. Thus, as explained

at the end of Sec. II B, the phase factors are given by

ωa(g, h) = M∗
aw(g,h), (160)

for some Abelian topological charge value w(g, h) ∈ A ⊂ C.
Through this relation, the object w(g, h) provides a consistent
specification of the phases ωa(g, h) for all values of topologi-
cal charges a simultaneously.

It also follows from Eqs. (154) and (159) that

ηa(g, h)ηb(g, h)

ηc(g, h)
= βa(g, h)βb(g, h)

βc(g, h)
= κg,h(a, b; c) (161)

whenever Nc
ab �= 0.

Next, we consider the product of three symmetry opera-
tions and apply the relation U ( j)

gh = gU ( j)
h U ( j)

g W ( j)
g,h B( j)−1

g,h in the
two distinct, but equivalent orders to obtain

U ( j)
ghk = ghU ( j)

k U ( j)
gh W ( j)

gh,kB( j)−1
gh,k

= ghU ( j)
k

gU ( j)
h U ( j)

g W ( j)
g,h B( j)−1

g,h W ( j)
gh,kB( j)−1

gh,k

= gU ( j)
hk UgW ( j)

g,hkB( j)−1
g,hk

= ghU ( j)
k

gU ( j)
h

gW ( j)
h,k

gB( j)−1
h,k U ( j)

g W ( j)
g,hkB( j)−1

g,hk

= ghU ( j)
k

gU ( j)
h U ( j)

g ρgW ( j)
h,kρ−1

g ρgB( j)−1
h,k ρ−1

g W ( j)
g,hkB( j)−1

g,hk .

(162)

This gives the relation

ρgW ( j)
h,kρ−1

g ρgB( j)−1
h,k ρ−1

g W ( j)
g,hkB( j)−1

g,hk =W ( j)
g,h B( j)−1

g,h W ( j)
gh,kB( j)−1

gh,k ,

(163)

which, when applied to a state |�{a;c,μ}〉, yields the crucial
relation

�a(g, h, k) = βρ−1
g (a)(h, k)βa(gh, k)−1βa(g, hk)βa(g, h)−1

= ωρ−1
g (a)(h, k)ωa(gh, k)−1ωa(g, hk)ωa(g, h)−1,

(164)

where we use the definition of �a(g, h, k) from Sec. III C.
This relation is equivalent to the condition

ηρ−1
g (a)(h, k)ηa(gh, k)−1ηa(g, hk)ηa(g, h)−1 = 1 (165)

on the projective phases of the local terms, which is a sort
of twisted 2-cocycle condition. From Eq. (165), one might
naïvely expect a classification of fractionalization by some-
thing like a separate H2(G, U(1)) for each topological charge
value a, particularly when the symmetry action does not
permute topological charge types. However, the relation be-
tween ηa(g, h), βa(g, h), and ωa(g, h), as well as a potentially
nontrivial group action, introduce additional structure. Specif-
ically, the relation between the phases with different values of
topological charge given by Eq. (157) requires consistency of
the fractionalization phases for different values of topological
charge in a way that leads to classification through the objects
w(g, h) ∈ C2(G,A), as we will now describe.

Using �a(g, h, k) = M∗
aO(g,h,k) and ωa(g, h) = M∗

aw(g,h),
where O(g, h, k) ∈ Z3

ρ (G,A) and w(g, h) ∈ C2(G,A) are
Abelian topological charges, together with the relation

S∗
ab = Sab̄ and the symmetry property Sρg (a)ρg (b) = Sab,

Eq. (164) becomes

MaO(g,h,k) = Maρg[w(h,k)]M
∗
aw(gh,k)Maw(g,hk)M

∗
aw(g,h)

= Maρg[w(h,k)]Maw(gh,k)Maw(g,hk)Maw(g,h)

= Ma,ρg[w(h,k)]×w(gh,k)×w(g,hk)×w(g,h). (166)

In the last line, we used the fact that if Mab is a phase
and Ne

bc �= 0, then it follows that MabMac = Mae. Finally, the
nondegeneracy of braiding in a MTC makes this equivalent to
the condition

O(g, h, k) = ρg[w(h, k)] × w(gh, k) × w(g, hk) × w(g, h)

= dw(g, h, k). (167)

Thus we have found that consistency between the local and
topological portions of the symmetry action requires that
O(g, h, k) is necessarily a 3-coboundary, which is to say
that O ∈ B3

ρ (G,A) and its equivalence class is [O] = [0].
This establishes the first statement regarding symmetry frac-
tionalization, which was that [O] �= [0] indicates that there
is an obstruction to fractionalizing the symmetry, since this
would contradict the result in Eq. (167). In particular, such
an obstruction implies that it is not actually possible for the
symmetry of the system to take the assumed on-site form
of Eq. (122) with the corresponding action on quasiparticle
states given in Eq. (139), as the symmetry action cannot be
consistently split into local and topological components.

When the symmetry action does not permute topological
charge values, one can interpret Eq. (153) as indicating that
the local operators U ( j)

g provide projective representations of
the group G. In particular, the equivalence class [ηa(g, h)] ∈
H2(G, U(1)) defined by the phases ηa(g, h) identified un-
der multiplication by B2(G, U(1)) coboundaries specifies the
projective representation. However, the allowed projective
representations for a given topological charge value must be
consistent with those of the other topological charge values,
so, even in this case, the classification is more complicated
than simply taking the product of |C| independent projective
representations.

C. Gauge transformations

There is gauge freedom to redefine the local operators U ( j)
g

by the local transformations

Ǔ ( j)
g = U ( j)

g Y ( j)−1
g (168)

where Y ( j)
g are unitary operators whose nontrivial action is

localized in region R j . In order to leave the global operator
Rg unchanged, there must be a corresponding transformation
of the symmetry action operator

ρ̌g =
n∏

j=1

Y ( j)
g ρg. (169)

In order for this operator to again act on the physical states
with quasiparticles as does a symmetry action on the topolog-
ical state space, we require it to only depend on the topological
quantum numbers (and the group element g). Since Y ( j)

g
acts locally in region in the region R j , the only topological
quantum number it can depend upon is the topological charge
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a j in that region. Thus we must have

〈�{a;c,μ}|Y ( j)
g |�{b;e,ν}〉 = γa j (g)δ{a;c,μ}{b;e,ν}, (170)

where γa j (g) is some phase factor that depends only on the
topological charge a j and the group element g. Of course, the
notation we used here anticipated the fact that these gauge
transformations have precisely the form of natural isomor-
phisms, as described in Sec. III by

ρ̌g = ϒgρg, (171)

with corresponding decomposition into the phase factors
γa(g) when acting on fusion vertex states.

We notice that, under these transformations, the projective
phases transform as

η̌a(g, h) = γa(gh)

γḡa(h)γa(g)
ηa(g, h). (172)

For the choice of

β̌a(g, h) = γa(gh)

γḡa(h)γa(g)
βa(g, h), (173)

as in Eq. (101), this exactly cancels to leave ω̌a(g, h) =
ωa(g, h) unchanged. As previously mentioned, it also leaves
�̌a(g, h, k) = �a(g, h, k) and hence Ǒ(g, h, k) = O(g, h, k)
unchanged.

In this way, the nontrivial transformations of these quanti-
ties are relegated to the transformations

β̆a(g, h) = νa(g, h)βa(g, h), (174)

where νa(g, h)νb(g, h) = νc(g, h) whenever Nc
ab �= 0, cor-

responding to the freedom of decomposing the action of
κg,h on vertices into factors βa(g, h). These transforma-
tions give ω̆a(g, h) = νa(g, h)ωa(g, h), while �̆a(g, h, k) and
Ŏ(g, h, k) are given in Eqs. (108) and (110). We emphasize
that the projective phases are left unchanged by these trans-
formations, i.e., η̆a(g, h) = ηa(g, h), so they do not change
the symmetry fractionalization.

D. Classification of symmetry fractionalization

We now wish to classify the different ways in which the
symmetry can fractionalize, when there is no obstruction. For
this, we must analyze the solutions of Eq. (167) for a given ρ

and O.
Since [O] = [0], there must exist some v(g, h) ∈ C2(G,A)

such that O = d v̄. This is just the equivalence class statement
that one can use the gauge transformation in Eq. (174) for
some νa(g, h) = M∗

av(g,h) which results in �̆a(g, h, k) = 1 and

Ŏ = 0. Thus we are guaranteed to have at least one solution
of Eq. (167) given by w = v.

Given a solution w(g, h) of Eq. (167), it is straightforward
to see that another solution

w′(g, h) = t(g, h) × w(g, h) (175)

can be obtained from it by multiplying by a 2-cocycle
t(g, h) ∈ Z2

ρ (G,A). In fact, it should be clear that all solutions
of Eq. (167) ma y be obtained from any given solution in this
way.

Assuming βa(g, h) is fixed, this way of obtaining different
solutions of Eq. (167) yields different solutions of Eq. (165)

for the local projective phases, that is

η′
a(g, h) = τa(g, h)−1ηa(g, h), (176)

where τa(g, h) = M∗
at(g,h) are phases that satisfy the condition

that τa(g, h)τb(g, h) = τc(g, h) whenever Nc
ab �= 0, but which

are also required to satisfy the additional condition

τḡa(h, k)τa(g, hk) = τa(g, h)τa(gh, k). (177)

There is, however, a sense in which naïvely different
solutions should be considered equivalent. In particular, if we
locally redefine the operators U ( j)

g by a transformation

Û ( j)
g = U ( j)

g Z ( j)−1
g , (178)

where Z ( j)
g are unitary operators whose nontrivial action is

localized within R j , this redefinition will not change the
global action Rg on states as long as these operators satisfy

n∏
j=1

Z ( j)
g = 1 (179)

when acting in the subspace of quasiparticle states of the
form |�{a;c,μ}〉. These are gauge transformations, and so they
should be treated as trivial modifications of the operators
U ( j)

g , i.e., all operators related by such a transformation are in
the same equivalence class.

By similar arguments as used for W ( j)
g,h , it follows from

Eq. (179) that

〈�{a;c,μ}|Z ( j)
g |�{b;e,ν}〉 = ζa j (g)δ{a;c,μ}{b;e,ν}, (180)

where ζa j (g) is a phase that only depends on the topological
charge a j contained in the region R j and that these phases
obey the constraint

n∏
j=1

ζa j (g) = 1. (181)

This similarly leads to the property that ζa(g)ζb(g) = ζc(g)
whenever Nc

ab �= 0, which, in turn, gives the relation

ζa(g) = M∗
az(g), (182)

for some Abelian topological charge z(g) ∈ C1(G,A). These
are precisely the same redundancies that arose due to the
freedom to decompose the trivial natural isomorphism into
topological charge dependent phase factors, as described in
Sec. III.

Under such transformations, the operators W ( j)
g,h transform

into

Ŵ ( j)
g,h = Z ( j)

g U ( j)−1
g

gZ ( j)
h

gU ( j)−1
h U ( j)

gh Z ( j)−1
gh B( j)

g,h

= Z ( j)
g ρgZ ( j)

h ρ−1
g W ( j)

g,h Z ( j)−1
gh . (183)

Acting on states of the form |�{a;c,μ}〉, this produces the
equivalent relations

ω̂a(g, h) =
ζρ−1

g (a)(h)ζa(g)

ζa(gh)
ωa(g, h), (184)

Maŵ(g,h) = Maρg[z(h)]M
∗
az(gh)Maz(g)Maw(g,h)

= Ma,ρg[z(h)]×z(gh)×z(g)×w(g,h) (185)
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from which we obtain

ŵ(g, h) = ρg[z(h)] × z(gh) × z(g) × w(g, h)

= dz(g, h) × w(g, h), (186)

showing that w(g, h) and ŵ(g, h) that are related by fusion
with a 2-coboundary dz(g, h) ∈ B2

ρ (G,A) correspond pre-

cisely to operators W (i)
g,h and Ŵ (i)

g,h that are related by gauge
transformations, and so should be considered equivalent, i.e.,
one should take the quotient by B2

ρ (G,A).
In terms of the local projective phases (for fixed βa(g, h)),

this translates into the equivalence of between symmetry
fractionalization described by ηa(g, h) and

η̂a(g, h) = ζa(gh)

ζρ−1
g (a)(h)ζa(g)

ηa(g, h). (187)

We emphasize that, despite the similar appearance to
Eq. (172), this transformation and corresponding equivalence
is distinct from the symmetry action gauge transformation,
because of how the two transformations act on w(g, h) and
βa(g, h), as well as the additional condition that ζa(g) must
respect the fusion rules.

Thus the solutions of Eq. (167) for the [O] = [0] equiva-
lence class are classified by

H2
ρ (G,A) = Z2

ρ (G,A)

B2
ρ (G,A)

. (188)

One should not, however, think of the set of solutions it-
self as being equal to H2

ρ (G,A); rather, the set of solutions
is an H2

ρ (G,A) torsor. In particular, the distinct cohomol-
ogy classes [t] ∈ H2

ρ (G,A) relate distinct equivalence classes
of solutions [w], with different solutions being related by
w′(g, h) = t(g, h) × w(g, h). In terms of the local projective
phases, the H2

ρ (G,A) action relates distinct symmetry frac-
tionalization classes by η′

a(g, h) = τa(g, h)−1ηa(g, h). The
number of inequivalent symmetry fractionalization classes is
thus equal to |H2

ρ (G,A)|. In this sense, there is no notion of
an “identity” or “zero” element of the set of fractionalization
classes. (Had one chosen to use the representative O = 0 of
the [O] = [0] equivalence class, Eq. (167) becomes a cocycle
condition on w(g, h), so, in this case, [w] ∈ H2

ρ (G,A), though
this is not an invariant statement.)

Once again, symmetry actions in the same equivalence
class related by natural isomorphisms lead to the same results
here, so this classification of solutions is actually independent
of the choice ρ ∈ [ρ]. Thus the symmetry fractionalization is
classified by H2

[ρ](G,A).
We reemphasize the contrast between H2

[ρ](G,A), which
classifies the symmetry fractionalization, and H3

[ρ](G,A),
which contains [O], the fractionalization obstruction class of
[ρ]. Since [O] is uniquely defined by [ρ], it is only possible to
realize exactly one element of H3

[ρ](G,A) for specified C, G,
and [ρ].

1. Charge conjugation symmetry fractionalization

It is worth considering fractionalization in more detail for
the case of a unitary Z2 symmetry whose nontrivial element
C acts as charge conjugation on the topological charges, i.e.,

C2 = 0 and ρC(a) = ā. When there are topological charges
that are not self-dual (ā �= a), if topological charge conju-
gation is a braided autoequivalence of the MTC C, then it
corresponds represents a subgroup Z2 of Aut(C). When all
topological charges are self-dual (ā = a), then topological
charge conjugation is clearly the trivial autoequivalence.

The symmetry action on the topological state space of a
global Z2 symmetry that conjugates all topological charges is
specified by the action on fusion vertex states

ρC|a, b; c, μ〉 =
∑

ν

[UC(ā, b̄; c̄)]μν |ā, b̄; c̄, ν〉. (189)

It follows that

[κC,C(a, b; c)]μν =
∑

λ

[UC(a, b; c)]∗λμ[UC(ā, b̄; c̄)]∗νλ

= βa(C, C)βb(C, C)

βc(C, C)
δμν (190)

and the obstruction class is defined by

�a(C, C, C) = βā(C, C)

βa(C, C)
. (191)

We now assume the obstruction vanishes and that global
symmetry RC acts in an on-site fashion, for which we have

RC|�{a;c,μ}〉 = U (1)
C . . .U (n)

C ρC|�{a;c,μ}〉. (192)

The localized symmetry action operators U ( j)
C have the pro-

jective consistency relation

ηa j (C, C)|�{a;c,μ}〉 = CU ( j)
C U ( j)

C |�{a;c,μ}〉
= RCU ( j)

C R−1
C U ( j)

C |�{a;c,μ}〉
= U ( j)

C ρCU ( j)
C ρ−1

C |�{a;c,μ}〉 (193)

where the projective phases ηa(C, C) satisfy Eq. (165), which,
in this case, is simply the condition that

ηā(C, C) = ηa(C, C), (194)

and Eq. (161), which requires

ηc(C, C)

ηa(C, C)ηb(C, C)
1 = UC(a, b; c)UC(ā, b̄; c̄), (195)

when Nc
ab �= 0.

We can define an invariant of topological charge conjuga-
tion symmetry fractionalization for all a ∈ C by

ηC
a = κaUC(a, ā; 0)ηa(C, C), (196)

where we recall that

κa = da
[
F aāa

a

]
00 = θaRāa

0 . (197)

It is straightforward to check that ηC
a is invariant under

both vertex basis gauge transformations and symmetry action
gauge transformations, i.e., ηC

a = η̃C
a = η̌C

a . We also notice,
using Eq. (195), that

ηC
ā = (

ηC
a

)∗
. (198)

When a = ā, this condition implies

ηC
a = ±1. (199)
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The classification of the symmetry fractionalization is
given by H2

[ρ](Z2,A). In order to compute this cohomology
group, we first considering the 2-cocycle condition, which
for this symmetry is simply w(C, C) = w(C, C). The 2-
coboundaries are trivial, since dz(C, C) = z(C) × z(C) = 0.
Thus we find that symmetry fractionalization is classified
(torsorially) by

H2
[ρ](Z2,A) = AC = Zk

2, (200)

where AC = {a ∈ A|a = ā} is the group defined by the set of
self-dual Abelian topological charges, with group multiplica-
tion given by the fusion rules. Since every self-dual Abelian
topological charge obeys a × a = 0, each of them defines a Z2

group element, and, hence, AC = Zk
2 for some non-negative

integer k. Specifying ηC
a for all a ∈ C distinguishes between

all the fractionalization classes.

E. Projective representations of the global symmetry

In the above discussion, we assumed that the local Hilbert
space on each site transforms in a linear representation of
the global symmetry G. However this is not fully general,
and it is possible that instead the local Hilbert space on each
site transforms according to a projective representation of G.
The canonical example is a spin- 1

2 system. While the global
symmetry of spin rotation is G = SO(3), each site contains
a spin- 1

2 which transforms in a projective representation of
SO(3). Describing symmetry fractionalization when the local
Hilbert space already forms a projective representation of G
requires some minor modifications of the previous arguments.
In particular, the action of a projective symmetry representa-
tion on the ground state will take the form

Rgh|�0〉 = ei�g,h RgRh|�0〉, (201)

where ei�g,h are the projective representation phase factors.
The projective representations are classified by H2(G, U(1)).
In particular, the phases ei�g,h must satisfy the 2-cocycle
condition

ei�h,k e−i�gh,k ei�g,hk e−i�g,h = 1 (202)

in order for the two different, but equivalent ways of relating
Rghk and RgRhRk to be consistent. Additionally, different pro-
jective phase factors ei�g,h and ei�̃g,h are considered equivalent
if they are related by a 2-coboundary

ei�̃g,h = ei fh e−i fgh ei fg ei�g,h (203)

for some phase function ei fg of the group elements of G, since
their difference could simply be absorbed into the operator
Rg by the trivial redefinition R̃g = ei fg Rg. The equivalence
class [ei�g,h ] ∈ H2(G, U(1)) of the projective representation
is a global property of the system that does not change
under application of local operations, such as those that create
quasiparticles. Thus we also have

Rgh|�{a;c,μ}〉 = ei�g,h RgRh|�{a;c,μ}〉 (204)

with the same ei�g,h for any state of the form |�{a;c,μ}〉 ob-
tainable from the ground state |�0〉 through adiabatic creation
and manipulation of quasiparticles. We now define W ( j)

g,h as
before for j = 2, . . . , n, while for j = 1, we slightly modify

the definition to be

W (1)
g,h = e−i�g,hU (1)−1

g
gU (1)−1

h U (1)
gh B(1)

g,h. (205)

With this definition, we retain the properties that W ( j)
g,h is

localized in region R j , and that the W ( j)
g,h satisfy Eqs. (149) and

(150). This allows the argument relating the eigenvalues of
W ( j)

g,h to Abelian topological charges to go through unaltered.
To see that the cocycle relations are unchanged, we only
need to check that Eq. (163) remains the same for W (1)

g,h . This
follows from the previous argument, together with the fact that
ei�g,h itself satisfies the 2-cocycle condition of Eq. (202). Thus
the same cohomological relations hold and all the arguments
go through as before to give the same results for obstruction
and classification of symmetry fractionalization.

F. Locality preserving symmetry

There are a number of symmetries, such as time-reversal
symmetry and translation symmetry, that do not act in a
strictly on-site fashion, but which may nonetheless be frac-
tionalized. In order to understand fractionalization of such
symmetries, we must generalize the notion of symmetries
acting in an on-site fashion so as to include the possibility
of antiunitary symmetries and other nonlocal symmetries.

We call a (unitary or antiunitary) symmetry operator Rg
“locality preserving” if it acts in the following manner. For
any operators O( j) localized in the simply connected regions
R j , the operators

gOg( j) ≡ RgO( j)R−1
g (206)

are localized in the (possibly distinct) simply connected re-
gions that we denote as gR j , and whenever two such simply
connected regions R j and Rk are disjoint, i.e., R j ∩Rk =
∅, the corresponding regions gR j and gRk are disjoint, i.e.,
gR j ∩ gRk = ∅.

Specific examples that we have in mind for such symmetry
operators include the complex conjugation operator K , in
which case gR j = R j , or a translation operator T�x (in a trans-
lationally invariant system), in which case gR j is the region
R j translated by the vector �x. Clearly, on-site symmetries
satisfy the above locality preserving condition.

We can now repeat the entire analysis of this section with
a few small, but important modifications to account for the
generalization to locality preserving symmetries. We note that
our treatment here requires that the symmetries also leave
the spatial orientation of the fusion/splitting spaces invariant.
Consequently, we omit spatial symmetries involving rotations
or parity reversal.

The first modification is to the conjugation of local opera-
tors by Rg. In particular, given the above locality preserving
property of Rg, we generalize the definition in Eq. (126) to

gO( j) ≡ RgOḡ( j)R−1
g , (207)

which is thus an operator whose nontrivial action is localized
in the region R j .

The next modification is that when the jth quasiparticle
of the state |�{a;c,μ}〉 is localized in region R j , it follows
that the jth quasiparticle of the state Rg|�{a;c,μ}〉 is localized
in the region gR j . Consequently, the action of Rg on states
in the physical Hilbert space containing quasiparticles, as in
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ga2
ga3

ga1
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gR1

gR2
gR3

Ug(1)
g

Ug(2)
g Ug(3)

g

FIG. 4. The action of a global “locality preserving” symmetry
operator Rg on a state with quasiparticles may move the locations
where the quasiparticles are localized, from the regions R j to the
regions gR j . The locality preserving property ensures that the regions
gR j are mutually disjoint for distinct j whenever the regions R j are
mutually disjoint for distinct j. Additionally, the locality preserving
symmetry action induces unitary transformations U g( j)

g that are,
respectively, localized in the regions gR j , together with a global
transformation ρg which strictly acts on the topological quantum
numbers.

Eq. (139), is modified to

Rg|�{a;c,μ}〉 = U g(1)
g . . .U g(n)

g ρg|�{a;c,μ}〉, (208)

where U g( j)
g is a unitary operator whose nontrivial action is

localized in the region gR j , and we have defined ρg exactly as
before, i.e.,

ρg =
n∏

j=1

U g( j)−1
g Rg, (209)

which now makes it a locality preserving operator, in accord
with Rg. Now, ρg acts on the physical Hilbert space as does
the symmetry action on the topological state space, so it
may potentially move the regions where quasiparticles are
localized or complex conjugate coefficients in front of the
state, depending on g. This is shown schematically in Fig. 4.
We can leave Eq. (141) unmodified, with the understanding
that if the jth quasiparticle of the state |�{a;c,μ}〉 is localized
is region R j , then the jth quasiparticle of the state |�{ga;gc,μ′}〉
(and the state ρg|�{a;c,μ}〉) is localized in the region gR j .

With these modifications, one must be careful to modify
the localization regions of the operators appropriately in all
steps of the arguments of the previous sections, but, in the
end, this dependence drops out entirely. In particular, we note
that we should modify Eq. (145) to

gO( j)U ( j)
g = U ( j)

g ρgOḡ( j)ρ−1
g , (210)

the definition of the operator W ( j)
g,h , which has its nontrivial

action localized in the region R j , to

W ( j)
g,h = U ( j)−1

g
gU ( j)−1

h U ( j)
gh B( j)

g,h

= ρgU ḡ( j)−1
h ρ−1

g U ( j)−1
g U ( j)

gh B( j)
g,h, (211)

and the relation of Eq. (153) to

ηa j (g, h)U ( j)
gh |�{a;c,μ}〉 = gU ( j)

h U ( j)
g |�{a;c,μ}〉

= U ( j)
g ρgU ḡ( j)

h ρ−1
g |�{a;c,μ}〉. (212)

The final relation in terms of operators, given in Eq. (163),
is modified to

ρgW ḡ( j)
h,k ρ−1

g ρgBḡ( j)−1
h,k ρ−1

g W ( j)
g,hkB( j)−1

g,hk

= W ( j)
g,h B( j)−1

g,h W ( j)
gh,kB( j)−1

gh,k . (213)

Applying this relation to a state |�{a;c,μ}〉, we find that the
dependence on localization regions drops out of the resulting
relation in terms of (eigenvalue) phases, and the only modifi-
cation that we must now account for is the potential complex
conjugation due to g being an antiunitary symmetry (which
was encoded in the operator ρg). Specifically, this yields the
modification of Eq. (164) to the relation

�a(g, h, k) = Kq(g)βρ−1
g (a)(h, k)Kq(g)βa(gh, k)−1

×βa(g, hk)βa(g, h)−1

= Kq(g)ωρ−1
g (a)(h, k)Kq(g)

×ωa(gh, k)−1ωa(g, hk)ωa(g, h)−1 (214)

and the modification of Eq. (165) to

Kq(g)ηρ−1
g (a)(h, k)Kq(g)ηa(gh, k)−1ηa(g, hk)ηa(g, h)−1 = 1.

(215)

Using �a(g, h, k) = M∗
aO(g,h,k) and ωa(g, h) = M∗

aw(g,h) ex-
actly as before, though with the relation Sρg (a)ρg (b) =
Kq(g)SabKq(g) that applies for unitary and antiunitary symme-
tries, we obtain precisely the same consistency condition

O(g, h, k) = dw(g, h, k) (216)

of Eq. (167). We emphasize that the complex conjugations due
to symmetries being antiunitary dropped out in the process of
mapping the relation of phases into the relation of Cn(G,A)
cochains.

The remaining arguments that lead to the classification
results are similarly modified. Similar to the steps described
above, the localization region dependence drops out when
the operator relations are converted into phase relations by
applying them to states of the form |�{a;c,μ}〉, and the com-
plex conjugations that occur for antiunitary symmetries drop
out when these phase relations are converted into cochain
relations. Thus the obstruction of fractionalization by non-
trivial [O] ∈ H3

[ρ](G,A) and the classification of symmetry
fractionalization (when the obstruction vanishes) in terms of
the cohomology class H2

[ρ](G,A) is precisely the same for
unitary and antiunitary locality preserving symmetries as it
was for unitary on-site symmetries.

We note that the projective representation analysis of
Sec. IV E must include the complex conjugation of antiunitary
symmetries, so they are classified by H2

q (G, U(1)), which
includes complex conjugation from antiunitary symmetry ac-
tion. In particular, the boundary operator includes the complex
conjugation through the ρg action, so the 2-cocycle condition
on the projective phases becomes

ei(−1)q(g)�(h,k)e−i�(gh,k)ei�(g,hk)e−i�(g,h) = 1, (217)

and the projective phase is a 2-coboundary when

ei�(g,h) = ei(−1)q(g) f (h)e−i f (gh)ei f (g) (218)
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for some phase ei f (g) ∈ C(G, U(1)). These modifications do
not affect the symmetry fractionalization results.

When we specify a fusion basis decomposition of the
topological state space of n quasiparticles, we first specify an
order in which to place the quasiparticles from left to right
at the top of a fusion tree. Specifying an order in which one
lists the quasiparticles is equivalent to specifying a line in
the 2D manifold that passes through the quasiparticles in that
order. The inclusion of rotational and spatial parity symmetry
is complicated by the fact that these symmetry operations gen-
erally change the positions of the quasiparticles with respect
to their ordering line. For spatial parity symmetries, we note
that one can repeat the analysis above, with the modification
that when phases in the analysis are mapped to Cn(G,A)
cochains, the action of ρg on the group elements A is modified
to include topological charge conjugation whenever p(ρg) =
1. This modification follows from the relation Sρg (a)ρg (b) =
Kq(g)+p(g)SabKq(g)+p(g), which modifies the ρ action in the
cohomology structure, i.e., in the coboundary operator and
the groups Hn

[ρ](G,A), whenever ρg corresponds to a spatial
orientation reversing symmetry.

Before concluding this section, we note that the above
considerations provide a framework to classify the different
possible types of symmetry fractionalization. However, not all
elements of the H2

[ρ](G,A) classes will be allowed in general.
When G corresponds to a spatial symmetry, there can be
additional constraints that rule out certain types of fraction-
alization [119–123]. Even for on-site symmetries, as we will
see, some of the fractionalization classes are anomalous and
cannot be realized in a purely 2 + 1-dimensional system.

1. Time-reversal symmetry fractionalization
and local Kramers degeneracy

It is worth considering fractionalization in more detail for
the case of time-reversal symmetry, or, rather, a group element
T ∈ G such that T2 = 0 and q(T) = 1, i.e., it is an antiunitary
Z2 symmetry.8

We first note that the state of the system can either
form a linear representation with R2

T|�〉 = |�〉 or a projec-
tive representation with R2

T|�〉 = −|�〉. This follows from
the H2

q (ZT
2 , U(1)) = Z2 classification of projective represen-

tations. In particular, the modified 2-cocycle condition of
Eq. (217) is simply the condition ei2�T,T = 1, and the modified
2-coboundary condition of Eq. (218) is ei�T,T = 1. The pro-
jective representation ei�T,T = −1 gives the usual degeneracy
from Kramers theorem, where |�〉 and RT|�〉 are necessarily
orthogonal and degenerate in energy for any state |�〉 when
RT commutes with the Hamiltonian. Physically, this corre-

8A more general definition of time reversal is possible, wherein
a Z2 grading specifies whether elements of the symmetry group G
reverse time. When there is a single time reversing group element,
it must be a Z2 element, as considered in this section. Moreover, if
the spectrum of the Hamiltonian is symmetric about 0, it is possi-
ble for time-reversing symmetry group elements to be represented
by unitary operators, in which case one must specify separate Z2

gradings for antiunitarity and time reversal. We do not consider such
Hamiltonians in this paper.

sponds to the case where the system has half-integer angular
momentum, i.e., an odd number of electrons in the system.

The symmetry action on the topological state space is
specified by the action on fusion vertex states

ρT|a, b; c, μ〉 =
∑

ν

[UT(Ta, Tb; Tc)]μνK|Ta, Tb; Tc, ν〉.
(219)

Since this is an antiunitary symmetry, it follows that

[κT,T(a, b; c)]μν =
∑

λ

[UT(a, b; c)]∗λμ[UT(Ta, Tb; Tc)]νλ

= βa(T, T)βb(T, T)

βc(T, T)
δμν

= ηa(T, T)ηb(T, T)

ηc(T, T)
δμν. (220)

The obstruction class is defined by

�a(T, T, T) = 1

βTa(T, T)βa(T, T)
. (221)

The condition that the obstruction vanishes is equivalent to
there being some ωa(T, T) such that

βTa(T, T)βa(T, T) = ωTa(T, T)ωa(T, T), (222)

ωa(T, T)ωb(T, T) = ωc(T, T), if Nc
ab �= 0. (223)

We now assume that the obstruction vanishes and that this
antiunitary symmetry RT acts in a locality preserving fashion,
for which we have

RT|�{a;c,μ}〉 = U (1)
T . . .U (n)

T ρT|�{a;c,μ}〉. (224)

The localized symmetry action operators U ( j)
T have the pro-

jective consistency relation

ηa j (T, T)|�{a;c,μ}〉 = TU ( j)
T U ( j)

T |�{a;c,μ}〉
= RTU ( j)

T R−1
T U ( j)

T |�{a;c,μ}〉
= U ( j)

T ρTU ( j)
T ρ−1

T |�{a;c,μ}〉 (225)

where the projective phases ηa(T, T) satisfy Eq. (215), which,
in this case, is simply the condition that

ηTa(T, T) = ηa(T, T)∗. (226)

When Ta = a, this condition implies

ηa(T, T) = ±1, (227)

and we interpret ηa(T, T) as the “local T2” value ascribed
to the topological charge a. We notice that, for Ta = a, this
quantity is an invariant under both vertex basis and symme-
try action gauge transformations, i.e., ηa(T, T) = η̃a(T, T) =
η̌a(T, T) for such a. When ηa(T, T) = −1, there is also a
local Kramers degeneracy [48] associated with the topological
charge a. In other words, quasiparticles that carry topological
charge a also carry a local degenerate state space in physical
systems that possess this symmetry. We also emphasize that
θTa = θ∗

a , so, when Ta = a, we also have θa = ±1. However,
we stress that it is not necessarily the case that θa equals
ηa(T, T), as one might have naïvely expected from the usual

115147-26



SYMMETRY FRACTIONALIZATION, DEFECTS, AND … PHYSICAL REVIEW B 100, 115147 (2019)

understanding of Kramers degeneracy in terms of spin and
fermionic parity.

When Ta = a, Tb = b, Tc = c, and Nc
ab �= 0, we have

±δμν = ηa(T, T)ηb(T, T)

ηc(T, T)
δμν

=
∑

λ

[UT(a, b; c)]μλ[UT(a, b; c)]∗λν. (228)

We note that, if UU ∗ = ±1 for a unitary m × m matrix U ,
then det[U ] = det[±U T ] = (±1)m det[U ], which must also
be nonzero. Thus, when Nc

ab is odd, the second line of
Eq. (228) is simply equal to 1, which implies the relation

ηa(T, T)ηb(T, T) = ηc(T, T), (229)

when Ta = a, Tb = b, Tc = c, and Nc
ab is odd. When Nc

ab is
even, this relation may include a relative sign, which would
be a gauge invariant quantity.

When Tc = c and Nc
aTa �= 0, the ribbon property gives∑

λ

[
RaTa

c

]
μλ

[
R

Taa
c

]
λν

= θcδμν, (230)

and the transformation of the R symbols under T gives

ρT
([

RaTa
c

]
μν

) = [
RaTa

c

]∗
μν

=
∑
μ′,ν ′

[UT(a, Ta; c)]μμ′
[
R

Taa
c

]
μ′ν ′[UT(Ta, a; c)−1]ν ′ν . (231)

Combining these with

[κT,T(Ta, a; c)]μν = 1

ηc(T, T)
δμν

=
∑

λ

[UT(Ta, a; c)]∗λμ[UT(a, Ta; c)]νλ,

(232)

it follows that∑
α,β,λ

[UT(a, Ta; c)]μα

[
R

Taa
c

]
αβ

[UT(a, Ta; c)]∗βλ

[
R

Taa
c

]∗
λν

= ηc(T, T)

θc
δμν. (233)

The right-hand side of this expression is equal to ±δμν . Thus,
using the same argument leading to Eq. (229), when Nc

aTa is
odd, the left-hand side (which is a unitary operator times it
complex conjugate) must equal δμν , which implies the relation

ηc(T, T) = θc = ±1, (234)

when Tc = c and Nc
aTa is odd. When Nc

aTa is even, there may
be a relative sign relating ηc(T, T) and θc, which would be a
gauge invariant quantity.

The properties given in Eqs. (229) and (234) are useful for
determining the local T2 values of quasiparticle excitations
in typical time-reversal invariant topological phases, see, e.g.,
Refs. [89,90,118].

The analysis of fractionalization of time-reversal symmetry
presented in this section precisely matches that of Ref. [89].
In contrast with Ref. [48], our definition of local T2 for the
jth quasiparticle of a state |�{a;c,μ}〉 (which carries topological

charge a j) is the corresponding eigenvalue ηa j (T, T) of the

operator RTU ( j)
T R−1

T U ( j)
T whose nontrivial action is localized

in the region R j containing the jth quasiparticle. In particular,
this definition applies to the general case where there are an
arbitrary number of regions/quasiparticles that transform non-
trivially under T and where the entire system may transform
projectively with R2

T = −1. In considering the case where
there are only two regions that transform nontrivially under
T and where and the entire system transforms as R2

T = 1,
Ref. [48] interprets the operator RTU (1)

T as the “local T”
operator for region R2 and RTU (2)

T as the “local T” operator
for region R1. We avoid interpreting the operator RTU ( j)

T as
a “local T” operator (of some complementary region), as it is
not a local operator and even its action on a quasiparticle state,
which is given by

RTU ( j)
T |�{a;c,μ}〉 = ηTa j

(T, T)
∏
k �= j

U (k)
T ρT|�{a;c,μ}〉, (235)

is generally not localized in one region (even when all the
topological charges involved are T-invariant).

V. EXTRINSIC DEFECTS

Given the existence of a global symmetry G, we can
introduce pointlike defects that carry flux associated with the
group elements g ∈ G. In this section, we will describe a way
to create such defects and some of their basic properties.
We first give a prescription for creating g defects in some
simple lattice model systems, and subsequently generalize this
construction to an arbitrary system in a topological phase.
At the end of this discussion, we will briefly discuss the
case where there is no global symmetry, which still allows
nontrivial pointlike defects as long as Aut(C) is nontrivial.
In the following section (Sec. VI), we will build upon the
physical motivation of this section and provide a detailed
presentation of the algebraic theory of extrinsic defects, which
is known in the mathematical literature as G-crossed braided
tensor category theory [79,82].

A. Physical realization of g defects

1. Simple lattice model

We begin by considering a concrete model system, in
which we can precisely describe the general idea we wish
to abstract. In particular, we consider a system with a local
Hilbert space defined on the sites of a square lattice, whose
Hamiltonian H0 has a local on-site unitary symmetry G. For
simplicity, we restrict to the case where the interactions in H0

are just nearest neighbor or plaquette interactions, so that the
Hamiltonian takes the form

H0 =
∑

i

hi +
∑
〈i j〉

hi j +
∑
[i jkl]

hi jkl , (236)

where hi consists of local operators that act on site i, hi j

consists of local operators that act on a pair of neighboring
sites i and j connected by the link 〈i j〉, and hi jkl consists of
local operators that act on a plaquette [i jkl] defined by the
sites i, j, k, and l .
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(a) (b)

i

j k

l

(c) (d)

FIG. 5. (a) When the system is cut along a line C, quasiparticles
cannot propagate across the cut. (b) The system can be reglued to-
gether along C in a manner that conjugates bond/plaquette operators
straddling the cut by a local g-symmetry action on one side of the
cut, as indicated by red dots. The result is a g and g−1 pair of defects
at the endpoints of a defect branch line (replacing the cut). (c) Such a
construction effectively implements a g-symmetry transformation on
quasiparticles that propagate across the defect branch line, around
the defects. For example, a quasiparticle a will be transformed
into ρg(a) when it encircles the g defect in a counterclockwise
fashion. For symmetries that are not on-site, such as translational or
rotational symmetries, g defects correspond to lattice dislocations or
disclinations, respectively. (d) For more general systems, the defect
construction can be generalized by defining regions Cl and Cr on
either side of the cut line, such that terms in the Hamiltonian that
straddle the cut line are localized within Cl ∪Cr . These regions will
typically have width w that is a few correlation lengths ξ .

A pair of defects carrying fluxes g and g−1, respectively,
can be created and localized at a well-separated pair of
plaquettes by modifying the Hamiltonian as follows. Imagine
a line C emanating from the center of one of the defect’s corre-
sponding plaquette, cutting across a set of links of the lattice,
and terminating at the center of the other defect’s plaquette,
as shown in Fig. 5. We modify the original Hamiltonian by
replacing each term in H0 that straddles the line C with the
corresponding operator obtained from that term by acting with
the symmetry locally on the sites only on one side of the
line C.

In order to make this procedure well-defined, we first
ascribe an orientation of the line C, indicated by an arrow
pointing from the g−1-defect endpoint towards the g-defect
endpoint. (If g = g−1, it will not matter which orientation
we choose.) This provides a well-defined notion of sites
being immediately to the left or to the right of the line C.
Specifically, the site i is immediately to the left of C and the
site j is immediately to the right of the line C, if C crosses the
link 〈i j〉 of the lattice connecting sites i and j with i to the left
and j to the right, with respect to the orientation of the line C.
We denote the set of all sites immediately to the left of C as
Cl and the set of all sites immediately to the right as Cr . We
can now define a term in the Hamiltonian to be straddling the
line C if it only acts nontrivially on sites in the union Cl ∪Cr

and it has nontrivial action on sites in both Cl and Cr .9 Finally,

9We could modify this definition slightly to include also the pla-
quettes that contain the endpoints of the line C. Such a modification

we conjugate such terms by the operator R(Cr )
g =∏

j∈Cr
R( j)

g ,

where R( j)
g represents the local action of g ∈ G acting on site j.

(Recall that the global on-site symmetry action can be written
as the product of local operators Rg =

∏
k∈I R(k)

g , where I in
this example is simply the set of all sites.)

Thus the modified Hamiltonian is given by

Hg,g−1 = H0 +
∑
〈i j〉 :

i ∈ Cl ; j ∈ Cr

[
R( j)

g hi jR
( j)−1
g − hi j

]

+
∑

[i jkl] :
i, l ∈ Cl ; j, k ∈ Cr

[
R( j)

g R(k)
g hi jkl R

( j)−1
g R(k)−1

g − hi jkl
]
. (237)

Here, we have assumed that the line C is straight for simplic-
ity. If C was not a straight line, the last line in this Hamiltonian
would include plaquette terms with one site on one side of
C and three sites on the other side of C, corresponding to
the plaquettes where C makes turns. This Hamiltonian Hg,g−1

defines a line defect associated with the line C. The two end
points of C are codimension-2 point defects which carry flux
g and g−1, respectively. We refer to the line C as a g-defect
branch line.

2. g-conjugation of quasiparticles across defect line

When a quasiparticle is adiabatically transported around a
g defect, it will be transformed by the symmetry action of the
group element g, as a consequence of crossing the g-defect
branch line. When the action ρg on topological charges is
nontrivial, as a quasiparticle with topological charge a encir-
cles the pointlike g defect at the end of the defect line C, the
quasiparticle is transformed into one that carries topological
charge ρg(a). Defects that permute the topological charge
values of quasiparticles are sometimes referred to as “twist
defects.”

In order to understand this property, it is useful to first
consider starting from the uniform system with Hamiltonian
H0, and introducing some quasiparticles using local poten-
tials of the form h( j)

a j , as described in Sec. IV A, with the
corresponding Hamiltonian Ha1,...,an;0. We now consider an
operator Tak (k, k′) that moves the quasiparticle of charge ak

from site k on one side of the line C (which at this point is
simply an imaginary line drawn on the system) to the site
k′ on the other side of C in a manner that crosses the line
C. Such an operator annihilates a quasiparticle of topological
charge ak at site k, creates a quasiparticle of charge ak at
site k′, and commutes with the Hamiltonian away from the
sites k and k′. (One may think of this as a “string operator.”)
Thus, if |�{a;c,μ}〉 were the ground states of the Hamilto-
nian Ha1,...,an;0 with h( j)

a j localizing the quasiparticle at site
j, then |� ′

{a;c,μ}〉 = Tak (k, k′)|�{a;c,μ}〉 are the ground states

of the Hamiltonian H ′
a1,...,an;0 with kth term changed to h(k′ )

ak

localizing the quasiparticle at site k′ (perhaps up to some
additional unitary transformations localized around the sites
k and k′). Consequently, it is possible to adiabatically change

corresponds to a local change in the Hamiltonian and would also
describe a g and g−1 pair of defects.
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the Hamiltonian between these configurations and, in doing
so, adiabatically move the quasiparticle of charge ak from site
k to site k′.

We next imagine cutting all bonds of the system along the
line C, as indicated in Fig. 5(a). The corresponding Hamilto-
nian is

Hcut(C) = H0 −
∑
〈i j〉 :

i ∈ Cl ; j ∈ Cr

hi j −
∑

[i jkl] :
i, l ∈ Cl ; j, k ∈ Cr

hi jkl , (238)

where we have again assumed C is a straight line for sim-
plicity. In this system, it is no longer possible to adiabatically
move a quasiparticle across the line C (without reintroducing
the excised terms in the Hamiltonian), because there are no
terms in the Hamiltonian that connect the system across C. If
we introduce quasiparticles away from the line C using local
potentials to similarly produce a Hamiltonian Ha1,...,an;cut(C),
we would find that the operator Tak (k, k′) does not com-
mute with the Hamiltonian Hcut(C) in the vicinity of C (nor
in the vicinity of the sites k and k′), hence it will create
quasiparticles there. Consequently, this operator would now
correspond to moving the quasiparticle from site k to its nearer
side the cut line C, pair creating quasiparticles of charge ak

and āk on the other side of the cut line C, and moving the
charge ak of that pair to site k′, while leaving the charge
āk quasiparticle next to the cut line C on the opposite side
from the original quasiparticle. Such a process involves more
than just adiabatically transporting the quasiparticle, since one
must either introduce additional local potentials for the extra
quasiparticles, or cost energy above the gap for creating the
additional quasiparticles.

We now imagine reintroducing the bond/plaquette oper-
ators that connect the system across the cut line C with a
conjugation of these operators by the symmetry action of g
acting locally only on the sites on one side of the cut, to obtain
the Hamiltonian Hg,g−1 . Then we introduce quasiparticles
away from C using local potentials to similarly produce a
Hamiltonian Ha1,...,an;g,g−1 . We similarly find that the operator
Tak (k, k′) will, in general, not commute with the Hamiltonian
Hcut(C) in the vicinity of C (nor in the vicinity of the sites k
and k′), and, therefore, must create extra quasiparticles there.

However, in this case, the line C is not an untraversable
cut line, and one can actually construct an operator that cor-
responds to adiabatically transporting a quasiparticle across
C (without creating extra quasiparticles). For this, we start
from the operator Tak (k, k′), which can be written as a prod-
uct of local operators, and modify it in the following way.
The local terms in the product whose nontrivial action is
entirely on the left side of C are left unaltered, the local
terms in the product whose nontrivial action is entirely on
the right side of C are conjugated by Rg, and the local terms
in the product that straddle C are conjugated by R(Cr )

g . The
resulting operator, which we denote Tak ;g(k, k′), annihilates
a quasiparticle of topological charge ak at site k, creates a
quasiparticle of charge gak at site k′, and commutes with
the Hamiltonian Hg,g−1 away from the sites k and k′. (Note
that if the unmodified operator Tak (k, k′) commutes with H0

away from the sites k and k′, then so does RgTak (k, k′)R−1
g .)

Thus, if |�{a;c,μ};g,g−1〉 were the ground states of the Hamil-
tonian Ha1,...,an;g,g−1 with h( j)

a j localizing the quasiparticle at

site j, then |� ′
{a′;c′,μ′};g,g−1〉 = Tak ;g(k, k′)|�{a;c,μ};g,g−1〉 are the

ground states of the Hamiltonian H ′
a1,...,gak ,...,an;g,g−1 with the

kth term changed to h(k′ )
gak

localizing a quasiparticle of charge
gak at site k′ (perhaps up to some additional unitary transfor-
mations localized around the sites k and k′). Consequently, it
is possible to adiabatically change the Hamiltonian between
these configurations (without creating extra quasiparticles),
and, in doing so, adiabatically move the quasiparticle from
site k to site k′, while also transforming its topological charge
from ak to ρg(ak ) as it crosses the g-defect branch line.

3. General construction of g defects

We can generalize the above discussion and prescription
for creating defects to a general topologically ordered system
with a local Hamiltonian H0. Again, we first draw an oriented
line C in the system. We then define regions Cl and Cr ,
which are “immediately” to the left and right of the line C,
respectively. These regions should have width w such that
any term in the Hamiltonian that straddles the line C has
nontrivial action that is localized (perhaps up to exponentially
damped tails) in the union Cl ∪Cr . Typically, this will require
the width w to be a few correlation lengths ξ . The precise
details of how these regions, Cl and Cr , terminate near the
endpoints of the line C is unimportant for establishing that
there is a g defect (though it may play a role in determining
which type of g defect is preferred, as we will explain below).
We next identify the terms in H0 whose nontrivial action is
localized entirely within Cl ∪Cr , and denote the sum of these
terms as H0(C). We define the operator R(Cr )

g =∏
j:M j⊂Cr

R( j)
g ,

where we decompose the space manifold M = ∪k∈IM j into
a collection of simply connected disjoint regions M j , none
of which straddle the line C, i.e., C ∩ int(M j ) = ∅ for all j.
Finally, we define the defect Hamiltonian

Hg,g−1 = H0 +
[
R(Cr )

g H0(C)R(Cr )−1
g − H0(C)

]
. (239)

It should be clear that these constructions can also be
generalized to describe the system with an arbitrary number
n of defects which carry group elements g1, . . . , gn whose
product is identity

∏n
j=1 g j = 0.

4. Pointlike nature and confinement of g defects

When G is continuous or is physically obtained by sponta-
neously breaking a larger continuous symmetry, the g defects
can be created gradually. This property is familiar in the
case of superfluid vortices, where the phase of the order
parameter rotates continuously by 2π . For symmetries that are
not on-site, such as translational or rotational symmetries, the
defects correspond to lattice dislocations or disclinations. In
all of these cases, the g defects are well-defined even though
there is no specific g-branch line across which the g action
takes place. In other words, the g defects are truly pointlike
objects.

In fact, from the perspective of the topological order and
quantum numbers, the defect branch lines are completely
invisible in general. There are no local measurements one
can perform using topological properties and operations, such
as quasiparticle braiding, that can identify the location of a
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defect branch line. Only the endpoints of the branch lines,
where the g defects are localized, are locally detectable by
topological objects or operations. We stress that this does
not necessarily mean that the branch lines are invisible to
all forms of local measurements. Depending on the physical
realization, the branch lines may or may not be a phys-
ically well-localized and measurable object. For example,
in superconductor-semiconductor heterostructure-based real-
izations of Majorana and parafendleyon wires [8–10,124–
127], the defect branch lines are the segments of nanowires
in the topological phase, and are clearly locally measurable
and identifiable. On the other hand, for multilayer systems
with genons [6,12], which are defects whose group action
transfers quasiparticles from one layer to another, abstractly
there may be no precise, well-defined location of the branch
lines, whereas there may be in some experimental realizations
[34].

The g defects defined above are extrinsic defects in the
system, in the sense that they are imposed by deforming the
uniform Hamiltonian to the defect Hamiltonian Hg,g−1 . The
locations of the g defects are classical parameters in Hg,g−1

and thus do not fluctuate quantum mechanically. However,
if we allow the defects to become dynamical objects, whose
positions do fluctuate quantum mechanically, then there is
a question of whether they are confined or deconfined. If
they are confined, then the energy cost to separating the
dynamical g defects will grow with their separation. If they
are deconfined, then the energy cost for separating the g
defects will be finite and independent of their separation,
up to exponentially small corrections. Given the Hamiltonian
of the system, diagnosing whether the g defects correspond
to confined or deconfined excitations may be a nontrivial
task. We expect that one possible way to do this would be
to obtain the ground state |�g,g−1〉 of Hg,g−1 , and then to
compute the average energy of this ground state with respect
to the original Hamiltonian: E0

g,g−1 = 〈�g,g−1 |H0|�g,g−1〉. The
confinement/deconfinement of the defects would then corre-
spond to whether E0

g,g−1 diverges with the separation between
the defects or is bounded by a finite value, respectively, in the
limit of large separations.

If the g defects are deconfined, as described above, then
they correspond to quasiparticle excitations of the phase C. In
such a case, the global G symmetry effectively becomes an
emergent local gauge invariance with gauge group G at long
wavelengths. In what follows, we focus on the case where the
g defects correspond to confined objects, and in fact we will
reserve the term g defect for this case. The case where G is
promoted to a local gauge invariance is described in Sec. VIII.

5. Aut(C) defects without global symmetry

It is important to note that even when the underlying phys-
ical system has no exact global symmetry of its microscopic
Hamiltonian (i.e., G is trivial), the existence of nontrivial
topological symmetry Aut(C) of the emergent topological
phase C implies the possibility of nonetheless being able to
support defects that effect Aut(C) action on quasiparticles.
In particular, one can potentially have pointlike defects as-
sociated with nontrivial group elements in Aut(C). However,
without any global symmetries, the microscopic Hamiltonian

constructions of defects previously described in this section
cannot be applied. As such, creating Aut(C) defects with a
generic microscopic Hamiltonian without global symmetry is
a more complicated issue, which we do not address here.10

As a simple example of the realization of Aut(C) defects,
without a global symmetry, consider the defects associated
with layer exchange in a double-layer topological phase [6].
These defects are well-defined even in the absence of an exact
layer-exchange symmetry. Therefore the concept of an Aut(C)
defect is not logically dependent on the global symmetry of
the microscopic Hamiltonian. In what follows, we focus on
extrinsic pointlike defects that are associated with elements of
a global symmetry G. This is because we wish to develop a
complete characterization of symmetry-enriched topological
phases associated with a global symmetry G, and we also
wish to study the mechanism of gauging the global symmetry
G, which requires us to start with a system where G is an
exact microscopic global symmetry. We will still be able to
consider Aut(C) defects in the absence of global symmetries
using the same formalism that we will subsequently develop
by taking a fictitious symmetry group G = Aut(C) with cor-
responding symmetry action that is the trivial isomorphism
[ρ] : Aut(C) → Aut(C), specified by ρ[ϕ] = ϕ. However, do-
ing this may also require a modified understanding of which
properties of the resulting defect theory are well-defined and
which are not physical, when there is no global symmetry.

B. Topologically distinct types of g defects

In the previous section, we provided an example of how
to modify the Hamiltonian to realize g defects. However, it is
not necessarily the case that there is a unique type of g defect
that may be physically realized in a given topological phase.
In principle, a topological phase may support multiple types
of g defects that cannot be transformed into one another by
the application of a local operator. In these cases, there would
be topologically distinct types of g defects.

As a simple example, we may consider a Hamiltonian
which makes it locally preferable for a quasiparticle with
topological charge b to be bound to the g defect. Under certain
circumstances, this composite object might correspond to a
topologically distinct type of g defect as compared to the
original one. Indeed, as we will explain in the next section,
two topologically distinct types of g defects can always be
obtained from each other by fusion with a quasiparticle car-
rying an appropriate value of topological charge. This can
be understood intuitively, since topologically distinct types
of g defects can only differ by topological properties of the
topological phase that can be pointlike localized at the defect
(endpoint of a g-branch line). While there is no preference be-
tween topologically distinct g defects when considered in the
topological context, it will generically be the case that there
will be an energetic preference between distinct g defects,
as they will have different energy costs for a given physical
realization.

10This requires a detailed understanding of gapped line defects; see,
e.g., Refs. [5,15].
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=
? b

e e

FIG. 6. A g defect can possibly be altered into a topologically
distinct type of g defect by fusing it with a quasiparticle carrying
nontrivial topological charge b ∈ C. Whether the original g defect
and the b-g composite object are topologically distinct depends on
whether there is some topological charge e ∈ C, whose Wilson loop
around the defects can distinguish them. Such a topological charge
e must be g-invariant, ρg(e) = e, otherwise its Wilson loop could
not close upon itself after crossing the g defect branch line. Trying
to close the loop would necessarily result in a quasiparticle when
ρg(e) �= e.

If two g defects are topologically distinct, then there must
be a topological process that can distinguish them. This pro-
cess corresponds to the Wilson loop operator We associated
with a ρg-invariant topological charge e encircling the g
defect, as shown schematically in Fig. 6. Different possible
eigenvalues of We can be used to distinguish topologically
distinct types of defects. In fact, we will later show that
this statement can be made more precise. In particular, for
a modular theory C, we will show that one can write a
linear combinations of such Wilson loop operators which
acts as orthogonal projectors on the enclosed area onto each
topologically distinct type of g defect. (We will also show
that the number of topologically distinct types of g defects
is equal to the number of ρg invariant topological charges in
the original topological phase C.)

In order to refer to topologically distinct types of g defects,
we must use a more refined labeling system than simply as-
signing them the group element g. We give each topologically
distinct type of defect its own label a, which, in accord with
prior terminology, we call topological charge. We write the
set of topological charges corresponding to distinct types of g
defects as Cg. We will often use the notation ag as a shorthand
to indicate that a ∈ Cg. We emphasize that this does not mean
ag is a composite object formed by a g defect and a topological
charge a ∈ C from the original topological phase. In this
notation, the topological charge set labeled by the identity
group element 0 is equal to the original set of topological
charges of the topological phase, i.e., C0 = C. We write the
set of all topological charges as CG.

VI. ALGEBRAIC THEORY OF DEFECTS

We now wish to develop a mathematical description of
the topological properties, such as fusion and braiding, of
g defects in a topological phase C with global on-site sym-
metry G, that generalizes (and includes) the UBTC theory
used to describe (deconfined) quasiparticle excitations of the
topological phase. The proper mathematical description of
such defects is known as a G-crossed braided tensor category
[79,82]. In this section, we present the G-crossed theory,
starting with G-graded fusion and then introducing G-crossed
braiding. We derive the consistency conditions and a number
of important properties for such theories. In Appendix D, we

provide a concise presentation of G-crossed categories more
properly using the abstract formalism of category theory.

A. G-graded fusion

It is clear that combining a g defect with an h defect should
yield a gh defect. Hence, the fusion of defects must respect
the group multiplication structure of G, leading to the notion
of G-graded fusion.

A fusion category CG is G-graded if it can be written as

CG =
⊕
g∈G

Cg. (240)

In particular, this means each topological charge a ∈ CG is
assigned a unique group element g ∈ G and corresponding
charge subset Cg to which it belongs, such that fusion respects
the group multiplication of G, i.e., if a ∈ Cg and b ∈ Ch, then
Nc

ab can only be nonzero if c ∈ Cgh.
We recall the shorthand notation ag used to indicate that

a ∈ Cg. With this, we can write the fusion rules [of Eq. (3)] as

ag × bh =
∑
c∈CG

Nc
abc =

∑
c∈Cgh

Nc
abc =

∑
c

Nc
abcgh. (241)

All the properties and constraints of fusion categories from
Sec. II A carry over directly to G-graded fusion categories.
Clearly, the vacuum charge 0 ∈ C0, where we write the iden-
tity element of the group G as 0. It should be clear that C0
is itself a fusion category, since it is closed under fusion.
As such, we consider a G-graded category CG to be a “G
extension” of its subcategory C0.

The unique charge conjugate of a topological charge ag is
denoted ag ∈ Cg−1 . Since ag is the unique topological charge
with which ag can fuse into vacuum, i.e., N0

agbh
= δagbh , it fol-

lows that for any two distinct topological charges ag, cg ∈ Cg,
there must exist some nontrivial topological charges b0, b′0 ∈
C0 such that cg is one of the fusion outcomes obtained from
fusing ag with b0 or fusing b′0 with ag, i.e., N

cg

agb0
= Nb0

agcg
�= 0

and N
cg

b′0ag
= N

b′0
cgag

�= 0. Physically, this means that different
types of g defects in (a G extension of) a topological phase
described by C0 can indeed be obtained from each other by
fusing quasiparticles, which carry topological charges in C0,
with the g defects.11

As before, the quantum dimensions (which are defined in
the same way) obey the relation

dag dbh =
∑

c

Nc
abdcgh . (242)

We define the (total) quantum dimension of Cg to be

Dg =
√∑

a∈Cg

d2
ag

. (243)

11After introducing G-crossed braiding in the next section, we will
see that the same charge b0 can always be used for either left or right
fusion with ag to obtain cg, i.e., there exists some b0 such that N

cg
agb0

=
Nb0

agcg
= Nb0

cgag
= N

cg
b0ag

�= 0.
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Using Eq. (242) and the fact that Nc
ab = Na

cb̄
, we see, by

picking some arbitrary b ∈ Cg, that

D2
0 =

∑
a∈C0

d2
a0
=
∑

a ∈ C0
c ∈ Cg

da0 d−1
bg

Nc
abdcg

=
∑

a ∈ C0
c ∈ Cg

d−1
bg

dcg Na
cb̄da0 =

∑
c∈Cg

d2
cg
= D2

g (244)

for any g ∈ G with nonempty Cg �= ∅. In particular, the quan-
tum dimension of every nonempty Cg is

Dg = D0 = |H |− 1
2 DCG , (245)

where DCG is the total quantum dimension of CG and we define
the subgroup

H = {h ∈ G | Ch �= ∅ } � G. (246)

That H forms a subgroup of G follows from the fact that
Cg, Ch �= ∅ implies that Cgh �= ∅, together with the existence
of a vacuum charge and charge conjugates.

In this paper, we will focus our attention to faithfully G-
graded categories, i.e., those with H = G, so that there is no
g ∈ G with Cg = ∅. In other words, we study the full defect
theory associated with all group elements g ∈ G. We note that
one could instead choose to study the defect theory associated
with a subgroup H � G. In this case, one can leave Cg for g /∈
H empty and then study the resulting nonfaithfully G-graded
category. Such a nonfaithfully G-graded category would just
be a faithfully H-graded category, with the empty sets Cg for
g /∈ H included formally. This is only nontrivial once we also
include the symmetry action of such g /∈ H .

B. G-crossed braiding

We can consider a continuous family of Hamiltonians H (λ)
of the physical system containing defects (possibly including
quasiparticles, which we consider to be 0 defects), where the
locations of the defects and their corresponding branch lines
are changed adiabatically as a function of the parameter λ.
This allows us to implement physical operations that exchange
the positions of defects.

With this in mind, we wish to define a notion of braiding
of defects, called “G-crossed braiding,” that includes group
action and which is compatible with a G-graded fusion cate-
gory CG. We denote such a G-crossed braided tensor category
as C×

G . This requires some modification of the usual definition
of braiding. In fact, when G is a non-Abelian group, fusion in
a G-graded fusion category is not commutative, so the usual
notion of braiding cannot even be applied. In particular, there
must be a group action when the positions of objects (carrying
nontrivial group elements) are exchanged. (Of course, the
usual definition of braiding still applies within the subcategory
C0, which is a BTC.)

As the mathematical formalism is developed, it will be-
come clear that one can also physically implement braiding
transformations for non-Abelian defects by using topological
charge measurements and/or tunable interactions, follow-
ing the “measurement-only” methods of Refs. [128–130].
As these methods remove the need to physically move the

g h

a b

(a)

g

h

ab

(b)

gh

gb a

g

(c)

FIG. 7. (a) Each symmetry defect is labeled by a topological
charge and has a corresponding defect branch line emanating from it
characterized by a symmetry group element. Here we show a g defect
with charge a and an h defect with charge b, and their corresponding
branch lines in a 2D system. (b) As a g defect is braided with an
h defect in the counterclockwise sense, one can imagine deforming
the corresponding branch lines, so that no objects cross them. (c) In
order to return to the original configuration of branch lines, one must
pass the g branch line across the h defect and its branch line. As the
h defect of topological charge b passes through the g branch line, the
topological charge b is transformed to ρg(b) and the h branch line is
transformed into a gh = ghg−1 branch line. This corresponds to the
G-crossed braiding operator R

gbhag , as defined in Eq. (247).

defects, they may provide a more preferable physical im-
plementation of braiding transformations, depending on the
details of the physical system.

When the objects carry nontrivial group elements, they
are considered symmetry defects, which one can think of
as having a branch cut line emanating from the otherwise
pointlike object. These branch cuts are oriented and are
labeled by the group element of the object at which they
terminate, so that taking an object through a g branch in the
counterclockwise sense around the branch point at the corre-
sponding g defect gives g action on that object, as shown in
Fig. 7. This process can be depicted in the three-dimensional
space-time as shown in Fig. 8. In order to describe this using
diagrammatics, we choose the convention where the branch
lines, which form worldsheets that end on the worldlines of
the defects, go into the page, and then we leave the branch
line worldsheets implicit in the diagrammatics. This does not
impose any restriction on how the defect branch lines must be
physically configured in the actual system. Rather, it is merely
a bookkeeping tool that allows us to consistently keep track

ag bh

gbh

FIG. 8. Defect branch lines form worldsheets in space-time. A
local portion of the worldsheet diagram is shown for the G-crossed
braiding of defects described in Fig. 7.
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of the effects of the branch lines in the diagrammatics, while
only drawing the worldlines of the defects and not the branch
line worldsheets. With this convention, a g-defect worldline
applies group action on objects when it crosses over their
worldlines. In particular, we define G-crossed braiding by

Ragbh =

ag bh

bh
h̄ag

=
c,μ,ν

dc

dadb
Ragbh

cgh μν

cgh

bhag

h̄agbh

ν

μ
,

(247)

where the R symbols for a G-crossed theory are the maps

Rab
c : V

bh
h̄ag

cgh → V
agbh

cgh that result from exchanging (in a coun-

terclockwise manner) two objects of charges bh and h̄ag,
respectively, which are in the charge cgh fusion channel. We
recall that

gbh = ρg(bh), (248)

ḡ = g−1, (249)

gh = ghg−1 (250)

in the shorthand notation introduced in Sec. III B for the
symmetry group action on topological charges.12

The symmetry action [ρ] : G → Aut(C0) on the original
theory must now be self-consistently extended to an action of
the symmetry group

[ρ] : G → Aut(C×
G ) (251)

that is incorporated within the structure of the extended theory.
Notice, for example, that compatibility with the G-graded
fusion rules required that gbh ∈ Cghg−1 , i.e.,

ρg : Ch → Cghg−1 . (252)

More generally, compatibility with the fusion algebra requires

N
cgh

agbh
= N

cgh
gbhag

= N
cgh

bh
h̄ag

. (253)

12Had we allowed the G-crossed braiding action to depend on
the topological charge value, rather than only depending on the
corresponding group element, i.e., if we replaced ρg with a more
general map ρag , compatibility with fusion would require that ρag ◦
ρbh = ρcgh whenever Nc

ab �= 0. Combining this property with an
axiom that ρb0 act trivially on all topological charges for all b0 ∈ C0,
i.e., ρb0 (e) = e for any e ∈ C×

G , would lead back to ρag = ρg being
independent of the particular topological charge a within Cg. In
particular, for any two distinct charges ag �= cg in Cg, there is always
some b0 ∈ C0 with Nc

ab �= 0, and hence ρag = ρag ◦ ρb0 = ρcg . This
axiom is physically natural, because the topological charges in C0

correspond to quasiparticles, which are truly pointlike localized (they
do not have defect branch cut lines) and hence should be unable to
alter operators or topological charges localized in a distant region,
unless it enters that region.

From this, together with the properties of charge conjugates, it
follows that N0

agbh
= N0

gbhag
= δbhag , and hence any topological

charge in Cg will be invariant under the action of the corre-
sponding g, i.e.,

gag = gn
ag = ag, (254)

for all n ∈ Z.
For some theories (this may occur also in FTCs or BTCs),

it may be possible for a topological charge ag to remain
unchanged after fusion/splitting with another nontrivial topo-
logical charge b0. In particular, this occurs when N

ag

agb0
=

N
ag

b0ag
�= 0. In this case, b0 quasiparticles can be absorbed

or emitted at the ag defect without changing the localized
topological charge or localization energy of the defect. As
such, we say that defects (or quasiparticles) that carry charge
ag localize a “b0 zero mode.” It is clear from

N
ag

agb0
= N

ag

agb0
= N

ag

b0ag
= Nb0

agag
= N

ag

agb0
= N

ag
gb0ag

(255)

that if ag localizes a b0 zero mode, then: (1) ag also localizes
a b0 zero mode, (2) ag and ag localize b0 zero modes and also
zero modes associated with the entire g-orbit of charges gn

b0,
and (3) b0 is one of the fusion channels of ag with its conjugate
ag, as is b0 and gn

b0.
The G-crossed R symbols can equivalently be written in

terms of the relation

cgh

bhag

μ =
ν

Ragbh
cgh μν

cgh

bhag

ν . (256)

Similarly, the clockwise G-crossed braiding exchange op-
erator is

Ragbh −1
=

bh
h̄ag

ag bh

=
c,μ,ν

dc

dadb
Ragbh

cgh

−1

μν

cgh

h̄agbh

bhag

ν

μ
.

(257)

In order for G-crossed braiding to be compatible with
fusion, we again wish to have the ability to slide lines over
or under fusion vertices. However, we may no longer assume
that such operations are completely trivial, since one must at
least account for the group action on a vertex. The appropriate
relations are given by the unitary transformations

xk
k̄b

k̄cgh

bhag

μ

=
ν

[Uk (a, b; c)] μν xk

k̄cgh

cgh

bhag

ν

(258)
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xk

ḡx

h̄ḡxk

cgh

bhag

μ

= ηx (g,h)
xk

h̄ḡxk

cgh

bhag

μ

. (259)

We have used the same notation [Uk(a, b; c)]μμ′ and ηx(g, h)
that we previously introduced for the global symmetry action
on the topological degrees of freedom in Sec. III B and the
fractionalized (projective) local symmetry action in Sec. IV B,
because, as we will see, these are precisely the same quantities
extended to the entire G-crossed theory. Intuitively, it should
be clear why this is the case, since an ag line in the G-
crossed braided diagrammatics has an implicit g branch sheet
extending from behind it, which applies a g action to any
object passing through it, i.e., everything that the ag line
passes over. Hence, sliding an xk line over a vertex, as in
Eq. (258), passes the vertex through the k branch sheet, and
should result in the k action on that vertex. Similarly, passing
a |ag, bh; cgh, μ〉 vertex over an xk line, as in Eq. (259), should
capture the local projective relation of equating gh action on
charge x with successively applied g and h actions on charge
x, as the vertex indicates where the gh-branch sheet splits into
a g-branch sheet and an h-branch sheet. The validity of this
claim will be established through the following consistency
arguments and conditions. The quantity [Uk(a, b; c)]μμ′ here
corresponds to a specific choice of ρ ∈ [ρ], and we will see
that the relation between choices within a symmetry action
equivalence class (related by natural isomorphisms) will take
the form of a gauge transformation in this theory.

We begin by arguing that the factors in these expressions
must have the given dependence on the various topological
and group quantities. In particular, in Eq. (258), we see that
the nontrivial interaction is between the k-branch line and
the vertex, hence there may be dependence on k, but not the
specific topological charge x ∈ Ck, and the transformation on
the fusion state space may be nontrivial, so it may depend on
all the vertex labels. For Eq. (259), we see that the nontrivial
interaction is between the g, h, and gh branch lines and the
topological charge x, so this expression may depend on g and
h, but should not depend on the specific topological charge
values a, b, or c, nor should it have any effect within the fusion
state space of the fusion vertex.

Sliding a line over a vertex, as in Eq. (258) is a unitary
transformation between V

k̄ak̄b
k̄c

and V ab
c , as specified by the

unitary operators Uk(a, b; c). This requires the dimensionality
of the fusion spaces to be preserved under the corresponding
symmetry action, giving

N
kcgh
kag

kbh
= N

cgh

agbh
(260)

for any k acting on a vertex. It follows that the quantum
dimensions are also invariant

dag = dkag
. (261)

Clearly, if the sliding line has vacuum charge xk = 0, the
sliding transformations should be trivial, so

[U0(a, b; c)]μν = δμν, (262)

η0(g, h) = 1. (263)

We require that the sliding rules are compatible with the
property that vacuum lines can be freely added or removed
from a diagram, i.e., sliding over/under a vertex |a, b; c〉 with
a = 0 or b = 0 should be trivial, since it is equivalent to
simply sliding over a line. This imposes the conditions

Uk(0, 0; 0) = Uk(a, 0; a) = Uk(0, b; b) = 1, (264)

ηx(0, 0) = ηx(g, 0) = ηx(0, h) = 1. (265)

Combining Eqs. (258) and (259) with trivial braidings,
such as

ba

=

a b

, (266)

we see that sliding lines over or under vertices with the
opposite braiding are given by

xk

kcgh

c

bhag

μ

=
ν

Uk
ka, kb; kc

μν xk

kcgh

bhag

ka
kbν

(267)

xk

h̄ḡxk

cgh

bhag

μ

= ηx (g,h)

xk

h̄ḡxk

ḡx

cgh

bhag

μ

. (268)

Compatibility of the sliding moves with the inner product
Eq. (7) is obtained by sliding a line over a bubble diagram, as
in Eq. (7). In this way, we obtain the corresponding relations
for sliding over fusion (rather than splitting) vertices

xk

cgh

a
b

k̄bh
k̄ag

μ

=
ν

[Uk (a, b; c)]νμ xk

cgh

k̄c

k̄bh
k̄ag

ν

(269)

xk

cgh

kc

kbh
kag

μ

=
ν

Uk
ka, kb; kc

νμ xk

cgh

a
b

kbh
kag

ν

.

(270)

A similar calculation gives the relations for sliding lines under
fusion vertices

h̄ḡxk

xk ḡxk

cgh

bhag

μ

= ηx (g,h)

h̄ḡxk

xk

cgh

bhag

μ

(271)
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ag bh xk yl

zkl
l̄k̄cgh

U

ag bh xk yl

zkl
l̄k̄cgh

U

ag bh xk yl

zkl
l̄k̄cgh

η

ag bh xk yl

zkl
l̄k̄cgh

η

ag bh xk yl

zkl
l̄k̄cgh

η

ag bh xk yl

zkl
l̄k̄cgh

U

FIG. 9. The G-crossed symmetry action consistency equation provides consistency between the sliding moves, which implement the U
and η transformations associated with the global and fractionalized (local projective) symmetry action. Equation (274) is obtained by imposing
the condition that the above diagram commutes.

xk

h̄ḡxk

cgh

bhag

μ

= ηx (g,h)
ḡxk

xk

h̄ḡxk

cgh

bhag

μ

(272)

Consistency of the sliding moves with each other can be
achieved by equating the two different sequences of sliding
moving shown in Fig. 9, which yields the relation

ηb(k, l)ηa(k, l)
∑

λ

[Ul(
k̄a, k̄b; k̄c)]μλ[Uk(a, b; c)]λν

= [Ukl(a, b; c)]μνηc(k, l). (273)
If we define κk,l = ρklρ

−1
l ρ−1

k and κk,l|ag, bh; cgh, μ〉 =∑
ν [κk,l(a, b; c)]μν |ag, bh; cgh, ν〉, we see that this condition

can be rewritten as the symmetry action consistency equation

[κk,l(a, b; c)]μν =
∑
α,β

[Uk(a, b; c)−1]μα

× [Ul(
k̄a, k̄b; k̄c)−1]αβUkl(a, b; c)]βν

= ηa(k, l)ηb(k, l)
ηc(k, l)

δμν. (274)

Using this condition to decompose Uklm(a, b; c) in the
two equivalent ways related by associativity, one obtains the
following consistency condition on the κk,l

κl,m(k̄a, k̄b; k̄c)κk,lm(a, b; c) = κk,l(a, b; c)κkl,m(a, b; c).

(275)

Thus we see that sliding an xk line over a vertex or operator
can indeed be thought of as implementing the G-crossed ex-
tension of the symmetry action ρk, with Uk(a, b; c) playing the
same role as in Sec. III B. Similarly, sliding an xk line under a
|ag, bh; cgh, μ〉 vertex can be thought of as implementing the
G-crossed extension of the projective phases ηx(g, h) relating
the local symmetry action of g and h to gh.

We continue expounding the relation of the sliding moves
to the symmetry action by next requiring consistency between
the sliding moves and the F moves. Sliding a line over a fusion
tree before or after application of an F move gives

=
α ,β ,f,μ ,ν

Uk
ka, kb; ke

αα
Uk

ke, kc; kd
ββ

F
ka kb kc
kd

(ke,α ,β )( kf,μ ,ν )

=
f,μ,ν,μ ,ν

F abc
d (e,α,β)(f,μ,ν)

Uk
kb, kc; kf

μμ
Uk

ka, kf ; kd
νν

,

(276)
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which yields the consistency condition∑
α′,β ′,μ′ν ′

[Uk(ka, kb; ke)]αα′ [Uk(ke, kc; kd )]ββ ′
[
F

kakbkc
kd

]
(ke,α′,β ′ )(k f ,μ′,ν ′ )[Uk(kb, kc; k f )−1]μ′μ[Uk(ka, k f ; kd )−1]ν ′ν

= [
F abc

d

]
(e,α,β )( f ,μ,ν ). (277)

This condition is the statement of invariance of the F symbols (of the G-crossed theory) under the symmetry action.
Similarly, sliding a line under a fusion tree before or after application of an F move gives

x

ag bh ck

egh

dghk

α

β

= ηx(g,h) ηx (gh,k)
f,μ,ν

F abc
d (e,α,β)(f,μ,ν)

x

ag bh ck

fhk

dghk

μ

ν

=
f,μ,ν

F abc
d (e,α,β)(f,μ,ν)

ηḡx(h,k) ηx (g,hk)

x

ag bh ck

fhk

dghk

μ

ν
,

(278)

which yields the consistency condition

ηḡx(h, k)ηx(g, hk) = ηx(g, h)ηx(gh, k). (279)

This is the statement of fractionalization being consistent in the G-crossed theory. Recall from Sec. IV that this relation translates
into the condition that the obstruction to fractionalization vanishes, so here we see a direct way in which a nontrivial obstruction
would make it impossible to consistently extend the original theory C0 to a G-crossed theory C×

G .
Sliding a line under a G-crossed braiding operation gives the G-crossed Yang-Baxter equation

bh h̄agxk

kag
kbh xk

=
η ka(khk̄,k)
η ka(k,h)

bh h̄agxk

kag
kbh xk

. (280)

Here, we slid the a line under the Rbx braiding operator and obtained the ηa factors by expanding the Rbx braiding operator in
terms of fusion and splitting vertices.

Alternatively, we can obtain a similar relation by sliding the x line over the Rab braiding operator. In this case, there will be
symmetry action applied to the braiding operation, so we must explicitly expand it, giving

bh h̄agxk

kag
kbh xk

=
c,μ,ν

dc

dadb
Rab

c μν

bh h̄agxk

kag
kbh xk

cgh

ν

μ

=
c,μ,ν,μ ,ν

dc

dadb
Uk (kb, kh̄a; kc)−1

μ μ
Rab

c μν
Uk( ka, kb; .

kc)
νν

bh h̄agxk

kag
kbh xk

kc
ν

μ

(281)
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a cb

e

d

R

a cb

e

d

F

a cb

d

g R
a cb

d

g

F
a cb

d

kf

U

a cb

d

R

a cb

f

d

F

a h̄ḡcb

e

d

R−1

a h̄ḡcb

e

d

F

a h̄ḡcb

d

g R−1

a h̄ḡcb

d

g

F
a h̄ḡcb

d

f

η

a h̄ḡcb

d

R−1

a h̄ḡcb

f

d

F

FIG. 10. The G-crossed Heptagon equations provide consistency conditions between G-crossed braiding, fusion, and sliding moves.
Equations (286) and (287) are obtained by imposing the conditions that the above diagrams commute.

Comparing this relation with the G-crossed Yang-Baxter equation by expanding the Rab braiding operator in Eq. (280),
we obtain the consistency condition between braiding and sliding moves

ηka(khk̄, k)

ηka(k, h)

∑
μ′,ν ′

[Uk(kb, kh̄a; kc)]μμ′
[
R

kakb
kc

]
μ′ν ′[Uk(ka, kb; kc)−1]ν ′ν =

[
Rab

c

]
μν

. (282)

This is the G-crossed generalization of the statement that the R symbols are invariant under the symmetry action. Notice the
presence of the η factors, as compared to Eq. (88), to which this expression reduces when a, b, c ∈ C0.

We reemphasize the fact that imposing consistency on the sliding moves has resulted in consistency conditions that precisely
replicate the symmetry action constraints and properties described in Secs. III and IV, and extend them from acting on the C0
theory to its G-crossed extensions. This justifies our use of the same symbols [Uk(a, b; c)]μμ′ and ηx(g, h) for the transformations
associated with the sliding moves.

We note, for future use, that sliding a line under and another line over a vertex gives the relation

ηkx(kg, kh) = ηḡx(k̄, khk̄)

ηḡx(h, k̄)

ηx(gh, k̄)

ηx(k̄, kghk̄)

ηx(k̄, kgk̄)

ηx(g, k̄)
ηx(g, h) (283)

for how ηx(g, h) transforms under k action. This can be obtained from

x

yk̄

cgh

kbh
kag

bhag

μ

= ηx (g,h) Uk̄ ( k̄a, k̄b; k̄c)−1

μν

ηx gh, k̄
ηx k̄,kghk̄

kx

yk̄

cgh

kcgh

kbh
kag

ν

(284)

=
ηḡx h, k̄

ηḡx k̄,khk̄

ηx g, k̄

ηx k̄,kgk̄
Uk̄ (k̄a, k̄b; k̄c)−1

μν
ηkx

kg, kh
kx

yk̄

cgh

kcgh

kbh
kag

ν

(285)

where the two lines in this expression correspond to the two orders in which one can slide the x and y lines.
Finally, we require consistency between G-crossed braiding and fusion, as well as the sliding moves, so that any two sequences

of moves that start from the same configuration and end in the same configuration must be equivalent. This is achieved by
imposing the following G-crossed Heptagon equations, which are analogous to the Hexagon equations of BTCs, a diagrammatic
representation of which is shown in Fig. 10. The Heptagon equation for counterclockwise braiding exchanges is∑

λ,γ

[
Rac

e

]
αλ

[
F ack̄b

d

]
(e,λ,β )(g,γ ,ν)

[
Rbc

g

]
γμ

=
∑

f ,σ,δ,η,ψ

[
F ck̄ak̄b

d

]
(e,α,β )(k̄ f ,δ,σ )[Uk(a, b; f )]δη

[
R f c

d

]
σψ

[
F abc

d

]
( f ,η,ψ )(g,μ,ν ), (286)
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in which we left the group labels for ag, bh, ck, dghk, egk, fgh, and ghk implicit. Similarly, the Heptagon equation for clockwise
braiding exchanges is∑

λ,γ

[(
Rca

e

)−1]
αλ

[
F aḡcb

d

]
(e,λ,β )(g,γ ,ν)

[(
R

ḡcb
g

)−1]
γμ

=
∑

f ,σ,δ,ψ

[
F cab

d

]
(e,α,β )( f ,δ,σ )ηc(g, h)

[(
Rc f

d

)−1]
σψ

[
F abh̄ḡc

d

]
( f ,δ,ψ )(g,μ,ν ), (287)

in which we left the group labels for ag, bh, ck, dkgh, ekg,
fgh, and gḡkgh implicit (the differences being due to how the
group action enters braiding in the counterclockwise versus
clockwise braiding operators).

Given the trivial associativity of the vacuum charge 0
(F abc

d = 1 when a, b, or c = 0), the Heptagon equations imply
that braiding with the vacuum is trivial, i.e., Ra0

a = R0a
a =

(Ra0
a )−1 = (R0a

a )−1 = 1 for any value of a ∈ CG. If we further

require unitarity of the theory, then (Rab)
−1 = (Rab)

†
, which

can be expressed in terms of R symbols as [(Rab
c )

−1
]μν =

[Rab
c ]

∗
νμ.

C. Gauge transformations

The basic data given by Nc
ab, F abc

d , Rab
c , ρk [which in-

cludes Uk(a, b; c)], and ηa(g, h) that satisfy the consistency
conditions described in the previous sections define a G-
crossed braided tensor category, which we can consider to
be a generalized anyon and defect model. There is, however,
some redundancy between different collections of basic data
due to gauge freedom, similar to the case of BTCs. Thus we
again wish to characterize theories as equivalent when they
are related by gauge transformations. For G-crossed BTCs, it
is useful to separate gauge transformations into two classes.

The first type of gauge transformation is familiar from
BTCs. In particular, these gauge transformations derive from
the redundancy of redefining the fusion/splitting vertex basis
states

˜|a, b; c, μ〉 =
∑
μ′

[
�ab

c

]
μμ′ |a, b; c, μ′〉, (288)

where �ab
c is a unitary transformation. Such gauge transfor-

mations modify the F symbols in precisely the same way
we have previously seen in Eq. (51). The transformation of
G-crossed R symbols is slightly modified from that of BTCs
to accommodate the symmetry actions that are incorporated
in braiding, and is given by[

R̃
agbh
cgh

]
μν

=
∑
μ′,ν ′

[
�bh̄a

c

]
μμ′
[
R

agbh
cgh

]
μ′ν ′
[(

�ab
c

)−1]
ν ′ν . (289)

The symmetry action transformation become

[Ũk(a, b; c)]μν =
∑
μ′,ν ′

[
�

k̄ak̄b
k̄c

]
μμ′[Uk(a, b; c)]μ′ν ′

[(
�ab

c

)−1]
ν ′ν .

(290)

These gauge transformations leave η̃x(g, h) = ηx(g, h) un-
changed, and consequently κ̃g,h = κg,h is also unchanged.

The second type of gauge transformation is derived from
the equivalence of symmetry actions by natural isomorphisms,
i.e., ρ̌g = ϒgρg, which we discussed in Secs. III and IV. In

particular, these gauge transformations enact the following
modifications of the basic data[

F̌ abc
d

]
(e,α,β )( f ,μ,ν ) =

[
F abc

d

]
(e,α,β )( f ,μ,ν ), (291)[

Ř
agbh
cgh

]
μν

= γa(h)
[
R

agbh
cgh

]
μν

, (292)

[Ǔk(a, b; c)]μν = γa(k)γb(k)

γc(k)
[Uk(a, b; c)]μν, (293)

η̌x(g, h) = γx(gh)

γḡx(h)γx(g)
ηx(g, h), (294)

which leave the F symbols unchanged, since the symmetry
action is incorporated through braiding. [The symmetry action
on topological charge labels is unchanged ρ̌g(a) = ρg(a).]
Thus theories with different choices of ρ ∈ [ρ] are equivalent
under this type of gauge transformation.

We refer to these two types of gauge transformations
as vertex basis gauge transformations and symmetry action
gauge transformations, respectively. It is straightforward to
check that all the consistency conditions are left invariant
under both types of gauge transformations.

As before, one must be careful not to use the gauge free-
dom associated with the canonical gauge choices associated
with making fusion, braiding, and sliding with the vacuum
trivial, and respecting the canonical isomorphisms that allow
one to freely add and remove vacuum lines. In particular, one
must fix �a0

a = �0b
b = �00

0 , as in the case of BTCs, and also
fix γ0(h) = γa(0) = 1.

D. G-crossed invariants, twists, and S matrix

It is useful to consider quantities of a G-crossed theory
that are invariant under gauge transformations, as we did for
BTCs. (In this section, we will discuss invariants that are
straightforward to obtain in the G-crossed theory, e.g., using
diagrammatics, but we will later see that another class of
invariants can be constructed by gauging the symmetry of the
theory.) Clearly, invariants derived from fusion and F symbols
alone are the same in both BTCs and G-crossed BTCs, since
the new symmetry action gauge transformations do not affect
the F symbols. In particular, the quantum dimensions da =
dā = dka are invariants.

Equation (277) with e = f = 0 yields the relation

κka

κa
=
[
F

kak āka
ka

]
00[

F aāa
a

]
00

= Uk(kā, ka; 0)

Uk(ka, kā; 0)
. (295)

When a = ā, the Frobenius-Shur indicator κa = ±1 is a
gauge invariant quantity and it follows from Eq. (295) that
κa = κka. (We recall that, more generally, κa = κ−1

ā .) When
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ka = a is k-invariant, it follows from Eq. (295) that

Uk(a, ā; 0) = Uk(ā, a; 0). (296)

On the other hand, we must be more careful when trying
to carry over gauge invariant quantities that are derived from
braiding operations, such as the twist factors and S matrix, as
these may no longer be gauge invariant in a G-crossed theory.
Consequently, we will examine these in more detail.

The topological twists are defined the same way as before
by taking the quantum trace of a counterclockwise braid of a
topological charge with itself

θa =
1
da a

=
c,μ

dc

da
[Raa

c ]μμ . (297)

We immediately see that θag is always invariant under the
vertex basis gauge transformations, but is only invariant under
the symmetry action gauge transformations if g = 0, since

θ̌ag = γag (g)θag . (298)

This corroborates the interpretation of topological charges
ag with g �= 0 as describing extrinsic defects, for which one
should not expect invariant braiding or exchange statistics
in the usual sense, since they are not true quasiparticles
(deconfined topological excitations) of the system. We will
examine this matter in more detail.

We can immediately notice that∑
μ

[
Raa

c

]
μμ∑

μ′
[
Raa

c′
]
μ′μ′

(299)

is gauge invariant under both types of gauge transformations.
Using Eq. (280) with the definition of the twist, we find the

general relation between θa and θka is

θag =
ηkag

(kgk̄, k)

ηkag
(k, g)

θkag
= ηag (k̄, kgk̄)

ηag (g, k̄)
θkag

. (300)

When ka = a, it follows that

ηag (g, k) = ηag (k, g). (301)

We also note that Eq. (279) gives ηkx(k, k̄) = ηx(k̄, k) for any
x and k, so we also have

ηag (k, k̄) = ηag (k̄, k) (302)

when ka = a.

The definition of topological twists can also be written in
the form

ag

ag

= θa

ag

ag

=

ag

ag

, (303)

as is the case with BTCs. It is clear that the inverse topological
twists are similarly obtained from clockwise braidings

ag

ag

= θ−1
a

ag

ag

=

ag

ag

. (304)

For unitary theories, it is straightforward to see that θ−1
a = θ∗

a ,
and hence the topological twist factors must be phases.

Unlike a BTC, it is not necessarily the case that θag and
θag are equal in a G-crossed BTC. In particular, we find the
relations

θag = Ug(ag, ag; 0)ηag (ḡ, g)θag . (305)

and

θag = Ug(ag, ag; 0)κag

(
R

agag

0

)−1
(306)

= ηag (g, ḡ)−1κ−1
ag

(
R

agag

0

)−1
(307)

from the following diagrammatic manipulations:

ag

= Ug(ag, ag; 0) ag (308)

= Ug(ag, ag; 0)ηηag(ḡ,g)

ag

.

(309)

We can now derive the G-crossed generalization of the
ribbon property by using the following diagrammatic relations

ag bh

cgh

μ

=
ν

[Ugh(a, b; c)]μν

ag bh

cgh

ν

= θc

ν

[Ugh(a, b; c)]μν

cgh

bhag

ν (310)
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= ηb(h̄g, h̄ḡh)ηa(h̄g, h̄ḡh)

ag bh

cgh
μ

= ηa(g,h)ηb(h, h̄gh)

cgh

ag bh

μ

= θaθbηa(g,h)ηb(h, h̄gh)
ν,λ

Rbh
h̄ag

cgh μλ
Ragbh

cgh λν
cgh

bhag

ν .

(311)

Notice that the first and second lines are related using the
pivotal property and we used the Yang-Baxter relation and the
fact that lines can slide freely under a twist. This yields
the G-crossed ribbon property∑

λ

[
R

bh
h̄ag

cgh

]
μλ

[
R

agbh
cgh

]
λν

= θc

θaθb

[Ugh(a, b; c)]μν

ηa(g, h)ηb(h, h̄g)
. (312)

Clearly, the operator Ragbh Rbh
h̄ag is not gauge invariant,

unless g = h = 0. However, when hag = ag and gbh = bh, the
quantities∑

μ,ν

[
R

bhag
cgh

]
μν

[
R

agbh
cgh

]
νμ∑

μ′,ν ′
[
R

bhag

c′gh

]
μ′ν ′
[
R

agbh

c′gh

]
ν ′μ′

= θc
∑

μ[Ugh(a, b; c)]μμ

θc′
∑

μ′[Ugh(a, b; c′)]μ′μ′

(313)

are invariant under both types of gauge transformations.
More generally, when kag = ag and kbh = bh for k =

(gh)n, the quantities ∑
μ

[
(R2n)agbh

cgh

]
μμ∑

μ′
[
(R2n)agbh

c′gh

]
μ′μ′

(314)

are invariant under both types of gauge transformations
(where the notation R2n indicates the operator for 2n succes-
sive counter-clockwise exchanges).

Once again, we define the topological S matrix by

Sagbh =
1
D0

a b

=
1
D0 c,μ,ν

dc Rbā
c μν

Rāb
c νμ

=
1
D0 c,μ

dc
θc

θāθb

[Uḡh(ā, b; c)]μμ

ηā(ḡ,h)ηb(h, ḡ)
.

(315)

We emphasize that, when a ∈ Cg and b ∈ Ch, the S matrix
is only well-defined if ha = a and gb = b, and consequently
gh = hg. Otherwise, the topological charge values would
change in the braiding and one would not be able to close
the lines back upon themselves. We note that we have used
D0 = Dg, the total quantum dimension of each subsector Cg,

rather than the total quantum dimension DCG = |G| 1
2 D0 of the

entire G-crossed theory C×
G for reasons that will be made clear

later.
The elements of the S matrix do not obey all the same

relations as that of a BTC, nor are they gauge invariant, unless
g = h = 0, or unless either a = 0 or b = 0 (in which case
Sab = dadb/D0), since

Šagbh = γā(h)γb(ḡ)Sagbh . (316)

Nonetheless, the S matrix will be an important quantity that
again plays an important role in defining the system and
modular transformations on higher genus surfaces, so we will
examine its properties in detail.

We first note that

Skag
kbh

= ηk ā(k, h)ηkb(k, ḡ)

ηk ā(khk̄, k)ηkb(kḡk̄, k)
Sagbh , (317)

which follows from the definition and Eq. (280). It follows
that, when kag = hag = ag and kbh = gbh = bh, we have

ηā(k, h)ηb(k, ḡ)

ηā(h, k)ηb(ḡ, k)
= 1. (318)

It is straightforward to see that

S∗
agbh =

1
D0

a b (319)

for a unitary theory. It also follows immediately from the
definition (and the cyclic property of the trace) that

Sagbh = Sbhag
. (320)

While these S matrix relations are the same as for UBTCs, we
must be more careful with properties obtained by deforming
lines, because of the nontrivial sliding rules of a G-crossed
theory.

When hag = ag and gbh = bh (and hence gh = hg), so that
the corresponding S matrix element is well-defined, we have
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the loop-removal relation

ag

bh

=
Sab

S0b

bh

, (321)

which can be verified by closing the b line upon itself in
this expression. In fact, if either hag �= ag or gbh �= bh, then
left-hand side of the equation evaluates to zero, so, for these
purposes, we can consider Sab = 0 when it is not well-defined.

In writing this relation, we must be more careful than in
a BTC to indicate clearly where the lines are drawn with
respect to vertices, including local minima and maxima (cups
and caps). Recall that the minima/maxima of the cups/caps
correspond to splitting/fusion vertices, respectively, between
a topological charge, its conjugate, and the vacuum. Therefore

we see that

ag

bh

=
Uh(a, ā; 0)
ηb(g, ḡ)

ag

bh

. (322)

Since one can equivalently take the trace of Eq. (322) by
closing the b line on itself into a loop to the left or right, it
leads to the relation

Sagbh =
Uh(a, ā; 0)

ηb(g, ḡ)
S∗

bhag
. (323)

Combining Eqs. (320) and (323) yields a relation between the
S matrix and its transpose

Sagbh =
Uh(a, ā; 0)ηa(h̄, h)

Ug(b, b̄; 0)ηb(g, ḡ)
Sbhag . (324)

Another useful relation allows us to flip the tilt of a loop
encircling another line, as follows

ag

bh

= θa

ag
bh

= θa
ag

bh

=

ag
bh

, (325)

in which we used Eqs. (280) and (301).
An important diagrammatic relation, which is the precursor of the G-crossed Verlinde formula, is obtained by putting two

loops on a line and using a partition of identity to relate it to a single loop on the line

=
c,μ

dc

dadb
=

c,μ,ν

dc

dadb

[Uk(b̄, ā; c̄)]μν

ηx(h̄, ḡ)
=

c∈Ck
gh

,μ

[Uk(b̄, ā; c̄)]μμ

ηx(h̄, ḡ)
(326)

Combining Eqs. (326) and (321), we find that when kag =
ag, kbh = bh, and gxk = hxk = xk, we have the important
relation

Sagxk

S0xk

Sbhxk

S0xk

=
∑

cgh∈Ck
gh,μ

[Uk(b̄, ā; c̄)]μμ

ηx(h̄, ḡ)

Scghxk

S0xk

. (327)

We can similarly obtain

Sxkag

Sxk0

Sxkbh

Sxk0
=

∑
cgh∈Ck

gh,μ

[Uk̄(a, b; c)]μμ

ηx̄(g, h)

Sxkcgh

Sxk0
. (328)

If we take x ∈ C0, these expressions become

Sagx0 Sbhx0

S0x0

ηx(h̄, ḡ) =
∑
cgh

Nc
abScghx0 , (329)

Sx0ag Sx0bh

Sx00
ηx̄(g, h) =

∑
cgh

Nc
abSx0cgh , (330)

which show that one may think of Sagx0/S0x0 (or, equivalently,
Sx0ag/Sx00) as projective characters of the extended (noncom-
mutative) Verlinde algebra.

We will now establish several interesting relations that we
will find particularly useful for the discussion of modularity.
We first define

�0 = 1

D0

∑
c∈C0

d2
c θc (331)

to be the normalized Gauss sum of the C0 BTC. Then, we have
the relation

a∈Cg

daθa

Ug(ā, a; 0) ag

bg

=
D0Θ0

ηb(g, ḡ)θb

bg

. (332)
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In order to obtain this relation, we use the fact that when a, b ∈ Cg, the S matrix takes the form

Sagbg =
1

ηā(ḡ, g)ηb(g, ḡ)

1

D0

∑
c∈C0

Nc
ābdc

θc

θāθb
(333)

and therefore obeys the property∑
ag

daθa

Ug(ā, a; 0)
Sagbg =

1

ηb(g, ḡ)θb

1

D0

∑
ag,c0

Nc
ābdadcθc = db�0

ηb(g, ḡ)θb
, (334)

which is established using Eqs. (242) and (305).
The next relation (which holds even when hag �= ag or gbh �= bh) is

x∈Cgh

dxθxηx̄(h̄g, h̄ḡh)
Ugh(x̄, x; 0)

xgh

ag bh

h̄ḡbh
h̄ag

=
x,c∈Cgh

μ,ν

dxθx

Ugh(x̄, x; 0)
dc

dadb
Uh̄ḡ( h̄a, h̄ḡb; c)

μν

ν

μ

c

xgh

ag bh

h̄ḡbh
h̄ag

=
cgh,μ,ν

dc

dadb
Uh̄ḡ (h̄a, h̄ḡb; c)

μν

D0Θ0

ηc(gh, h̄ḡ)θc

cgh

h̄ḡbh
h̄ag

bhag

ν

μ

=
D0Θ0

θaθbηa(gh, h̄ḡ)ηb(gh, h̄ḡ)ηa(g,h)ηb(h, h̄g)

ag bh

h̄ḡbh
h̄ag

, (335)

which is obtained by using Eq. (332), the relation

[Uk̄(k̄a, k̄b; k̄c)]μν = ηc(k, k̄)

ηa(k, k̄)ηb(k, k̄)
[Uk(a, b; c)−1]μν, (336)

[which is the sliding move consistency Eq. (274) with l = k̄,] and the (inverse of the) the ribbon property given in Eq. (312).
Finally, when hag = ag (which requires gh = hg), we have the relation

x∈Cgh

dxθxηx̄(g,h)
Ugh(x̄, x; 0)

xgh

ag

bh

ḡbh

=
x∈Cgh

dxθxηx̄(g,h)
Ugh(x̄, x; 0)

Ug(x, x̄; 0)
ηa(gh, h̄ḡ)

ηx(g, ḡ)
Ugh(a, ā; 0)

xgh

ag

bh

ḡbh

=
D0Θ0ηb(g, ḡ)

θaθbUh(a, ā; 0)ηa(gh, h̄ḡ)ηb(gh, h̄ḡ)ηa(g,h)ηb(h,g) ag

ḡbh

bh

.
(337)

To obtain these relations, we used Eqs. (322) and (332) in both lines, though, in the second line, we first applied Eq. (335).
We emphasize that the individual diagrams in this equation evaluate to zero, unless hag = ag, gbh = bh, and gxgh = hxgh = xgh.
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In particular, the sum here can be taken to be over xgh ∈
Cg,h

gh = Cg
gh ∩ Ch

gh, the topological charges in Cgh that are both
g-invariant and h-invariant, where we define the invariant
topological charge subsets

Ch
g = {a ∈ Cg|ha = a}. (338)

Taking the trace of Eq. (337), i.e., closing the b line back
on itself (which requires gbh = bh), we finally obtain the
important relation∑

x∈Cgh

ηa(g, h)θag

Sagxgh

Ugh(a, ā; 0)
ηx(gh, ḡ)θxgh

× Sxghbh

Uh(x, x̄; 0)
ηb(h, h̄ḡ)θbh = �0

Sagbh

Uh(a, ā; 0)
. (339)

In order to manipulate the trace of Eq. (337) into this form,
we have used Eqs. (296), (301), and (324), together with the
relations

ηa(k, l)ηā(k, l) = Ukl(a, ā; 0)

Uk(a, ā; 0)Ul(k̄a, k̄ā; 0)
, (340)

ηgx(g, h)ηx(ḡ, gh) = ηx(ḡ, g), (341)

ηḡb(h, h̄ḡ)ηb(g, ḡ) = ηb(gh, h̄ḡ)ηb(g, h), (342)

the first of which is the sliding move consistency Eq. (274)
with c = 0, while the second and third are special cases of
Eq. (279).

We conclude this section by noting that a number of
additional G-crossed gauge invariant quantities will naturally
arise in the context of modular transformations of the G-
crossed theory and gauging the symmetry of theory. As these
quantities would be somewhat out of context and mysterious
here, we leave their discussion for the subsequent Secs. VII
and VIII.

VII. G-CROSSED MODULARITY

An important property of a topological phase of matter
is the ground-state degeneracy when the system inhabits
manifolds with different topologies. For a 2 + 1-dimensional
topological phase, the ground-state degeneracy will depend
on the genus g of the surface inhabited by the system and the
topological charge values of the quasiparticles (and bound-
aries) of the system. More generally, it is important that the
theory describing a topological phase is well-defined and
consistent for the system on arbitrary topologies. In other
words, the topological properties of the system are described
by a TQFT. In terms of the BTC theory, this is achieved by
requiring the theory to be a modular tensor category (MTC),
i.e., to have unitary S matrix. In this case, the S matrix and
T matrix provide a projective representation of the modular
transformations for the system on the torus. (More general
modular transformations for the system on a manifold of
arbitrary topology and quasiparticle content can similarly be
defined in terms of the MTC properties.)

We wish to establish a similar notion of modularity for
G-crossed BTCs, which allows one to relate the theory to a
G-crossed TQFT that describes the topological phase with
defects on arbitrary 2D surfaces. The G-crossed extended

defect theory C×
G admits a richer set of possibilities, as defect

branch lines can wrap the nontrivial cycles of surfaces with
genus g > 0, thus giving rise to “defect sectors.” For G-
crossed modularity, we will require that the set of g defect
topological charges Cg is finite for each g ∈ G (though not
necessarily that G is finite or even discrete). Some special
cases of G-crossed modular transformations have been studied
recently in Refs. [131,132].

In this section, we will develop an understanding of the
defect sectors and their associated topological ground-state
degeneracies. We also establish the notion of G-crossed mod-
ularity and the corresponding modular transformations for
the system when it includes defect sectors. The topological
ground-state degeneracies of the defect sectors, together with
the G-crossed modular transformations, can provide valuable
information about the symmetry-enriched topological order.

A. G-crossed Verlinde formula and ωa loops

Before considering the G-crossed theory and modular
transformations for a system on surfaces with genus g > 0,
we first investigate some properties that are closely related to
modularity, namely the Verlinde formula and ωa loops. For
this, we begin with the minimal assumption that the original
theory C0 is a MTC, which is to say that its S matrix is unitary.
From this assumption and Eqs. (329) and (330), we obtain the
formula

Nc0
agbḡ

=
∑

x0∈Cg
0

Sagx0 Sbḡx0 S∗
c0x0

S0x0

ηx(g, ḡ) (343)

=
∑

x0∈Cg
0

Sx0ag Sx0bḡ S∗
x0c0

Sx00
ηx̄(g, ḡ), (344)

where the sums in these expressions are over the subset Cg
0 of

g-invariant topological charges in C0. (Actually, we could let
the sums go over the entire C0 if we consider the S matrices to
be equal to zero when gx �= x.)

Setting c = 0 in these expressions and using Eqs. (320) and
(323), we obtain

δaga′g =
∑

x0∈Cg
0

Sagx0 S∗
a′gx0

=
∑

x0∈Cg
0

Sx0ag S∗
x0a′g

. (345)

Now, we can use Eq. (345) with Eqs. (329) and (330) to
obtain the G-crossed Verlinde formula

N
cgh

agbh
=

∑
x0∈Cg,h

0

Sagx0 Sbhx0 S∗
cghx0

S0x0

ηx(h̄, ḡ) (346)

=
∑

x0∈Cg,h
0

Sx0ag Sx0bh S∗
x0cgh

Sx00
ηx̄(g, h), (347)

where Cg,h
0 = Cg

0 ∩ Ch
0 is the subset of topological charges in

C0 that are both g-invariant and h-invariant.
Moreover, we may use these properties to define ωag loops,

which are linear combinations of loops of topological charge
lines that act as topological charge projectors on the collection
of topological charge lines passing through them. [These
should not to be confused with the ωa(g, h) phase factors
associated with symmetry fractionalization in Sec. IV, nor
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should ωag be confused with an element of Cg.] Similar to the
definition in a MTC, we can define the ωag loop enclosing a
single defect line for a G-crossed theory by

ωag

bg

=
x0∈Cg

0

S0agS∗
x0ag

x0

bg

= δagbg

bg

,

(348)
where the first equality is a definition, and the last step used
Eqs. (321) and (345) to show that act on g defects as projectors
that distinguish between the different topological charge val-
ues of g defects. Equation (348) establishes our previous claim
in Sec. V B that, when the original theory C0 is modular, there
are physical processes involving the g-invariant topological
charges in C0 which are able to distinguish between the
distinct types of g defects.

When an ωag loop (as previously defined) encloses multiple
defect lines, it is not quite equal to the desired projection

operator of the collective charge of the enclosed defect charge
lines. In particular, for n defects with topological charges
b j ∈ Cg j for j = 1, . . . , n, respectively, with

∏n
j=1 g j = g, the

collective charge projection is

Π(1...n)
ag

=
e2,...,en−1
μ2,...,μn

da

db1 · · · dbn

b1 b2 bn· · ·

· · ·
e2

b1 b2 bn

e2

· · ·

· · ·

a

μ2

μ2

μn

μn

.
(349)

In order to be equal this n defect line projection, we define the
n defect line ωag loop to be

Π(1...n)
ag

=

b1 b2 . . . bn

ωag =
x0∈Cg

0

ηηx0(g1, . . . ,gn)S0agS∗
x0ag

b1 b2 . . . bn

x0 , (350)

where we have defined

ηx(g1, . . . , gn) =
n∏

j=2

ηx(g1 · · · g j−1, g j ). (351)

We note that the quantity ηx(g1, . . . , gn) does not depend on
the particular values of topological charge b j carried by the
defects, only their group element labels g j . The fact that the
group element labels g j of the defects enter the definition of
the n defect line ωag loop is not problematic, since the defects
are extrinsic objects with definite values of g j (superposi-
tions of different values of g j are not possible). Additionally,
Eq. (279) guarantees that this quantity is independent of the
order of fusion used in the fusion tree of the defect charge
lines, i.e., it commutes with the F moves. Thus the n defect
line ωag loop defined here applies for all configurations of
g1, . . . , gn defects, including when there are superpositions of
topological charge values b j ∈ Cg j .

It is worth re-emphasizing that, so far, we have only
assumed that C0 is modular (i.e., has unitary S matrix), and
made no further assumption about the S matrix of the extended
G-crossed theory. The results here seem to suggest that it
may be the case that requiring C0 to be modular would be
sufficient to obtain a notion of modularity of the G-crossed
theory. Indeed, by combining theorems from Refs. [80,133]
that relate C0 and C×

G to the theory (C×
G )G obtained by gauging

the symmetry, one has the property that C0 is a MTC if and
only if C×

G is G-crossed modular (both of which are true if
and only if (C×

G )G is a MTC). We now define the notion of
a G-crossed BTC being G-crossed modular in the following
section.

B. Torus degeneracy and G-crossed modular transformations

When a topological phase of matter characterized by a
UMTC C inhabits a torus, it possesses a topologically pro-
tected ground-state degeneracy equal to the number of distinct
topological charges in C. More specifically, an orthonormal
basis for this degenerate ground-state subspace on the torus is
given by the states |a〉(l,m), for a ∈ C, where (l, m) specifies an
ordered pair of generating cycles of the torus with intersection
number +1. We can think of the cycles l and m as representing
the longitudinal and meridional cycles of the torus for a
particular embedding in 3D space, as shown in Fig. 11. These
states are defined such that a topological charge measure-
ment performed around the cycle m yields the measurement
outcome a, and the state |a〉(l,m) is obtained from |0〉(l,m) by
pair-creating quasiparticles carrying topological charge a and

FIG. 11. The generating cycles l and m of a torus representing
the longitudinal and meridional cycles for a particular embedding in
3D space.
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FIG. 12. A topological phase described by the MTC C on a
torus has ground-state degeneracy equal to the number of distinct
topological charge types |C|. A basis for the degenerate ground-state
subspace is provided by the states |a〉(l,m) for a ∈ C, which have
topological flux a threading the interior of the torus along the l
direction, with no twisting around the m direction. For the state
|a〉(l,m), a topological charge measurement around a meridional loop
(cycle m) yields the measurement result a.

ā, transporting the quasiparticle of charge a around the cycle l ,
and then pair-annihilating the quasiparticles. The state |a〉(l,m)

for the torus can be thought of as having a topological flux a
threading the interior of the torus along the l direction, with no
twisting around the m direction, as shown in Fig. 12. Here, the
flux line should be thought of as a ribbon with no twisting, i.e.,
with both edges running parallel to the l cycle. The statement
regarding topological charge measurement along the cycle m
can be interpreted as saying that if the torus were cut open
along the cycle m, the resulting boundaries would be found to
carry topological charges a and ā for the basis state |a〉(l,m), as
shown in Fig. 13.

Alternatively, one may interchange the roles of the longi-
tudinal and meridional cycles of the torus, while maintaining
the relative orientation (intersection number +1), which intro-
duces a relative minus sign between the cycles. In this way, we
can equivalently define a basis for the ground-state subspace
by |b〉(m,−l ), as indicated in Fig. 14. These basis states are
defined as having the definite topological charge value b ∈
C when measured around the cycle −l of the torus, and
can be obtained from |0〉(m,−l ) by pair-creating quasiparticles
carrying topological charge b and b̄, transporting b around the
meridional cycle m, and then pair-annihilating.

FIG. 13. When the system on the torus is in the state |a〉(l,m),
cutting open the torus along the meridian cycle yields two boundaries
with charges a and ā, respectively.

FIG. 14. The basis states |b〉(m,−l ) for the torus have topological
flux b threading the interior of a different embedding of the torus,
along the m direction, with no twisting around the l direction. A
topological charge measurement around the cycle −l yields the
measurement result b.

These two bases are related by the modular S transfor-
mation, which interchanges the cycles of the torus (and flips
the direction of one of them). As mentioned in Sec. II B,
the topological S matrix of a MTC provides a (projective)
representation of the modular S transformation, where the
bases are related by

|a〉(l,m) =
∑
b∈C

Sab|b〉(m,−l ). (352)

This relation is motivated by the observation in Fig. 15 that,
for the inner product (m,−l )〈b|a〉(l,m), the a and b topological
flux lines passing around the complementary cycles of the
torus forming linked loops, as in the topological S matrix (the
arrow of the b flux line is reversed when a state is conjugated).

In order to generate all modular transformations on the
torus, we additionally consider the modular T transforma-
tions, known as Dehn twists. This transformation replaces

FIG. 15. The two bases are related by the modular S transfor-
mation, which is represented in a MTC by the topological S matrix,
giving |a〉(l,m) =

∑
b∈C Sab|b〉(m,−l ). This can be seen by computing

the inner product (m,−l )〈b|a〉(l,m) using TQFT cutting and gluing
operations. For this, the |b〉(m,−l ) torus is embedded such that its
interior is the exterior of the |a〉(l,m) torus. Viewing these as solid torii,
gluing them together along their boundary surfaces would yield a 3-
sphere S3 containing the linked topological flux loops. The conjugate
state (m,−l )〈b| is obtained from |b〉(m,−l ) by reflecting the cycle −l and
orientation of the flux line b. Evaluating the inner product this way
amounts to evaluating the resulting diagram of flux lines, which is
the topological S matrix.
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FIG. 16. The modular T transformation, known as a Dehn twist,
replaces the longitudinal cycle l with the cycle l − m that wraps
once around the longitude and once (negatively) around the meridian.
Such transformations are represented in a MTC by the topological
twists, i.e., Tab = θbδab, and relate the basis states |a〉(l,m) to the basis
states |a〉(l−m,m) through the relation |a〉(l,m) =

∑
b∈C Tab|b〉(l−m,m).

the longitudinal cycle around the torus with one that wraps
once around the longitude and once negatively around the
meridian, as shown in Fig. 16. Providing the topological flux
line a with a framing, which is equivalent to drawing a line on
the surface of the torus running parallel to the a line around
the longitudinal cycle, we see that this transformation puts a
twist in the framing ribbon of the flux line. This ribbon twist,
which one can equate to the topological twist, motivates the
definition Tab = θbδab in the transformation

|a〉(l,m) =
∑
b∈C

Tab|b〉(l−m,m), (353)

since a 2π twist around m must be introduced to go from
the basis states |a〉(l−m,m) to the basis states |a〉(l,m), and such
a twist does not change the topological charge as measured
around the meridional cycle m.

As mentioned in Sec. II B, when the S matrix of a UBTC
is unitary, the theory is considered modular, as the S and T
matrices provide a projective representation of SL(2,Z), the
modular transformations on a torus, i.e.,

(ST )3 = �C, S2 = C, C2 = 1, (354)

where Cab = δab̄ is the topological charge conjugation op-
erator. In this case, one may also define the corresponding
modular transformations for punctured tori, and consequently,
the theory can be consistently defined on arbitrary surfaces.

In the defect theory described by a G-crossed BTC C×
G , the

situation becomes more complicated. Clearly, the C0 subcate-
gory, which describes the original topological phase without
defects, must behave exactly the same as described above. In
other words, when Sa0b0 is a unitary matrix (when restricted to
topological charge labels a, b ∈ C0), so that C0 is a UMTC, the
ground states on a torus without defect branches are described
exactly as above and the operators Sa0b0 and Ta0b0 = θb0δa0b0

provide a projective representation of the modular transforma-
tions in the subtheory without defects. We call this restriction
to the defect-free theory on the torus the (0, 0) sector and
denote the corresponding modular transformations defined in
this way as S (0,0) and T (0,0).

When we allow for the inclusion of defects in the theory,
we can produce defect sectors on the torus, each of which is
labeled by two group elements g, h ∈ G, which correspond to

FIG. 17. The (g, h) sector on a torus, where a closed g-defect
branch line wraps around the longitudinal cycle of the torus and a
h-defect branch line wraps around the meridional cycle of the torus.
A basis for the degenerate ground-state subspace of the (g, h) sector
is given by the states |a(g,h)

g 〉(l,m) corresponding to definite topological
charge value ag ∈ Ch

g ascribed to a charge line passing through the
interior of the torus around the longitudinal cycle.

the accumulated defect branch lines that, respectively, wind
around the l and m cycles of the torus, as shown in Fig. 17.
The original UMTC C0 is described by the trivial defect sector
(g, h) = (0, 0). One can obtain a state in the (g, h) sector from
the (0, 0) sector by adiabatically creating a h, h−1 defect pair
from vacuum, transporting the h defect around the cycle m (in
the positive sense), pair annihilating the defect pair, and then
doing the same process with an g, g−1 defect pair winding
around the cycle l . This is only possible when

gh = hg, (355)

since otherwise the group element ascribed to the defects
would necessarily change type as they crossed the other
defect branch line wrapping around the complementary cycle,
making it impossible to pair-annihilate the defects or close the
branch line on itself.

In this way, we see that the topological (defect) flux line
that runs through the interior of the torus around the cycle
l can only take values in Cg, since it must be created by
a g defect encircling the cycle. Moreover, this topological
charge must be h-invariant, since the flux lines cross the
h-branch. Similarly, the topological flux line that runs through
the exterior of the torus around the cycle m can only take g-
invariant topological charge values in Ch. It is clear that states
from different (g, h) sectors cannot be superposed, since the
defects are extrinsic, confined objects, which can be thought
of as defining distinct superselection sectors.

We label the ground-state subspace associated with the
(g, h) sector of the system on a torus as V(g,h). Similar to
UMTCs, a basis for V(g,h) is given by orthonormal states
|a(g,h)

g 〉(l,m) for ag ∈ Ch
g , as shown in Fig. 17. In general, the

notation used here means that: (1) as the cycle l is traversed in
the positive sense, a h̄ branch is crossed in the positive sense
and as the cycle m is traversed in the positive direction, a g
branch is crossed in the positive sense;13 (2) a topological

13Our notion of crossing a g-branch line “in the positive sense”
means crossing it in the direction that enacts g action on the object
crossing it. Crossing a g-branch line in the negative sense enacts ḡ
action.
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FIG. 18. The (g, h) sector on a torus may be considered to
be a (h, ḡ) sector on a torus by interchanging the roles of the
longitudinal and meridional cycles. In this case, a basis for the
ground-state subspace is given by the states |b(h,ḡ)

h 〉(m,l ) corresponding
to definite topological charge bh ∈ Cg

h ascribed to the charge line
passing through the exterior of the torus around the meridional
cycle. These two bases are related by the modular S transformation
|a(g,h)

g 〉(l,m) =
∑

b∈Cg
h
S (g,h)

agbh
|b(h,ḡ)

h 〉(m,−l ).

charge measurement performed around the cycle m yields
the value ag; (3) one can obtain different basis states from
one another by pair-creating quasiparticles, transporting one
around the cycle l , and pair-annihilating; and (4) one can
switch between states in different defect sectors by pair-
creating defects, transporting one around a nontrivial cycle,
and pair-annihilating.

For a G-crossed theory, if we interchange the roles of the
longitudinal and meridional cycles (and flip one of their direc-
tions), corresponding to a modular S transformation, then the
system belongs to the (h, ḡ) sector on a torus with associated
state space V(h,ḡ). In this case, a basis for the ground-state
subspace is given by the states |b(h,ḡ)

h 〉(m,−l ) corresponding to
definite topological charge bh ∈ Cg

h ascribed to the topological
flux line passing through the exterior of the torus around the
cycle m. We emphasize that we have not changed the system,
so the configuration of defect branch lines is the same as
before. In particular, the notation means that as the cycle m
is traversed, a g branch is crossed and as the cycle −l is
traversed, a h branch is crossed, which is just a different way
of describing the torus with a g branch wrapping around the
cycle l and a h-branch wrapping around the cycle m. Thus
there must be a unitary operator relating these two bases
which represents the modular S transformation between the
(g, h) and (h, ḡ) sectors, as shown in Fig. 18. In particular,
this takes the form∣∣a(g,h)

g

〉
(l,m) =

∑
b∈Cg

h

S (g,h)
agbh

∣∣b(h,ḡ)
h

〉
(m,−l ). (356)

Similarly, the modular T transformation (Dehn twist) takes
the system between the (g, h) and (g, gh) sectors, as indicated
in Fig. 19, with basis states related by∣∣a(g,h)

g

〉
(l,m) =

∑
b∈Ch

g

T (g,h)
agbg

∣∣b(g,gh)
g

〉
(l−m,m). (357)

In this case, the notation for the basis states means that as the
cycle l − m is traversed, a h̄ḡ branch is crossed and as the
cycle m is traversed, a g branch is crossed. We emphasize
that these states still describes the system with a g-branch

FIG. 19. The modular T transformation (Dehn twist) maps be-
tween the (g, h) sector on a torus to the (g, gh) sector shown
here. This transformation acts diagonally (i.e., with relative phases)
between bases for the (g, h) and (g, gh) sectors, both of which are
labeled by topological charge values ag ascribed to the topological
flux line passing through the interior of the torus, though this
topological flux is interpreted as winding around the cycle l in the
former basis and around the cycle l − m in the latter basis. These
two bases are related by |a(g,h)

g 〉(l,m) =
∑

b∈Ch
g
T (g,h)

agbg
|b(g,gh)

g 〉(l−m,m).

line winding around the cycle l and a h-branch line winding
around m. We can, however, continuously deform the branch
line configuration (without introducing new defects or branch
lines) so that the system has a g-branch line winding around
the cycle l − m and a gh-branch line winding around the cycle
m, as shown in Fig. 19.

Thus we can write the modular S and T transformations
for a G-crossed theory in the form

S =
⊕

{(g,h) | gh=hg}
S (g,h), (358)

T =
⊕

{(g,h) | gh=hg}
T (g,h), (359)

where these transformations map from one defect sector to
another (without mixing sectors)

S (g,h) : V(h,ḡ) → V(g,h), (360)

T (g,h) : V(g,gh) → V(g,h). (361)

For example, the G-crossed modular transformations for
G = Z2 = {0, 1} take the block form

S =

⎡⎢⎢⎣
S (0,0) 0 0 0

0 0 S (0,1) 0
0 S (1,0) 0 0
0 0 0 S (1,1)

⎤⎥⎥⎦, (362)

T =

⎡⎢⎢⎣
T (0,0) 0 0 0

0 T (0,1) 0 0
0 0 0 T (1,0)

0 0 T (1,1) 0

⎤⎥⎥⎦, (363)

where the rows and columns are separated into (0, 0), (0, 1),
(1, 0), and (1, 1) sectors, in that order.

Thus imposing unitarity on the representations of the mod-
ular S and T transformations amounts to imposing unitarity
on their restricted actions S (g,h) and T (g,h) for each (g, h)
sector individually. Since the system in the (g, h) sector has
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a ground-state degeneracy

N(g,h) = dim V(g,h) =
∣∣Ch

g

∣∣ (364)

equal to the number of h-invariant topological charges in Cg,
it follows that requiring the modular transformations to be
unitary gives the condition that∣∣Cg

h

∣∣ = ∣∣Ch
g

∣∣, (365)

whenever gh = hg. In particular, for h = 0, this gives us the
important property

|Cg| =
∣∣Cg

0

∣∣, (366)

which says the number of topologically distinct types of g
defects (i.e., the topological charge types in Cg) is equal to
the number of g-invariant topological charges in C0.

We now wish to provide a projective representation of the
modular transformations that are defined by the G-crossed
UBTC data. Let us take the representation of the modular
transformations defined by

S (g,h)
agbh

= Sagbh

Uh(a, ā; 0)
, (367)

T (g,h)
agbg

= ηa(g, h)θagδagbg . (368)

Recall that Sagbh is the topological S matrix defined in
Eq. (315). It is convenient for us to also define the G-crossed
“charge conjugation” transformation

C =
⊕

{(g,h): gh=hg}
C(g,h), (369)

C(g,h) : V(ḡ,h̄) → V(g,h), (370)∣∣a(g,h)
g

〉
(l,m) =

∑
b∈Ch

ḡ

C(g,h)
agbḡ

∣∣b(ḡ,h̄)
ḡ

〉
(−l,−m), (371)

C(g,h)
agbḡ

= 1

Uh(b̄, b; 0)ηb(h, h̄)
δagbḡ

. (372)

Given the properties derived for a general G-crossed UBTC
in Sec. VI, we can obtain the relation∑

w,x,y,z

T (g,h)
agwg

S (g,gh)
wgxgh

T (gh,ḡ)
xghygh

S (gh,h)
yghzh

T (h,h̄ḡ)
zhbh

= �0S (g,h)
agbh

(373)

from Eq. (339), where �0 = 1
D0

∑
c∈C0

d2
c θc, the relation

S (g,h)
agbh

=
∑

x

[
S (h̄,g)

xh̄ag

]∗
C(h̄,g)

xh̄bh
(374)

from Eq. (323), and the relation∑
x

C(g,h)
agxḡ

C(ḡ,h̄)
xḡbg

= δagbg , (375)

from Eq. (274). Thus, without imposing unitarity of the topo-
logical S matrix nor any other extra conditions on a G-crossed
UBTC, the transformations defined by Eqs. (367), (368), and
(372) obey the relations

(ST )3 = �0S2, (376)

S = S†C, (377)

C2 = 1. (378)

We can also show that

CS = SC (379)

using Eqs. (320) and (324), and that

CT = T C (380)

using Eqs. (305), (296), (301), and (340)–(342).
It is clear from these relations that all that is needed for

these operators to provide a projective representation of the
modular transformations is to impose a condition on the topo-
logical S matrix that makes the modular operator S defined by
Eq. (367) unitary, in which case Eq. (377) would become

S2 = C. (381)

We can see that requiring S to be unitary is equivalent to
the condition that the topological S matrix of the G-crossed
UBTC gives unitary matrices when it is G-graded, by which
we mean that for any fixed pair of group elements g and h,
the matrix defined by Sagbh with indices a ∈ Ch

g and b ∈ Cg
h

is a unitary matrix. Thus, when the topological S matrix of
a G-crossed UBTC C×

G is G-graded unitary (in the fashion
described here), we say that C×

G is G-crossed modular or that
it is a G-crossed modular tensor category.

We note that, for a modular theory, the quantity

�0 = 1

D0

∑
c∈C0

d2
c θc = ei 2π

8 c− (382)

is a phase related to c− which is the chiral central charge of
the topological phase described by the UMTC C0. Thus we
can ascribe the same chiral central charge to the G-crossed
extensions of a topological phase.

It follows from the definition of G-crossed modularity that
the C0 subcategory of a G-crossed MTC is a MTC. As previ-
ously mentioned, the converse is also true, as can be shown
by combining highly nontrivial theorems from Refs. [80,133].
Thus the conditions of modularity of a UBTC and its G-
crossed extensions are equivalent, i.e., C×

G is a G-crossed
UMTC if and only if C0 is a UMTC.

We note that, as was the case for a UMTC, the same
arguments used in Eq. (45) apply to a G-crossed UMTC,
implying that a defect topological charge ag with dag > 1
necessarily has non-Abelian braiding.

We also note that, just as in the case of a MTC, we could
actually obtain a linear (rather than projective) representation
of the modular transformations on the torus if we instead
defined the Dehn twist transformation to be given by

T (g,h)
agbg

= e−i 2π
24 c−ηa(g, h)θagδagbg , (383)

as this would give the relation (ST )3 = S2. This convention
may be more useful when performing concrete calculations or
physical simulations on the torus. However, it is not generally
possible to trivialize the projective phases for the representa-
tions of modular transformations for higher genus surfaces,
so we will not generally include the central charge dependent
phase.

An important distinction from MTCs is that the quantities
representing the G-crossed modular S and T transformations
defined here are not gauge invariant, except in the (0, 0) sector
(which was also the case with the topological twists and
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S matrix in the G-crossed theory). In particular, while they
are invariant under vertex basis gauge transformations, they
transform under symmetry action gauge transformations as

Š (g,h)
agbh

= γb(ḡ)

γa(h)
S (g,h)

agbh
, (384)

Ť (g,h)
agbg

= γb(gh)

γa(h)
T (g,h)

agbg
. (385)

This is not unexpected, since these two modular transfor-
mations map the (h, ḡ) sector and the (g, gh) sector to the
(g, h) sector, respectively, and there is no well-defined gauge
invariant notion of comparing distinct superselection sectors,
i.e., there is no canonical map between different sectors. (This
is related to the fact that the defects are extrinsic objects which
define different superselection sectors for different group ele-
ments and for which one should not expect overall phases to
be well-defined.) As such, it is important to be careful with the
details of how one sets up configurations and analyzes their
modular transformations when working on a torus or higher
genus system.

On the other hand, we may expect some modular transfor-
mations to be gauge invariant [in addition to those of the (0, 0)
sectors]. From Eqs. (384) and (385), and the fact that S and T
generate the modular transformations on the torus, it follows
that a general modular transformation Q that maps the (g, h)
sector to the (g′, h′) sector, i.e.,

Q(g,h) : V(g′,h′ ) → V(g,h), (386)

transforms under symmetry action gauge transformations as

Q̌(g,h)
agbg′

= γb(h′)
γa(h)

Q(g,h)
agbg′

. (387)

From this expression, it is easy to see that (a) if a modular
transformation Q maps a (g, h) sector to itself, then Q(g,h)

agag is
a gauge invariant quantity and (b) if Q maps a (g, 0) sector to
itself, then Q(g,0)

agbg
is a gauge invariant quantity.

For example, if gn = 0, then T n will map a (g, h) sector to
itself, and the coefficients

[T n](g,h)
agag

= θn
ag

n−1∏
j=0

ηag (g, g jh) = θn
ag

n−1∏
j=1

ηag (g j, g) (388)

provide gauge invariant quantities of the G-crossed theory. We
note that these quantities are independent of h.

If g2 = 0, we see that

S (g,g)
agag

= Sagag

Ug(a, ā; 0)
, (389)

[ST S](g,0)
agbg

=
∑

x0

Sagx0θx0 Sx0bg

Ug(x, x̄; 0)
, (390)

[T ST ](g,0)
agbg

= θag Sagbgθbgηb(g, g)

Ug(a, ā; 0)
(391)

are also gauge invariant quantities [the last two are, of course,
not independent of each other, given Eq. (376)].

C. Higher genus surfaces

When the system is on a genus g surface, the topological
ground-state degeneracy is more complicated. In general, it

a1 a2 ag−1 ag

z1 z2 zg−1 zg

h1 h2
hg−1 hg

c12

c1...g−1

· · ·

· · ·

FIG. 20. The defect sectors on a genus g surface can be labeled
by 2g group elements {g j, h j} for j = 1, . . . , g, which are ascribed
to the defect branch lines around two independent noncontractible
cycles associated with the jth handle. In this case, one does not
require that g j and h j commute, so one of the branch lines at a given
handle may change as it crosses the complementary branch line at
that handle. We pick the h j-branch lines to close around their cycles
unchanged, while the g j branch lines transform into h−1

j g jh j branch
lines when they cross the h j-branch. This requires a k j-branch line,
where k j = g jh−1

j g−1
j h j , to enter the handle to cancel the leftover

branch. Similarly, the aj ∈ Cg j charge lines used to define basis state

may also transform nontrivially as h̄ j a j when it crosses the h j-branch
loop. This requires a line of charge z j ∈ Ck j with N

z j

a j
h̄ j a j

�= 0 to enter

the handle to cancel the leftover topological charge. The z j charge
lines from different handles form a fusion tree. These charge line
configurations, together with the fusion vertex state labels, provide a
basis of states for the genus g surface in the {g j, h j} sector.

can be obtained by summing over the possible states associ-
ated with a fusion tree of topological charge lines that pass
through either the interior or exterior of the surface, and
which encircle independent noncontractible cycles, as shown
in Fig. 20. For a UMTC (without defects), this leads to the
ground-state degeneracy

Ng =
∑

{b,z,c}∈C
Nc12

z1z2
Nc123

c12z3
· · ·N0

c1...g−1zg

g∏
j=1

N
zj

a j a j

= D2g−2
0

∑
x∈C

d−(2g−2)
x , (392)

where the evaluation may be carried out using the Verlinde
formula.

For a topological phase with defects, described by a G-
crossed UMTC C×

G , the system on a genus g surface may have
defect branch lines around any noncontractible loop, similar
to the case of the torus. In this case, we can label the distinct
defect sectors of a genus g surface by 2g group elements,
{g j, h j}, j = 1, . . . , g, each of which corresponds to a defect
branch line wrapping around an independent generating cycle.
We write the corresponding ground-state subspace as V{g j ,h j }.
The group elements {g j, h j} must satisfy relations to ensure
that the corresponding defect branch lines can close consis-
tently upon themselves. In this case, we do not require that
g j and h j necessarily commute. When they do not, one of the
branch lines at a given handle may have its group element
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label change as it crosses the other branch line. If we pick the
h j-branch lines to close around their cycles unchanged, then
the g j branch lines transform into h−1

j g jh j-branch lines when
they cross the h j branch. When this branch line loops back on
itself, we are left with a nontrivial branch line, which requires
a k j-branch line, where

k j = g jh−1
j g−1

j h j, (393)

to enter the handle and cancel this off, as shown in Fig. 20.
Thus, while we do not require g j and h j to commute, we

do, however, require that the product of their commutators k j

equals the identity group element, that is
g∏

j=1

k j =
g∏

j=1

g jh−1
j g−1

j h j = 0, (394)

as this condition is necessary for a consistent configuration of
branch lines that do not contain any free endpoints, as can be
seen from Fig. 20.

A basis for the ground-state subspace V{g j ,h j} of the {g j, h j}
sector can be given in terms of fusion trees of topological
charge lines passing through the interior of the surface, as
shown in Fig. 20. Using the choice where the h j-branch lines
loop around their cycles unchanged, we may have a charge
line a j ∈ Cg j that winds around the complementary cycle of

the jth handle and transforms into h̄ j a j when it crosses the
h j-branch loop. In closing back on itself, this topological
charge loop must fuse with a possibly nontrivial line of charge
z j ∈ Ck j such that N

zj

a j
h̄ j a j

�= 0. The charge z j lines from the

different handles then form a fusion tree that must terminate
in the trivial topological charge.

In particular, the basis states described in this way can be
written as

g⊗
j=1

|a j,
h̄ j a j ; z j, μ j〉|c1... j−1, z j ; c1... j, ν1... j〉, (395)

for all possible values (allowed by fusion) of topological
charges a j ∈ Cg j , z j ∈ Ck j , and c1... j ∈ Cl j for l j =

∏ j
i=1 ki,

and fusion vertex basis labels μ j = 1, . . . , N
zj

a j
h̄ j a j

, and ν1... j =
1, . . . , N

c1... j
c1... j−1z j . We set c∅ = c1...g = 0 (which gives c1 = z1)

and lg = 0, in order to let j = 1, . . . , g for all these quantities.
We note that the states in Eq. (395) may transform nontriv-

ially under the symmetry action of q ∈ G. In particular,

ρq : V{g j ,h j} → V{qg j q−1,qh j q−1} (396)

|ψ〉 �→ ρq(|ψ〉). (397)

This symmetry action will play a crucial role when G is
promoted to a local gauge invariance.

In order to obtain the number of ground states in the
{g j, h j} sector

N{g j ,h j } = dim V{g j ,h j}, (398)

we can sum over the fusion channels

N{g j ,h j } =
∑

a j ∈ Cg j
z j ∈ Ck j

N0
z1z2···zg

g∏
j=1

N
zj

a j
h̄ j a j

, (399)

where

N0
z1z2···zg

=
∑

c1... j∈Cl j

Nc12
z1z2

Nc123
c12z3

· · ·N0
c1...g−1zg

(400)

is the number of ways the topological charges z1, . . . , zg

can fuse to 0. We can evaluate these expressions using the
G-crossed Verlinde formula (347), together with G-graded
modularity and other properties that we derived for the S
matrix in Sec. VI D, which yields

N{g j ,h j } = D2g−2
0

∑
x∈C{g j ,h j }

0

d−(2g−2)
x

×
g∏

j=1

ηx(h̄ j, ḡ j )ηx(g j, h̄jḡ jh j )

ηx(g j, ḡ j )ηx(h̄ j ḡ jh j, h̄ j )
ηx(l j−1, k j ),

(401)

where C{g j ,h j }
0 is the set of all topological charges in C0 that

are g j-invariant and h j-invariant for all j = 1, . . . , g. When
h j = 0 for all j, this expression simplifies to

N{g j ,h j=0} = D2g−2
0

∑
x∈C{g j }

0

d−(2g−2)
x , (402)

which clearly satisfies D2g−2
0 � N{g j ,h j=0} � D2g

0 . From
Eq. (401), we see that, in general, the genus g degeneracy
N{g j ,h j } � N{0 j ,0 j }, and generally scales as N{g j ,h j } ∼ D2g

0 in
the large g limit, regardless of the defect sector. This provides
a physical interpretation of the total quantum dimension D0 =
Dg of each Cg subsector.

We note that another physical interpretation of the total
quantum dimension D0 is given by the topological entangle-
ment entropy [134,135]. One can use the properties of G-
crossed modularity to compute the topological entanglement
entropy of a region, following the arguments of Ref. [134].
Unsurprisingly, this yields the same result as for MTCs that
Stopo = −n log2 D0, where n is the number of connected com-
ponents of the boundary of the region in question, regardless
of the number of branch lines passing through the region.
There are also anyonic contributions Sa = log2 da to the en-
tanglement entropy when there are quasiparticles or g defects
within the region whose collective topological charge is a (see
also Ref. [13]).

1. Dehn twists on high genus surfaces

Another powerful method of computing N{g j ,h j } on a genus
g surface is to make use of modular transformations. Similar
to the case of the torus, we can define operators using the
data of a G-crossed UMTC C×

G , that provide a projective
representation of the modular transformations of the genus g
surface. We will not go into these details here, but, instead,
will simply utilize the property that the modular transfor-
mations can be used to interchange, combine, and twist the
various noncontractible cycles of the surface, as we saw for
the torus. Unitarity of the modular transformations implies
that when two different defect sectors {g j, h j} and {g′j, h′

j} can
be related by such modular transformations, they must have
the same ground-state degeneracy.
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g1 g2 g3

h1 h2 h3 h

FIG. 21. When G = Zp for p prime, any defect sector can be
mapped via Dehn twists to the sector with a single defect branch
line corresponding to a element h ∈ Zp, which generates the group.
Thus all {g j, h j} sectors that are not completely trivial must have the
same ground-state degeneracy.

As a simple example, let us consider G = Zp and take g to
be a generator of this group. When p is prime, any element
h ∈ Zp generates the group. In this case, every nontrivial
{g j, h j} sector can be related by Dehn twists to the sector with
only a single h defect branch line wrapped around a single
cycle (see Fig. 21). The proof of this statement, and some
generalizations, is given below.

Specifically, in the following we show that for a genus g
surface, when G = ZN , the (N2g − 1) nontrivial defect sectors
can all be obtained by Dehn twists from a small “generating”
set of generating sectors (the case N = 2 was proven in
Ref. [102]). We start by examining a torus (g = 1). Since
we are considering a cyclic group, group multiplication will
be denoted additively. We label the defect sector by (g, h) =
(m, n) where m, n = 0, 1, . . . , N − 1. There are N2 − 1 non-
trivial sectors in total.

An arbitrary modular transformation acts on a defect sector
(m, n) by a SL(2,Z) matrix[

a b
c d

](
m
n

)
=
(

am + bn
cm + dn

)
. (403)

Here, ad − bc = 1, a, b, c, d ∈ Z. Letting r = gcd(m, n), we
now show that (m, n) can be obtained from (r, 0) by a
modular transformation. To see this, we set a = m

r , c = n
r

in the SL(2,Z) matrix. We then need to find b, d such that
m
r d − n

r b = 1. Since gcd( m
r , n

r ) = 1, this equation has integral
solutions.

Next, we show that for arbitrary m, (m, 0) can be obtained
from (s, 0) where s = gcd(m, N ). From Eq. (403), we see that
we need to find an SL(2,Z) matrix with a = m

s and c = N
s .

We need to find integers b, d such that ad − bc = m
s d − N

s b =
1, which is solvable since gcd(m, N ) = s. Therefore we have
established that the defect sectors (r, 0), where r is a divisor of
N, is a generating set. That is, the number of generating defect
sectors is equal to the number of divisors of N .

We now consider a genus g surface. A similar reduction of
a general defect sector to a small number of generating defect
sectors is also possible. The inequivalent cycles associated
with each handle are labeled by Ai, Bi where i = 1, . . . , g (see
Fig. 22). The defect sectors are now labeled by 2g integers
(mod N) {(m1, n1), . . . , (mg, ng)}. We note that applying a
Dehn twist along C1 has the following effect:

A1 → A1,

B1 → B1 +C1 = B1 − A1 + A2,

A2 → A2,

B2 → B2 − A1 + A2. (404)

B3

A3A2
A1

B1 B2C1 C2

FIG. 22. Noncontractible cocycles on a g = 3 surface.

The configuration then becomes {(m1, n1 − m1 +
m2), (m2, n2 − m1 + m2), . . . }.

The arguments from the genus g = 1 case above im-
ply that by applying Dehn twists along Ai or Bi, we
can always map any general defect sector to the form
{(m1, 0), (m2, 0), . . . , (mg, 0)}. If at least one of the mi’s
is coprime with N , we can further perform Dehn twists
to reduce the configuration to a defect branch line along
a single cycle. To see this, let us assume gcd(m1, N ) =
1. We can do an S transformation to map to the configu-
ration {(m1, 0), (0, m2), . . . }. After applying k Dehn twists
along −C1, we get {(m1, km1), (0, m2 + km1), . . . }. Since
gcd(m1, N ) = 1, there exists a k such that m2 + km1 ≡
0 (mod N ), resulting in the sector {(m1, km1), (0, 0), . . . }.
This can be further reduced to {(m1, 0), (0, 0), . . . } by Dehn
twists. A similar argument can be applied in the case
when m1 = m2 = · · · = mg, without the need to assume
gcd(mi, N ) = 1.

In particular, the above arguments imply that when N is
prime, then the general defect sector can always be mapped
to a sector with a single elementary defect branch line along
only one cycle of the genus g surface.

VIII. GAUGING THE SYMMETRY

We have, so far, studied the properties of the defects,
which correspond to extrinsically imposed (confined) fluxes
of the symmetry group G, as described by a G-crossed theory
C×

G . In this section, we consider the nature of the phase
that results when the global symmetry G is promoted to
a local gauge invariance—“gauging the symmetry.” This is
also referred to as “equivariantization” in the mathematical
literature. A physical consequence of gauging the symmetry
is that the confined g defects become deconfined quasiparticle
excitations of the gauged phase. As such, the resulting phase
is described by a topological phase described by a UMTC,
which we denote as (C×

G )G, conveying G equivariantization
of the G-crossed theory. We would like to understand how
to obtain the properties and basic data of the gauged theory
(C×

G )G from the G-crossed extension C×
G of the UMTC C

describing the original topological phase.
Given the complete data of the G-crossed UMTC C×

G ,
we will demonstrate how to obtain the quasiparticle content,
fusion rules, quantum dimensions, and topological twists of
the corresponding UMTC (C×

G )G. We also use these results to
provide an expression for the topological S matrix of (C×

G )G in
terms of that of C×

G . The gauging procedure that we describe
in this section does not require modularity and can, thus,
be applied to a nonmodular G-crossed UBTC C×

G , in which
case the original UBTC C and the resulting UBTC (C×

G )G

will also be nonmodular. For modular theories, we further
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use our results to show that the chiral central charges of C,
C×

G , and (C×
G )G are all equal and we explain how to obtain the

ground-state degeneracies of (C×
G )G on higher genus surfaces

from the C×
G theory.

We can also consider the inverse of the gauging construc-
tion. Starting from the gauged theory (C×

G )G, we can tune the
interactions so that the “charged” matter, which transforms
under irreducible representations of G, condenses, and the
system undergoes a continuous confinement-deconfinement
transition into the Higgs phase. The resulting topological
order can be analyzed using the theory of topological Bose
condensation [75], where the subcategory, known as Rep(G),
consisting of gauge charges of G condenses. In short, con-
densing Rep(G) results in C×

G ; all defects with g �= 0 in (C×
G )G

become confined, while the deconfined remnants give rise to
C = C0. The algebraic theory of topological defects that we
have developed in this paper provides a complete topological
description of the system after topological Bose condensation
of Rep(G), in particular providing the previously unknown
braiding and modular transformations of the confined sectors,
which is called the T theory in Ref. [75].

We summarize the relation between C, C×
G , and (C×

G )G by
the following diagram:

C C×
G (C×

G)G
Defectification

Confinement

Gauging

Condensation

In general, distinct (gauge-inequivalent) G-crossed exten-
sions C×

G always lead to distinct (C×
G )G as topological gauge

theories. However, when viewed as UMTCs in which we
neglect the origin of the charge and flux labels of the quasipar-
ticles in (C×

G )G, different G-crossed extensions can potentially
result in the same (C×

G )G. Examples of such phenomena have
been noticed for gauging bosonic SPT phases in Refs. [53,74].

Another notation for the gauged theory that is sometimes
used in the literature is C/G, which comes from applying
category theory to the study of CFT orbifold models [80]. It is
worth stressing that there are important distinctions between
gauging a symmetry in a topological phase or MTC and the
closely related concept of orbifolding a rational CFT [99,100]
(which may be viewed as gauging a symmetry in the CFT).
While there is MTC structure in a rational CFT, there is addi-
tional structure in a CFT that does not exist in its correspond-
ing MTC. Because of this property, certain applications of
orbifolding in a CFT have an analogous realization as gauging
a symmetry in the corresponding MTC, but others do not.
For example, repeatedly applying the orbifold construction
may return the original CFT, in which case orbifolding is
analogous, in some sense, to both symmetry gauging and
topological Bose condensing in topological phases.

In this section, we consider only finite symmetry groups
G. We will first examine the problem of how to modify a
microscopic Hamiltonian that realizes a topological phase C
and has an on-site symmetry G in a manner that gauges the
symmetry and realizes the topological phase (C×

G )G. Then
we will study how to derive the mathematical properties of
the gauged phase’s UBTC (C×

G )G from the corresponding
G-crossed UBTC C×

G .

A. Microscopic models

Gauging a symmetry of a microscopic Hamiltonian is a
well-known notion in physics. However, a gauge theory does
not, in general, have a local Hilbert space. Suppose we are
given a G-symmetric microscopic Hamiltonian H that (1)
is defined on a Hilbert space that decomposes into a tensor
product of local Hilbert spaces on each site, (2) has local
interactions, and (3) realizes a topological phase C at long-
wavelengths. Here, we address the question of whether or not
we can produce a new Hamiltonian HG that also satisfies (1)
and (2) above, but realizes (C×

G )G at long wavelengths.
We will briefly describe the case where G = Z2. Suppose

that the Hamiltonian consists of nearest neighbor interactions
on a two-dimensional lattice. We assume that there is a finite-
dimensional bosonic Hilbert space at each site of the lattice,
and there is a global on-site Z2 symmetry with Rg =

∏
j R( j)

g .
Such a Z2 symmetric Hamiltonian can generically be written
as

H =
∑
〈i j〉

Jαβ
+,i jO

+,α
i O+,β

j + Jαβ
−,i jO

−,α
i O−,β

j

+
∑

i

mα
i O+,α

i + H.c., (405)

where {O±,α
j } are a complete set of Z2 even/odd local

operators at site j. In particular, these operators satisfy
R( j)

g O±
j R( j)−1

g = ±O±
j .

Now, let us introduce a two-dimensional Hilbert space
on each bond 〈i j〉 of the lattice. The gauged Hamiltonian is
defined as

HZ2 =
∑
〈i j〉

Jαβ
+,i jO

+,α
i O+,β

j +
∑

i

mα
i O+,α

i

+
∑
〈i j〉

Jαβ
−,i jO

−,α
i O−,β

j σ z
i j + H.c. − K

∑
�

∏
〈i j〉∈�

σ z
i j

− �
∑
〈i j〉

σ x
i j −U

∑
+

R(i)
g

∏
〈i j〉∈+

σ x
i j . (406)

We always assume that U is the largest energy scale, which
effectively imposes a Z2 analog of Gauss’s law in the low-
energy Hilbert space:

∏
〈i j〉∈+ σ x

i j = R(i)
g . It is straightforward

to extend the construction to Hamiltonians involving longer-
range interactions.

We notice that the full gauged Hamiltonian (not just the
low-energy subspace) still preserves the Z2 symmetry Rg. In
the low-energy subspace U → ∞ where the dynamics can
be described by a Z2 gauge theory with matter, the global
symmetry is enhanced to a local gauge symmetry generated
by precisely the local conserved quantity R(i)

g

∏
〈i j〉∈+ σ x

i j . The
gauged Hamiltonian has the feature that when � = 0 and
K,U are both much larger than any energy scale in H , the
low-energy spectrum without any Z2 fluxes is identical to that
of H . However, the states must be projected to the gauge-
invariant Hilbert space.

We now review the phase diagram of the gauge theory
[136], focusing on the three parameters J−, K and �. Three
limiting cases can be easily identified. When J−, � � K , the
gauge field is in the deconfined phase. When J− � K, �, the
gauge theory is in the Higgs phase and the Z2 fluxes (i.e.,
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visons) are linearly confined. If � is dominant, Z2 charges are
linearly confined. It is however well-known that the Higgs and
the confinement phases are smoothly connected. Hence there
are only two phases which are separated by a second-order
phase transition belonging to the 3D Ising universality class
[136].

The above construction can straightforwardly be general-
ized to the case G = ZN . The generalization to a general finite
group G is technically more involved and will be left for future
work.

B. Topological properties of the gauged theory

We now derive the topological properties of the gauged
theory (C×

G )G, described by a new UBTC, which are spec-
ified in terms of properties of the corresponding G-crossed
extension C×

G . We will not specify the F symbols and R
symbols, but simply focus on the gauge invariant data given
by the topological charges and their fusion rules, quantum
dimensions, and topological twists. It is a conjecture that
this gauge invariant topological data, which is equivalent to
specifying the modular S and T transformations, uniquely
characterizes a MTC, i.e., that it uniquely specifies the F
symbols and R symbols, up to gauge equivalence. We also
examine the relation between the topological S matrix of the
gauged theory and that of the G-crossed theory, as well as
the ground-state degeneracy on higher genus surfaces (when
the theory is modular).

1. Topological charges

The simplest information about the gauged theory (C×
G )G

that we can read off from C×
G is the topological charge con-

tent. The mathematical description of this was provided in
Ref. [83].

For each topological charge (simple object) a ∈ C×
G of the

G-crossed theory, including those of defects, we define its
orbit under G to be the set of charges

[a] = {ga,∀g ∈ G}. (407)

(We will often leave the corresponding group element labels
of topological charges in C×

G implicit in this section, except
when it is necessary or useful.) Heuristically, the reason for
considering G orbits is that, under the G action, all topological
charges within an orbit must combine into a single object
by “quantum superposition” once the global symmetry is
promoted to a local gauge invariance. In this way, the original
topological charges in C×

G become internal degrees of free-
dom. In particular, if we ignore the topological charge labels
within each Cg and only focus on the group elements, the orbit
would simply be a conjugacy class of G, which is what labels
gauge fluxes in a discrete gauge theory. Keeping track of the
topological charge labels, it is clear that there can be multiple
orbits associated with a given conjugacy class of G.

Additionally, we need to take into account the different
representations of the symmetry, which thus allows us to
include the gauge charges and flux-charge composites. For
this, we do not consider the full symmetry group G, but rather
the subgroups that keep the relevant topological charge labels
invariant. More precisely, for a given [a], we choose a repre-
sentative element a ∈ [a], and define its stabilizer subgroup

Ga = {g ∈ G|ga = a}. (408)

The topological charges of (C×
G )G are then defined to be the

pairs

([a], πa), (409)

where πa is an irreducible projective representation of Ga

with the factor set given by ηa, i.e.,

πa(g)πa(h) = ηa(g, h)πa(gh), g, h ∈ Ga. (410)

We will refer to such an irreducible projective ηa representa-
tion as an ηa irrep. The phases ηa(g, h) here are precisely the
projective symmetry fractionalization phases of the G-crossed
theory, defined in Sec. VI. Thus we see that the data ηa are
essential in defining the quasiparticles of the gauged theory.

In this way, the topological charges of (C×
G )G are essentially

dyonic excitations, very much like “flux-charge” composites
in discrete gauge theories, but generalized to account for
distinct types of g-flux defects a ∈ Cg.14 The G orbits [a] here
play the same role as the conjugacy classes [g], describing
fluxes in discrete gauge theories; the projective ηa irreps πa

of the stabilizer subgroup Ga for some a ∈ [a] here play the
same role as the irreps πg of the centralizer CG(g) for some
g ∈ [g], describing charges in discrete gauge theories.

In order for this definition of topological charge to be well-
defined, the specific choice of a within the conjugacy class [a]
should not lead to essential differences in the corresponding
projective representations. To make this notion more precise,
we first notice that conjugation by k ∈ G provides a canonical
isomorphism between Ga and Gka

k : Ga → Gka

g �→ kg. (411)

Next, from Eq. (279), we see that, for group elements g, h ∈
Ga, we have the cocycle condition

ηa(h, k)ηa(g, hk)

ηa(g, h)ηa(gh, k)
= 1, (412)

so ηa ∈ Z2(Ga, U(1)). From Eq. (283), we see that, for g, h ∈
Ga, we have the relation

ηka(kg,kh) = ηa(k̄, kh)

ηa(h, k̄)

ηa(gh, k̄)

ηa(k̄, kgkh)

ηa(k̄, kg)

ηa(g, k̄)
ηa(g, h)

= dεa,k(g, h)ηa(g, h), (413)

where we have defined the 1-cochain εa,k ∈ C1(Ga, U(1)) to

be εa,k(g) = ηa(k̄,kg)
ηa (g,k̄)

. Thus, when viewed in terms of cohomol-
ogy, we see that the k action does not change the cohomology
class of ηa, i.e.,

[ηka(kg,kh)] = [ηa(g, h)] ∈ H2(Ga, U(1)). (414)

Moreover, it is clear that we then also have

[ηka(kg,kh)] = [ηa(g, h)] ∈ H2(Gka, U(1)
)
. (415)

As discussed in Appendix B, this implies that there is a
canonical one-to-one correspondence between the set of ηa

14Discrete gauge theories D[α](G) are obtained by gauging the G
symmetry in a trivial topological phase C0 = {0}, as described in
Sec. XI A.
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irreps of Ga and the set of ηka irreps of Gka. We will write

kπa(kg) = εa,k(g) πa(g) (416)

to denote the ηka irrep of Gka which is canonically isomorphic
to the ηa irrep πa of Ga under this mapping.

2. Quantum dimensions

With the definition of the topological charges of (C×
G )G

specified in Eq. (409), it is straightforward to determine the
corresponding quantum dimensions. In particular, we just sum
over the quantum dimensions of all the charges in the orbit
and multiply by the dimension of the attached ηa irrep, so that
([a], πa) has quantum dimension given by

d([a],πa ) = da · |[a]| · dim(πa), (417)

where da is the quantum dimension of a (which is the same
for all a ∈ [a]), |[a]| the number of elements in the orbit [a],
and dim(πa) the dimension of the ηa irrep πa.

Having specified the topological charges of (C×
G )G and their

quantum dimensions, it is straightforward to prove that the
total quantum dimension is

D(C×G )G = |G| 1
2 DCG = |G|D0 = |G|DC . (418)

For this, we first consider the different ηa irreps of the sta-
bilizer subgroup Ga of a in a given orbit [a]. It is known
that

∑
πa
|dim(πa)|2 = |Ga| for such ηa irreps, as shown in

Appendix B. With this, and the fact that |[a]||Ga| = |G|, we
obtain the result

D2
(C×G )G =

∑
([a],πa )∈(C×G )G

d2
([a],πa )

=
∑

([a],πa )

d2
a |[a]|2|dim(πa)|2 =

∑
[a]

d2
a |[a]|2|Ga|

= |G|
∑
[a]

d2
a |[a]| = |G|

∑
a∈C×G

d2
a

= |G|D2
CG

= |G|2D2
C0

. (419)

3. Fusion rules

The fusion rules for the topological charges of (C×
G )G have

also been recently described in the mathematical literature
[83]. To obtain these, we need to understand both how to fuse
two G-orbits and how to fuse two ηa irreps. For pedagogical
reasons, we will give a heuristic discussion to justify the
fusion rules of (C×

G )G before presenting the actual expression.
We first consider a very coarse version of the problem. In

particular, we suppress the topological charge label associated
with an orbit and multiply two conjugacy classes C1 and C2 of
G. For this, we first form the product set

{g1g2 | g1 ∈ C1, g2 ∈ C2},
which can be equivalently expressed using representative
elements g1 ∈ C1 and g2 ∈ C2 as

{hg1h−1kg2k−1 |h ∈ G/Ng1 , k ∈ G/Ng2},
where

Ng = {h ∈ G | gh = hg}, (420)

denotes the centralizer of g in G. Now the problem is
to decompose the product set into conjugacy classes. To
this end, we observe that if h′ = lh and k′ = lk, then
h′g1h′−1k′g′2k′−1 = l(hg1h−1kg2k−1)l−1, i.e., the two ele-
ments are in the same coset. Hence, we are naturally led to
conclude that the conjugacy classes contained in the product
set are given by the coset of diagonal left multiplication on
G/Ng1 × G/Ng2 , which is the double coset Ng1\G/Ng2 .

We now return to the problem of the fusion of two orbits
[a] and [b], neglecting for the moment the ηa irreps attached to
them. Selecting representative elements a ∈ [a] and b ∈ [b],
the fusion of the two orbits give a direct sum of all the
elements in the set

{ρg(a) × ρh(b) | g ∈ G/Ga, h ∈ G/Gb},
where we take the coset over Ga and Gb here, since these
subgroups do not modify the corresponding labels. We now
need to decompose this set further into G-orbits. For this, we
have the similar property that if g′ = kg and h′ = kg, then

ρg′ (a) × ρh′ (b) = ρk(ρg(a)) × ρk(ρh(b))

= ρk(ρg(a) × ρh(b)). (421)

This essentially says that the fusion channels of ρg′ (a) ×
ρh′ (b) are exactly the image of those of ρg(a) × ρh(b) under
the action of k. Therefore fusion of orbits correspond to the
equivalence classes of G/Ga × G/Gb under diagonal left (or
right) multiplication, which is known to be isomorphic to the
double coset Ga\G/Gb.

Next, we consider how the ηa irreps attached to the defects
should be combined. Naïvely, one would expect that we just
take the tensor product of the representations and decompose
it as a direct sum of irreps. However, an important subtlety
in this case is that the fusion/splitting spaces of the defects
can transform nontrivially under the symmetry group action,
and this should also be taken into account in the fusion. More
explicitly, we consider the fusion/splitting vertex state spaces
V

cgh

agbh
and V

agbh
cgh , and we define the stabilizer subgroup for

this space as H(a,b;c) = Ga ∩ Gb ∩ Gc. The symmetry action
(sliding moves) consistency (273) tells us that∑

λ,δ

[Ul(a, b; c)]μλ[Uk(a, b; c)]λν

= ηc(k, l)
ηa(k, l)ηb(k, l)

[Ukl(a, b; c)]μν (422)

for k, l ∈ H(a,b;c). We notice that the U transformations can be
thought of as being associated with the action on the splitting
spaces V ab

c , while the transpose U T corresponds to the action
on the fusion spaces V c

ab, as seen in Eqs. (269) and (270).
The symmetry action consistency implies that U T form a
projective representation of H(a,b;c), with a factor set given by

κk,l(a, b; c)−1 = ηc(k, l)
ηa(k, l)ηb(k, l)

(423)

restricted to k, l ∈ H(a,b;c). We will denote this projective
representation of H(a,b;c) by U T as π(a,b;c) and its character is
given by

χπ(a,b;c) (k) =
∑

μ

[Uk(a, b; c)]μμ. (424)
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With the above discussion as justification, we present the
formula for the fusion coefficients of the (C×

G )G MTC [83]

N ([c],πc )
([a],πa )([b],πb) =

∑
(t,s)∈Ga\G/Gb

m
(
πc|H(t a,sb;xc)

, tπa|H(t a,sb;c)

⊗ sπb|H(t a,sb;c)
⊗ π(ta,sb;c)

)
, (425)

where H(ta,sb;c) = Gta ∩ Gsb ∩ Gc and the notation π |H(t a,sb;c)

means the restriction of the irrep π to the subgroup H(ta,sb;c).
As we discussed above, the tensor product tπa|H(t a,sb;c)

⊗
sπb|H(t a,sb;c)

⊗ π(ta,sb;c) has the factor set given by

ηa(k, l)ηb(k, l)κk,l(a, b; c)−1 = ηc(k, l) (426)

for k, l ∈ H(ta,sb;c), which is precisely the same factor set as
πc|H(t a,sb;c)

. We note that the restriction of an irrep to a subgroup
is not necessarily an irrep of the subgroup. Finally, m(·, ·)
is a sort of integer-valued inner product that, in some sense,
measures the multiplicity of the entries with respect to each
other. If one of the entries is an irrep, then this multiplicity
function simply counts the number of times this irrep occurs
in the other entry’s irrep decomposition. However, the general
description of the multiplicity function is more complicated
than the statement that it counts the number of times one entry
occurs in the other. The precise definition of this multiplicity
function m is given in Appendix B. For practical purposes, it
may be computed in terms of the projective characters of the
projective representations, as in Eq. (B8).

The formula in Eq. (425) may appear obtuse without some
experience in using it for concrete computations. For this, we
refer the reader to Sec. XI, where this formula is utilized
to derive the fusion rules of the gauged theory for several
examples.

As the first application of this formula, we determine
the topological charge conjugate (antiparticle) of ([a], πa).
It should be clear that if ([b], πb) is the charge conjugate
([a], πa), then [b] = [ā], since, for each a ∈ [a], there must be
an element b ∈ [b] such that N0

ab �= 0. Regarding the ηā irrep
of the conjugate charge, a natural guess would be the conju-
gate irrep π∗

a , since πa ⊗ π∗
a = 1 ⊕ · · · . However, the factor

set of π∗
a is η∗

a , which is in general only gauge-equivalent to
ηā. In fact, from the symmetry action consistency Eq. (273),
we have the relation

ηa(k, l)ηa(k, l) = Ukl(a, a; 0)

Uk(a, a; 0)Ul(a, a; 0)
, (427)

for k, l ∈ Ga. It follows that we should define the charge
conjugate’s irrep to be

πa(k) = Uk(a, ā; 0)−1π∗
a (k). (428)

This is, indeed, an ηā irrep of Gā, i.e., it has the factor set ηā.
Thus the topological charge conjugate of ([a], πa) ∈ (C×

G )G is

([a], πa) = ([ā], πa) (429)

with ā the charge conjugate of a ∈ C×
G and πa the ηā irrep

of Gā defined in Eq. (428). We can verify this by plugging
([a], πa) and ([a], πa) into Eq. (425), where we would find
that the tensor product in the second entry of m simply
becomes πa ⊗ π∗

a which contains the trivial representation 1
precisely once.

4. Topological twists

As we have discussed above, a topological charge in (C×
G )G

has the form of a generalized dyon, the “flux” being a G-orbit
of defects and the “charge” being a projective η irrep. Thus we
expect that the topological twist of such objects will receive
a contribution from the defect’s twist (carrying over from the
C×

G theory), as well as an Aharonov-Bohm type phase from the
(internal) braiding of the object’s flux and charge around each
other. The latter contribution is roughly given by the character
of the projective irreps, as it is in discrete gauge theories.
Therefore we have the following formula for the topological
twists of topological charges in (C×

G )G

θ([a],πa ) = θag

χπa (g)

χπa (0)
. (430)

In this expression, θag is the topological twist of ag ∈ C×
G and

χπa (g) = Tr[πa(g)] (431)

is the projective character of the ηa irrep πa (see Appendix B).
χπa (0) = dim(πa) is equal to the dimension of πa.

It is straightforward to see that this expression for θ([a],πa )

is indeed equal to a phase. Specifically, since ηag (g, h) =
ηag (h, g) for all h ∈ Ga, it follows that πa(g)πa(h) =
πa(h)πa(g). Using Schur’s lemma, we deduce that πa(g) ∝ 1.
Since the representations are unitary, it follows that χπa (g)

χπa (0) is a
U(1) phase.

We stress that the projective character depends on the
particular factor set ηa, not just the equivalence class to
which it belongs. While neither θag nor χπa (g) is individu-
ally invariant under the symmetry action gauge transforma-
tions, their product actually is invariant under such gauge
transformations. More explicitly, under a symmetry action
gauge transformation, as in Eq. (294), the projective character
transforms as

χ̌πa (g) = γ−1
a (g)χπa (g) (432)

and θ̌ag = γa(g)θag . Thus

χ̌πa (g)θ̌ag = χπa (g)θag . (433)

We also notice that vertex basis transformations leave both θag

and χπa , and hence θ([a],πa ) invariant.
We must also check that θ([ag],πa ) does not depend upon the

choice of ag ∈ [a]. Consider a different representative element
kag with k ∈ G/Ga. In Eq. (300), we saw that

θkag
= ηa(g, k̄)

ηa(k̄, kg)
θag . (434)

As shown in the previous section, there is a canonical corre-
spondence between the projective representations of Gka and
Ga. Thus we choose the projective representation for ka to be
kπa. According to Eq. (416), we have

χkπa
(kg) = ηa(k̄, kg)

ηa(g, k̄)
χπa (g). (435)

This results in the relation

θkag
χkπa

(kg) = θagχπa (g), (436)

which demonstrates that the expression for the topological
twist is indeed independent of the choice of a ∈ [a].
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As a special case, we notice that if [a] ∈ C0, then θ[a] =
θa, which is expected from the theory of topological Bose
condensation.

5. Topological S matrix

Given the topological twists and fusion rules, we can
compute the modular data of a UMTC, since the quantum

dimensions can be obtained from the fusion rules and the S
matrix is defined in terms of these quantities by Eq. (37).
However, it is illuminating to obtain an expression for the S
matrix of (C×

G )G in terms of the G-crossed S matrix of C×
G . We

begin the derivation with the expression for S([a],πa )([b],πb) in
terms of the gauged theory’s data (where we use the topolog-
ical charge conjugate of ([a], πa) to simplify the subsequent
expressions):

S([a],πa )([b],πb) =
1

D(C×G )G

∑
([c],πc )

N ([c],πc )
([a],πa )([b],πb)d([c],πc )

θ([c],πc )

θ([a],πa )θ([b],πb)

= 1

|G|D0

∑
(t,s)∈Ga\G/Gb

∑
[c]

∑
πc

dc|[c]|
θct gsh

θtagθsbh

χπc (tgsh)

χtπa
(tg)χsπb (sh)

× ntπa
nsπb

|H(ta,sb;c)|
∑

k∈H(t a,sb;c)

χ∗
πc

(k)χtπa
(k)χsπb (k)

∑
μ

[Uk(tag,
sbh; ctgsh)]μμ. (437)

Here, nπ ≡ χπ (0) = dim π , and we used Eqs. (417), (424), (425), (430), and (B8). We may chose to use any representatives of
the topological charge orbits in this expression, but we have specifically chosen to use c ∈ [c] such that c ∈ Ctgsh (corresponding
to the choices ag ∈ [a] and bh ∈ [b]) in order to make the evaluation more direct. The sum breaks into three parts: (1) a sum over
(t, s) ∈ Ga\G/Gb, (2) a sum over G orbits [c], and (3) a sum over irreducible ηc representations πc. We first carry out the sum
over πc. In order to apply the orthogonality relation Eq. (B14), we notice that, in Gc, tgsh by itself forms an ηc-regular conjugacy
class and its centralizer is Gc. Thus we can apply Eq. (B14) to evaluate the sum∑

πc

χπc (tgsh)χ∗
πc

(k) = |Gc|δtgsh,k. (438)

Since k ∈ H(ta,sb;c), we conclude that in order to have k = tgsh (so that the sum is nonvanishing), we must have tg ∈ Gsb and
sh ∈ Gta. Using these properties to evaluate the sums over πc and k, we obtain

S([a],πa )([b],πb) =
1

D0

∑
(t,s)∈Ga\G/Gb

∑
[c]

c ∈ Ct gsh

dc
ntπa

nsπb

|H(ta,sb;c)|
θc

θtaθsb

χtπa
(tgsh)χsπb (tgsh)

χtπa
(tg)χsπb (sh)

∑
μ

[Utgsh(ta, sb; c)]μμ, (439)

where we indicate the choice c ∈ Ctgsh on the [c] sum in order to reduce clutter. We further notice that

χtπa
(tgsh) = Tr[πta(tgsh)] = Tr[ηta(tg, sh)−1πta(tg)πta(sh)] = ηta(tg, sh)−1 χtπa

(tg)

ntπa

χtπa
(sh), (440)

where we have used the fact that πta(tg) ∝ 1. There is a similar relation for χsπb (tgsh). From these relations, we obtain

S([a],πa )([b],πb) =
1

D0

∑
(t,s)∈Ga\G/Gb

∑
[c]

c ∈ Ct gsh

dc

|H(ta,sb;c)|
θc

θtaθsb

∑
μ[Utgsh(ta, sb; c)]μμ

ηta(tg, sh)ηsb(tg, sh)
χtπa

(sh)χsπb (tg)

= 1

D0

∑
(t,s)∈Ga\G/Gb

∑
[c]

dc

|H(ta,sb;c)|
∑
μ,ν

[
R

tasb
c

]
μν

[
R

sbta
c

]
νμ

χtπa
(sh)χsπb (tg), (441)

where we used the G-crossed ribbon identity Eq. (312) in the last step. (We can now drop the c ∈ Ctgsh, since this condition is
implicitly enforced by the R symbols.)

Thus we have found

S([a],πa ),([b],πb) =
1

D0

∑
(t, s) ∈ Ga\G/Gb

∑
[c]

dc

|H(ta,sb;c)|
Tr
[
R

tasb
c R

sbta
c

]
χtπa

(sh)χsπb (tg). (442)

By sliding a line over a double braid and applying Eq. (280), we can show (when ha = a and gb = b) that

Tr
[
R

kag
kbh

kc R
kbh

kag
kc

] = ηb(g, k̄)ηa(h, k̄)

ηb(k̄, kg)ηa(k̄, kh)
Tr
[
R

agbh
c R

bhag
c

]
. (443)
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Using Eq. (416), we also have

χkπa
(kh) = ηa(k̄, kh)

ηa(h, k̄)
χπa (h), χkπb

(kg) = ηb(k̄, kg)

ηb(g, k̄)
χπb (g). (444)

Putting these together, we find the relation

Tr
[
R

kag
kbh

kc R
kbh

kag
kc

]
χkπa

(kh)χkπb
(kg) = Tr

[
R

agbh
c R

bhag
c

]
χπa (h)χπb (g), (445)

which shows that this quantity is invariant under G action.
Finally, we carry out the sum over the orbits [c], replacing it with a sum over the actual topological charges c ∈ C×

G to obtain

S([ag],πa )([bh],πb) =
1

D0

∑
(t, s) ∈ Ga\G/Gb

∑
[c]

1

|G|
∑
k∈G

dkc

|H(ta,sb; c)|
Tr
[
R

ktaksb
kc R

ksbkta
kc

]
χktπa

(ksh)χksπb
(ktg)

= 1

|G|D0

∑
(t, s) ∈ Ga\G/Gb

∑
[c]

∑
k∈G/H(t a,sb; c)

dkc Tr
[
R

ktaksb
kc R

ksbkta
kc

]
χktπa

(ksh)χksπb
(ktg). (446)

We write k ∈ G/H(ta,sb; c) as k = lk1 where k1 ∈ Gta ∩ Gsb ∩ G/H(ta,sb; c) ≡ M(ta,sb;c) and l ∈ [G/H(ta,sb; c)]/M(ta,sb;c) ≡ L(ta,sb).
We purposefully drop the index c in the definition of L, since L contains cosets of elements that at least change one of ta and sb,
without referencing to c. In other words, k1 are all elements in G/H(ta,sb; c) that keep both ta and sb invariant and by definition
necessarily transforms c nontrivially within the same orbit. Once we sum over those k1 and [c], we actually have a sum over all
c in ta × sb:

S([ag],πa )([bh],πb) =
1

|G|D0

∑
(t, s) ∈ Ga\G/Gb

∑
l∈L(t a,sb)

∑
[c]

∑
k1∈M(t a,sb;c)

dlk
1 c Tr

[
R

ltalsb
lk
1 c R

lsblta
lk
1 c

]
χltπa

(lsh)χlsπb
(ltg)

= 1

|G|
∑

(t, s) ∈ Ga\G/Gb

∑
l∈L(t a,sb)

Sltalsb χltπa
(lsh)χlsπb

(ltg). (447)

Now recall that the double coset Ga\G/Gb is defined as the
equivalence classes of elements in G/Ga × G/Gb, under the
diagonal left multiplication. Therefore carrying out the sum
over l is equivalent to lift the double coset back to G/Ga ×
G/Gb. Finally we arrive at the following expression:

S([ag],πa )([bh],πb) =
1

|G|
∑

t ∈ G/Ga

s ∈ G/Gb

Stasb χtπa
(sh)χsπb (tg).

(448)

We can now use Eqs. (323), (428), and (B5) to rewrite this
final expression as

S([ag],πa )([bh],πb) = 1

|G|
∑

t ∈ G/Ga

s ∈ G/Gb

Stag
sbh χtπa

(sh) χsπb (tg). (449)

Thus we have found that the S matrix of the gauged UBTC
(C×

G )G can be obtained from the S matrix of the corresponding
G-crossed UBTC C×

G by taking a linear combination of S
matrix elements that is weighted by the projective characters
of the corresponding projective irreps.

6. Chiral central charge

Given our formula in Eq. (430) for the topological twists
of (C×

G )G, we can prove that the chiral central charge c− (mod
8) of the gauged theory is the same as that of C0, when these
theories are modular. To see this, we first evaluate the Gauss

sum for a specific G orbit [a], summing over ηa irreps∑
πa

d2
([a],πa )θ([a],πa ) =

∑
πa

d2
a |[a]|2|χπa (0)|2θag

χπa (g)

χπa (0)

= d2
a |[a]|2θag

∑
πa

χπa (g)χπa (0)

= d2
a |[a]|2θag |Ga|δg,0. (450)

Using this result in the full Gauss sum and noting that
|G| = |[a]| · |Ga|, we obtain

�(C×G )G = 1

D(C×G )G

∑
([ag],πa )∈(C×G )G

d2
([a],πa )θ([a],πa )

= 1

D(C×G )G

∑
[ag]

d2
a |G| · |[a]|θagδg,0

= 1

D0

∑
[a0]

d2
a |[a]|θa = 1

D0

∑
a∈C0

d2
a θa

= �0 = �C . (451)

Thus (C×
G )G has the same chiral central charge mod 8 as C and

C×
G .

7. Genus g ground-state degeneracy

An alternative way of computing a number of properties
of (C×

G )G, when it is a MTC, is by computing the ground-
state degeneracy Ng of the theory on a genus g surface. It
is well-known that this is related to the quantum dimensions
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of (C×
G )G via the formula (which can be derived using the

Verlinde formula)

Ng = D2g−2
∑

A∈(C×G )G

d−(2g−2)
A . (452)

Therefore knowledge of Ng for enough values of g can be used
to extract the quantum dimensions d j for every topological
charge A ∈ (C×

G )G.
The ground-state degeneracy Ng of (C×

G )G can also be
obtained from the genus g ground-state degeneracy of C×

G ,
which was discussed in Sec. VII B, by projecting onto the G-
invariant subspace of states. In other words, we consider every
state |ψ〉 ∈ V{g j ,h j } for every {g j, h j} sector. As discussed in
Sec. VII C, these states transform under the G action. The
projection keeps only the subspace of states that are invariant
under this G action. That is, one takes

|ψG〉 =
∑
g∈G

ρg(|ψ〉), (453)

for each state |ψ〉, belonging to any {g j, h j} sector of the
G-crossed theory. The ground-state degeneracy Ng is then the
dimension of the space spanned by such G-invariant states
|ψG〉.

C. Universality classes of topological phase transitions

A wide class of quantum phase transitions between topo-
logically distinct phases of matter can be understood in terms
of the condensation of some set of “bosonic” quasiparticles
[75,106], i.e., those whose topological charge a has trivial
topological twist θa = 1. In these cases, the topological prop-
erties of the resulting phase can be derived from those of the
parent phase. Some of the topological charge values (quasi-
particle types) become confined due to the new condensate,
some are equated with other topological charges, related to
each other by fusion with the condensed bosons, but otherwise
go through the transition essentially unmodified, and others
may split into multiple distinct types of topological charge
when going through the transition. We note that the mathe-
matics underlying these transitions was initially developed in
Refs. [104,105].

Most of the current understanding of such topological
phase transitions focuses on the formal mathematical struc-
ture, such as the nature of the topological order on the
two sides of the transition. However, another very important
property of a phase transition is its universality class. For
the simplest cases, where only one boson a with fusion
a × a = 0 condenses, it has been shown that the resulting
phase transitions can be understood as Z2 gauge-symmetry
breaking transitions [76,78]. Here, we will extend these results
to a more general understanding of the universality classes of
topological bose condensation transitions.

Let us consider a topological phase of matter described by a
UMTC M that contains a subtheory B, which is itself a UBTC
(i.e., it contains topological charges that are closed under
fusion) in which all the topological twists are trivial, i.e., θa =
1,∀a ∈ B. It follows that the subcategory B is symmetric, i.e.,
RabRba = 1 and DSab = dadb for all a, b ∈ B.

When these conditions are satisfied, a theorem due to
Deligne [137] guarantees that B is gauge-equivalent to the

category Rep(G) for some finite group G. This category
Rep(G) has its topological charges given by all irreducible
linear representations of G, with the fusion rules being pre-
cisely given by the tensor product of the irreducible repre-
sentations and the F symbols being given by the correspond-
ing Wigner 6 j symbols. The topological charges of Rep(G)
are all bosons and their braiding is symmetric, i.e., θa = 1
and RabRba = 1 for all topological charges a, b ∈ Rep(G).
We notice, however, that one generally does need the full
knowledge of F symbols and R symbols of B to unambigu-
ously recover the group G from the representation category
[138].

In such a case, one can always condense the quasipar-
ticles belonging to B following the formal rules given in
Refs. [75,106,107]. Let C denote the phase obtained by con-
densing the B quasiparticles in M. It was proven in Ref. [139]
that M can always be obtained by starting from C and then
gauging a symmetry group G. This implies the following
property of the topological phase transition:

When the topological quantum phase transition corre-
sponding to the condensation of a Rep(G) subset of a UMTC
is continuous, its universality class can be understood in terms
of the discrete gauge symmetry breaking transition associated
with the finite group G.

This property follows from the fact that the universality
class of the phase transition depends only on the objects that
are Bose condensing, since these are the only degrees of
freedom that are becoming gapless and contributing to the
low-energy physics at the phase transition. Whether or not
the phase transition is continuous generally depends on the
microscopic details of its physical realization.

Since discrete gauge symmetry breaking transitions are
well-understood and can be simulated easily using numerical
methods or, in simple cases, through analytical methods [136].
This means that we can immediately understand the critical
exponents for local correlations of this much wider class of
topological quantum phase transitions.15

IX. CLASSIFICATION OF SYMMETRY ENRICHED
TOPOLOGICAL PHASES

We have developed a general framework to understand
the interplay of symmetry and topological order in 2 + 1
dimensions. Our work leads to a systematic classification
and characterization of SET phases in 2 + 1 dimensions, for
unitary symmetry groups G, which describe on-site and/or
translation symmetries, based on inequivalent solutions of
the defect theory C×

G . Our formalism for C×
G encapsulates in

detail the properties of the extrinsic g defects and the way
in which symmetries relate to the topological order. Below
we will describe the classification of C×

G and discuss the
relation to the PSG framework for classifying SET phases.

15We note that while critical exponents for local correlation func-
tions can be captured in this way, nonlocal correlations and the topo-
logical structure of the critical points may have subtle differences
depending on the rest of the structure of the topological phases in
question.
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The extension to continuous, other spatial (non-on-site), or
antiunitary symmetries will also be be briefly discussed below.

A. Classification of G-crossed extensions

One can, in principle, obtain all G-crossed BTCs by solv-
ing the consistency equations. In practice, this can quickly
become computationally intractable. Fortunately, addressing
this problem is aided by the theorems of Ref. [81], which
classify the G-crossed extensions of a BTC C0 for finite groups
G (and also extensions of fusion categories). In our paper, we
restrict our attention to the case where C0 is a UMTC.

We have already examined part of this classification in
detail in our paper. The most basic part of the classification,
discussed in Sec. III, is the choice of the symmetry action
[ρ] : G → Aut(C0), which is incorporated as a fundamental
property of the defects of the extended theory.

The next part of the classification was discussed in Sec. IV,
where we showed that, given a specific symmetry action [ρ],
the symmetry fractionalization is classified by H2

[ρ](G,A).
This required that the obstruction class [O] ∈ H3

[ρ](G,A) be
trivial [O] = [0], since, otherwise, there would be no solu-
tions. More precisely, the symmetry fractionalization classes
were specified by the equivalence classes of the local pro-
jective phases ηx0 (g, h), and these classes are elements of
an H2

[ρ](G,A) torsor. This means distinct classes of solu-
tions are obtained from each other by action of distinct
elements of H2

[ρ](G,A). In particular, the Ug(a, b; c) and
ηx(g, h) transformations of a G-crossed MTC C×

G (or, rather,
their restriction to the C0 sector) are precisely the symmetry
action transformations of fusion vertex states and symmetry
fractionalization projective phases, respectively, that encoded
symmetry fractionalization. Similarly, the G-crossed consis-
tency relations of the Ug(a, b; c) and ηx(g, h) transformations
are precisely the corresponding consistency relations that
arose in the fractionalization analysis. Thus the H2

[ρ](G,A)
classification of symmetry fractionalization carries over to the
G-crossed extensions of C0, where the defects in the extended
theory incorporate the symmetry action through the braiding
operations.

In this sense, the set of gauge inequivalent G-crossed
MTCs that are extensions of a MTC C0 with specified [ρ] is
an H2

[ρ](G,A) torsor. By this, we mean that, given a G-crossed
MTC C×

G , each element [t] ∈ H2
[ρ](G,A) specifies a potential

way of modifying C×
G to obtain a distinct, gauge inequivalent

G-crossed MTC Ĉ×
G , with a different fractionalization class.

From the above discussion, it is clear that an important
property of a G-crossed extension that is modified by [t] in
this way is the symmetry action and fractionalization that is
encoded in the defects, particularly their action with respect
to the C0 sector.

We can also see that, for a choice of t ∈ [t], the G-graded
fusion rules of the defects in C×

G are modified to become

ag × bh = t(g, h) ×
∑
cgh

N
cgh

agbh
cgh, (454)

so that the fusion coefficients of the modified theory Ĉ×
G are

given by

N̂
cgh

agbh
= N

t(g,h)×cgh

agbh
. (455)

It follows from the 2-cocycle condition on t that these mod-
ified fusion coefficients automatically provide an associative
fusion algebra. We note that such a modification may or may
not actually give a distinct fusion algebra. Clearly, the rest
of the basic data of C×

G will also be modified by [t], but we
will not go into these details here. (The dependence of the
basic data of C×

G on the fractionalization class can be seen very
explicitly for the relatively simple class of examples given in
Sec. X.)

Importantly, while there is a different symmetry fraction-
alization class for each element [t] ∈ H2

[ρ](G,A), it is not
guaranteed that each class can be consistently extended to
define a full G-crossed defect theory Ĉ×

G , i.e., that each pair
of ρ and η acting on C0 can consistently be incorporated in
a G-crossed theory. In fact, the symmetry fractionalization
class defines a new obstruction class [O] ∈ H4(G, U(1)) [81],
which we refer to as the “defectification obstruction.” Only
when this obstruction class is trivial can a G-crossed BTC Ĉ×

G
be constructed, as there would otherwise be no solutions to the
G-crossed consistency conditions. For the case where C0 is a
MTC and the symmetry action does not permute quasiparticle
types, we have derived an expression for this obstruction
in Eq. (485) by directly solving the G-crossed consistency
equations.

When the defectification obstruction [O] vanishes, the
classification theorem established in Ref. [81] says that the
remaining multiplicity of G-crossed extensions (after speci-
fiying [ρ] and [η]) is classified by H3(G, U(1)). The set of
G-crossed extensions (with specified symmetry action and
symmetry fractionalization class) is an H3(G, U(1)) torsor in
a similar sense as above. In particular, given a G-crossed MTC
C×

G , each element [α] ∈ H3(G, U(1)) specifies a way of mod-
ifying C×

G to obtain a distinct, gauge inequivalent G-crossed
MTC Ĉ×

G with the same symmetry action and fractionalization
class.

We now describe how one may modify a particular G-
crossed theory C×

G to obtain another G-crossed theory Ĉ×
G , for

a given [α] ∈ H3(G, U(1)). We first note that the bosonic SPT
states for symmetry group G are completely classified by the
elements [α] ∈ H3(G, U(1)), as discussed in Sec. XI A. We
will denote these states as SPT[α]

G . Then it is easy to see that,
for each [α], we can produce another G-crossed theory by
factoring in SPT states in such a way that the group element
labels match up with those of C×

G , i.e., we take the restricted
product

Ĉ×
G = SPT[α]

G � C×
G |(g,ag ), (456)

where topological charges in Cg from the G-crossed theory are
paired up with g defects from the SPT. To be more explicit, for
a choice of α ∈ [α], that is, a 3-cocycle α ∈ Z3(G, U(1)), and
the choice of gauge, given in Sec. XI A, that makes all the
braiding phases trivial for SPT[α]

G , the basic data of C×
G can be

modified as

N̂
cgh

agbh
= N

cgh

agbh
, (457)[

F̂
agbhck

dghk

]
(e,α,β )( f ,μ,ν ) = α(g, h, k)

[
F

agbhck

dghk

]
(e,α,β )( f ,μ,ν ),

(458)
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TABLE I. Topological invariants of G-crossed modular tensor categories. (This is not an exhaustive list of invariants.)

Invariant Expression

Fusion coefficients, Eqs. (3) and (241) N
cgh
agbh

Quantum dimensions, Eq. (14) dag = |[F agagag
ag ]00|

−1

Frobenius-Schur indicator, Eq. (13) κag = dag [F
agagag

ag ]00, when ag = ag

Action on topological charge, Eqs. (82) and (248) ρg(a)

Projective exchange, Eq. (299)
∑

μ [Raa
c ]μμ∑

μ′ [Raa
c′ ]

μ′μ′

Projective braiding, Eq. (314)

∑
μ [(R2n )

agbh
cgh

]
μμ∑

μ′ [(R2n )
agbh
c′gh

]
μ′μ′

, when kag = ag and kbh = bh for k = (gh)n.

G-crossed modular transformations, Eq. (386) Q(g,h)
agag

, when Q(g,h) : V(g,h) → V(g,h)

Q(g,0)
agbg

, when Q(g,0) : V(g,0) → V(g,0)

Modular twisting, Eq. (388) θn
ag

∏n−1
j=1 ηag (g j, g), when gn = 0

Fusion rules of the gauged theory, Eq. (425) N ([c],πc )
([a],πa )([b],πb )

Topological twists of the gauged theory, Eq. (430) θag
χπa (g)
χπa (0)

[
R̂

agbh
cgh

]
μν

= [
R

agbh
cgh

]
μν

, (459)

[Ûk(ag, bh; cgh)]μν

= α(g, k, kh)

α(g, h, k)α(k, k̄g, k̄h)
[Uk(ag, bh; cgh)]μν, (460)

η̂xk (g, h) = α(g, ḡk, h)

α(g, h, h̄ḡk)α(k, g, h)
ηxk (g, h) (461)

to give the basic data of Ĉ×
G , which automatically satis-

fies G-crossed consistency conditions. We note that, since
α(g, h, k) = 1 if g, h, or k = 0, the line sliding transforma-
tions with respect to the C0 sector are unchanged by the above
modification, that is [Ûk(a0, b0; c0)]μν = [Uk(a0, b0; c0)]μν

and η̂x0 (g, h) = ηx0 (g, h). Thus such modifications of a G-
crossed theory leaves the symmetry action [ρ] : G → Aut(C0)
and symmetry fractionalization class fixed.

We believe modifications of this type precisely give the
H3(G, U(1)) classification, or, in other words, they generate
all gauge inequivalent G-crossed MTCs for a specified sym-
metry action and symmetry fractionalization class. We refer
to such distinct G-crossed theories with the same symmetry
action and fractionalization class as having different defectifi-
cation classes.

It is straightforward to check that when α ∈ B3(G, U(1)) is
a 3-coboundary, i.e., when

α(g, h, k) = dε(g, h, k) = ε(h, k)ε(g, hk)

ε(gh, k)ε(g, h)
(462)

for some ε ∈ C2(G, U(1)), that the above modification of the
G-crossed theory by α produces a Ĉ×

G that is gauge equivalent
to C×

G through the vertex basis and symmetry action gauge
transformations [

�
agbh
cgh

]
μν

= ε(g, h)δμν, (463)

γag (k) = ε(g, k)

ε(k, k̄gk)
. (464)

This establishes the fact that one should take a quotient by
B3(G, U(1)), since such modifications are just gauge trans-
formations. What remains to be shown is that every pair of
G-crossed extensions of C0 with the same symmetry action [ρ]
and fractionalization class [η] is related by such a modification
for some 3-cocycle α ∈ Z3(G, U(1)) and that distinct coho-
mology classes [α] give gauge inequivalent solutions (up to
identification under relabeling of topological charges). We do
not establish this here, but note that it may be partially verified
(or wholly verified for simple enough examples) using invari-
ants of the G-crossed theory and/or the corresponding gauged
theory, and it is true for all the examples we study in Sec. XI.
We present the more prominent invariants of G-crossed the-
ories in Table I. The classification is established in Ref. [81]
by working at a higher category level, with the subsectors Cg
(which are C0 bimodules) playing the role of objects.

In summary, the G-crossed extensions of a MTC C0 for
finite group G are classified by the symmetry action, the
symmetry fractionalization class, which is an element of an
H2

[ρ](G,A) torsor, and the defectification class, which is an
element of an H3(G, U(1)) torsor. This yields the classifi-
cation of 2 + 1-dimensional SET phases for a system in a
topological phase described by a UMTC C0 and an on-site
global unitary symmetry described by a finite group G. Based
on the classification theorem of Ref. [81], we believe that all
of the inequivalent G-crossed extensions can be parameterized
in this way.

1. Equivalent SET phases by relabeling objects in C×
G

While the G-crossed extensions C×
G of C0 with a given

action [ρ] are classified by H2
[ρ](G,A) and H3(G,U (1))

as described above, the corresponding classification of SET
phases is generally not in one-to-one correspondence with
elements of H2

[ρ](G,A) and H3(G,U (1)). Rather, distinct
elements of the H2

[ρ](G,A) and H3(G,U (1)) torsors may
represent the same SET. In particular, it is possible that two
G-crossed extensions that are related by a nontrivial element
of H2

[ρ](G,A) or H3(G,U (1)) may be equivalent to each
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other by relabeling the topological charges of anyons and/or
defects. Moreover, the choice of labels of anyons and defects
in C×

G is only physical up to relabelings that preserve the fusion
and braiding data (up to gauge transformations). It follows that
SET phases are classified by different G-crossed extensions
only up to such relabelings. Accordingly, the number of
elements in H2

[ρ](G,A) and H3(G,U (1)) is an upper bound
on the number of distinct SET phases whose quasiparticles
are described by C0, with the symmetry action given by [ρ].

It is useful to consider a concrete example that exhibits
this sort of equivalence of theories corresponding to different
classes in H2

[ρ](G,A) and H3(G,U (1)). We consider the
Z2 toric code model, for which the topological charges are
{I, e, m, ψ}, and let G = Z2 with the symmetry action ρ act-
ing trivially on the topological charges (i.e., no permutations).
This example is examined in Sec. XI I 1. In this case, the sym-
metry fractionalization is classified by H2(Z2,Z2 × Z2) =
Z2 × Z2, where physically the first Z2 corresponds to whether
e quasiparticles carry fractional Z2 charge and the second
Z2 corresponds to whether m quasiparticles carry fractional
Z2 charge. The fractionalization class where e carries half-
integer Z2 charge and m carries integer Z2 charge is seen to
be equivalent to the one where e carries integer Z2 charge
and m carries half-integer Z2 charge under the relabeling
e ↔ m. Furthermore, for the fractionalization class where
both e and m carry half-integer Z2 charge, we obtain two
C×

G theories, which are related to each other by the action
of the nontrivial element [α] ∈ H3(Z2,U (1)) = Z2, i.e., by
gluing on an SPT[α]

Z2
state. However, these two C×

G theories are
seen to be equivalent under a relabeling of the g defects. In
other words, allowing the relabeling of defect types within the
same Cg sector (with g �= 0) can relate solutions associated
with distinct classes in H3(G, U(1)). This particular example
was discussed previously from a different perspective, using
Chern-Simons field theory, in Refs. [53,140]. Another exam-
ple of this kind is discussed in Sec. XI H.

B. Relation to PSG framework

At this stage, it is worth understanding how the framework
that we have developed for classifying and characterizing
SETs relates to the projective symmetry group (PSG) classi-
fication proposed in Ref. [38]. A complementary discussion
can also be found in Ref. [51]. In the PSG formulation, a
topological phase is considered with a low-energy descrip-
tion in terms of a gauge theory with gauge group H and a
global symmetry G. Different PSGs are classified by different
mean-field solutions within a slave-particle framework [1].
A crucial role is played by group extensions, labeled PSG,
of H by G, which mathematically means PSG/H = G. It is
not clear whether the classification of different slave-particle
mean-field solutions, as originally formulated in Ref. [38],
is equivalent to classifying the group extensions PSG such
that PSG/H = G. Nevertheless, each such mean-field solu-
tion must be described by such a group extension, even if
the correspondence is not one-to-one. Here, we will briefly
discuss the problem of classification of such group extensions,
and compare the results to our approach.

When G and H are both finite, the mathematical problem of
classifying group extensions has the following solution [141].

One first picks a homomorphism σ : G → Out(H ), where
Out(H ) is the group of outer automorphisms of H : Out(H ) =
Aut(H )/Inn(H ). Here Aut(H ) is the automorphism group of
H and Inn(H ) is the subgroup generated by conjugation. Dif-
ferent group extensions are then classified by H2

σ (G, Z(H )),
where Z(H ) denotes the center of H . There can also be an
obstruction to the group extension, which is characterized by
an element of H3

σ (G, Z(H )).
In order to demonstrate some shortcomings of the PSG

classification, we consider the case when H is finite and the
topological phase is fully described by a discrete H gauge
theory, i.e., C0 = D(H ) is the (untwisted) quantum double
of H . For this discussion, we further develop the details of
the PSG formalism in order to compare to the G-crossed
theory. We first consider how an outer automorphism ϕ ∈
Out(H ) extends to an action on the topological charges of
D(H ). Recall that the topological charges are dyons ([h], πh),
where the “magnetic flux” is a conjugacy class [h] of H ,
and the “electric charge” is an irrep πh of the centralizer
Ch of some element h ∈ [h]. The effect of ϕ on a flux is
simply ϕ : [h] �→ [ϕ(h)]. For the effect of ϕ on a charge, we
make use of the fact that an irrep πh is uniquely determined
by its corresponding character χπh ([k]), which allows us to
define ϕ(πh) by χϕ(πh )([k]) = χπh ([ϕ(k)]). In this way, we
can define the extension of the outer automorphism group
action σ : G → Out(H ) to a topological symmetry group
action ρ : G → Aut(D(H )) for which

ρg([h], πh) = ([σg(h)], σg(πh)). (465)

We emphasize that symmetry actions obtained from outer
automorphisms of H in this way never interchange magnetic
fluxes with electric charges.

Next, we notice that the subset of Abelian anyons of D(H )
are given by the dyons ([h], πh) for which the conjugacy class
[h] = {h} is a singleton (whose corresponding centralizer is
H) and the irrep πh of H is one-dimensional. [This follows
from Eq. (417) and the fact that a topological charge a is
Abelian iff da = 1.] We define A (in our usual fashion) to be
the Abelian group whose elements are the Abelian topological
charges of D(H ), with group multiplication given by the
corresponding fusion rules. It is clear that this group takes the
form of a direct product A = Aflux ×Acharge, where Aflux is
the subgroup defined by the singleton conjugacy classes and
Acharge is the subgroup defined by the one-dimensional irreps
of H . Moreover, the center of H is isomorphic to the group
defined by the Abelian flux sector, i.e., Z (H ) ∼= Aflux, since a
conjugacy class is a singleton iff it is an element of the center.

Thus, for a symmetry action ρ on D(H ) obtained from the
outer automorphism action σ on H , we find that

H2
[ρ](G,A) = H2

[ρ](G,Aflux) × H2
[ρ](G,Acharge)

= H2
σ (G, Z (H )) × H2

[ρ](G,Acharge). (466)

It follows for D(H ) that (1) PSG can describe at most a
proper subset of the fractionalization classes described by
H2

[ρ](G,A) when H2
[ρ](G,Acharge) is nontrivial. (2) PSG can

describe at most all of the fractionalization classes described
by H2

[ρ](G,A) when H2
[ρ](G,Acharge) is trivial. (3) PSG is not

applicable for symmetries that interchange magnetic fluxes
with electric charges.
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Furthermore, even when one specifies the symmetry frac-
tionalization class of an SET according to H2

[ρ](G,A), there
are still additional possibilities for distinct SETs, as indicated
by the H3(G, U(1)) part of the classification of G-crossed
extensions C×

G . Through the simple example of a topological
phase described by pure discrete H gauge theory, we see that
these are also not captured by classifying the different group
extensions PSG.

Another important distinction between the PSG approach
and our approach is that the former requires knowledge of H ,
which is, in general, not unique for a given topological phase.
This makes it unclear how to reconcile different manifesta-
tions of the same SET order using the PSG formalism.

Reference [52] has proposed an alternative framework,
besides PSG, to classify the SET phases of quantum doubles
of a discrete group (i.e., discrete gauge field theories). This
classification is also incomplete for those classes of states,
as it misses the full set of symmetry fractionalization classes
H2

[ρ](G,A) described in this paper.

C. Continuous, spatial, and antiunitary symmetries

The theory that we have developed in this paper is most
complete when C is a UMTC, and the symmetry G is a finite,
on-site unitary symmetry. However, much of the framework
we have developed applies more generally as well.

Our general discussion of the symmetry of topological
phases in Sec. III and symmetry fractionalization in Sec. IV is
valid for any general symmetry G. However, when space-time
symmetries are considered, the theory becomes more complex
as a result of the symmetry transformations no longer being
on-site, but rather being locality-preserving. For example,
for spatial reflection and/or time-reversal symmetries, defects
have a nonlocal structure in space-time and the formalism
for the defect theory described in this paper is not directly
applicable. For other crystalline symmetries, there may be
additional constraints on what types of symmetry fractional-
ization are allowed [119–123]. We leave a systematic study of
this for future work [142,143].

When G is continuous, one also requires additional con-
ditions that the maps ρ : G → Aut(C) respect the continuity
of G by mapping all group elements in a single connected
component of G to the same element of Aut(C). The cochains
valued in A, such as the O and w described in Secs. III and
IV, should similarly respect the continuity of G.

Similarly, the definition of g defects and the notion of
topologically distinct types of g defects is valid (or can be
straightforwardly generalized) for any unobstructed unitary
symmetry G, even if it is not discrete and on-site. It is
unclear how to generalize the constructions and formalism
of defects to include antiunitary symmetries, as the complex
conjugation operation is inherently nonlocal (except when
acting on product states and operators).

When G is not a finite group, our formalism for G-crossed
UBTCs described in Sec. VI may still be applied as long as
fusion is finite, meaning there are only a finite number of
fusion outcomes when fusing two topological charges. The
discussion of G-crossed modularity for general G requires the
further restriction that |Cg| be finite for all g, but again does
not require G to be finite.

When G is a continuous group, the consistency conditions
that we have described in Sec. VI are not complete. In
particular, the basic data of C×

G , such as the F , R, U , and η

symbols, must somehow reflect the topology and continuity of
the group G. For SPT states, which consist of the case where
the original category C is trivial, it was argued in Ref. [47]
that when G is continuous the classification is given in terms
of Borel cohomology H3

B (G, U(1)). In our language, this
amounts to the condition that the F symbols of C×

G be Borel
measurable functions on the group manifold. Therefore a
natural assumption is that SETs with continuous symmetry G
are classified by distinct C×

G , with the additional condition that
F , R, U , and η be Borel measurable functions on the group
manifold. However, a detailed study of G-crossed extensions
for continuous G, in addition to the framework for gauging
continuous G, will be left for future work.

In the case where G contains spatial symmetries, such as
translations, rotations, and reflections, it is an open question
how the basic data and consistency conditions for C×

G should
be modified. A systematic study of these will also be left for
future work.

Finally, we note that the classification theorems of
Ref. [81] for C×

G and, in particular, the statement that distinct
C×

G are fully classified by the symmetry action, fractionaliza-
tion class, and defectification class require that G is a finite,
on-site unitary symmetry.

X. COMPLETE SOLUTION OF G-CROSSED EXTENSIONS
FOR TOPOLOGICAL PHASES (MTCS) WITH TRIVIAL

SYMMETRY ACTION

In this section, we consider a general topological phase
described by a MTC C0, with G symmetry, for which the
symmetry action does not permute the topological charges
in C0. In this case, we can solve the G-crossed consistency
equations explicitly to obtain the basic data for all G-crossed
extensions.

We begin by noting that the symmetry fractionalization
obstruction [O] automatically vanishes. We will choose a
gauge in which

Uk(a0, b0; c0) = 1, (467)

βc0 (g, h) = 1, (468)

O = 0, (469)

ηc0 (g, h) = Mc0w(g,h), (470)

where the symmetry fractionalization class is specified by
[w] ∈ H2(G,A).

We know that |Cg| = |C0|, since the theory is modular
and all topological charges in C0 are fixed under symmetry
action. However, to determine the properties of the topological
charges, we must establish their fusion rules. For this, we first
prove that Cg contains at least one Abelian topological charge
(which has quantum dimension equal to 1) for each g ∈ G in a
G-crossed MTC when the action of the symmetry G does not
permute the topological charge values of quasiparticles.

Using the gauge choice Ug(a0, b0; c0) = 1, Eq. (327) yields
the relation

Sa0xk

S0xk

Sb0xk

S0xk

=
∑

c0

Nc0
a0b0

Sc0xk

S0xk

, (471)
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which tells us that
Sa0xk
S0xk

is a character of the Verlinde algebra

of C0. Since C0 is a MTC, the characters of its Verlinde algebra
are given by λ(a0 )

y0
= Sa0y0

S0y0
for y0 ∈ C0. It follows that, for each

xk, there must be some y0 ∈ C0 such that
Sa0xk
S0xk

= Sa0y0
S0y0

. In other

words, there is a map f : Ck → C0 such that
Sa0xk
S0xk

= Sa0 f (xk )

S0 f (xk )
.

G-crossed modularity implies that |Ck| = |C0| and

δxkyk =
∑

a0

Sa0xk S∗
a0yk

= dxk dyk

d f (xk )d f (yk )

∑
a0

Sa0 f (xk )S
∗
a0 f (yk )

= dxk dyk

d f (xk )d f (yk )
δ f (xk ) f (yk ). (472)

Hence, the function f is a bijection. Moreover, this expression
tells us that dxk = d f (xk ). Inverting f , we can now define the k
defect 0k ≡ f −1(00), which thus has d0k = d00 = 1.

Having established that there is at least one Abelian g
defect for each g ∈ G, we now choose one such Abelian
defect from each sector to label 0g. With this convention, we
can label all the other defects as ag = a0 × 0g. Since 0g is
Abelian, this labeling is well-defined (i.e., each ag is distinct
and uniquely defined). This represents all defect types in Cg,
since |Cg| = |C0|, and, moreover, produces the correct total
quantum dimension Dg = D0.

Since 0g are Abelian, their fusion must take the form

0g × 0h = w(g, h)0 × 0gh, (473)

for some Abelian topological charge w(g, h) ∈ A. (We use
the notation w(g, h) for this Abelian topological charge in
anticipation of this quantity being identified as the 2-cocycle
characterizing symmetry fractionalization.) Associativity of
fusion requires w(g, h) ∈ Z2(G,A), i.e., it must satisfy the
cocycle condition

w(g, h)w(gh, k) = w(g, hk)w(h, k). (474)

Consistently extending this to all defect topological charges,
we find that the fusion rules must take the form

ag × bh =
∑
c∈C0

Nc0
a0b0

c0 × w(g, h)0 × 0gh

=
∑
c∈C0

Nc0
a0b0

[cw(g, h)]gh, (475)

where we introduce the shorthand [ab]g = [a × b]g for a, b ∈
C0 when at least one of a and b is an Abelian topological
charge, so there is no ambiguity in their fusion product. In
other words, the fusion coefficients are given by

N
cgh

agbh
= Nw(g,h)0×c0

a0b0
. (476)

Of course, when A is nontrivial, the choice of 0g is not
unique and could instead have been any other Abelian g
defect. In other words, we are free to choose a different
definition 0̂g, which is necessarily related to the other choice
as 0̂g = z(g) × 0g, where z(g) ∈ A. This choice results in a
redefinition ŵ(g, h) = w(g, h) × dz(g, h). Thus the consis-
tent fusion rules for G-crossed extensions are classified by
[w] ∈ H2(G,A). Furthermore, we will see that solving the
consistency conditions for U and η reveals that this quantity is
precisely the symmetry fractionalization class, justifying our
use of the same symbol. We also note that when we restrict
to the Abelian topological charges of the defect theory, i.e.,
the quasiparticles and defects with da = 1, the possible fusion
rules correspond precisely to the possible central extensions
of the group G by the group A, which are also known to be
classified by H2(G,A).

Given the fusion rules, we see that consistency of the fusion
rules with G-crossed braiding determines the symmetry action
on the defect charges to be

ρk(ag) = [aw(k, g)w(kgk̄, k)]kgk̄

= [aw(g, k̄)w(k̄, kgk̄)]kgk̄. (477)

Solving the G-crossed consistency equations by iteratively
increasing the number of defects involved (i.e., the number
of topological charge values at the top of the corresponding
diagrams that are labeled by nontrivial elements of G), we
find expressions for the basic data of the C×

G theories in terms
of the C0 basic data and the fractionalization class specified
by w. Moreover, we find an expression for the defectification
obstruction, which indicates whether a consistent G-crossed
theory exists for a given fractionalization class.

We note that there is always at least one fractionalization
class that is not obstructed, since one can always take the prod-
uct of a MTC with an SPT state to produce a G-crossed theory,
i.e., C×

G = C0 � SPT[α]
G . These G-crossed theories correspond

to the trivial fractionalization class [w] = 0.
We now restrict our attention to theories with no fusion

multiplicities, i.e., Nc
ab � 1, though the general case may be

similarly addressed. In order to solve the consistency equa-
tions explicitly, we use the vertex basis gauge freedom to fix[

F a0b00k
ck

]
c0bk

= [
F a00hb0

ch

]
ahbh

= [
F

0gb00k

[bw(g,k)]gk

]
bgbk

= [
F a00hbk

[cw(h,k)]hk

]
ah[bw(h,k)]hk

= R
0gb0

bg
= 1 (478)

when Nc0
a0b0

�= 0, and the symmetry action gauge freedom to
fix

R
ag0h

[aw(g,h)]gh
= 1. (479)

With these gauge choices, the resulting basic data for the
terms allowed by fusion are found to be (for presentability,
we leave charge labels implicit for fusion channels that are
uniquely determined by the remaining labels)

[
F

agbhck

[dw(g,h)w(gh,k)]ghk

]
[ew(g,h)]gh[ fw(h,k)]hk

= [
F a0[bw(g,h)]0[cw(gh,k)]0

[dw(g,h)w(gh,k)]0

]
[ew(g,h)]0[ fw(g,h)w(gh,k)]0

×F b0[w(g,h)]0[cw(gh,k)]0
[ fw(g,h)w(gh,k)]0

F b0[cw(h,k)]0[w(g,hk)]0
[ fw(g,h)w(gh,k)]0

F c0[w(g,h)]0[w(gh,k)]0

F [w(g,h)]0c0[w(gh,k)]0 F c0[w(h,k)]0[w(g,hk)]0

1

R[w(g,h)]0c0
F 0g0h0k , (480)
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R
agbh

[cw(g,h)]gh
= F a0b0[w(g,h)]0

[cw(g,h)]0

F b0a0[w(g,h)]0
[cw(g,h)]0

Ra0b0
c0

, (481)

Uk(ag, bh; [cw(g, h)]gh) =
F

ag0k[bw(h,k)w(k,k̄hk)]k̄hk
[cw(g,h)w(gh,k)]ghk

F
agbh0k

[cw(g,h)w(gh,k)]ghk
F

0k[aw(g,k)w(k,k̄gk)]k̄gk[bw(h,k)w(k,k̄hk)]k̄hk

[cw(g,h)w(gh,k)]ghk

, (482)

ηck (g, h) = F 0g[cw(k,g)w(g,ḡkg)]ḡkg0h

F ck0g0h F 0g0h[cw(k,gh)w(gh,h̄ḡkgh)]h̄ḡkgh

Rck[w(g,h)]gh , (483)

where the F 0g0h0k are solutions to the consistency condition

F 0gh0k0l F 0g0h0kl

F 0g0h0k F 0g0hk0l F 0h0k0l
= O(g, h, k, l), (484)

such that F 0g0h0k = 1 when any of g, h, or k are equal to 0, and where we have defined the quantity

O(g, h, k, l) = F [w(g,h)]0[w(k,l)]0[w(gh,kl)]0 F [w(k,l)]0[w(h,kl)]0[w(g,hkl)]0 F [w(h,k)]0[w(g,hk)]0[w(ghk,l)]0

F [w(g,h)]0[w(gh,k)]0[w(ghk,l)]0 F [w(k,l)]0[w(g,h)]0[w(gh,kl)]0 F [w(h,k)]0[w(hk,l)]0[w(g,hkl)]0
R[w(g,h)]0[w(k,l)]0 . (485)

The left-hand side of Eq. (484) is clearly a 4-coboundary in
B4(G, U(1)), so in order for it to be possible to satisfy this
equation, O(g, h, k, l) must also be a 4-coboundary. Thus
we see that O will be an obstruction to having a G-crossed
extension, i.e., to satisfying the G-crossed consistency condi-
tions, when O /∈ B4(G, U(1)). Moreover, it can be shown that
O(g, h, k, l) ∈ Z4(G, U(1)), so it defines a cohomology class
[O] ∈ H4(G, U(1)).

We emphasize that the defectification obstruction class [O]
is defined entirely in terms of the MTC C0 and the fractional-
ization class [w], and that it is independent of gauge choices.
Indeed, if we modify the basic data of C0 by a vertex basis
gauge transformation, so that it represents the same MTC, we
see that the corresponding obstruction becomes

Õ(g, h, k, l) = O(g, h, k, l)dμ(g, h, k, l), (486)

where

μ(g, h, k) = �[w(h,k)]0[w(g,hk)]0

�[w(g,h)]0[w(gh,k)]0
, (487)

so this only modifies O by a 4-coboundary. On the other hand,
if we modify w by a coboundary, so that it represents the
same fractionalization class, i.e., ŵ(g, h) = w(g, h)dz(g, h),
we find that the obstruction becomes

Ô(g, h, k, l) = O(g, h, k, l)dσ (g, h, k, l), (488)

where

σ (g, h, k) = R[w(g,h)]0[z(k)]0

F [z(g)]0[z(h)w(g,h)]0[z(k)w(gh,k)]0

× F [z(h)]0[z(k)w(h,k)]0[w(g,hk)]0

F [z(h)]0[w(g,h)]0[z(k)w(gh,k)]0

× F [w(g,h)]0[z(k)]0[w(gh,k)]0 F [z(k)]0[w(h,k)]0[w(g,hk)]0

F [z(k)]0[w(g,h)]0[w(gh,k)]0
,

(489)

so this also only modifies O by a 4-coboundary. We obtain
Eq. (489) by noticing that changing w by a coboundary can
be viewed as choosing a different choice âg = [az(g)]g of the
defect charge labels.

The expressions for the basic data in Eqs. (480)–(483) are
uniquely obtained (up to gauge freedom) in terms of F 0g0h0k ,
given C0 and [w], by solving the G-crossed consistency con-
ditions (pentagon and heptagon equations) involving less than
four defects. The remaining condition in Eq. (484) is then
obtained by inserting the F symbols from Eq. (480) into the
pentagon equation involving four defects. This demonstrates
that a nontrivial obstruction does not simply indicate an inabil-
ity for the defect theory to satisfy the pentagon equation, but
rather an inability to satisfy the entire G-crossed consistency
conditions, including the heptagon equations. Indeed, it is
sometimes possible to satisfy the pentagon equations, but not
the full G-crossed consistency conditions when a theory is
obstructed, as we will see in subsequent examples.

When the defectification obstruction vanishes, i.e., when
O ∈ B4(G, U(1)), the complete G-crossed consistency equa-
tions can be satisfied and solved. In this case, we can
write

O(g, h, k, l) = λ(g, h, k)λ(g, hk, l)λ(h, k, l)
λ(gh, k, l)λ(g, h, kl)

(490)

for some λ(g, h, k) ∈ C3(G, U(1)), and then the solutions of
Eq. (484) take the form

F 0g0h0k = α(g, h, k)

λ(g, h, k)
(491)

where α(g, h, k) are 3-cocycles in Z3(G, U(1)). As explained
in Sec. IX A, the different solutions that are related to each
other by 3-coboundaries correspond to gauge equivalent G-
crossed theories. Consequently, the gauge inequivalent so-
lutions of Eq. (484) are classified by [α] ∈ H3(G, U(1)).
Thus the G-crossed MTCs extending a MTC C0 with sym-
metry group G that does not permute topological charges
in C0 are fully specified by the symmetry fractionalization
class [w] ∈ H2(G,A) and the defectification class [α] ∈
H3(G, U(1)). This is consistent with the classification discus-
sion of Sec. IX A.

The expression in Eq. (485) for the defectification ob-
struction when the symmetry action does not permute anyons
was also obtained in Ref. [92] using a heuristic physical
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interpretation of Ref. [81]. A very different looking expression
for the defectification obstruction was obtained in Ref. [81] by
working at a higher category level, where the Cg sectors (bi-
module categories) are treated as objects of a fusion category.

XI. EXAMPLES

In this section, we consider a number of examples, which
we label by the initial anyon model (UBTC) C0 and the
symmetry group G. In our examples, we only consider unitary,
on-site symmetries with finite symmetry group G. (As such,
we restrict our attention to Aut0,0(C).) We obtain the data of
the corresponding G-crossed UBTCs C×

G by solving the con-
sistency equations of Sec. VI, using various derived properties
and classification theorems when useful, and present as much
of the basic data as is reasonable. We also present explicit
derivations of the fusion rules and the modular data of the
corresponding gauged theories (C×

G )G.
The purpose of these examples is twofold: (1) to provide

the basic data of C×
G and (C×

G )G for some of the more in-
teresting and perhaps more physically relevant models, and
(2) to illustrate the different types of nontrivial issues and
structures that may arise when concrete calculations are per-
formed. Most of the examples examined here have symmetry
group G = Z2. In Sec. XI M, we thoroughly consider an
example with a non-Abelian symmetry G = S3. We note
that, H4(ZN , U(1)) = Z1, so there is never an obstruction to
defectification when G = ZN (though there may be a fraction-
alization obstruction). In Sec. XI D, we examine an example
with G = Z2 × Z2 which exhibits nontrivial defectification
obstruction for certain fractionalization classes. In Sec. XI N,
we present an example with G = Z2 that exhibits nontrivial
fractionalization obstruction. Partial results from some of the
examples that we examine have also been obtained in previ-
ous works [6,8–10,12,20,47,53,77,92,99,102,103,144–146],
though mostly using different methods.

In the following, we adopt the convention that the vacuum
topological charge is always referred to as either 0 or I and the
identity element of G is referred to as either 0 or 1. We also
will frequently use the notation [a]N ≡ a mod N for the least
residue modulo N of a.

Gauge choices

In the following, we will need to make some gauge choices
in order to specify the basic data. There are some relatively
natural gauge choices that we describe here is some detail.

When the obstruction to fractionalization vanishes (which
is the case for all but one of our examples), we will set
O = 0, which can be done for a particular choice of βa(g, h).
With this choice, w(g, h) is a 2-cocycle, so we have [w] ∈
H2

[ρ](G,A).
As noted at the end of Sec. III C, when the unitary symme-

try action ρg does not permute any topological charge values,
its action on C0 is a natural isomorphism and the symmetry
fractionalization obstruction automatically vanishes. In this
case, we can set [Ug(a, b; c)]μν = δμν for a, b, c ∈ C0 as a
gauge choice, and consequently may also choose βa(g, h) =
1, O = 0, and ηa(g, h) = Maw(g,h) for a ∈ C0.

In the simple case when G = Z2 (which we will encounter
in many of our examples), we can use the symmetry action

gauge freedom to pick a gauge in which ηa(g, h) = 1 for
all a ∈ C×

G . In particular, if these phases were nontrivial in
such cases, we could apply a symmetry action gauge trans-
formation that satisfies the condition γa(1)γ1a(1) = ηa(1, 1)
to obtain η̌a(g, h) = 1. This gauge fixing leaves us with
the freedom to apply an additional symmetry action gauge
transformation with γ ′

a(1) = ±1 when 1a = a and γ ′
a(1) =

[γ ′
1a(1)]−1 when 1a �= a, without further changing the values

of ηa(g, h). The gauge choice with ηa(g, h) = 1 is particularly
convenient for determining the (C×

G )G theory, as only linear
(not projective) irreps need be considered in constructing the
dyons.

More generally, when the stabilizer subgroup Ga of ag has
trivial H2(Ga, U(1)) = Z1, we can choose a gauge in which
ηag (h, k) = 1 for all h, k ∈ Ga. This is because ηag (h, k)
represents an element of H2(Ga, U(1)), i.e., it satisfies the
2-cocycle condition for Z2(Ga, U(1)) and a symmetry ac-
tion gauge transformation modifies it by a 2-coboundary in
B2(Ga, U(1)), since η̌ag (h, k) = γa(hk)

γa(h)γa (k)ηag (h, k) for h, k ∈
Ga. We note that H2(ZN , U(1)) = Z1.

A. Trivial bosonic state with G symmetry

In this section, we consider the case where the starting
topological phase C0 is trivial in the sense that it only contains
topologically trivial bosonic excitations, i.e., C0 = {0}, but
possesses a symmetry group G. This describes a bosonic
symmetry-protected topological (SPT) phase with symmetry
group G. In this case, the construction of the extended cate-
gory C×

G is straightforward. Each Cg contains a single defect
type, which will be denoted by g. Fusion of defects is given
by group multiplication, that is

g × h = gh. (492)

Since the fusion category CG will appear elsewhere, we will
refer to it as VecG. Mathematically, this is the category of G-
graded vector spaces. It is a well-known result that the equiv-
alence classes of F symbols under vertex basis gauge trans-
formations are determined by the third group cohomology
H3(G, U(1)) [95,145]. Given a 3-cocycle α ∈ Z3(G, U(1)),
we define the F symbols as[

F g,h,k
ghk

]
gh,hk = α(g, h, k). (493)

As usual, we require F g,h,k = 1 whenever any of g, h, k is 0,
so we always impose this condition on the 3-cocycle α.

We can also always apply the symmetry action gauge
transformation to set Rg,h

gh = 1 for all values of g and h. (If

we started with nontrivial values of Rg,h
gh in this example, then

we would apply the symmetry action gauge transformation
γg(h) = [Rg,h

gh ]−1 to remove any nontrivial braiding phases.)
The corresponding braiding operators simply involve the G
action of group elements acting by conjugation. For this gauge
choice, the corresponding Uk and ηk are uniquely determined
by the G-crossed consistency equations to be

Uk(g, h; gh) = α(g, k, kh)

α(g, h, k)α(k, k̄g, k̄h)
, (494)

ηk(g, h) = α(g, ḡk, h)

α(g, h, h̄ḡk)α(k, g, h)
. (495)
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We denote the corresponding G-crossed theory
as SPT[α]

G .
As discussed in Sec. IX A, the H3(G, U(1)) classification

of the F symbols of the G-crossed extensions C×
G for general C

is in one-to-one correspondence with the classification of 2D
bosonic SPT states with symmetry group G, described here
and developed in Ref. [47]. Therefore we see that classifying
C×

G reproduces the classification of bosonic SPT states.
The G action on C×

G (for C0 trivial) is obviously given
simply by conjugation. Therefore we immediately obtain the
quasiparticle labels in the gauged theory as a pair ([g], πg)
where [g] = {hgh−1,∀h ∈ G} is a conjugacy class of G (i.e.,
an orbit under G action) and πg is an irreducible projective
representation of the stabilizer group, i.e., the centralizer of
a representative element g ∈ [g]. If we consider trivial F
symbols on VecG, we see that all U and η can be set to 1 and
the anyon content of the gauged theory agrees exactly with the
well-known quantum double construction D(G), describing
discrete G gauge theory. In general, gauging the symmetry
of C×

G = SPT[α]
G results in a twisted quantum double (C×

G )G =
D[α](G) [146–148].

ZN symmetry

For additional illustration, let us consider the G-crossed
braiding for G = ZN . Since G is Abelian, the fusion rules (i.e.,
group multiplication) is written as addition, that is a × b =
[a + b]N . The G-extension is simply Vecα

G equipped with a
3-cocycle

α(a, b, c) = ei 2π p
N2 a(b+c−[b+c]N )

, (496)

where p ∈ {0, 1, . . . , N − 1}. In this case, we find it more
illustrative to choose a gauge in which ηa(b, c) = 1, for all
a, b, c ∈ ZN . Solving the G-crossed heptagon equations yields

Rab
[a+b]N

= e−i 2π p
N2 abei 2π

N mab (497)

and

Uc(a, b; [a + b]N ) = e−i 4π p
N2 (a+b−[a+b]N )cei 2π

N (ma+mb−m[a+b]N )c,

(498)

where ma ∈ Z. Clearly, all the terms depending on ma rep-
resent a symmetry action gauge redundancy, so we could
set ma = 0 as a gauge choice (specifically, by using γa(b) =
e−i 2π

N mab), while leaving ηa(b, c) = 1 fixed. The topological
twists and pure braid (double exchange) operations are given
by

θa = e−i 2π p
N2 a2

ei 2π
N maa, (499)

Rab
[a+b]N

Rba
[a+b]N

= e−i 4π p
N2 abei 2π

N (mba+mab). (500)

It is evident from these expressions that ma can be understood
as the number of ZN charges attached to the defect a, due
to nonuniversal local energetics. This explains why these
solutions should be considered as being gauge equivalent,
since in the extended theory ZN charges are still part of the
vacuum sector.

We know consider the gauged theory. Since G = ZN

is Abelian, each a ∈ C×
G is also a G-orbit. They can also

carry gauge charges labeled again by m ∈ ZN . We therefore
obtain |G|2 quasiparticles labeled by (a, m). Their fusion

rules are

(a, m) × (b, n)

=
(

[a + b]N ,

[
m + n − 2p

N
(a + b − [a + b]N )

]
N

)
,

(501)

where the additional gauge charges come from the nontrivial
symmetry action on the fusion state of the defects. The
topological twist of (a, m) is then

θ(a,m) = ei 2π
N ame−i 2π p

N2 a2

. (502)

These results agree exactly with the twisted quantum double
D[α](ZN ) [71,146–149].

B. Trivial fermionic state Z(1)
2 with G symmetry

In this section, we consider a trivial fermionic topological
phase, which is an example for which C0 is not a modular
theory. Even though the fermion is a local excitation in such
a case, it is useful to view it as a nontrivial element of the
category and, therefore, to treat it as a topological charge.
To describe such a situation, we use the UBTC with C0 =
{I, ψ} where I is the vacuum charge, ψ is the fermion, and
ψ × ψ = I . C0 should be viewed therefore as a topological
abstraction of gapped fermionic systems with only short-range
entanglement.

The F symbols and R symbols are[
Fψψψ

ψ

]
II = 1, Rψψ

I = −1. (503)

Notice that the theory is not modular, since

S = 1√
2

[
1 1

1 1

]
(504)

is singular. Using the notation of Sec. XI F, we will denote this
BTC as C0 = Z(1)

2 . We note that our results on classification
of symmetry fractionalization do not directly apply, since
modularity was an essential part of the argument.

However, we may still apply the general theory developed
for G-crossed BTCs and gauging the symmetry. For fermionic
SPT phases with an arbitrary finite symmetry group G, the re-
sulting classification is given by the three cohomology groups
H1(G,Z2), H2(G,Z2) and H3(G, U(1)), as demonstrated in
Ref. [150]. Here, we will only examine the case of G = Z2 in
explicit detail.

The Z2-crossed extensions of C0 will reproduce the known
Z8 classification of interacting fermionic SPT states with
a unitary on-site Z2 symmetry [151–154]. Physically, these
fermionic SPT phases can be realized in noninteracting spin- 1

2
superconductors, where the spin up and spin down fermions
form class D topological superconductors with the Chern
numbers ν and −ν, respectively, where the collapse to the
Z8 classification is given by ν mod 8. In this case, the C0 =
Z(1)

2 BTC describes both spin up and down fermions and the
G = Z2 symmetry is viewed as the fermion parity symmetry
of the spin up fermions. We will refer to such a fermionic SPT
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phase as (px + ipy)ν × (px − ipy)ν , as it represents |ν| copies
of px ± ipy superconductors.16

We now examine the algebraic structures of these G-
crossed extension and gauging for G = Z2. The G-crossed
theories are Z2-graded: CG = C0

⊕
C1, where 1 is the nontriv-

ial element of Z2. In this simple case (G = Z2 with an action
that does not permute any topological charges), we can use
a symmetry action gauge transformation to pick a gauge in
which ηa(g, h) = 1 for all a ∈ CG, so we will use such a gauge
choice in the following.

As explained in Sec. VI A, we must have D1 = D0 = 2.
This allows for two distinct ways of constructing C×

G : (1) there
is a single defect type in the C1 sector, which is non-Abelian
with quantum dimension d = √

2; or (2) there are two defect
types in C1, which are Abelian with quantum dimension d =
1. We study these two cases in turn. We will find that each
case admits four distinct Z2 extensions C×

Z2
, for a total of eight

possible Z2 extensions of C0.

1. Non-Abelian extensions

We first consider case (1), where there is a single non-
Abelian defect, which we write as C1 = {σ }. Since we
must have σ̄ = σ and the quantum dimensions must satisfy
Eq. (242), the fusion rules for σ must be: σ × σ = I + ψ . We
conclude that the G-graded fusion category CZ2 (underlying
the G-crossed BTC extension) must be identical to one of
the unitary fusion categories that have the Ising fusion rules.
The F symbols of such fusion categories are completely
classified [155]; there are two possible fusion categories (up
to gauge transformations) with these fusion rules, and they
are distinguished by the Frobenius-Schur indicator κσ = ±1.
The nontrivial F symbols of these fusion categories are given
in Eq. (536).

Solving the consistency equations for G-crossed braiding,
in a choice of gauge for which ηψ (g, h) = ησ (g, h) = 1, we
obtain the braiding R symbols

Rσψ
σ = iα, (505)

Rψσ
σ = iβ, (506)

Rσσ
I = λ

√
κσ ei π

8 α, (507)

Rσσ
ψ = −iαλ

√
κσ ei π

8 α, (508)

and symmetry action Ug symbols

U1(ψ,ψ ; I ) = U1(σ, σ ; I ) = 1, (509)

U1(σ, σ ; ψ ) = U1(ψ, σ ; σ ) = U1(σ,ψ ; σ ) = αβ, (510)

16The Z2-crossed extensions and gauging discussed here should
not be confused with a different concept, which is referred to as
a modular extension of fermions. Physically, a modular extension
of fermions corresponds to gauging the Z2 symmetry of fermion
parity conservation, for which the ψ fermions play the role of the Z2

charges and there are no other independent (bosonic) Z2 charges. The
extended category in such a modular extension will, by definition, be
a modular one and will be braided in the usual sense, not G-crossed
braided. In contrast, the Z2-crossed extensions considered in this
section allow bosonic Z2 charges and the braiding is G-crossed.

where α2 = β2 = λ2 = 1. Notice that β = +1 and −1 give
equivalent solutions under symmetry action gauge transfor-
mations (related by γψ (1) = −1), as do λ = +1 and −1
(related by γσ (1) = −1). It is convenient to choose a gauge
for which β = α, so that Uk(a, b; c) = 1 for all a, b, c and
Rσψ

σ = Rψσ
σ = iα, and we may as well also gauge fix λ = +1.

Thus we find four distinct Z2 extensions C×
Z2

, distinguished by
α and κσ , which may independently take the values ±1.

Next, we gauge the Z2 symmetry. The topological charges
in (C×

G )G may be written as (a, s) where a = I , ψ , or σ ,
while s = + or − denotes the trivial or alternating irrep of
Z2, respectively. Since the mutual braiding between ψ and σ

is Rσψ
σ Rψσ

σ = −1 (assuming the gauge in which α = β), and
the mutual braiding of an alternating irrep and σ generates a
−1 phase, it follows that the topological charge (ψ,−) has
trivial braiding with all topological charges in the gauged
theory, including (σ,±). As such, the gauged theory (C×

G )G

comprises the direct product of a Z(1)
2 subcategory, formed by

{(I,+), (ψ,−)}, with an Ising(ν) MTC (using the notation in
Appendix XI E).

Thus gauging the Z2 symmetry of the four distinct C×
G

yields four distinct (C×
G )G, which we can identify with Z(1)

2 �
Ising(ν) where ν = 1, 3, 5, 7. More explicitly, we have

α = 1, κσ = 1 −→ Z(1)
2 � Ising(1),

α = 1, κσ = −1 −→ Z(1)
2 � Ising(5),

α = −1, κσ = 1 −→ Z(1)
2 � Ising(7),

α = −1, κσ = −1 −→ Z(1)
2 � Ising(3). (511)

This exhibits the correspondence between the Chern number ν

fermionic SPT phases (px + ipy)ν × (px − ipy)ν phases with
ν = 1, 3, 5, and 7 and the non-Abelian G-crossed UBTCs
described above, which characterizes these phases.

2. Abelian extensions

We now consider case (2), where there are two Abelian
defect types, i.e., |C1| = 2. In this case, a defect’s topological
charge must change to the other type when it is fused with ψ .
However, this allows for two possible sets of fusion rules: (a)
Z2 × Z2 fusion, in which case we write the defects as C1 =
{e, m}, so we have e × e = m × m = I and e × m = ψ , or (b)
Z4 fusion, in which case we write the defects as C1 = {v, v̄},
so we have v × v = v̄ × v̄ = ψ and v × v̄ = I .

In case (2a), the G-crossed extensions can be written as
the direct products Z(1)

2 � SPT[α]
Z2

, where the bosonic SPT
theories were described in Sec. XI A. This gives two distinct
extensions for this case, corresponding to α(1, 1, 1) = +1
and −1, respectively. These are, respectively, identified as the
Chern number ν = 0 and four fermionic SPT theories.

Gauging the Z2 symmetry of these theories yields Z(1)
2 �

D[α](Z2). We note that D+(Z2) = D(Z2) is the Z2 discrete
gauge theory (toric code), confirming the identification with

ν = 0. On the other hand, D−(Z2) = Z
( 1

2 )
2 � Z

(− 1
2 )

2 is the
double semion theory, which confirms the identification with

ν = 4, noting that Z(1)
2 � Z

( 1
2 )

2 � Z
(− 1

2 )
2 = Z(1)

2 � Z
( 1

2 )
2 � Z

( 1
2 )

2 .
In case (2b), we have CG = VecZ4 , and we will again find

two distinct Z2 extensions. More explicitly, the topological
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charges of these G-crossed extensions are written in Z4 no-
tation as: I ≡ 0, v ≡ 1, ψ ≡ 2, and v̄ ≡ 3. The F symbols
and the G-crossed braiding of VecZ4 have been completely
solved in Sec. XI A, so we will use the same notation for
that section, where the gauge is chosen to set ηa(g, h) = 1,
the different 3-cocycles α are labeled by p, as in Eq. (496),
and ma enters the expression for the G-crossed R symbols in
Eq. (497). However, there are now additional constraints on p
and ma imposed by requiring the even subsector of Z4 to be
the BTC C0 = Z(1)

2 . In particular, Fψψψ

ψ = 1 requires p to be

an even integer, Rψψ
I = −1 requires that (−i)p(−1)m2 = −1,

and U2(a, b; [a + b]4) = 1 (since 2 ∈ C0) requires ma + mb −
ma+b to be an even integer. An immediate consequence is
that m2 is even, m1 + m3 is even, and p = 2. Hence, we can
parametrize ma for a ∈ Z4 as

ma = 2na + q[a]2, (512)

where q = 0 or 1, while na ∈ Z. The R symbols are, thus

Rab
[a+b]4

= e−i π
4 ab(−1)nabiq[a]2b (513)

and the U symbols are given by

Ukc (a, b; [a + b]4)= (−1)(na+nb−n[a+b]4 )ciq([a]2+[b]2−[a+b]2 )c,

(514)

where we use the notation kc to indicate the group element
k ∈ G associated with the label c. (In this particular case, we
can write kc = [c]2 for our choice of labels.) One can easily
see that a symmetry action gauge transformation [specifically,
γa(b) = (−1)nab] can be used to set na = 0, so that

Rab
[a+b]4

= e−i π
4 abiq[a]2b, (515)

Ukc (a, b; [a + b]4) = iq([a]2+[b]2−[a+b]2 )c. (516)

This shows that the dependence on na is merely a gauge
freedom that can be removed and, hence, there are only two
distinct G-crossed extensions of this form, specified by q = 0
and 1. In this choice of gauge (with na = 0), we find the
topological twists and braiding statistics to be

θv = Rvv
ψ = e−i π

4 iq

θv̄ = Rv̄v̄
ψ = e−i π

4 (−i)q

Rvψ
v̄ Rψv

v̄ = Rv̄ψ
v Rψ v̄

v = −1

Rv̄v
I Rvv̄

I = −i(−1)q (517)

Next, we gauge the Z2 symmetry of these theories. We
label the topological charges in (C×

G )G by (a, s) where a ∈ Z4,
while s = + or − denotes the trivial or alternating irrep of
Z2, respectively. We work in the gauge where na = 0. First
we consider the case q = 0, for which all U symbols equal 1.
The fusion rules of the gauged theory are then simply given
by: (a, s) × (b, r) = ([a + b]4, sr). We observe that (2,−)
has trivial full braiding with all topological charge types
and that we can write the topological charges with s = −
irreps as (a,−) = ([a + 2]4,+) × (2,−). In this manner, we
can write the gauged theory as the product (C×

G )G = Z(1)
2 �

Z
(− 1

2 )
4 , where the Z(1)

2 corresponds to the topological charges

{(0,+), (2,−)} and the Z
(− 1

2 )
4 corresponds to the topological

charges {(a,+)| a = 0, 1, 2, 3}. For q = 1, we similarly ob-

tain the gauged theory (C×
G )G = Z(1)

2 � Z
( 1

2 )
4 . Thus we have

two distinct gauged theories for case 2(b), one for each distinct
G-crossed extension. Moreover, we identify the G-crossed
theories here with q = 0 and 1 as the ones characterizing the
ν = 6 and 2 fermionic SPT theories, respectively.

In summary, we have found four Abelian Z2-crossed ex-
tensions of Z(1)

2 , which correspond to the Chern number ν

fermionic SPT phases (px + ipy)ν × (px − ipy)ν phases with
ν = 0, 2, 4, 6. This completes the Z8 classification of the
interacting fermionic SPTs. We notice that ν = 0 is the trivial
extension, ν = 4 corresponds to taking the product of a trivial
fermion theory with a nontrivial bosonic Z2 SPT [156], and
ν = 2 and 6 are nontrivial fermionic SPT phases [74,151].

C. Semions Z
(± 1

2 )
2 with Z2 symmetry

In this section, we consider the semion MTC C0 = Z
(± 1

2 )
2

with symmetry G = Z2. The semion theory Z
(± 1

2 )
2 consists of

two topological charge types C0 = {I, s}, where s denotes a
semion, which has Z2 fusion s × s = I and topological twist
θs = ±i. Such a theory describes the topological properties
of the bosonic ν = 1

2 Laughlin FQH state. The nontrivial F
symbols and R symbols are F sss

s = −1 and Rss
I = ±i. We will

focus on the Z
( 1

2 )
2 theory (Rss

I = i) in this section.
Since there is only one nontrivial topological charge type,

the topological symmetry group is trivial, i.e., Aut(Z(p)
2 ) =

Z1. Clearly, the symmetry action does not permute topological
charge values. It follows that the fractionalization obstruction
automatically vanishes, so we set O = I . The symmetry frac-
tionalization is classified by H2(Z2,Z2) = Z2, which gives
two equivalence classes corresponding to w(1, 1) = I and s,
respectively. Physically, these two cohomology classes corre-
spond to the semion carrying a Z2 charge of 0 or 1

2 .
Since the symmetry does not permute the anyon types,

we could simply apply the results of Sec. X. However, for
additional illustration, we will solve for the G-crossed ex-
tension in a gauge where ηa(g, h) = 1. There will be two
types of Z2 defects, so we can write Cg = {Ig, sg}. The two
fractionalization classes correspond to distinct fusion rules for
the Z2 defects, which are, respectively, given by: a1 × a1 =
I0 or a1 × a1 = s0. In the following, we focus more on the
latter case and systematically work out the gauging procedure
(although there are other simpler ways to get the gauged
theory).

For the trivial fractionalization class w(1, 1) = I , it is
straightforward to see that the resulting G-crossed theories
take the form [

Z
(± 1

2 )
2

]×
Z2

= Z
(± 1

2 )
2 � SPT[α]

Z2
, (518)

where [α] ∈ H3(Z2, U(1)) = Z2 distinguishes the two defec-
tification classes. The corresponding gauged theories will be

Z
(± 1

2 )
2 � D[α](Z2).

For the nontrivial symmetry fractionalization class
w(1, 1) = s, we will construct the CZ2 theory in more detail.
Since a1 × a1 = s, the extended category has the same fusion
rules as VecZ4 , similar to one of the Z2 extension of fermions
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discussed in Sec. XI B. In fact, the derivation of the Z2-crossed
extensions is very similar to that of the Z2-crossed extensions
of Z(1)

2 , with minor differences accounting for the differences
in the C0 sector. As such, we again identify I0 ≡ 0, s0 ≡
2, I1 ≡ 1, s1 ≡ 3. The F symbols are given in terms of the Z4

labels by Eq. (496), that is

F abc = ei π p
8 a(b+c−[b+c]4 ) (519)

for p = 0, 1, 2, 3. In order to match the C0 sector, we must
have F 2,2,2 = F sss

s = −1, and, hence, p = 1 or 3.
The G-crossed braiding of VecZ4 was found to be

Rab
[a+b]4

= e−i π p
8 abei π

2 mab, (520)

Uc(a, b; [a + b]4) = e−i π p
4 (a+b−[a+b]4 )cei π

2 (ma+mb−m[a+b]4 )c.

(521)

Here, ma are integers (mod 4). In order to match the require-
ments that Ra0 = R0b = U2(a, b) = 1 and Rss = i, we find that
we must have m0 = 0, p = 3, and

ma = 2na + q[a]2, a = 1, 2, 3, (522)

where q = 0 or 1, and na ∈ Z2. By applying the symmetry
action gauge transformation γa(b) = (−1)nab [which leaves
ηa(g, h) fixed], we see that the dependence on na is a gauge
freedom, so we set it to na = 0 to obtain

Rab
[a+b]4

= e−i 3π
8 abiq[a]2b, (523)

Ukc (a, b; [a + b]4) = e−i 3π
4 (a+b−[a+b]4 )ciq([a]2+[b]2−[a+b]2 )c,

(524)

where kc is the group element in G = Z2 corresponding to
the label c, i.e., kc = [c]2. This shows that there are only
two gauge independent Z2-crossed theories for the choice of
symmetry fractionalization class w(1, 1) = s, corresponding
to q = 0 and 1, which represent the two distinct classes
in H3(Z2, U(1)) = Z2. In other words, q labels the distinct
defectification classes. For the choice of gauge with na = 0,
we find the topological twists and braiding statistics

θI1 = RI1I1
s0

= e−i 3π
8 iq, (525)

θs1 = Rs1s1
s0

= −e−i 3π
8 (−i)q, (526)

RI1s0
s1

Rs0I1
s1

= i(−1)q, (527)

Rs1s0
I1

Rs0s1
I1

= −i(−1)q, (528)

Rs1I1
I0

RI1s1
I0

= e−i π
4 . (529)

Next, we gauge the Z2 symmetry of these theories with
w(1, 1) = s. The topological charges in the gauged theory
are parameterized by (a, x), where a ∈ Z4 and the trivial and
alternating Z2 irreps are respectively labeled by x = ±1. The
fusion rules are given by

(a, x) × (b, y) = ([a + b]4, xyU1(a, b)). (530)

We can verify that the fusion algebra Eq. (530) is isomorphic
to that of a Z8 theory. For the Z2-crossed theory with q = 0,

the gauged theory is Z
( 1

2 )
8 , which is equivalent to a U(1)8

Chern-Simons theory. For q = 1, the gauged theory is Z
( 5

2 )
8 .

The original semion theory can then be obtained from these
gauged theories by condensing the bosonic quasiparticle la-
beled 4 in the Z8 theories.

Physically, the nontrivial Z2-crossed extension of the
semion model with fractionalization class w(1, 1) = s and de-
fectification class corresponding to q = 0 can be constructed
by starting from a bosonic ν = 1

2 Laughlin FQH state with
U(1) boson number conservation [157], where the semions
carry half U(1) charges, and then breaking the U(1) down to
a Z2 subgroup (e.g., adding perturbations that pair condense
the bosons) to obtain a Z2 symmetry-enriched semion theory.

D. Semions Z
(± 1

2 )
2 with Z2 × Z2 symmetry

In this section, we consider the semion theory C0 = {I, s}
with the symmetry group G = Z2 × Z2 ≡ {1, X,Y, Z}. Since
the symmetry does not permute the anyon types, we can use
the results of Sec. X to write the full details of the G-crossed
extensions. In this case, we will only explicitly consider the
details of interest. The symmetry fractionalization obstruction
class is trivial, so we set O = I .

The symmetry fractionalization classes are given by
H2(G,Z2) = Z3

2, where the different fractionalization classes
are distinguished by their values of the invariants w(g, g) =
I or s for g = X , Y , and Z . Among the seven nontrivial
H2(G,Z2) classes, three are described by the nontrivial class
in H2(Z2,Z2) for the three Z2 subgroups of G, generated by
g = X , Y , and Z , respectively (and are otherwise trivial). In
particular, these have w(g, g) = I for exactly one of g = X ,
Y , and Z . As these correspond to the example examined in
Sec. XI C, with additional trivial structure from the extra Z2,
we will not consider them in detail here. We focus only on the
other four nontrivial symmetry fractionalization classes.

We find that the defectification obstruction class is non-
trivial for the symmetry fractionalization classes which have
w(g, g) = s for exactly one of g = X , Y , and Z . The other
fractionalization classes permit consistent G-crossed exten-
sions, which are, thus, classified by H3(G, U(1)) = Z3

2. For
all the defect theories, each g defect sector has two types of
defects, which can be written as Cg = {Ig, sg}.

1. Symmetry fractionalization class with
w(X, X ) = w(Y,Y ) = w(Z, Z) = s

We first consider the case where w(g, g) = s for all g �= 1.
The remaining nontrivial terms in the cohomology class can
be taken to be w(Y, X ) = w(Z,Y ) = w(X, Z ) = s (and the
rest equal to I). The fusion rules of the extended theory are
given by

ag × bh = [abw(g, h)]gh. (531)

In particular, this gives IX × IX = s1, IX × IY = IZ , IY × IX =
sZ , and similar relations obtained by cyclic permutation of the
group labels. We note that the fusion rules match exactly with
the multiplication table of the quaternion group Q8.

In order to for fusion and G-crossed braiding to be consis-
tent, the symmetry action must act nontrivially on defects. For
example, we must have

ρX : aX ↔ aX , IY ↔ sY , IZ ↔ sZ . (532)
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Similarly, the action of Y and Z are obtained by cyclic
permutations.

We note that the ηs1 (g, h) = Ms1[w(g,h)]1 = ±1 (depend-
ing on whether w(g, h) = I or s), so it represents a non-
trivial cohomology class in H2(G, U(1)). Additionally, the
quantities ηcg (g, g) = Ms1c1/F IgIgIg for g �= 1 can be set to
1 using the symmetry action gauge transformation γcg (g).17

As such, ηcg (g, g) represents the trivial cohomology class in
H2(Gcg , U(1)), where Gcg is the Z2 subgroup of G generated
by g (which leaves cg invariant).

We now consider the theory obtained by gauging the G
symmetry. With the symmetry action given in Eq. (532),
for g �= 1, each Cg forms an orbit under G, i.e., [cg] = Cg.
The stabilizer group of the orbit Cg is Gcg , the Z2 subgroup
generated by g. As mentioned, ηcg (g, g) represents the trivial
class in H2(Gcg , U(1)), so these orbits will pair with trivially
projective irreps of Gcg corresponding to the linear irreps of
Z2, i.e., trivial and alternating. Thus, for the gauged theory,
each Cg sector yields two topological charge types: (Cg,+)
and (Cg,−), each of which has quantum dimension d(Cg,±) =
2. The topological twists of these anyons can be computed
from the G-crossed data and are found to be ei π

8 in(Cg,±), where
n(Cg,±) is an integer that depends on the charge and the
particular defectification class of the theory.

For the C1 sector, the stabilizer group is the entire G =
Z2 × Z2. The vacuum I simply splits according to the linear
irreducible representations of G, which results in four Abelian
anyon types (I,±,±) (which have quantum dimension d =
1). However, the semion s1 carries a nontrivial projective
representation of Z2 × Z2, since the factor set ηs1 belongs to
the nontrivial cohomology class in H2(Z2 × Z2, U(1)) = Z2,
as previously mentioned. It is well-known that there is a
unique two-dimensional irreducible representation with this
factor set ηs1 , up to similarity, essentially given by Pauli
matrices. We ascribe the label σ to this projective irrep here.
According to Sec. VIII B, this implies that, in the gauged
theory, the semion becomes a non-Abelian anyon (s1, σ ) with
quantum dimension d(s1,σ ) = 2. The topological twist for this
anyon is the same as the semion, i.e., θ(s1,σ ) = i. Thus we find
there are four Abelian anyons and seven non-Abelian anyons,
for a total of 11 topological charge types.

Another way to obtain the total number of anyons is to
compute the ground-state degeneracy of the gauged theory
on the torus, as described in Sec. VIII B 7. For this, we
enumerate the G-invariant states in each of the defect sectors
on the torus. There are potentially 16 such sectors, labeled
by the pair of group G elements (g, h) winding around the
longitudinal and meridional cycles, respectively. The trivial
sector has two invariant states |I (1,1)

1 〉(l,m) and |s(1,1)
1 〉(l,m).

There are three defect sectors, labeled by (g,1), where there
is a defect branch around the longitudinal cycle and no branch
around the meridional cycle. In each such defect sector of
the torus, there are two states. However, from the Z2 × Z2

action, it is easy to see that there is only one state, that

17In these theories, F IgIgIg = ei π
4 (−1)p·g, where p is an element of

the Z2
2 subgroup of H3(G, U(1)) representing “type I” cocycles, i.e.,

it partially distinguishes the defectification classes.

is |I (g,1)
g 〉(l,m) + |s(g,1)

g 〉(l,m), which is G-invariant and, thus,
survives the gauging. Similarly, we expect sectors labeled
(1, h), which have a defect branch around the meridional
cycle and no branch around the longitudinal cycle to have
only one G-invariant state per sector, since they are related
to the (h,1) sector by the modular S transformation. Indeed,
the G-invariant state can be seen to be |I (1,h)

1 〉(m,−1), since the
modular transformation is found to be

S (g,1) = S (1,h) = 1√
2

[
1 1
1 −1

]
. (533)

For sectors labeled by (g, g), which have the same non-
trivial branch lines around both cycles, there are two states
in each sector, and we similarly find that there is only
one G-invariant state per sector. In this case, the (g, g)
sector is related to the (g,1) sector by a modular T
transformation. We find that T (g,1)

ag,bg
= iaδa,b and T (g,g)

ag,bg
=

(−i)aδa,b/F 010101 , so the states in the (g, g) sector ac-
quire a phase under G-transformations, i.e., h|I (g,g)

g 〉(l,l−m) =
i|s(g,g)

g 〉(l,l−m) and h|s(g,g)
g 〉(l,l−m) = −i|I (g,g)

g 〉(l,l−m)when h �=
g, so the G-invariant state is |I (g,g)

g 〉(l,l−m) + i|s(g,g)
g 〉(l,l−m).

The defect sectors of the torus labeled by (g, h) with g �= h
are actually empty in the G-crossed theory, because there
are no h-invariant g defects, i.e., Ch

g = ∅, so these have no
contribution to the gauged theory either. Thus we find 11 G-
invariant topological ground states on the torus for the gauged
theory, which implies that there are 11 distinct topological
charges in the gauged theory.

One can obtain the fusion rules of the gauged theory
using the solutions of the G-crossed consistency equations,
but we choose to use a different method, namely gauging the
symmetry sequentially. Without loss of generality, we first
gauge one of the Z2 subgroups, say the one generated by X .
Since w(X, X ) = s, from the previous section, we know that
gauging this subgroup results in a U(1)8 theory. The remain-
ing Z2 symmetry that was not yet gauged then has a nontrivial
action in the U(1)8 theory. In particular, it acts as a charge
conjugation symmetry. We will discuss the charge conjugation
symmetry for Z(p)

N theories, which includes U(1)8, in more
detail in Sec. XI H. Here, we note that the gauged theory can
be understood in terms of the Z2 orbifold of a U(1)8 CFT,
which was analyzed in Ref. [99]. Interestingly, it can also be
understood as the Z2 × Z2 orbifold of the SU(2)1 CFT, which
fits naturally within our approach. The gauged theory can be
identified with SO(8)2.

A physical realization of the semion theory with this Z2 ×
Z2 symmetry can be obtained by starting from a chiral spin
liquid in spin- 1

2 systems, which has SO(3) spin rotational
symmetry. The semion carries spin-1/2, i.e., a projective
representation of the SO(3) symmetry. One can then break
the SO(3) symmetry down to the Z2 × Z2 subgroup, i.e., π

rotations around three orthogonal axes. For this model, we can
explicitly write the localized symmetry operators on a semion
as

U (s)
X = iσx, U (s)

Y = iσy, U (s)
Z = iσz. (534)

Clearly, these satisfy (U (s)
g )2 = −1, which is consistent with

ηs(g, g) = −1. In the context of the SO(3) symmetry, this
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property is the familiar fact that spin-1/2 objects acquire a
phase of −1 phase when they are rotated by 2π around any
axis.

2. Symmetry fractionalization class with w(g, g) = s
for one nontrivial g and defectification obstruction

We now turn to the remaining three symmetry fraction-
alization classes, which have w(g, g) = I for exactly one
of g �= 1. Without loss of generality, we consider the case
with w(X, X ) = w(Y,Y ) = I and w(Z, Z ) = s. The remain-
ing nontrivial terms of this cohomology class are w(Y, X ) =
w(Z, X ) = w(Y, Z ) = s (and the rest are equal to I).

If we proceeded naïvely in an attempt to construct the
G-crossed extension, we could define the fusion rules by
ag × bh = [abw(g, h)]gh. The corresponding G-graded fusion
category is CG � VecD8 , where D8 = Z4 � Z2 is the dihedral
group of order 8. Solving the pentagon equation, we could
obtain F symbols, which are classified by H3(D8, U(1)) =
Z2

2 × Z4. Among the 16 associativity classes, eight of them
can match the F symbols of the C0 sector. Therefore the
extended category as a usual fusion category does exist.

However, if we try to proceed further, we find that the full
set of G-crossed consistency equations admit no solutions,
so there is no consistent G-crossed extension. Consequently,
these theories also cannot be gauged. In other words, there is
an obstruction to defectification and gauging the symmetry. A
more efficient way to see this is to compute the defectification
obstruction class [O] using Eq. (485), which only requires
knowledge of w(g, h) and the F symbols and R symbols of
the semion theory. Doing so, one obtains a nontrivial class in
H4(G, U(1)) = Z2

2, which signals that a consistent G-crossed
extension cannot exist. This is in full agreement with the
result obtained in Ref. [92]. The physical interpretation of
this nontrivial obstruction is that the semion theory with such
a symmetry and fractionalization class cannot exist in 2 + 1
dimensions, but could possibly exist at the surface of a 3 + 1-
dimensional system, as discussed in Ref. [92].

E. Ising(ν) anyons with G symmetry

The anyon model Ising(ν) where ν is an odd integer has
three topological charges {I, σ, ψ}, where the vacuum charge
here is denoted I , and the nontrivial fusion rules are given by

ψ × ψ = I, σ × ψ = σ, σ × σ = I + ψ. (535)

The nontrivial F symbols are

Fψσψ
σ = F σψσ

ψ = −1,[
F σσσ

σ

]
ab =

κσ√
2

[
1 1
1 −1

]
ab

. (536)

Here the column and row values of the matrix take value I
and ψ (in this order). κσ = (−1)

ν2−1
8 is the Frobenius-Schur

indicator of σ .
The R symbols are

Rψσ
σ = Rσψ

σ = (−i)ν,

Rσσ
I = κσ e−i π

8 ν, Rσσ
ψ = κσ ei 3π

8 ν . (537)

The twist factor θσ = ei π
8 ν uniquely distinguishes the eight

distinct Ising(ν) anyon models, as does the chiral central
charge c−mod 8 = ν

2 , with ν ∼ ν + 16, so we can restrict to
0 < ν < 16. The Ising TQFT corresponds to ν = 1, SU(2)2

corresponds to ν = 3, and ν � 5 can be realized by SO(ν)1

Chern-Simons field theory.
Clearly, the topological symmetry group of these anyon

models are trivial, i.e., Aut(Ising(ν) ) = Z1, since none of the
topological charges may be permuted. Consequently, the sym-
metry action must be trivial, the symmetry fractionalization
obstruction vanishes ([O] = 0), and symmetry fractionaliza-
tion is classified by H2(G,Z2). For a given symmetry frac-
tionalization class, when the defectification obstruction class
[which may be computed using Eq. (485)] is trivial, the corre-
sponding G-crossed extensions are classified by H3(G, U(1))
and the full G-crossed data are given in Sec. X.

In the case of G = Z2, symmetry fractionalization is
classified by H2(Z2,Z2) = Z2. The two fractionalization
classes are represented by the cocycles w(1, 1) = I and
ψ , respectively. The defectification obstruction vanishes for
both fractionalization classes: for w(1, 1) = I , Eq. (485)
gives O(1, 1, 1, 1) = 1; for w(1, 1) = ψ , Eq. (485) gives
O(1, 1, 1, 1) = −1, which is a coboundary dλ(1, 1, 1, 1),
e.g., λ(1, 1, 1) = i. The two fractionalization classes extend
to defect theories with differing fusion rules. In particular, the
Abelian subcategory of the corresponding defect theories have
Z2 × Z2 fusion rules and Z4 fusion rules, for w(1, 1) = I and
ψ , respectively. These correspond to the two possible Z2 cen-
tral extensions of Z2. The defect theories (for either fractional-
ization class) are then classified by H3(Z2, U(1)) = Z2, which
may be distinguished by the σ1 defect’s Frobenius-Schur in-
dicator, which we write as κσ1 = ακσ0 , where α = ±1. Thus
there are four possible Z2-crossed extensions of an Ising(ν)

theory. Gauging the Z2 symmetry, the w(1, 1) = I fractional-
ization class results in the gauged theories Ising(ν) � D[α](Z2),
and the w(1, 1) = ψ fractionalization class results in the

gauged theories Ising(ν−2q) � Z
( q

2 )
4 , where q = α(−1)

ν−1
2 .

F. Z(p)
N anyons with G symmetry

In this section, we consider the Z(p)
N anyon models. As

UBTCs, we can have p ∈ Z for all N and p ∈ Z + 1
2 for

N even. The Z(p)
N anyon models have N topological charges

labeled by a = 0, 1, . . . , N − 1 which obey the fusion rules
a × b = [a + b]N . The F symbols (in a particular choice of
gauge) are[

F abc
[a+b+c]N

]
[a+b]N ,[b+c]N

= ei 2π p
N a(b+c−[b+c]N ). (538)

Notice that the F symbols are all equal to 1 when p ∈ Z. For
p ∈ Z + 1

2 , some of the F symbols are equal to −1, and they
cannot all be set to 1 using gauge freedom.

The R symbols (in our choice of gauge) are

Rab
[a+b]N

= ei 2π p
N ab. (539)

The twist factors are θa = ei 2π p
N a2

.
Notice that p is periodic in N , so we restrict to

the range 0 � p < N . For odd N , Z(p)
N is a UMTC iff

p �= 0 and gcd(p, N ) = 1. For even N , Z(p)
N is a UMTC iff
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p ∈ Z + 1
2 and gcd(2p, N ) = 1. The modularity condition for

all cases can be written simply as gcd(2p, N ) = 1. The case
p = 1/2 represents the topological order of the well-known
U(1)N Chern-Simons theory, which, for example, describes
the bosonic ν = 1

N Laughlin FQH states. The quasiparticles
of the fermionic ν = 1

m Laughlin FQH states with m odd are

described by the UBTC Z(1)
2m = Z(1)

2 × Z
( m+1

2 )
m .

It is useful to write Z(p)
N in terms of the prime decomposi-

tion

Z(p)
N = Z(p0 )

N0
� Z(p1 )

N1
� · · ·� Z(pk )

Nk
, (540)

where Nj = P
rj

j for Pj prime integers satisfying P0 = 2 and
Pj+1 > Pj , and integers r0 � 0 and r j > 0 for j > 0. In order
to determine the coefficients pj , we must specify a choice of

isomorphism between Z(p)
N and

∏k
j=0 Z(p j )

Nj
. We will use a �→

(a0, a1, . . . , ak ), where

a j = [a]Nj . (541)

To invert this isomorphism, we define N̂j = N
Nj

and solve

[x jN̂ j]Nj = 1 for x j ∈ ZNj (notice this implies that x0 is odd).
Then we have

a =
⎡⎣ k∑

j=0

a jx jN̂ j

⎤⎦
N

. (542)

Expressed in terms of the unit generators, this isomor-
phism can be expressed as 1 �→ (1, 1, . . . , 1) and [x jN̂ j]N �→
(0, . . . , 0, 1, 0, . . . , 0), where the 1 in the last expression is the
jth entry. With this isomorphism, the coefficients are given by

p0 = 1
2

[
2px2

0N̂0
]

2N0
, (543)

p j =
[
px2

j N̂ j
]

Nj
, for j > 0. (544)

The inverse of this relation is

p =
⎡⎣ k∑

j=0

p jN̂j

⎤⎦
N

, for p0 ∈ Z or r0 = 0, (545)

p = 1

2

⎡⎣2
k∑

j=0

p jN̂j

⎤⎦
2N

, for p0 ∈ Z + 1

2
. (546)

The autoequivalence maps of Z(p)
N are given by permuta-

tions of the topological charge labels that preserve fusion and
the basic data up to gauge transformations. These are given
by the maps ϕ(a) = [qa]N , where q is an integer that satisfies
the conditions 0 < q < N , gcd(q, N ) = 1, and p(q2−1)

N ∈ Z.
For our choice of gauge, the unitary gauge transformations
that leave the basic data exactly invariant can be taken to be
uab

[a+b]N
= 1 for p ∈ Z and uab

[a+b]N
= (−1)anb for p ∈ Z + 1

2 ,

where we define nb = qb−[qb]N

N .
We now restrict our attention to modular theories, for

which we can solve the conditions for autoequivalence maps
more explicitly. Clearly, q = 1 is the identity autoequivalence.
The conditions imply that [q2]N = 1, so every nontrivial
autoequivalence has order 2. Moreover, all autoequivalence
maps commute with each other, since qq′ = q′q. Finally, we

see by solving the congruence equation [q2]N = 1 that there
are 2k distinct autoequivalence maps when r0 = 0 or 1, and
there are 2k+1 distinct autoequivalence maps when r0 � 2. It
follows that the topological symmetry group of a modular Z(p)

N
theory is

Aut
(
Z(p)

N

) = {
Zk

2 for r0 = 0, 1

Zk+1
2 for r0 > 1

. (547)

In terms of the decomposition of Eq. (540), the autoe-
quivalence maps and topological symmetry group takes a
simple form. In particular, ϕ maps to ϕ j (a j ) = [q ja j]Nj , where
the autoequivalence conditions imply that qj = 1 or Nj − 1,
so that ϕ j (a j ) = a j or [(Nj − 1)a]Nj = ā j . Thus an autoe-
quivalence map either acts trivially or as topological charge
conjugation within each Z(p j )

Nj
sector, and this contributes a

Z2 factor for each sector, except if r0 = 1, in which case the
0th sector can only be acted on trivially. In other words, the
topological symmetry group can also be factored in terms of
the prime decomposition as

Aut
(
Z(p)

N

) = k∏
j=0

Aut
(
Z(p j )

Nj

)
. (548)

We emphasize that the autoequivalence maps do not permute
topological charges between different sectors, since this can-
not preserve the fusion rules.

The action of the global symmetry on the topological
degrees of freedom is specified by a homomorphism

[ρ] : G → Aut
(
Z(p)

N

)
. (549)

Since the topological symmetry group factorizes, the ac-
tion can similarly always be factorized into sectors as ρ =
(ρ (0), ρ (1), . . . , ρ (k) ), where

[ρ ( j)] : G → Aut
(
Z(p j )

Nj

)
. (550)

Factoring the theory in terms of its prime decomposi-
tion, we can choose Ug to be trivial unless g acts nontriv-
ially (as charge conjugation) on the j = 0 sector, i.e., the
N0 = 2r0 sector when r0 > 1, in which case we can choose
Ug(a, b; [a + b]N ) = (−1)a0(b0−1) for b0 �= 0. Since [ρ (0)] is a
homomorphism, it gives a Z2 grading on G, which, for our
choice of Ug(a, b; [a + b]N ) implies that κg,h = 1. It follows
that we can choose βa(g, h) = 1 and O = 0, so the symmetry
fractionalization obstruction always vanishes for modular Z(p)

N
theories. It also follows that the cohomological classification
structure of symmetry fractionalization factorizes, since [ρ]
does not mix sectors, that is

H2
[ρ](G,A) =

k∏
j=0

H2
[ρ ( j)]

(
G,ZNj

)
. (551)

We now see that we can obtain all G-crossed extensions
of modular Z(p)

N by solving for the G-crossed extensions of

each Z(p j )
Nj

factor and then using the gluing construction of
Appendix C to produce all the theories of the form[

Z(p)
N

]×
G = [

Z(p0 )
N0

]×
G �

G

[
Z(p1 )

N1

]×
G �

G
· · ·�

G

[
Z(pk )

Nk

]×
G . (552)
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Given the symmetry action and fractionalization class, the
existence of G-crossed extensions requires the vanishing of
the defectification obstruction [O], which can also be writ-
ten as the product of obstruction classes of the different
sectors. Furthermore, this gluing construction reproduces the
H3(G, U(1)) classification of defectification.

We do not attempt to produce the full data of all G-crossed
extensions of Z(p j )

Nj
in this paper. When the symmetry acts

trivially on (i.e., does not permute) the topological charges,
the full data are given in Sec. X. In the following sections, we
obtain the full data for N odd when G = Z2 and [TBD] for N .

G. Z(p)
N anyons with N odd and Z2 symmetry

In this section, we consider Z2 symmetry in the Z(p)
N anyon

models where N is an odd integer and p is an integer such that
0 < p < N and gcd(p, N ) = 1, so that the theory is modular.
The Z(p)

N theory has N distinct topological charges, labeled by
a = 0, 1, . . . , N − 1. The fusion rules are given by addition
modulo N : a × b = [a + b]N . The F symbols are all trivial
and the R symbols are given by

Rab
[a+b]N

= ei 2π p
N ab. (553)

As shown in Sec. XI F, the topological symmetry group is
Aut(Z(p)

N ) = Zk
2, where k is the number of distinct primes in

the prime factorization of N , where the 2k different classes
of autoequivalence maps are specified by whether or not the
map acts as topological charge conjugation on each factor.
There is always a subgroup Z2 � Aut(Z(p)

N ) that is associated
with topological charge conjugation a �→ ā = [−a]N . Fur-
thermore, it was shown that the symmetry fractionalization
obstruction always vanishes [O] = 0, the symmetry fraction-
alization factorizes, and the G-crossed extensions can be
expressed in terms of gluing the G-crossed extensions of the
factors. In light of this, for G = Z2, we only need to obtain
the data for the cases where the symmetry acts trivially and as
topological charge conjugation, and then we can generate the
general cases from these. We will find that H2

[ρ](Z2,ZN ) = Z1

and H3(Z2, U(1)) = Z2, so there is one symmetry fractional-
ization class and two defectification classes for Z2 symmetry
when N is odd. We now examine these in detail.

1. Trivial symmetry action

In the case where the symmetry acts trivially on the anyons,
we see that every a ∈ ZN defines both a 2-cocycle w(1, 1) =
a and a 2-coboundary dz(1, 1) = a, by taking z(1) = a

2 for
a even and z(1) = a+N

2 for a odd. Thus H2(Z2,ZN ) = Z1,
and there is one fractionalization class. The data of the two
G-crossed theories, corresponding to the two defectification
classes, are given by the results of Sec. X, where it is most
convenient to use the gauge choice with w(1, 1) = 0. It is
straightforward to see that the resulting G-crossed theories
have the form (

Z(p)
N

)×
Z2

= Z(p)
N � SPT[α]

Z2
, (554)

where [α] ∈ H3(Z2, U(1)) = Z2, i.e., it is represented by the
3-cocycle with element α(1, 1, 1) = ±1. The corresponding
gauged theories are Z(p)

N � D[α](Z2).

2. Charge conjugation symmetry

A symmetry defect associated with the topological charge
conjugation symmetry subgroup can be engineered in the
Laughlin state, wherein quasielectrons and quasiholes are
permuted, by creating a superconducting trench in the bulk,
or as a superconducting/magnetic domain wall on the edge of
a fractional topological insulator [8–10,12]. Such defects are
known as ZN -Parafendleyons or ZN parafermion zero modes
[127]. In the rest of this section, we will focus on the global
G = Z2 symmetry action associated with topological charge
conjugation. (For the case of trivial global symmetry action,
see Sec. X.)

We now show that there is only one symmetry fraction-
alization class for ρ corresponding to charge conjugation.
We use the choice of gauge with Ug(a, b; [a + b]N ) = 1
and βa(g, h) = 1, so we have ηa(g, h) = Maw(g,h) and [w] ∈
H2

[ρ](Z2,ZN ). The cocycle condition simplifies to w(1, 1) =
w(1, 1). Since N is odd, only the vacuum 0 is a fixed point
under charge conjugation and, hence, w(g, h) = 0, ηa(g, h) =
1, and H2

[ρ](Z2,ZN ) = Z1. In other words, the Z2 charge
conjugation symmetry has only one fractionalization class.

As discussed in Sec. VII B, since there are no nontrivial
g-invariant topological charges in C0, we have |C1| = 1. In
other words, there is exactly one type of defect, which we
denote as σ . This statement can also be proven directly from
properties of the fusion rules, without appealing to modularity,
as follows. If there is another defect σ ′, it must be related to
σ by fusing with some a ∈ C0 ≡ Z(n)

N . Assume σ ′ = σ × a.
When a is taken around the defect it becomes ā, which implies
that σ × a = σ × ā = σ ′. Fusing with a again, we determine
that σ ′ × a = σ ′ × ā = σ and σ × a2 = σ × [2a]N = σ . Us-
ing this relation, we find

σ ′ = σ × [(N − 1)a]N = σ × ([2a]N )
N−1

2 = σ, (555)

which proves σ ′ = σ .
The fusion rules of σ can be easily obtained to be

σ × a = a × σ = σ, (556)

σ × σ =
∑
a∈C0

a. (557)

The fusion category CG = C0 ⊕ C1 is known as the Tambara-
Yamagami category [155]. The fusion rules indicate that the
quantum dimension of the defect is dσ = √

N . The F symbols
of CG are completely classified in Ref. [155] and are given by
the F symbols of the original category C0 (which are all trivial
in this example), together with[

F aσb
σ

]
σσ

= [
F σaσ

b

]
σσ

= χ (a, b), (558)[
F σσσ

σ

]
ab =

κσ√
N

χ (a, b)−1, (559)

and all other allowed F symbols equal 1. Here χ is a U(1)-
valued function on ZN × ZN , satisfying

χ (a, b) = χ (b, a), (560)

χ (ab, c) = χ (a, c)χ (b, c), (561)

χ (a, bc) = χ (a, b)χ (a, c), (562)
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together with normalization condition χ (0, a) = χ (a, 0) = 1.
Such a χ is called a symmetric bicharacter. κσ = ±1 is
the Frobenius-Schur indicator of the Z2 symmetry defect.
The two solutions of F symbols, distinguished by κσ , di-
rectly reflect the two defectification classes associated with
H3(Z2, U(1)) = Z2. Interestingly, this fusion category CG

does not admit braiding in the usual sense.
We now consider G-crossed braiding. First we use the

symmetry action gauge transformations to set ησ (1, 1) = 1,
so that all ηa(g, h) = 1. With this gauge fixing, we find the
following solutions to the G-crossed braiding consistency
equations:

χ (a, b) = ei 2π p
N ab, (563)

Rσa
σ = (−1)pae−i π p

N a2
, (564)

Raσ
σ = ra(−1)pae−i π p

N a2
, (565)

Rσσ
a = ϒ(−1)paei π p

N a2
, (566)

U1(a, σ ; σ ) = U1(σ, a; σ ) = ra, (567)

U1(σ, σ ; a) = r−a, (568)

ϒ2 = κσ√
N

N−1∑
a=0

(−1)pae−i π p
N a2

. (569)

Here, r = ei 2π
N n for some integer n. These N th roots of unity

can be removed using the remaining symmetry action gauge
freedom of the anyons. Specifically, γa(1) = r−a = e−i 2π

N na

allows us to set s = 1 in the above expressions and it does
not spoil our previous gauge choices, since one can always
choose z ∈ C0 such that Maz = ei 4π p

N az = e−i 2π
N na. The remain-

ing symmetry action gauge freedom that does not spoil our
gauge choices is γσ (1) = ±1, which can be used to change
the (arbitrary) sign of the phase ϒ . We notice that none of the
U1 are intrinsic in the sense that they are all essentially maps
between different splitting spaces, except U1(σ, σ ; 0) = 1.

Having obtained the G-crossed data, we can calculate the
topological twist

θσ =
∑

a

da

dσ

Rσσ
a = κσϒ−1 (570)

and the S-matrix elements

S0σ = Sσ0 = 1, (571)

Sσσ = 1√
N

∑
a∈C0

(
Rσσ

a

)2 = ϒ2�0 = �0θ
−2
σ , (572)

where �0 = 1√
N

∑
a0

θa = ei π
4 c− , as usual. These give the G-

crossed modular transformations

S =

⎡⎢⎣S
(0,0) 0 0 0
0 0 1 0
0 1 0 0
0 0 0 �0θ

−2
σ

⎤⎥⎦, (573)

T =

⎡⎢⎣T
(0,0) 0 0 0
0 1 0 0
0 0 0 θσ

0 0 θσ 0

⎤⎥⎦, (574)

where S (0,0) and T (0,0) are the topological S and T matrices
for the Z(p)

N theory. The basis states of the defect sectors are
chosen to be |0(0,1)〉, |σ (1,0)〉, |σ (1,1)〉.

We now proceed to derive the properties of the gauged the-
ories. Under the group action the extended category is divided
into N+1

2 orbits: {0}, {a, ā}, {σ }. The stabilizer subgroup for
both 0 and σ is Z2. For the N−1

2 orbits {a, ā}, the stabilizer
subgroups are trivial.

The vacuum 0 gives rise to a Z2 even charge (0,+) ≡ I
(the vacuum in (C×

G )G) and a Z2 odd charge (0,−) ≡ z (the
Z2 charge) which satisfies z × z = I . These correspond to the
trivial and alternating irreps of Z2. The quantum dimensions
are dI = dz = 1.

The orbits {a, ā} become non-Abelian anyons in the
gauged theory, which we label by φa. Their quantum dimen-
sions are dφa = 2 and their fusion rules with each other are
given by

φa × φb =
{
φmin(a+b,N−a−b) + φ|a−b| for a �= b

I + z + φmin(2a,N−2a) for a = b
. (575)

The defect σ gives rise to two quasiparticles (σ,±) in
the gauged theory, which are related to each other through
fusion with z, i.e., (σ,±) = (σ,∓) × z. (The ± label here
is an arbitrary choice, but their difference corresponds to the
nontrivial irrep of Z2.) Their quantum dimensions are d(σ,±) =√

N and their fusion rules with each other are given by

(σ,+) × (σ,+) = (σ,−) × (σ,−) = I +
N−1

2∑
a=1

φa, (576)

(σ,+) × (σ,−) = z +
N−1

2∑
a=1

φa. (577)

Thus (C×
G )G has 2 + N−1

2 + 2 = N+7
2 topological charges.

To further identify the gauged theory, we calculate the
topological twists of the anyons in (C×

G )G. The twist factors
of I and z are clearly

θI = θz = 1. (578)

The twist factors of φa are identical to those of a and ā, so we
have

θφa = ei 2π p
N a2

. (579)

The twists factors of (σ,±) are

θ(σ,±) = ±θσ = ±κσ ϒ−1. (580)

When p = N−1
2 , i.e., C0 = SU(N )1, and κσ = (−1)

N2−1
8 ,

we find that (C×
G )G is equivalent to the MTC of SO(N )2, by

matching fusion and twist factors. In particular, the Gauss
sum in Eq. (569) evaluates to

√
N for [N]4 = 1 and i

√
N

for [N]4 = 3. This gives θ2
σ = ϒ−2 = κσ (−1)

N2−1
8 i

N−1
2 , which

matches SO(N )2 when κσ = (−1)
N2−1

8 . The gauged theo-
ries for other values of p and κσ are metaplectic modular
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categories, which are close relatives of SO(N )2, i.e., they are
in the same Grothendieck class.

We note that the relation between the Z3 theory and the
gauged theory SO(3)2 = SU(2)4 was previously observed in
Refs. [75,102,158].

3. General symmetry action

In the case of a general Z2 symmetry action on the anyons,
we can factor the MTC into its subcategories upon which
the symmetry acts trivially and as topological charge con-
jugation. In particular, using the prime decomposition from
Eq. (540), we write f j = 0 or 1 to represent whether ρ1 acts

trivially or as charge conjugation on the Z(p j )
Nj

sector. Then

we can write Z(p)
N = Z(pt )

Nt
× Z(pc )

Nc
, where Nt =

∏k
j=0 N

1− f j

j ,

Nc =
∏k

j=0 N
f j

j , and a = (a(t), a(c) ), such that ρ1(a(t), a(c) ) =
(a(t), [−a(c)]Nc ). In this way, the corresponding G-crossed
theories are obtained by applying the gluing construction
of Appendix C to the corresponding G-crossed theories for
trivial and charge conjugation sectors obtained earlier in this
section. From this, it is clear that there is one symmetry
fractionalization class (H2

[ρ](Z2,ZN ) = Z1) and two defecti-
fication classes (H3(Z2, U(1)) = Z2), and the resulting G-
crossed theories can be written as the product[

Z(p)
N

]×
Z2

= Z(pt )
Nt

�
[
Z(pc )

Nc

]×
Zcc

2
, (581)

where [Z(pc )
Nc

]
×
Zcc

2
are given by the two possible G-crossed

extensions obtained in Sec. XI G 2.

H. Z(p)
N anyons with N even and Z2 symmetry

In this section, we consider Z2 symmetry in the Z(p)
N anyon

model where N is even and p is a half-integer such that
0 < p < N and gcd(2p, N ) = 1, so that the theory is modular.
The Z(p)

N theory has N distinct topological charges, labeled by
a = 0, 1, . . . , N − 1. The fusion rules are given by addition
modulo N : a × b = [a + b]N . The F and R symbols are given
by

F abc
[a+b+c]N

= ei π
N a(b+c−[b+c]N ), (582)

Rab
[a+b]N

= ei 2π p
N ab. (583)

As shown in Sec. XI F, the topological symmetry group is
Aut(Z(p)

N ) = Zk
2 or Zk+1

2 , depending whether r0 = 1 or r0 > 1,
respectively, where k is the number of distinct odd primes in
the prime factorization of N . There is always a subgroup Z2 �
Aut(Z(p)

N ) that is associated with topological charge conjuga-
tion a �→ ā = [−a]N . Furthermore, it was shown that the sym-
metry fractionalization obstruction always vanishes [O] = 0,
the symmetry fractionalization factorizes, and the G-crossed
extensions can be expressed in terms of gluing the G-crossed
extensions of the factors. In light of this, for G = Z2, we only
need to obtain the data for the cases where the symmetry acts
trivially and as topological charge conjugation, and then we
can generate the general cases from these. (In fact, given the
results obtained in Secs. X and XI G, it only remains to obtain
for the Z2-crossed extensions of Z(p)

N for N = 2r , where the
integer r > 1, with charge conjugation symmetry. However,
we will continue to consider more general N .) We will find

that H2
[ρ](Z2,ZN ) = Z2 and H3(Z2, U(1)) = Z2, so there are

two symmetry fractionalization class and two defectification
classes for Z2 symmetry when N is even. We now examine
these in detail.

1. Trivial symmetry action

In the case where the symmetry acts trivially on the anyons,
we see that every a ∈ ZN defines a 2-cocycle w(1, 1) = a,
while only the even-valued a ∈ ZN can be 2-coboundaries,
since dz(1, 1) = z(1) × z(1) = [2b]N , for z(1) = b. Thus
H2(Z2,ZN ) = Z2, and there are two fractionalization classes.
These two fractionalization classes can be represented by the
cocycles w(1, 1) = 0 and 1, respectively. The defectification
obstruction vanishes for both fractionalization classes: for
w(1, 1) = 0, Eq. (485) gives O(1, 1, 1, 1) = 1; for w(1, 1) =
1, Eq. (485) gives O(1, 1, 1, 1) = ei 2π p

N , which is a cobound-
ary dλ(1, 1, 1, 1) for e.g., λ(1, 1, 1) = ei π p

N . For a given frac-
tionalization class, the data of the two G-crossed extensions,
corresponding to the two defectification classes, are given by
the results of Sec. X.

It is straightforward to see that the resulting G-crossed
theories for w(1, 1) = 0 have the form(

Z(p)
N

)×
Z2

= Z(p)
N � SPT[α]

Z2
, (584)

where [α] ∈ H3(Z2, U(1)) = Z2, i.e., it is represented by the
3-cocycle with element α(1, 1, 1) = ±1. The corresponding
gauged theories are Z(p)

N � D[α](Z2).
For the fractionalization class represented by w(1, 1) = 1,

the Z2-crossed extensions have Z2N fusion rules, in which
the odd integers are the Z2 defects and the even integers are
the quasiparticles. The corresponding gauged theories are Z(p)

4N

and Z(p+2N )
4N .

2. Charge conjugation symmetry

In the case where the symmetry acts as topological charge
conjugation, i.e., ρ1(a) = ā, we can choose a gauge such
that Ug(a, b; [a + b]N ) = (−1)a(b−1) and βa(g, h) = 1. We
now show that there is only one symmetry fractionaliza-
tion class for ρ corresponding to charge conjugation. It fol-
lows that the symmetry fractionalization obstruction vanishes
[O] = 0, and ηa(g, h) = Maw(g,h) and [w] ∈ H2

[ρ](Z2,ZN ).

The cocycle condition simplifies to w(1, 1) = w(1, 1), and
the coboundaries are trivial, since dz(1, 1) = z(1) × z(1) =
0. Thus H2

[ρ](Z2,ZN ) = Z2, where the two fractionalization
classes are specified by the two self-dual topological charges,
i.e., w(1, 1) = 0 or N

2 , respectively. Evaluating the invariant
from Eq. (196), the two fractionalization classes correspond
to ηcc

a = 1 and ηcc
a = (−1)a, respectively.

Since there are two topological charges in Z(p)
N that are

invariant under charge conjugation for N even, there are two
types of symmetry defects, which we label as C1 = {σ+, σ−}.
There are two possible sets of defect fusion rules, given either
by

σ s × σ s =
∑

c even∈ZN

c,

σ+ × σ− =
∑

c odd∈ZN

c, (585)
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or by

σ s × σ s =
∑

c odd∈ZN

c,

σ+ × σ− =
∑

c even∈ZN

c. (586)

In both cases, we have

a × σ s = σ s × a =
{

σ s for a even

σ−s for a odd
. (587)

The fusion rules indicate that the quantum dimension of the
defects are dσ s = √

N/2.
Considering Eq. (454), we see that both sets of defect

fusion rules can occur for r0 = 1 (when N
2 is odd), where

the different fusion rules correspond to the two different
fractionalization classes. On the other hand, for r0 > 1 (when
N
2 is even), the two fractionalization classes actually have the
same defect fusion rules, so only one of the possibilities will
occur. Since the full data of the defect theories for r0 = 1 can
be produced via the gluing construction from results we have
already obtained, we focus on r0 > 1 for the remainder of this
example.

3. Charge conjugation symmetry when 4 divides N

When N is a multiple of 4 (i.e., r0 > 1), the defect fusion
rules are given by Eqs. (585) and (587). We can begin by
considering the restriction to the even-valued quasiparticle
charges and one of the two defects, i.e., Z(2p)

N/2 ⊕ {σ s}, where

Z(2p)
N/2 � Z(p)

N is the subcategory of even-valued topological
charges; such a restriction forms a closed Z2-crossed sub-
category of the full defect theory. Similar to Sec. XI G 2,
solving the G-crossed consistency conditions (with certain
gauge choices) gives the data for even-valued a, b ∈ ZN[

F aσ sb
σ s

]
σ sσ s =

[
F σ saσ s

b

]
σ sσ s = ei 2π p

N ab, (588)[
F σ sσ sσ s

σ s

]
ab =

κσ s√
N/2

e−i 2π p
N ab, (589)

Rσ sa
σ s = q

a
2
s (−1)pae−i π p

N a2
, (590)

Raσ s

σ s = (−1)pae−i π p
N a2

, (591)

Rσ sσ s

a = ϒq
a
2
s (−1)paei π p

N a2
, (592)

θσ s = κσ sϒ−1, (593)

ηa(1, 1) = ησ s (1, 1) = 1, (594)

U1(a, σ s; σ s) = U1(σ s, a; σ s) = U1(σ s, σ s; a) = q
a
2
s , (595)

ϒ2 = κσ s√
N/2

∑
a even ∈ZN

q
a
2
s (−1)pae−i π p

N a2
, (596)

and all other allowed F symbols are equal to 1. Here, qs = ±1
is a sign that is presumably fixed when considering the full
defect theory. The quantity ϒ is a phase whose sign can be
fixed by using gauge freedom.

Since σ+ and σ− are both self-dual, their Frobenius-Schur
indicators κσ s = ±1 are invariants. Thus the four different
combinations of κσ+ and κσ− correspond to the four possible
Z2-crossed defect theories, as classified by H2

[ρ](Z2,ZN ) = Z2

and H3(Z2, U(1)) = Z2. Moreover, we can identify the two
theories with κσ+ = κσ− as having the same fractionalization
class, while the two theories with κσ+ = −κσ− have the other
fractionalization class. This is because the defectification
classes that are related by gluing in a Z2 SPT state have the
opposite signs for both defects’ Frobenius-Schur indicators.
The two defectification classes with κσ+ = −κσ− are actu-
ally the same under relabeling of the defects as σ s′ = σ−s,
(corresponding to σ s′ = z(1) × σ s, where z(1) = a odd,) so
the naïve classification count is reduced from four to three
distinct Z2-crossed defect theories.

We now proceed to derive the properties of the gauged
theories. Under the group action the extended category is
divided into the orbits: {0}, {N

2 }, {σ+}, {σ−}, and {a, ā} for
a = 1, . . . , N

2 − 1. The stabilizer subgroup for the singletons
is Z2. For the N

2 − 1 orbits {a, ā}, the stabilizer subgroups are
trivial.

Each of the singletons gives rise to two quasiparticle types
in the gauged theory, corresponding to whether a trivial or
alternating irrep of Z2 is attached to it. We write these as
(0,±), ( N

2 ,±), (σ+,±), and (σ−,±). Their quantum di-
mensions are d(0,±) = d( N

2 ,±) = 1 and d(σ s,±) =
√

N/2. Their

topological twists are given by θ(0,±) = 1, θ( N
2 ,±) = (−1)

N
4 ,

and θ(σ s,±) = ±θσ s . The orbits {a, ā} become non-Abelian
anyons in the gauged theory, which we label by φa. Their
quantum dimensions are dφa = 2 and their topological twists

are θφa = ei 2π p
N a2

. Thus the gauged theories have N
2 + 7 topo-

logical charge types.
Gauging the Z2 charge conjugation symmetry of the Z(p)

N
theories results in the so-called metaplectic modular cate-
gories, such as SO(N )2 and its close relatives in the same
Grothendieck class. In the case of N = 4, these gauged theo-
ries take the form Ising(ν+ ) � Ising(ν− ), where [ ν++ν−

2 ]8 = 2p
and the Frobenius-Schur indicators match those of the defects,

i.e., κσ+ = (−1)
(ν+ )2−1

8 and κσ− = (−1)
(ν− )2−1

8 . We notice that
the equivalence between theories (ν+, ν−) ∼ (ν+ + 8, ν− +
8) and νs ∼ νs + 16 yields four theories for each p. Moreover,
we see that interchanging the Ising factors, i.e., relabeling
(ν+′, ν−′) = (ν−, ν+), equate the two theories (for each p)
with κσ+ = −κσ− , yielding three distinct gauged theories for
each p. For example, when p = 1

2 , we have the gauged theo-
ries with (ν+, ν−) = (1, 1), (5, 13), (7, 11), and (3, 15) corre-
sponding to the defect theories with (κσ+ , κσ− ) = (+1,+1),
(−1,−1), (+1,−1), and (−1,+1), respectively, with the last
two being equated by interchanging the two sectors.

4. General symmetry action

In the case of a general Z2 symmetry action on the anyons,
we can factor the MTC into its subcategories upon which
the symmetry acts trivially and as topological charge con-
jugation. In particular, using the prime decomposition from
Eq. (540), we write f j = 0 or 1 to represent whether ρ1 acts
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trivially or as charge conjugation on the Z(p j )
Nj

sector. Then

we can write Z(p)
N = Z(pt )

Nt
× Z(pc )

Nc
, where Nt =

∏k
j=0 N

1− f j

j ,

Nc =
∏k

j=0 N
f j

j , and a = (a(t), a(c) ), such that ρ1(a(t), a(c) ) =
(a(t), [−a(c)]Nc ). In this way, the corresponding G-crossed
theories are obtained by applying the gluing construction
of Appendix C to the corresponding G-crossed theories for
trivial and charge conjugation sectors obtained earlier in this
section and Sec. XI G. From this, it is clear that there are
two symmetry fractionalization classes (H2

[ρ](Z2,ZN ) = Z2)
and two defectification classes (H3(Z2, U(1)) = Z2) for each
fractionalization class, though naïvely different defectification
classes may potentially be equivalent under relabeling of the
defects. The resulting G-crossed theories are given by[

Z(p)
N

]×
Z2

= [
Z(pt )

Nt

]×
Z2

�
Z2

[
Z(pc )

Nc

]×
Zcc

2
. (597)

When w(t)(1, 1) = 0, these can be written as the product(
Z(p)

N

)×
Z2

= Z(pt )
Nt

�
[
Z(pc )

Nc

]×
Zcc

2
. (598)

I. Z2-toric code D(Z2 ) with Z2 symmetry

In this section, we consider a G = Z2 symmetry for a
system with the “toric code” topological order D(Z2), which
corresponds to a discrete gauge theory or quantum double
[22]. The topological charges are gauge charges e, gauge
fluxes m, and their bound state ψ . The theory has Z2 × Z2 fu-
sion rules, where we write I = (0, 0), e = (1, 0), m = (0, 1),
and ψ = (1, 1). That is, the fusion rules are given by e × e =
m × m = ψ × ψ = I and e × m = ψ . The F symbols of the
theory are all trivial (i.e., they equal 1 when allowed by fusion)
and the R symbols are given by

Rab = (−1)aebm , (599)

where the notation corresponds to writing the topological
charges as a = (ae, am). From this, it is clear that I , e, and
m are bosons with topological twist θa = 1, and ψ is a
fermion with θψ = −1. The Abelian anyons form a group
A=Z2 ×Z2.

The topological symmetry group is Aut(D(Z2)) = Z2,
where the nontrivial element interchanges e and m. This is
known as the electric-magnetic (e-m) duality, and can be
realized in a slightly different formulation of the toric code
model by Wen [159] as lattice translations [4,7]. Alternatively,
one can also realize this type of symmetry in an on-site fashion
[160].

We consider the two cases where the symmetry action on
the anyons is trivial and where the symmetry action inter-
changes e and m.

1. Trivial symmetry action

When the symmetry action is trivial, the symmetry frac-
tionalization obstruction [O] is trivial and fractionalization
is classified by H2(Z2,Z2 × Z2) = Z2

2. These classes can be
labeled as w(1, 1) = I , e, m, and ψ . Since H3(Z2, U(1)) =
Z2, each fractionalization class has two defectification classes,
which we will label with p = 0 and 1. Since the symmetry
does not permute anyons, we can obtain all the explicit data
of the G-crossed extensions using the results of Sec. X. The

fusion rules of the extended theories are given by

ag × bh = [abw(g, h)]gh. (600)

The G-crossed data are greatly simplified for this example to

F agbhck = F IgIhIk (Rw(g,h)0c0 )−1, (601)

Ragbh = Ra0b0 , (602)

Uk(ag, bh) = (F IgIhIk )−1, (603)

ηck (g, h) = Mc0w(g,h)0 (F IgIhIk )−1, (604)

where the defectification class enters these expressions
through

F I1I1I1 =
{

(−1)p for w(1, 1) = I, e, m

−i(−1)p for w(1, 1) = ψ
, (605)

which follows from O(1, 1, 1, 1) = 1 for w(1, 1) = I , e, and
m, and O(1, 1, 1, 1) = −1 for w(1, 1) = ψ . We also find the
G-crossed modular invariants

[T 2](1,1)
agag

=
{

(−1)pMa0w(1,1) for w(1, 1) = I, e, m

i(−1)pMa0w(1,1) for w(1, 1) = ψ
. (606)

When w(1, 1) = I , e, or m, the two defectification classes
describe distinct G-crossed MTCs for each fractionalization
class. However, for the symmetry fractionalization class with
w(1, 1) = ψ , the two defectification classes actually describe
the same G-crossed MTC. This can be seen by relabeling the
defects and applying a gauge transformation in the following
manner:

a′1 = [ea]1, (607)

�a′1b0 = �a′1b′1 = (−1)bm , (608)

γa0 (1) = γa′1 (1) = (−1)am . (609)

This transformation leaves the fractionalization class
w(1, 1) = ψ unchanged, and results in the same data, except
with p replaced by p′ = p + 1. Thus the two G-crossed
extensions p = 0 and 1 with this symmetry fractionalization
class are actually equivalent under relabeling of the defect
topological charges, and therefore represent the same SET
order. This phenomena was observed in Refs. [53,140] using
a Chern-Simons field theory approach.

2. Electric-magnetic duality symmetry

When the symmetry action interchanges the e and m quasi-
particle types, we can show that the symmetry fractionaliza-
tion obstruction O can be set to I identically. In particular, we
can choose

U1(a, b; a × b) =
√

θa
√

θb√
θa×b

(−1)ambe , (610)

where we let
√

θa = 1 for a = I , e, and m, and
√

θψ = i.
(While this is, perhaps, not a natural choice for U1, it is
what we find for the gauge choices we make in solving for
the data of the G-crossed theory.) With this U1, we have
κg,h(a, b) = 1, and so can choose βa(g, h) = 1, from which
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it follows that O = I . The cocycle condition simplifies to
1w(1, 1) = w(1, 1). Thus w(1, 1) = I or ψ . However, these
are also coboundaries under the symmetry action, since ψ =
e × m = ρ1(m) × m. It follows that H2

[ρ](Z2,Z2 × Z2) = Z1,
so there is exactly one symmetry fractionalization class. Since
H3(Z2, U(1)) = Z2, we expect to find two defectification
classes of G-crossed extensions.

The quasiparticle charges that are fixed under e-m duality
are C1

0 = {I, ψ}, so there are two species of twist defects,
which we label as C1 = {σ+, σ−}. These defect charges differ
by fusion with an e or m charge, and have the fusion rules:

σ∓ = e × σ± = m × σ±, (611)

σ± = ψ × σ±, (612)

σ± × σ± = I + ψ, (613)

σ± × σ∓ = e + m. (614)

The Z2-symmetry action on the defects is necessarily trivial,
i.e., ρg(a1) = a1. The fusion rules indicate that the quantum
dimensions of the defects are dσ s = √

2.
The fusion rules are that of an Z2 × Ising FTC, where

the Z2 fusion category here can be generated by either the
e or the m topological charge. As such, we know [111]
the F symbols must be gauge equivalent to those of the
product of the Z2 FTC with trivial F symbols and one of
the two Ising-type FTCs, which are distinguished by the
Frobenius-Schur indicator of the σ charge κσ = ±1. Whether
the Z2 FTC in this product is generated by e or m can be
changed by a vertex basis gauge transformation. However,
such a gauge transformation also changes the R symbols of
the quasiparticles.18 This means that the defect F symbols are
not simply obtained by solving the pentagon equations and
using the vertex gauge freedom, but are also constrained by
the quasiparticle braiding through the heptagon equations. For
our choice of quasiparticle data, the consistent choice of F
symbols corresponds to choosing the Z2 FTC to be generated
by e. In this way, the nontrivial F symbols of the extended
category are given by

F a0b1c0
d1

= (−1)amcm , (615)

F a1b0c1
d0

= (−1)bmdm , (616)[
F a1b1c1

d1

]
e0 f0

= κσ√
2

(−1)em fm , (617)

where e0 and f0 take values in either {I, ψ} or {e, m}, depend-
ing on the values of a1, b1, and c1. The remaining F symbols
allowed by fusion are equal to 1.

18In order to see this, we notice that we need the vertex basis gauge
transformation to leave F σ+em

σ+ = F σ−me
σ− = 1 fixed, while changing

F eσ+ψ

σ− from +1 to −1, or vice versa. Combining these conditions
requires �em/�me = −1, which changes Rem = −Rme from −1 to
+1, or vice versa.

We next solve the heptagon conditions, with appropriate
symmetry action gauge choices, to obtain the R symbols

Reσ± = Rmσ± = 1, (618)

Rψσ± = i, (619)

Rσ±e = se, (620)

Rσ±m = ±isesψ, (621)

Rσ±ψ = ±isψ, (622)

Rσ±σ±
I = seRσ±σ∓

e = (√
κσ ei π

8 sψ
)±1

, (623)

Rσ±σ±
ψ = seRσ±σ∓

m = (√
κσ ei π

8 sψ
)∓3

, (624)

where se, sψ ∈ {1,−1}, and we let
√

κσ = 1 and i, for κσ = 1
and −1, respectively, the η symbols

ηak (g, h) = 1, (625)

and the Uk symbols [in addition to Eq. (610)]

U1(σ±, e; σ∓) = U1(σ∓, m; σ±) = κσ see∓i π
4 sψ , (626)

U1(e, σ±; σ∓) = U1(m, σ∓; σ±) = κσ see±i π
4 sψ , (627)

U1(σ±, ψ ; σ±) = U1(ψ, σ±; σ±) = ±sψ, (628)

U1(σ±, σ±; I ) = 1, (629)

U1(σ±, σ±; ψ ) = ±sψ, (630)

U1(σ±, σ∓; e) = κσ see±i π
4 sψ , (631)

U1(σ±, σ∓; m) = κσ see∓i π
4 sψ . (632)

The G-crossed modular S and T matrices are given (for
this gauge choice) by

S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S (0,0) 0 0 0 0 0 0
0 0 0 1√

2
1√
2

0 0
0 0 0 − sψ√

2

sψ√
2

0 0

0 1√
2

− sψ√
2

0 0 0 0

0 1√
2

sψ√
2

0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (633)

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

T (0,0) 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 0 0 θσ+ 0
0 0 0 0 0 0 θσ−

0 0 0 θσ+ 0 0 0
0 0 0 0 θσ− 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (634)

where the basis states of the defect sectors are chosen to be
|I (0,1)〉, |ψ (0,1)〉, |σ+(1,0)〉, |σ−(1,0)〉, |σ+(1,1)〉, and |σ−(1,1)〉, in
that order, and the topological twists of the defects are

θσ± = (√
κσ e−i π

8 sψ
)±1

. (635)
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We notice that the choices of se and sψ are actually redun-
dant, though they could not be removed simply by applying
a symmetry action gauge transformation. For se = −1, if we
apply a vertex basis gauge transformation with nontrivial
elements

−1 = �
σ±ψ

σ± = �
ψσ±
σ± = �eσ±

σ∓ = �σ±m
σ∓

= �σ−σ+
e = �σ+σ−

m = �σ−σ−
I = �σ+σ+

ψ , (636)

the basic data become that of the theory with se = 1. For sψ =
−1, if we relabel the defect charges σ±′ = σ∓ = e × σ± and
apply a symmetry action gauge transformation with nontrivial
element γσ± (1) = κσ , we obtain the theory with sψ = 1.

Thus there are two distinct G-crossed extensions for the
e-m duality Z2 symmetry, which are distinguished by the
defects’ Frobenius-Schur indicator κσ = ±1 (and the asso-
ciated changes in the basic data). This matches the expected
(torsorial) classification by H3(Z2, U(1)) = Z2. For the gauge
choice used here, the torsorial Z2 action relating these distinct
G-crossed theories is given by gluing in a Z2 SPT state with
α(1, 1, 1) = −1, R1,1 = −i, η1(1, 1) = 1, and U1(1, 1) = 1
(as in Sec. XI A 1) and applying a symmetry action gauge
transformation whose nontrivial element is γσ± (1) = ∓κσ

(here, κσ is that of the theory before gluing in the Z2 SPT
state).

We now consider the gauged theory, setting se = sψ = 1 to
remove the redundancy. All Z2 orbits of topological charges
in the defect theory are singletons, except [e] = {e, m}. The
stabilizer subgroup of the singletons is Z2 and that of [e] is Z1.
Since the η symbols were chosen to be trivial, each singleton
can carry an irrep of Z2, which we label q = ±. Thus the
gauged theory has nine topological charges, labeled by (I, q),
(ψ, q), (σ+, q), (σ−, q), [e]. The quantum dimensions are
d(I,q) = d(ψ,q) = 1, d(σ±,q) =

√
2, and d[e] = 2.

A straightforward application of Eq. (425) yields the fusion
rules

(I, q) × (b, q′) = (b, qq′), (637)

(I, q) × [e] = [e], (638)

(ψ, q) × (ψ, q′) = (I, qq′), (639)

(ψ, q) × (σ±, q′) = (σ±,±qq′), (640)

(ψ, q) × [e] = [e], (641)

(σ±, q) × (σ±, q′) = (I, qq′) + (ψ,±qq′), (642)

(σ±, q) × (σ∓, q′) = [e], (643)

(σ±, q) × [e] = (σ∓,+) + (σ∓,−), (644)

[e] × [e] = (I,+) + (I,−) + (ψ,+) + (ψ,−), (645)

for any singleton b. We notice that these fusion rules are
identical to that of a direct product of two Ising(ν) MTCs,
labeled L and R, once we identify the topological charges as

(IL, IR) = (I,+), (IL, σR)= (σ+,+),

(IL, ψR) = (ψ,+), (σL, IR) = (σ−,+), (σL, σR)= [e],

(σL, ψR) = (σ−,−),

(ψL, IR) = (ψ,−),

(ψL, σR) = (σ+,−), (ψL, ψR )= (I,−). (646)

The topological twists are straightforward to compute us-
ing Eq. (430), which yields

θ(I,q) = θ[e] = 1, (647)

θ(ψ,q) = −1, (648)

θ(σ±,q) = q
(√

κσ e−i π
8
)±1

. (649)

The S matrix is found to be

S(aL,aR )(bL,bR ) = SIsing
aLbL

SIsing
aRbR

, (650)

where SIsing is the S matrix of the Ising theory. This allows
us to uniquely identify the gauged theory as Ising � Ising
for κσ = 1 and SU(2)2 � SU(2)2 for κσ = −1. [Recall that
Ising = Ising(1) and SU(2)2 = Ising(3).]

As previously mentioned, the electric-magnetic duality in
the Z2-toric code can be realized as an on-site symmetry.
We now briefly describe a concrete model for doing so.
We start from a spin-1/2 fermionic superconductor with the
pairing (px + ipy)ν↑ × (px − ipy)ν↓ where ν is an odd integer.
This is a model of the Z2 fermionic SPT phase discussed
in Sec. XI B. Next, we gauge the Z2 fermion parity of the
whole system, i.e., coupling all fermions to a Z2 gauge field,
and we obtain a Z2-toric code, where m is the π flux in the
original superconductor and e is the bound state of the π

flux and a fermion. The Z2 symmetry that protects the SPT
phase, namely the fermion parity of the spin ↑ fermions,
now becomes the e-m duality symmetry of the toric code.
To see this, we first notice that before the Z2 total fermion
parity is gauged, a π flux localizes two Majorana zero modes
γ↑ and γ↓, since it penetrates two px ± ipy superconductors.
Under the Z2 symmetry γ↑ → −γ↑, γ↓ → γ↓, so the local
fermion parity iγ↑γ↓ on the π flux changes sign under the
on-site Z2 symmetry, which interchanges e and m after the
total fermion parity is fully gauged. This provides the desired
on-site realization. We can turn this model of a fermionic
superconductor coupled to a Z2 gauge field into a Kitaev-type
spin model.

In this model, gauging the Z2 symmetry becomes par-
ticularly easy: we simply gauge the fermion parities of the
spin ↑ and ↓ fermions separately, and the result is precisely

Ising(ν) � Ising(ν). However, ν and ν + 8, as well as ν and
−ν, lead to exactly the same topological gauge theories, so
we only obtain two distinct gauge theories corresponding to
ν = 1 and 3, in agreement with our previous analysis.

We note in passing that all of the Abelian MTCs in
Kitaev’s 16-fold way [95], which correspond to even-valued
ν in his notation, similarly have a Z2 topological symmetry
that interchanges the “vortex” type quasiparticles, which have
topological twists θa = ei π

8 ν . The corresponding Z2-crossed
extensions and gauged theories of these MTCs with such
a symmetry are very similar to those of D(Z2) (which is
ν = 0) with electric-magnetic duality symmetry. The ones
with Z2 × Z2 fusion rules, i.e., ν = 0, 4, 8, and 12, will
have two distinct Z2-crossed extensions, since they all have
H2

[ρ](Z2,Z2 × Z2) = Z1 and H3(Z2, U(1)) = Z2. The ones
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with Z4 fusion rules, i.e., ν = 2, 6, 10, and 14, will have three
distinct Z2-crossed extensions; there are two fractionalization
classes, since H2

[ρ](Z2,Z4) = Z2, and while H3(Z2, U(1)) =
Z2 would naïvely indicate each of these should have two
corresponding defectification classes, two of them are iden-
tified for one of the fractionalization classes (see discussion in
Sec. XI H 3). The corresponding gauged theories are all given
by Ising(ν1 ) � Ising(ν2 ), where ν1 and ν2 are odd and satisfy
ν1 + ν2 = ν mod 16. In the case of the three-fermion model
SO(8)1, which is ν = 8, the topological symmetry group is
S3, containing three such Z2 symmetries. We examine this
example in detail in Sec. XI M.

J. ZN-toric code D(ZN ) with N > 2 and Z2 symmetry

In this section, we consider the D(ZN ) UMTC, which
corresponds to a ZN discrete gauge theory or quantum double.
Physically it can be realized by the ZN generalization of
Kitaev’s toric code model [22], or as ZN lattice gauge theory.
The anyons are gauge charges (the unit of which is denoted
by e), gauge fluxes (the unit of which is denoted by m) and
their bound states, the dyons. We write the N2 anyon labels as
a = (ae, am) ≡ eae mam where ae, am ∈ {0, 1, . . . , N − 1}. The
fusion rules are given by

(ae, am) × (be, bm) = ([ae + be]N , [am + bm]N ), (651)

that is, they form a ZN × ZN fusion algebra. In a choice of
gauge, the F symbols of the theory are all trivial and the R
symbols are given by

Rab = ei 2π
N aebm . (652)

The topological symmetry group Aut(D(ZN )) is compli-
cated to determine for general N > 2, but it always contains
at least a Z2 × Z2 subgroup that is generated by electric-
magnetic duality symmetry and topological charge conju-
gation symmetry. Electric-magnetic duality symmetry cor-
responds to the autoequivalence map for which (ae, am) �→
(am, ae). Topological charge conjugation symmetry corre-
sponds to the autoequivalence map for which a �→ ā = (N −
am, N − ae). Electric-magnetic duality symmetry can be real-
ized as lattice translations [4,7] in Wen’s plaquette model for-
mulation of the toric code [159]. Alternatively, one can realize
this symmetry of a ZN -toric code in an on-site fashion [160].
Topological charge conjugation symmetry is straightforward
to realize in the ZN -toric code model in an on-site fashion.

For the first few N , we have Aut(D(Z3)) = Z2
2,

Aut(D(Z4)) = Z2
2, and Aut(D(Z5)) = D8 (the dihedral group

containing eight elements).
We consider the case of global symmetry group G = Z2.

When the global symmetry acts either trivially or as topo-
logical charge conjugation, we can choose U1(a, b; a × b) =
1, so it is clear that [O] = 0 and symmetry fractionaliza-
tion is not obstructed. For both of these symmetry actions,
the corresponding symmetry fractionalization is classified
by H2

[ρ](Z2,ZN × ZN ) = Z1 for N odd and H2
[ρ](Z2,ZN ×

ZN ) = Z2 × Z2 for N even, which follows from computations
similar to those of Sec. XI F.

When the global G = Z2 symmetry acts as electric-
magnetic duality, we can choose U1(a, b; a × b) = ei 2π

N aebm

and βa(1, 1) = θa, from which it follows that [O] = 0 and

symmetry fractionalization is not obstructed. In this case, we
have H2

[ρ](Z2,ZN × ZN ) = Z1 for any N , since the cocycle
condition reduces to 1w(1, 1) = w(1, 1), which is satisfied iff
w(1, 1) = (w,w) and coboundaries can take the same form
dz(1, 1) = (w,w) by taking z(1) = (w, 0).

Since H3(Z2, U(1)) = Z2, we expect to find two defec-
tification classes of G-crossed extensions for a given frac-
tionalization class. It is significantly easier to solve for the
G-crossed extensions when N is odd, than when N even, so
we will only do so for N odd here.

N odd

In the case of N odd, the problem simplifies because
the C0 MTC can be written as D(ZN ) = Z(1)

N � Z(−1)
N . More

precisely, writing the topological charges as

a = (ae, am) = ˜(a+, a−), (653)

where a± ∈ Z(±1)
N , respectively, we have the relation between

charge-flux representation and the ± chiralities representation
given by

a± =
[

N + 1

2
(ae ± am)

]
N

, (654)

ae = [a+ + a−]N , (655)

am = [a+ − a−]N . (656)

The basic data can be transformed into the product form by
the vertex basis gauge transformation �ab = ei 2π

N a−b+ , which
leaves the F symbols trivial and gives R̃ab = ei 2π

N (a+b+−a−b− ).
In this form, it is easy to see that Aut(Z(1)

N ) × Aut(Z(−1)
N ) =

Z2k
2 is a subgroup of Aut(D(ZN )) for N odd with prime fac-

torization N = Pr1
1 . . . Prk

k (see Sec. XI F). In the ± chiralities

representation, electric-magnetic duality acts as ˜(a+, a−) �→
˜(a+, a−), i.e., it acts trivially on the Z(1)

N sector and acts as
topological charge conjugation on the Z(−1)

N sector. Topologi-
cal charge conjugation acts as topological charge conjugation

on both sectors, i.e., ˜(a+, a−) �→ ˜(a+, a−).
When the global G symmetry action factorizes into

± sectors, i.e., when ρ : G → Aut(Z(1)
N ) × Aut(Z(−1)

N ), we
write ρ = (ρ+, ρ−). In this case, the symmetry fractionaliza-
tion also factorizes, i.e., H2

[ρ](G,ZN × ZN ) = H2
[ρ+](G,ZN ) ×

H2
[ρ−](G,ZN ) and the G-crossed extensions can be obtained

by gluing G-crossed extensions of the Z(±1)
N theories (see

Appendix C), that is,

D(ZN )×Gρ =
[
Z(1)

N

]×
Gρ+ �

G

[
Z(−1)

N

]×
Gρ- . (657)

For the case of G = Z2 electric-magnetic duality symme-
try, there is exactly one symmetry fractionalization class, i.e.,
H2

[ρ](G,ZN × ZN ) = Z1, and the G-crossed extensions can be
written as

D(ZN )×Ze-m
2

= Z(1)
N �

[
Z(−1)

N

]×
Zcc

2
, (658)

where [Z(−1)
N ]

×
Zcc

2
is one of the two possible G-crossed theories

obtained in Sec. XI G 2. The corresponding gauged theories
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are, thus [
D(ZN )×Ze-m

2

]Z2 = Z(1)
N �

([
Z(−1)

N

]×
Zcc

2

)Z2
. (659)

K. Double-layer systems B �B with Z2 symmetry

In this section, we consider a system composed of two
identical, noninteracting layers of a topological phase de-
scribed by the UMTC B, with global Z2 layer-interchange
symmetry. The topological order of the double-layer system is
described by C = B � B. We write the quasiparticle topolog-
ical charges as �a = (a1, a2), for a j ∈ B. The topological sym-
metry group Aut(C) can generally be complicated, depending
on B, but it always contain a Z2 subgroup corresponding to
layer interchange, i.e., (a1, a2) �→ (a2, a1). If we assume that
the basic data (F symbols and R symbols) are in the product
form, with each layer’s data identical to the other’s, then
we can choose [Uk(�a, �b; �c)]μν = δμν and β�a(g, h) = 1. This
yields O = 0, so the symmetry obstruction always vanishes.

We can also generally prove that symmetry fractionaliza-
tion is trivial, since H2

[ρ](Z2,A×A) = Z1, where A denotes
the subcategory of Abelian anyons in B, as follows. The 2-
cocycle condition 1w(1, 1) = w(1, 1) constrains the cocycles
to take the form w(1, 1) = (a, a), where a ∈ A. However,
these are all 2-coboundaries, since (a, a) = 1(a, 0) × (a, 0).
Thus there is only one symmetry fractionalization class. Since
H3(Z2, U(1)) = Z2, there are two defectification classes.

Quasiparticles are invariant under layer interchange iff they
have the form (a, a) for a ∈ B, so the number of defects is
equal to C1 = |B|. There is a “bare” defect X0 which has the
following fusion rule:

X0 × X0 =
∑
a∈B

(a, ā), (660)

and quantum dimension

dX0 =
√∑

a∈B
d2

a = DB. (661)

The other defects Xa ∈ C1 are labeled by a ∈ B, and related to
the bare defect by

Xa = X0 × (a, 0) = X0 × (0, a), (662)

and, therefore, have dXa = daDB. Given this, the fusion rules
of Xa can be easily deduced to be

Xa × (b, c) = X0 × (a, 0) × (b, 0) × (c, 0)

=
∑

e

Ne
abcXe, (663)

Xa × Xb =
∑

c

(c, c̄) × (a, 0) × (b, 0)

=
∑
c,e

Ne
abc(e, c̄), (664)

where we introduced Ne
abc = dim V e

abc =
∑

z Nz
abNe

zc.
We now consider the gauged theory of a given defectifica-

tion class. For each a ∈ B, the singleton {(a, a)} is an orbit that
yields two distinct topological charges in the gauged theory,
corresponding to the two irreps of Z2 (trivial and alternating),
each with quantum dimensions d2

a . For each pair a, b ∈ B,

such that a �= b, the doublet {(a, b), (b, a)} is an orbit which
yields one topological charge in the gauged theory (since its
stabilizer subgroup is trivial) with quantum dimension 2dadb.
Each defect Xa is a singleton orbit that yields two topological
charges, corresponding to the two irreps of Z2, with quantum
dimensions daDB. Altogether, the gauged theory has |B|(|B|+7)

2
topological charges.

We can also determine the gauged theory’s ground-state
degeneracy on a genus g surface from the defect theory. The
defect theory has 22g different defect sectors, corresponding
to whether there is a Z2 defect branch line along any of
the 2g independent noncontractible cycles of the surface.
The ground-state degeneracy of the gauged theory is ob-
tained by symmetrizing under the Z2 action for each defect
sector and adding the resulting degeneracies together. Since
[Uk(�a, �b; �c)]μν = δμν for the quasiparticle types, we only need
to consider symmetrization of the charge labels, and do not
need to worry about states acquiring additional phases due to
the symmetry action. Let us denote the ground-state degen-
eracy for the defect sector s by Ng(s). Picking a basis for
the sector s, we denote the number of basis states that are
invariant under the Z2 global symmetry action by Ig(s). Then
the contribution to the gauged theory’s ground-state degener-
acy from the sector s is NG

g (s) = Ig(s) + 1
2 [Ng(s) − Ig(s)].

The trivial defect sector s = 0 has basis states labeled by
charges in C0 = B � B and, thus, has ground-state degeneracy
Ng(0) = (NB

g )2, where NB
g is the ground-state degeneracy

of B on a genus g surface and invariant basis state degen-
eracy Ig(0) = NB

g (given by the diagonally labeled states).
As discussed in Section VII B, when G = Z2, all nontrivial
defect sectors can be mapped onto each other using Dehn
twists and, thus, have the same number of ground states and
contribution to the gauge theory’s ground-state degeneracy.
As such, it is sufficient to consider the contribution of one
nontrivial sector s �= 0, e.g., that with a single defect branch
line around a single cycle. This sector has Ng(s) = NB

2g−1
ground-state degeneracy, which can be easily seen in the basis
with topological flux lines label by charges in C0, with one
cycle’s flux line crossing the (layer interchange) Z2 branch
line. The number of invariant basis state is given by Ig(s) =
NB

g (given by the diagonally labeled states). It follows that
the gauged theory’s ground-state degeneracy NG

g on a genus
g surface is given by

NG
g =

∑
s

NG
g (s)

= 1

2

[
(22g − 1)NB

2g−1 +
(
NB

g

)2 + 22gNB
g

]
. (665)

This matches the ground-state degeneracy obtained from
Eq. (392), using the gauged theory’s quantum dimensions.

An interesting example of a layer interchange symmetric
double layer system is given by letting B = Fib, the MTC
of Fibonnaci anyons. The quantum dimensions of the gauged
theory agree exactly with the SU(2)8 theory. One can also
check that, starting from SU(2)8 and condensing the highest
spin boson ( j = 4) results in Fib � Fib [75], so this is, indeed,
one of the two gauged theories. The other gauged theory
(corresponding to the other defectification class) is the closely
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related Jones-Kauffman theory at level 8 (JK8), see, e.g.,
Ref. [161] for the basic data.

As another example, consider the case where B = D(H ),
where B is the quantum double of a discrete group H . In this
case, the gauged theory is (B � B)/Z2 = D((H × H ) � Z2).
For example, when H = Z2, B is the Z2 toric code phase, and
gauging the Z2 symmetry of two layers of toric code gives
the quantum double of (Z2 × Z2) � Z2, which is the dihedral
group of order 8, D8. This theory has, for example, 22 states
on a torus.

L. S3-gauge theory D(S3) with Z2 symmetry

In this section, we consider the D(S3) UMTC, which corre-
sponds to a S3 discrete gauge theory or quantum double. Phys-
ically, it can be realized by the S3 generalization of Kitaev’s
toric code model [22], or as S3 lattice gauge theory. First,
we briefly review the anyon model of D(S3). The topological
charges are labeled by a pair ([a], πa) where [a] is the conju-
gacy class of a ∈ S3 and πa is an irreducible representation of
the centralizer of a in S3. There are three conjugacy classes
in S3: [e] = {e}, [(12)] = {(12), (23), (13)}, and [(123)] =
{(123), (132)}. For [e], the centralizer of the identity element
e is simply S3, which has three irreducible representations:
trivial, alternating, and two-dimensional. The corresponding
anyon labels are denoted by I, B,C, where I is the vacuum.
For [(12)], we pick the representative (12), whose centralizer
is Z2, so we have two anyon labels D and E corresponding
to the trivial and alternating irreps of Z2, respectively. For
[(123)], we pick the representative (123), whose centralizer is
Z3, so we have three anyon labels F , G, and H , corresponding
to the trivial and two nontrivial (corresponding to third roots
of unity) irreps of Z3, respectively. Altogether, we have eight
topological charges. For a complete list of the fusion rules,
F symbols, R symbols, and the modular data, we refer the
readers to Ref. [162] (we note that the basic data in Ref. [162]
actually correspond to the topological charges D and E carry-
ing the alternating and trivial irreps of Z2, respectively).

The topological symmetry group is Aut(D(S3)) = Z2,
where the nontrivial topological symmetry permutes the topo-
logical charges C and F . (All other topological charges have
distinct fusion, quantum dimensions, and/or twists, and so
cannot be permuted.) One can think of this nontrivial symme-
try as a kind of “electric-magnetic duality,” since C = ([e], 2)
is a pure charge (irrep) and F = ([(123)], 1) is a pure flux
(conjugacy class). Since I and B are the only two Abelian
anyons, A = Z2.

We consider a G = Z2 global symmetry. The symmetry
action can either act trivially or as electric-magnetic duality.
Since the symmetry action cannot permute I or B, both pos-
sible symmetry actions yield H2

[ρ](Z2,Z2) = Z2. Thus there
are two symmetry fractionalization classes, corresponding
to w(1, 1) = I or B, respectively. Since H3(Z2, U(1)) = Z2,
there are two defectification classes (for each fractionalization
class). The G-crossed extensions for trivial symmetry action
can be obtained from the results of Sec. X, so we only focus
on the case of Z2 electric-magnetic duality symmetry action.
In this case, there will be 6 distinct types of defects, since
|C1| = |C1

0 | = 6.

We start by considering the fusion rules of the symmetry
defects. Naïvely, one might guess the following fusion rules
for one of the symmetry defects σ ∈ C1: σ × σ = I + G +
H . However, this is incorrect. To see the inconsistency, let
us consider the fusion C ×C × σ × σ . Consistency between
associativity and the G-crossed action requires that

C ×C × σ × σ = C × F × σ × σ , (666)

since C × σ = σ ×1C = σ × F . Using the naïve guess, the
left-hand side would equal

(I+ B+C) × (I + G + H )= I + B +C + 2F + 3G + 3H,

(667)

while the right-hand side would equal

(G + H ) × (I + G + H )=2(I + B +C + F + G + H ).

(668)

This proves that the naïve guess does not yield a consistent
fusion theory. Indeed, we can check that σ × σ = I + G and
σ × σ = I + H both satisfy Eq. (666), so we postulate that
both of these fusion rules are realized by different types of
defects in C1.

Rather than continuing to derive all the data from consis-
tency, we use a short-cut by noticing that D(S3) is obtained
from either JK4 � JK4 and SU(2)4 � SU(2)4 by condensing
the (4, 4) boson in these theories [here, we use the integer
label convention; see, e.g., Ref. [161] for the basic data of
JK4 and SU(2)4]. Indeed, these are two of the four possible
gauged theories for this example. We notice that these two
gauged theories correspond to different defectification classes
of G-crossed theories, as the Frobenius-Schur indicators of
JK4 � JK4 are κ(aL,aR ) = 1, while those of SU(2)4 � SU(2)4

are κ(aL,aR ) = (−1)aL+aR . These gauged theories correspond to
one of the fractionalization classes, which may be associated
with w(1, 1) = I , and there will be two more corresponding to
the other fractionalization class, associated with w(1, 1) = B.

Condensing the (4, 4) anyon in JK4 � JK4 or SU(2)4 �
SU(2)4, we recognize the mapping of topological charges to
the G-crossed theory as giving the eight quasiparticle charges

(0, 0) ∼ (4, 4) �→ I, (4, 0) ∼ (0, 4) �→ B,

(1, 1) ∼ (3, 3) �→ D, (3, 1) ∼ (1, 3) �→ E ,

(2, 0) ∼ (2, 4) �→ G, (0, 2) ∼ (4, 2) �→ H,

(2, 2) �→ C and F, (669)

and six defect charges

(1, 0) ∼ (3, 4) �→ σL, (3, 0) ∼ (1, 4) �→ σ ′
L,

(0, 1) ∼ (4, 3) �→ σR, (0, 3) ∼ (4, 1) �→ σ ′
R,

(1, 2) ∼ (3, 2) �→ τL, (2, 1) ∼ (2, 3) �→ τR.

(670)

It is then straightforward to determine various properties, such
as fusion rules, quantum dimensions, and twist factors, for
the G-crossed theories from the data of gauged theories. For
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example, we find the fusion rules

σL × σL = σ ′
L × σ ′

L = I + G, (671)

σR × σR = σ ′
R × σ ′

R = I + H, (672)

τL × τL = I + B +C + F + 2G + H, (673)

τR × τR = I + B +C + F + G + 2H, (674)

where the first two lines were previously discussed. The
quantum dimensions of the defects are dσL = dσ ′

L
= dσR =

dσ ′
R
= √

3 and dτL = dτR = 2
√

3.
The fractionalization class associated with w(1, 1) = B

will yield G-crossed extensions with the same number of
defects and quantum dimensions, but whose defects have
different fusion rules. For example, we instead find

σL × σL = σ ′
L × σ ′

L = B + G, (675)

σR × σR = σ ′
R × σ ′

R = B + H, (676)

τL × τL = I + B +C + F + 2G + H, (677)

τR × τR = I + B +C + F + G + 2H, (678)

and

σL × σ ′
L = I + G, (679)

σR × σ ′
R = I + H. (680)

We emphasize that, since σL = σ ′
L and σR = σ ′

R for these
two G-crossed extensions, they are necessarily distinct (even
when allowing for relabeling of topological charges) from
the previous two extensions, whose topological charges are
all self-dual. These G-crossed extensions will similarly yield
gauged theories that have the same number of quasiparticles
and quantum dimensions as the other two, but with different
fusion rules. To the best of our knowledge, these rank 25
MTCs were not previously known.

In order to further verify the relation to the gauged theories
while providing an example exhibiting nontrivial features of
the ground-state degeneracy calculations, we determine the
gauged theories’ ground-state degeneracy from the defect the-
ory, for surfaces of genus g = 1 and 2. We use similar methods
as in Sec. XI K, but must also allow for nontrivial phase
factors due to the symmetry action. Again, we label the defect
sectors by s, with s = 0 corresponding to the sector with no
defect branch lines, and we denote the ground-state degen-
eracy for each defect sector by Ng(s) and its contribution to
the gauged theory’s ground-state degeneracy by NG

g (s). The
s �= 0 sectors for G = Z2 all contribute the same ground-state
degeneracy, since they can all be mapped to each other by
Dehn twists, so it suffices to compute the contribution from
one nontrivial sector, e.g., one with a single defect branch line
around a single nontrivial cycle.

For the torus (genus g = 1), D(S3) has ground-state de-
generacy N1(0) = 8, but the subspace that is invariant under
the Z2 symmetry transformation is reduced to NG

1 (0) = 7,
by the symmetrization of the basis states labeled by C and
F . There are three nontrivial defect sectors. Considering a

sector s �= 0 with a branch line around the m cycle and
quasiparticle flux lines around the l cycle, we see that the
ground-state degeneracy is equal to the number of Z2 invariant
anyons, and they are all invariant under the Z2 action, so
NG

1 (s) = N1(s) = |C1
0 | = 6. Thus we obtain the ground-state

degeneracy for the gauged theories on the torus

NG
1 =

∑
s

NG
1 (s) = 7 + 3 × 6 = 25. (681)

This agrees with the torus ground-state degeneracy of JK4 �
JK4 and SU(2)4 � SU(2)4, as expected.

For the genus g = 2 surface, there are 16 defect sectors,
corresponding to the possible configurations of nontrivial Z2

branch lines around nontrivial cycles of the surface. Let us
choose a basis for the trivial defect sector (s = 0) that is
specified diagrammatically (as in Sec. VII C) by

|Φ(0)
a1,a2;z

⊗ ⊗a1 a2

z z̄
,

(682)

where a1, a2, z ∈ C0. This state space has ground-state degen-
eracy

N2(0) =
∑

a1,a2,z

Nz
a1a1

Nz̄
a2a2

= 116. (683)

The number of basis states that are mapped to themselves by
the Z2 action (i.e., the states with no labels equal to C or F ) is
given by

I2(0) =
∑

a1,a2,z �=C,F

Nz
a1a1

Nz̄
a2a2

= 58. (684)

However, the Z2 symmetry acts on these states (with
a1, a2, z �= C, F ) as R1|�(0)

a1,a2;z〉 = ±|�(0)
a1,a2;z〉, so not all of

them are necessarily invariant under the symmetry. We denote
the number of such basis states that transform with a −1
factor by A2(0). It turns out that A2(0) = 2, where the two
corresponding basis states are |�(0)

G,H ;B〉 and |�(0)
H,G;B〉. To see

this, we first notice that the Z2 symmetry action is given in
terms of the topological symmetry action by

R1
∣∣�(0)

a1,a2;z

〉
= U1(a1, a1; z)U1(a2, a2; z̄)U1(z, z̄; I )

U1(a1, a1; I )U1(a2, a2; I )

∣∣�(0)
a1,a2;z

〉
. (685)

In order to compute the U1 symbols, we use the F sym-
bols and R symbols given in Ref. [162], and the constraints
imposed by their invariance, as in Eqs. (87) and (88). Invari-
ance of the R symbols indicates that U1(a, b; c) = U1(b, a; c).
Invariance of the F symbols further constrains the U1 symbols
to yield the claimed properties for the basis states. Let us
consider the transformation of |�G,H ;B〉 in more detail; the
relevant F symbols are

F GGH
H = 1√

2

[
1 1
1 −1

]
, (686)

where the rows of the matrix are indexed by I, B and the
columns are indexed by C, F , and

F BHH
I = F BHH

B = 1. (687)
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Invariance of these F symbol under the Z2 symmetry action
gives

U1(G, G; I )

U1(G, H ;C)U1(G,C; H )
= 1, (688)

U1(G, G; I )

U (G, H ; F )U (G, F ; H )
= 1, (689)

U1(G, G; B)U1(B, H ; H )

U1(G, H ;C)U1(G,C; H )
= −1, (690)

U1(G, G; B)U1(B, H ; H )

U1(G, H ; F )U1(G, F ; H )
= −1, (691)

U1(B, H ; H )U1(H, H ; I )

U1(H, H ; B)U1(B, B; I )
= 1, (692)

U1(B, H ; H )U1(H, H ; B)

U1(H, H ; I )
= 1, (693)

from which we conclude that

U1(G, G; B)U1(H, H ; B)U1(B, B; I )

U1(G, G; I )U1(H, H ; I )
= −1, (694)

and R1|�(0)
G,H ;B〉 = −|�(0)

G,H ;B〉. A similar calculation yields

R1|�(0)
H,G;B〉 = −|�(0)

H,G;B〉.
The basis states that include labels equal to C or F are

mapped to each other in pairs and can be symmetrized with
respect to the Z2 symmetry action. Putting this all together,
we find the contribution from the s = 0 sector to the gauged
theories’ ground-state degeneracy to be

NG
2 (0) = 1

2 [N2(0) − I2(0)] + I2(0) −A2(0) = 85. (695)

There are 15 nontrivial defect sectors (s �= 0) for the genus
g = 2 surface. We consider the sector (s = 1) with a single
defect branch line around a single cycle, for which we can
write the basis states as

|Φ(1)
a1,a2;z

⊗ ⊗a1 a2

z z̄

1

,
(696)

where a1, a2, z ∈ C0. Each nontrivial defect sector has ground-
state degeneracy

N2(s) =
∑

a1,a2,z

Nz
a1a1

Nz̄
a2

1a2
= 98. (697)

Similar to the trivial sector, the number of the s = 1 basis
states that are mapped to themselves by the Z2 action (i.e.,
the states with no labels equal to C or F ) is given by

I2(1) =
∑

a1,a2,z �=C,F

Nz
a1a1

Nz̄
a2a2

= 58 (698)

and the number of these states that transform as R1|�(1)
a1,a2;z〉 =

−|�(1)
a1,a2;z〉 is A2(1) = 2, where the two corresponding basis

states are |�(1)
G,H ;B〉 and |�(1)

H,G;B〉. The basis states that include
labels equal to C or F are mapped to each other in pairs and
can be symmetrized with respect to the Z2 symmetry action.
Thus we find the contribution from each s �= 0 sector to the

gauged theories’ ground-state degeneracy to be

NG
2 (s) = 1

2 [N2(1) − I2(1)] + I2(1) −A2(1) = 76. (699)

Finally, summing the contributions from all defect sectors,
we find the ground-state degeneracy of the gauged theories on
genus g = 2 surfaces to be

NG
2 =

∑
s

NG
2 (s) = 85 + 15 × 76 = 1225. (700)

This agrees with the genus g = 2 ground-state degeneracy of
JK4 � JK4 and SU(2)4 � SU(2)4, as expected.

M. Three-fermion model SO(8)1 with S3 symmetry

In this section, we consider the three-fermion model
SO(8)1 with global symmetry G = S3 that is non-Abelian.
The MTC describing the three-fermion model is Abelian,
with three fermions that have nontrivial braiding with each
other, and chiral central charge c− = 4 mod 8. Recently,
this topological phase has been proposed to exist at the
surface of a bosonic 3D time-reversal-invariant topological
superconductor [86,163]. We also notice that this theory can
arise in the following physical way: consider three identical

layers of semion theories (with the same chiralities) Z
( 1

2 )
2 �

Z
( 1

2 )
2 � Z

( 1
2 )

2 , e.g., three layers of ν = 1
2 bosonic Laughlin

states. Writing the semion charge of the jth layer as s j , we
identify a subtheory of the three-layer theory that contains
the charges {I, s1s2, s2s3, s1s3} as the SO(8)1 theory with
c− = 4. In this way, the three-layer theory can be written

as [Z
( 1

2 )
2 ]3 = SO(8)1 � Z

(− 1
2 )

2 , where the Z
(− 1

2 )
2 semion theory

(which has c− = −1) is associated with {I, s1s2s3}. The S3

symmetry in this system is just the permutation symmetry of
the three layers, which clearly only acts nontrivially on the
three-fermion sector. In fact, this type of layer permutation
symmetry and the associated defects have been considered in
Ref. [12].

We denote the three fermions by ψ j for j = 1, 2, 3. This
MTC is closely related to that of the Z2 toric code in that they
both have a Z2 × Z2 fusion algebra and all F symbols are
trivial. The nontrivial R symbols of the three-fermion model
(for a certain choice of gauge) are given by

Rψ1ψ1
I = Rψ2ψ2

I = Rψ3ψ3
I = −1, (701)

Rψ1ψ2
ψ3

= Rψ2ψ3
ψ1

= Rψ3ψ1
ψ2

= −1, (702)

and all other allowed R symbols equal 1.
Arbitrary permutations of the three fermion labels leaves

the MTC invariant (up to gauge transformations), so the topo-
logical symmetry group is Aut(SO(8)1) = S3. We represent S3

as the permutation group of three objects, whose six elements
are denoted by {1, (12), (23), (13), (123), (132)}.

We let the global symmetry be described by G = S3 with
the action on topological charge labels corresponding to the
matching permutation of the three fermions. For the pairwise
permutations, the Ug symbols for the symmetry action on the
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C0 sector can be chosen to be given by

U(12)(ψ1, ψ2; ψ3) = U(12)(ψ2, ψ1; ψ3)−1 = i,

U(12)(ψ2, ψ3; ψ1) = U(12)(ψ3, ψ2; ψ1)−1 = −i,

U(12)(ψ3, ψ1; ψ2) = U(12)(ψ1, ψ3; ψ2)−1 = −i, (703)

U(12)(ψ1, ψ1; I ) = U(12)(ψ2, ψ2; I ) = −1,

U(12)(ψ3, ψ3; I ) = 1,

U(13)(ψ1, ψ2; ψ3) = U(13)(ψ2, ψ1; ψ3)−1 = −i,

U(13)(ψ2, ψ3; ψ1) = U(13)(ψ3, ψ2; ψ1)−1 = −i,

U(13)(ψ3, ψ1; ψ2) = U(13)(ψ1, ψ3; ψ2)−1 = i, (704)

U(13)(ψ1, ψ1; I ) = U(13)(ψ3, ψ3; I ) = −1,

U(13)(ψ2, ψ2; I ) = 1,

U(23)(ψ1, ψ2; ψ3) = U(23)(ψ2, ψ1; ψ3)−1 = −i,

U(23)(ψ2, ψ3; ψ1) = U(23)(ψ3, ψ2; ψ1)−1 = i,

U(23)(ψ3, ψ1; ψ2) = U(23)(ψ1, ψ3; ψ2)−1 = −i, (705)

U(23)(ψ2, ψ2; I ) = U(23)(ψ3, ψ3; I ) = −1,

U(23)(ψ1, ψ1; I ) = 1.

For the cyclic permutations of all three objects, the symme-
try action leaves the R symbols unchanged, so we can choose
U(123)(a, b; a × b) = U(132)(a, b; a × b) = 1 for all a, b ∈ C0.

One can calculate H2
[ρ](S3,Z2 × Z2) = Z1 using

Ref. [164], so there is exactly one fractionalization
class. Since H4(S3, U(1)) = Z1, there is no obstruction
to defectification. H3(S3, U(1)) = Z6, so we expect six
defectification classes.

Since S3 = Z3 � Z2, we begin our preparatory analysis by
considering the two subgroups.

1. Z2 symmetry

We consider a Z2 subgroup of the symmetry. Without loss
of generality, we consider the Z2 action ρ(12), which inter-
changes ψ1 and ψ2. The analysis of the G-crossed extensions
is very similar to that of the toric code with electric-magnetic
duality symmetry. There is exactly one symmetry fractional-
ization class, since H2

[ρ](Z2,Z2 × Z2) = Z1, and two defecti-
fication classes, since H3(Z2, U(1)) = Z2.

There are two (12) defect types, since there are two quasi-
particle types that are invariant under (12). We label these as
C(12) = {z+, z−}. The defect fusion rules are given by

z∓ = ψ1 × z± = ψ2 × z±, (706)

z± = ψ3 × z±, (707)

z± × z± = I + ψ3, (708)

z± × z∓ = ψ1 + ψ2. (709)

The (12)-symmetry action on the (12) defects is necessarily
trivial, i.e., ρ(12)(z±) = z±. The fusion rules indicate that the
quantum dimensions of the defects are dzs = √

2.

While considering the C(12) sector, we write the quasiparti-
cle topological charges as a1 = (a(1), a(2) ), so that I = (0, 0),
ψ1 = (1, 0), ψ2 = (0, 1), and ψ3 = (1, 1). The nontrivial F
symbols of the extended category are given (in a choice of
gauge) by

F a1b(12)c1

d(12)
= (−1)a(1)c(1)

, (710)

F a(12)b1c(12)

d1
= (−1)b(1)d (1)

, (711)[
F a(12)b(12)c(12)

d(12)

]
e1 f1

= κz√
2

(−1)e(1) f (1)
, (712)

where e1 and f1 take values in either {I, ψ3} or {ψ1, ψ2}, de-
pending on the values of a(12), b(12), and c(12). The remaining
F symbols allowed by fusion are equal to 1.

For a convenient choice of gauge (and after removing
charge relabeling redundancy), the R symbols are given by

Rψ1z± = ±i, Rz±ψ1 = i, (713)

Rψ2z± = ∓i, Rz±ψ2 = ±1, (714)

Rψ3z± = i, Rz±ψ3 = ±i, (715)

Rz±z±
I = ±Rz±z∓

ψ2
= ±(√κze

i π
8
)±1

, (716)

Rz±z±
ψ3

= ±Rz±z∓
ψ3

= ±(√κze
i π

8
)∓3

, (717)

where we let
√

κz = 1 and i, for κz = 1 and −1, respectively.
The topological twist factors of the defects are

θz± = ±(√κze
−i π

8
)±1

. (718)

The η symbols are all trivial, i.e.,

ηak (g, h) = 1, (719)

and the Uk symbols are given by

U(12)(a, b; a × b) =
√

θa
√

θb√
θa×b

(−1)a(2)b(1)
, (720)

U(12)(z
±, ψ1; z∓) = U(12)(ψ2, z∓; z±)

= U(12)(z
±, z∓; ψ2) = iκze

±i π
4 , (721)

U(12)(z
±, ψ2; z∓) = U(12)(ψ1, z∓; z±)

= U(12)(z
±, z∓; ψ1) = −iκze

∓i π
4 , (722)

U(12)(z
±, ψ3; z±) = U(12)(ψ3, z±; z±)

= U(12)(z
±, z±; ψ3) = ±1, (723)

U(12)(z
±, z±; I ) = 1, (724)

where
√

θψ j = i.
Gauging the Z2 symmetry, we obtain the gauged theories

Ising(1) � Ising(7) and Ising(3) � Ising(5) for κz = ±1, respec-
tively.

The structure of the other two Z2 symmetry subgroup
sectors, whose charges we label as C(23) = {x+, x−} and
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TABLE II. F symbols that involve fusion multiplicities for the Z3 symmetry defects of the three-fermion model. The indices μ and ν label
the (twofold degenerate) fusion vertex basis states. The μ, ν matrix element of each entry gives the value of the corresponding F symbol,
where σ j for j = 1, 2, 3 are the two-dimensional Pauli matrices. The phase α = ei 2π

3 k is a third root of unity that differentiates the three distinct
defectification classes.

a I ψ1 ψ2 ψ3

[F aww
w ](w,0,μ),(w,ν,0) 1 −iσ1 −iσ3 −iσ2

[Fwaw
w ](w,0,μ),(w,0,ν ) 1 iσ2 iσ1 iσ3

[Fwwa
w ](w,μ,0),(w,0,ν ) 1 iσ3 iσ2 iσ1

[F aw w
w ](w,0,μ),(w,ν,0) 1 −iσ2 −iσ1 −iσ3

[Fwaw
w ](w,0,μ),(w,0,ν ) 1 −iσ1 −iσ3 −iσ2

[Fw wa
w ](w,μ,0),(w,0,ν ) 1 iσ3 iσ2 iσ1

[Fwww
a ](w,μ,0),(w,ν,0) −αe

−i π

3
√

3
(1,1,1)·σ

αe
i π

3
√

3
(1,−1,1)·σ

αe
i π

3
√

3
(−1,1,1)·σ

αe
i π

3
√

3
(1,1,−1)·σ

[Fwww
a ](w,μ,0),(w,ν,0) −αe

i π

3
√

3
(1,1,1)·σ −αe

i π

3
√

3
(1,−1,−1)·σ −αe

i π

3
√

3
(−1,−1,1)·σ −αe

i π

3
√

3
(−1,1,−1)·σ

[Fwww
w ](w,μ,ν ),(a,0,0)

1√
2
e

i π

3
√

3
(−1,−1,1)·σ − 1√

2
e

i π

3
√

3
(−1,1,−1)·σ − 1√

2
e

i π

3
√

3
(1,1,1)·σ 1√

2
e

i π

3
√

3
(1,−1,−1)·σ

[Fw ww
w ](w,μ,ν ),(a,0,0)

1√
2
e

i π

3
√

3
(−1,1,1)·σ 1√

2
e

i π

3
√

3
(1,1,−1)·σ − 1√

2
e
−i π

3
√

3
(1,1,1)·σ − 1√

2
e

i π

3
√

3
(1,−1,1)·σ

[Fwww
w ](a,0,0),(w,ν,μ) − iα∗√

2
σ2 − α∗√

2
1 iα∗√

2
σ3 − iα∗√

2
σ1

[Fww w
w ](a,0,0),(w,ν,μ)

iα∗√
2
σ2 − iα∗√

2
σ3

iα∗√
2
σ1

α∗√
2
1

C(13) = {y+, y−}, are similar and may be obtained from the
data given above by cyclically permuting all j = 1, 2, 3 la-
bels.

2. Z3 symmetry

We consider the Z3 subgroup of the symmetry group,
which acts as cyclic permutation of the three fermions. That
is ρ(123)(ψ j ) = (123)ψ j = ψ[ j+1]3 and ρ(132)(ψ j ) = (132)ψ j =
ψ[ j−1]3 . There is exactly one symmetry fractionalization
class, since H2

[ρ](Z3,Z2 × Z2) = Z1, and three defectification
classes, since H3(Z3, U(1)) = Z3. The corresponding defect
sectors each have one defect type (since I is the only fixed
charge under these symmetries) and they are each others’
charge conjugates, so we write them as C(123) = {w} and
C(132) = {w̄}. Their fusion rules are given by

w × ψ j = w, (725)

w × ψ j = w, (726)

w × w = I + ψ1 + ψ2 + ψ3, (727)

w × w = 2w, (728)

w × w = 2w. (729)

We note that the first two lines follow from the fact that there
is only one defect types in each sector, and they imply the
defects’ quantum dimensions are dw = dw = 2. This further
implies the third line, i.e., that the fusion rules necessarily
include fusion multiplicities. Physically, the fusion multiplic-
ities can be understood from the existence of three mutually
anticommuting Wilson net operators around two w defects.
Alternatively, the need for degeneracy can be understood in
terms of operators that transfer topological charge ψ j between
the two w defects.

The F symbols are obtained by solving the pentagon equa-
tions (and making gauge choices) [17,165]. The F symbols
that do not involve fusion multiplicities are given by

F abw
w = χ (b, (132)a), (730)

Fwab
w = χ (a, (123)b), (731)

F awb
w = χ (b, (123)a)χ (a, (132)b), (732)

Fwwa
b = χ (a, (132)b), (733)

F aww
b = χ (a × b, (132)a), (734)

Fwaw
b = χ (b, (132)a)χ (a, (123)[a × b]), (735)[

Fwww
w

]
ab

= 1
2χ (b, (123)[a × b])χ (a, (132)b), (736)

where χ is a bicharacter on the Z2 × Z2 fusion algebra.
From the above equations, we can obtain the corresponding
F symbols with w and w interchanged by interchanging the
group elements (123) and (132) on the right-hand sides.

The bicharacter χ is fixed by the G-crossed heptagon
equations to be

χ (a, b) = Rba. (737)

We list the rest of the nontrivial F symbols, which involve
fusion multiplicities, in Table II. The phase

α = ei 2π
3 k (738)

for k = 0, 1, 2 is a third root of unity that distinguishes
the three defectification classes, and which is determined
by a choice in H3(Z3, U(1)) = Z3. We note that the third-
order Frobenius-Schur indicators [166] of w, which are
gauge invariant quantities associated with the fusion space
V www

0
∼= V ww

w ⊗V ww
0 , are found to be ν3,1(w) = −α and

ν3,2(w) = −α2.
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We choose a gauge in which

ηak (g, h) = 1 (739)

for all ak and g, h, k ∈ Z3. Solving the G-crossed heptagon
equations then yields the R symbols:

Rwψ j = Rwψ j = −1, (740)

Rww
w = θwe−i π

3
√

3
(1,1,1)·σ

, (741)

Rw w
w = θwei π

3
√

3
(1,1,1)·σ

, (742)

Rww
I = Rww

ψ j
= θ−1

w , (743)

Rww
I = θ−1

w , (744)

Rww
ψ j

= −θ−1
w , (745)

where θw and θw are the topological twist factors of the w

and w defects, respectively. These twist factors satisfy θ3
w =

θ3
w = α∗, but are only determined up to third roots of unity,

as expected. Physically, this uncertainty can be attributed to
possible Z3 charges attached to the defects.

Notice that the G-crossed heptagon equations cannot com-
pletely fix R

ψ jw
w and R

ψ jw

w , but subjects them to the following
conditions:

R
ψ jw
w R

ψ[ j−1]3 w

w = 1, (746)

Rψ1w
w Rψ2w

w Rψ3w
w = 1. (747)

We also find the Uk symbols

U(123)(w,w; w) = − θw

αθw

e−i π

3
√

3
(1,1,1)·σ

, (748)

U(123)(w,w; I ) = θw

θw

. (749)

In other words, the Z3 symmetry action on the V ww
w space is

nontrivial.
We now consider the gauged theory (for the Z3 symme-

try). We take a gauge choice for the Z3-crossed theory in
which θw = θw. The Z3 orbits of Z3-crossed theory are all
singletons, except for [ψ j] = {ψ1, ψ2, ψ3}. The singletons I ,
w, and w each yield three topological charges in the gauged
theory, corresponding to pairing them with an irrep of Z3,
their stabilizer subgroup. We label these as In ≡ (I, n), Wn =
(w, n), and Wn = (w, [−n]3), where n = 0, 1, 2. The quantum
dimensions of these topological charges are dIn = 1 and dWn =
2. The orbit [ψ j] has stabilizer subgroup Z1, so it becomes a
single topological charge �, which has quantum dimension
d� = 3. Thus the gauged theory has a total of ten topological
charge types. The fusion rules between non-Abelian topolog-
ical charges can be determined using Eq. (425) to be

In × Im = I[n+m]3 , (750)

In ×Wm = W[n+m]3 , (751)

In ×Wm = W[m−n]3 , (752)

In × � = �, (753)

Wn ×Wm = W[k−n−m−1]3 +W[k−n−m+1]3 , (754)

Wn ×Wm = I[n−m]3 + �, (755)

Wn × � = W0 +W1 +W2, (756)

Wn ×Wm = W[k−n−m−1]3 +W[k−n−m+1]3 , (757)

Wn × � = W0 +W1 +W2, (758)

� × � = I0 + I1 + I2 + 2�. (759)

Notice that the fusion of Wn and Wm has two channels,
which corresponds to the defect fusion space V ww

w carrying
a nontrivial reducible two-dimensional representation of Z3,
as specified by Eq. (748).

The fusion category obtained here is identified as that
of SU(3)3 for k = ±1, e.g., for k = 1 via the mapping of
topological charges: I0 �→ 1, I1 �→ 10, W0 �→ 3, W1 �→ 15,
W2 �→ 6, � �→ 8.

3. S3 symmetry

We now consider the full G = S3 extension, which has
six defect sectors Cg, where g ∈ S3. From the analysis in the
previous sections, we can write down all fusion rules between
charges within a sector, so we only need to determine the
fusion between different sectors.

The fusion rules between the (12), (23), and (13) sectors
are easily determined to be

xr × ys = w, ys × xr = w, (760)

yr × zs = w, zs × yr = w, (761)

zr × xs = w, xs × zr = w, (762)

where r, s = ±.
The fusion rules between the ( jk) sectors and the ( jkl )

sectors is straightforward to determine to be

xr × w = w × xr = y+ + y−, (763)

xr × w = w × xr = z+ + z−, (764)

yr × w = w × yr = z+ + z−, (765)

yr × w = w × yr = x+ + x−, (766)

zr × w = w × zr = x+ + x−, (767)

zr × w = w × zr = y+ + y−, (768)

for r = ±. We note that naïve guesses for fusion rules such
as x+ × w = 2y+ can be ruled out by fusing both sides of the
equation with the fermions, e.g., ψ1 × x+ × w = x+ × w and
ψ1 × y+ = y−, which would lead to an inconsistency.

Additionally, we need to understand the symmetry actions
on the defect sectors. In general, g-action takes Ch to Cghg−1 .
Since C(123) and C(132) each contain one defect, the nontrivial
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Z2 action is obviously given by

ρ( jk)(w) = w, ρ( jk)(w) = w. (769)

The Z3 symmetry has nontrivial actions on the C( jk) sectors.
Since each of these sectors contains two defects, we need to
determine the specific action of (123). Let us consider the
action on C(12). The two defects z± are distinguished by the
eigenvalue of a ψ3-Wilson loop around the defect. The action
of (123) maps C(12) to C(23) and ψ3 is mapped to ψ1. As such,
it is natural to associate defects with the same eigenvalues of
the corresponding invariant Wilson loops, that is,

ρ(123)(z
+) = x+, ρ(123)(z

−) = x−. (770)

The action of (123) on the other two sectors can be obtained
similarly, as can the action of (132) on these sectors.

4. Sequentially gauging the S3 symmetry

We are now ready to gauge the full S3 symmetry. Our
strategy is to break the S3 symmetry into the Z3 normal sub-
group and the Z2 subgroup, and then gauge them sequentially
[167]. In Sec. XI M 2, we found that gauging the Z3 symmetry
gives SU(3)3-type theories, and we just need to gauge the
remaining Z2 symmetry of these theories. The action of the Z2

symmetry on the quasiparticles of these Z3-gauged theories
can be identified as topological charge conjugation, that is

1In = I[−n]3 ,
1Wn = Wn,

1� = �. (771)

Let us consider the Z2 symmetry defects of the Z3-gauged
theory. Since there are two topological charges, I and �, that
are fixed under the symmetry action, there are two defect
types, which we denote as �±. We first state the conjectured
fusion rules:

In × �± = �±, (772)

Wn × �± = �+ + �−, (773)

� × �+ = �+ + 2�−, (774)

� × �− = 2�+ + �−, (775)

�± × �± = � +
∑

n=0,1,2

(In +Wn +Wn), (776)

�± × �∓ = 2� +
∑

n=0,1,2

(Wn +Wn). (777)

From these fusion rules, the quantum dimensions of the
defects are determined to be d�± = 3

√
2.

In order to justify these fusion rules, it is useful to revert to
the S3-crossed extended category. The Z2-crossed extensions
of Z3-gauged theories should be equivalent to the S3-crossed
theories with its Z3 subgroup gauged. Armed with this per-
spective, we immediately see that the Z2 defects of the Z3-
gauged theories are the equivariantized orbits of the Z2 defects
in C( jk). Schematically, we can write

�± � x± + y± + z±. (778)

To actually use the general formula Eq. (425), we will have to
solve the entire extended category to obtain the Uk symbols.

TABLE III. Topological charges, quantum dimensions, and twist
factors of the gauged theory (C×

S3
)S3 , where C = SO(8)1 is the three-

fermion model. Here, ω = ei 2π
3 , α = ωk , and

√
κ� = 1 or i.

topological charge a da θa

(I0,+) 1 1
(I0,−) 1 1
[I1] 2 1
(�,+) 3 −1
(�,−) 3 −1
[W0] 4 α−1/3

[W1] 4 ωα−1/3

[W2] 4 ω2α−1/3

(�+,+) 3
√

2
√

κ�e−i π
8

(�+,−) 3
√

2 −√
κ�e−i π

8

(�−,+) 3
√

2 −(
√

κ� )∗ei π
8

(�−,−) 3
√

2 (
√

κ� )∗ei π
8

However, we will just use this expression for a heuristic
derivation of the fusion rules. For example,

�+ × �+ � (x+ + y+ + z+) × (x+ + y+ + z+)

= (I + ψ1) + (I + ψ2) + (I + ψ3)

+ (w + w) + (w + w) + (w + w). (779)

The three occurrences of the vacuum I should be interpreted
as I0 + I1 + I2 (where the subscript indicates the value of Z3

charge). Similarly, the three occurrences of w and w should be
interpreted as W0 +W1 +W2 and W0 +W1 +W2, respectively.
Clearly, ψ1 + ψ2 + ψ3 should be identified with �. This
yields Eq. (776), and the other fusion rules can be obtained
in a similar fashion. We have checked that the fusion rules are
associative and satisfy all the symmetry properties.

In addition, without solving the G-crossed consistency
equations for the complicated Z3-gauged theories, we can
directly read off the topological twists of the defects �±, since
their twists are the same as the Z2 defects in the SO(8)1 theory,
as suggested by Eq. (430).

We are now ready to attack our final goal of describing the
S3-gauged theory. First, we determine the topological charges
of the gauged theory. The Z2 orbits of the Z3-gauged theories
form singletons and doublets. The singletons I0, �, �+,
and �− each yield two topological charges, corresponding
to pairing them with a trivial (+) or nontrivial (−) irrep
of Z2, their stabilizer subgroup. The doublets [I1] = {I1, I2},
[W0] = {W0,W0}, [W1] = {W1,W1}, and [W2] = {W2,W2} all
have stabilizer subgroup Z1, so each one becomes a topologi-
cal charge in the gauged theory. Thus there are 12 topological
charges in the gauged theory. The quantum dimensions of the
anyons derived from singletons are unchanged by gauging,
while those of the anyons derived from doublets are multiplied
by 2. The twist factors are unchanged for the anyons derived
from the 0 sector, while the 1 defects �± are Z2-fluxes that
braid nontrivially with the nontrivial Z2 irrep, yielding twists
that differ by a sign. The anyons of the gauged theory, along
with their quantum dimensions and twist factors are listed in
Table III.
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In order to get the fusion rules of the gauged theory,
in principle one needs the full data of the G-crossed the-
ories, especially the Uk symbols. Fortunately, in this case,
we find that merely requiring associativity is enough to con-
strain the fusion rules obtained by equivariantization. With

the fusion rules and the topological twist factors, we can
compute the S matrix. There are six possibilities for the
topological twists, in accordance with the H3(S3, U(1)) = Z6

classification.
Choosing α = ei 4π

3 and ν = 1, the resulting S matrix is
[167]

DS =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 2 3 3 4 4 4 3
√

2 3
√

2 3
√

2 3
√

2

1 1 2 3 3 4 4 4 −3
√

2 −3
√

2 −3
√

2 −3
√

2

2 2 4 6 6 −4 −4 −4 0 0 0 0

3 3 6 −3 −3 0 0 0 −3
√

2 −3
√

2 3
√

2 3
√

2

3 3 6 −3 −3 0 0 0 3
√

2 3
√

2 −3
√

2 −3
√

2

4 4 −4 0 0 b c a 0 0 0 0

4 4 −4 0 0 c a b 0 0 0 0

4 4 −4 0 0 a b c 0 0 0 0

3
√

2 −3
√

2 0 −3
√

2 3
√

2 0 0 0 0 0 6 −6

3
√

2 −3
√

2 0 −3
√

2 3
√

2 0 0 0 0 0 −6 6

3
√

2 −3
√

2 0 3
√

2 −3
√

2 0 0 0 6 −6 0 0

3
√

2 −3
√

2 0 3
√

2 −3
√

2 0 0 0 −6 6 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (780)

where a = −8 cos 2π
9 , b = −8 sin π

9 , and c = 8 cos π
9 . The

columns and rows of the S matrix are ordered as in Table III.
We will not write the fusion rules explicitly, since they can be
obtained easily from the S matrix using the Verlinde formula.
To the best of our knowledge, this 12-particle MTC was not
previously known.

5. Ground-state degeneracy of the gauged theory

In order to further verify the relation to the gauged theories
and exhibit nontrivial features of the ground-state degener-
acy calculations, we determine the full S3 gauged theories’
ground-state degeneracy from the Z2-crossed defect theory of
the Z3-gauged theories, for surfaces of genus g = 1 and 2.
We use similar methods as in Secs. XI K and XI L, but must
also allow for nontrivial unitary transformations due to the
symmetry action. We label the Z2 defect sectors by s, with
s = 0 corresponding to the sector with no defect branch lines,
and we denote the ground-state degeneracy for each defect
sector by Ng(s) and its contribution to the gauged theory’s
ground-state degeneracy by NG

g (s). The s �= 0 sectors for G =
Z2 all contribute the same ground-state degeneracy, since they
can all be mapped to each other by Dehn twists, so it suffices
to compute the contribution from one nontrivial sector, e.g.,
one with a single defect branch line around a single nontrivial
cycle.

For the torus (genus g = 1), the Z3-gauged theories have
ground-state degeneracy N1(0) = 10, but the subspace that is
invariant under the Z2 symmetry transformation is reduced to
NG

1 (0) = 6, by the symmetrization of the basis states labeled
by the charges in the Z2 doublets. There are three nontrivial
defect sectors. Considering a sector s �= 0 with a branch line
around the m-cycle and quasiparticle flux lines around the
l cycle, we see that the ground-state degeneracy is equal to

the number of Z2 invariant anyons, and they are all invariant
under the Z2 action, so NG

1 (s) = N1(s) = |[(C×
Z3

)Z3 ]1
0| = 2.

Thus we obtain the ground-state degeneracy for the gauged
theories on the torus

NG
1 =

∑
s

NG
1 (s) = 6 + 3 × 2 = 12. (781)

This matches the expected ground-state degeneracy on a torus,
i.e., the number of topological charge types in the MTC.

For the genus g = 2 surface, there are 16 defect sectors,
corresponding to the possible configurations of nontrivial Z2

defect branch lines around nontrivial cycles of the surface. Let
us choose a basis for the trivial defect sector (s = 0) that is
specified diagrammatically (as in Sec. VII C) by

|Φ(0)
a1,a2;z,μ1,μ2

⊗ ⊗a1 a2

z z̄
μ1 μ2 ,

(782)

where a1, a2, z ∈ (C×
Z3

)Z3 , and we include the vertex labels
μ j ∈ {1, . . . , Nz

aj a j
} because the V ��

� fusion space has mul-
tiplicity. This state space has ground-state degeneracy

N2(0) =
∑

a1,a2,z

Nz
a1a1

Nz̄
a2a2

= 166. (783)

The number of basis states that are mapped to themselves by
the Z2 action (i.e., the states with labels only from the set
[(C×

Z3
)Z3 ]1

0 = {I0, �}) is given by

I2(0) =
∑

a1,a2,z∈{I0,�}
Nz

a1a1
Nz̄

a2a2
= 8. (784)

However, the Z2 symmetry action on these states is not neces-
sarily trivial, so not all of them are necessarily invariant under
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the symmetry. We will see that some of these state transform
trivially under the symmetry action, while others transform
with a −1 factor. We denote the number of basis states that
acquire a −1 factor by A2(0). It turns out that A2(0) = 2,
where the two corresponding basis states are |�(0)

�,�;�,1,2〉 and

|�(0)
�,�;�,2,1〉. To see this, we first notice that the Z2 symmetry

action is given in terms of the topological symmetry action by

R1
∣∣�(0)

a1,a2;z,μ1,μ2

〉
=
∑
ν1,ν2

[U1(a1, a1; z)]μ1ν1 [U1(a2, a2; z̄)]μ2ν2U1(z, z̄; I )

U1(a1, a1; I )U1(a2, a2; I )

× ∣∣�(0)
a1,a2;z,ν1,ν2

〉
. (785)

The action on the basis states with z = I0 is trivial, so we only
need to consider those with a1 = a2 = z = � in more detail.
In this case, the action reduces to

R1
∣∣�(0)

�,�;�,μ1,μ2

〉
=
∑
ν1,ν2

[U1(�,�; �)]μ1ν1 [U1(�,�; �)]μ2ν2

U1(�,�; I )

∣∣�(0)
�,�;�,ν1,ν2

〉
.

(786)

In order to compute the necessary U1 symbols, we use
the F symbols and R symbols given in Ref. [168], and the
constraints imposed by their invariance, as in Eqs. (87) and
(88). Invariance of

R��
� =

[−i 0

0 i

]
(787)

implies that U1(�,�; �)σ3U1(�,�; �)−1 = σ3, i.e.,
U1(�,�; �) is diagonal. Invariance of the F symbols

F���
I1

=
[
− 1

2 −
√

3
2√

3
2 − 1

2

]
, F���

I2
=
[
− 1

2

√
3

2

−
√

3
2 − 1

2

]
, (788)

implies that U1(�,�; �)σ2U1(�,�; �)−1 = −σ2. Combin-
ing these gives U1(�,�; �) = eiφσ3. We note that this shows
the symmetry action

ρ1|�,�; �,μ〉 =
∑

ν

U1(�,�; �)μν |�,�; �, ν〉, (789)

on the two-dimensional fusion space V ��
� is nontrivial.

Finally, invariance of

[
F���

�

]
(�,μ1,μ2 )I0

=

⎡⎢⎢⎢⎣
1√
3

0

0
1√
3

⎤⎥⎥⎥⎦
(μ1,μ2 )

, (790)

where rows are labeled by (μ1, μ2) in the order (1, 1),
(1, 2), (2, 1), (2, 2), combined with U1(�,�; �) = eiφσ3,
gives ei2φ = U1(�,�; I0). Thus we obtain

R1
∣∣�(0)

�,�;�,μ1,μ2

〉 = (−1)μ1+μ2
∣∣�(0)

�,�;�,μ1,μ2

〉
. (791)

In other words, the action on these basis states is symmetric
for μ1 = μ2 and antisymmetric for μ1 �= μ2.

The basis states that include labels other than I0 and � are
mapped to each other in pairs and can be symmetrized with
respect to the Z2 symmetry action. Putting this all together,
we find the contribution from the s = 0 sector to the gauged
theories’ ground-state degeneracy to be

NG
2 (0) = 1

2 [N2(0) − I2(0)] + I2(0) −A2(0) = 85. (792)

There are 15 nontrivial defect sectors (s �= 0) for the genus
g = 2 surface. We consider the sector (s = 1) with a single
defect branch line around a single cycle, for which we can
write the basis states as

|Φ(1)
a1,a2;z,μ1,μ2

⊗ ⊗a1 a2

z z̄

1

μ1 μ2
, (793)

where a1, a2, z ∈ (C×
Z3

)Z3 , and μ j ∈ {1, . . . , Nz
aj a j

}. Each non-
trivial defect sector has ground-state degeneracy

N2(s) =
∑

a1,a2,z

Nz
a1a1

Nz̄
a2

1a2
= 40. (794)

Similar to the trivial sector, the number of the s = 1 basis
states that are mapped to themselves by the Z2 action (i.e., the
states with labels only from the set {I0, �}) is given by

I2(1) =
∑

a1,a2,z∈{I0,�}
Nz

a1a1
Nz̄

a2a2
= 8 (795)

and the number of these states that transform as
R1|�(1)

a1,a2;z,μ1,μ2
〉 = −|�(1)

a1,a2;z,μ1,μ2
〉 is A2(1) = 2, where

the two corresponding basis states are |�(0)
�,�;�,1,2〉 and

|�(0)
�,�;�,2,1〉. The basis states that include labels not equal

to I0 or � are mapped to each other in pairs and can be
symmetrized with respect to the Z2 symmetry action. Thus
we find the contribution from each s �= 0 sector to the gauged
theories’ ground-state degeneracy to be

NG
2 (s) = 1

2 [N2(1) − I2(1)] + I2(1) −A2(1) = 22. (796)

Finally, summing the contributions from all defect sectors,
we find the ground-state degeneracy of the gauged theories on
genus g = 2 surfaces to be

NG
2 =

∑
s

NG
2 (s) = 85 + 15 × 22 = 415. (797)

This matches the genus g = 2 ground-state degeneracy ob-
tained from Eq. (392), using the (final) gauged theory’s quan-
tum dimensions.

N. Rep(D10) with Z2 symmetry: An H3
[ρ](G,A) obstruction

We provide an example of the H3
[ρ](G,A) obstruction (i.e.,

obstruction to symmetry fractionalization) in a premodular
category [169]. Consider the dihedral group D10 = Z10 � Z2

generated from two elements r, s with group relations r10 =
s2 = 1 and srs = r−1. It has eight irreducible representations,
four of which are one-dimensional and four of which are
two-dimensional. We will consider the BTC C = Rep(D10).
The fusion rules of C can be easily deduced from the character
table of D10, which we spell out explicitly here: there are

115147-90



SYMMETRY FRACTIONALIZATION, DEFECTS, AND … PHYSICAL REVIEW B 100, 115147 (2019)

four Abelian topological charges, I , A, B, and C = A × B,
which form a Z2 × Z2 fusion subalgebra. There are four non-
Abelian topological charges Xj , where j = 1, 2, 3, 4, which
have quantum dimension 2, such that

A × Xj = Xj,

B × Xj = C × Xj = X5− j,
(798)

Xj × Xk =
{

Xj+k + X| j−k| j + k � 5

X10− j−k + X| j−k| j + k > 5
,

where we define X0 = I + A and X5 = B +C, to make the
expressions more compact. The F symbols (or Wigner 6 j
symbols) of this category can be computed from the Clebsch-
Gordon coefficients.

In addition, this category also admits braiding. In fact, the
representation category of any finite group can be endowed
with symmetric braiding, i.e., all topological charges have
twist factors θa = 1 and Sab = dadb

D for all topological charges
a, b, which shows that the BTC is clearly not modular. For
a modular theory that contains this as a subcategory, one can
embed it in the quantum double D(D10) as the charge sector, as
can always be done for any representation category Rep(G) of
a finite group G. (It is further known that the quantum double
D(G) is the minimal modular extension of Rep(G) [170].)

We now define an obstructed Z2 symmetry on Rep(D10).
We first define an automorphism ρ on the group D10 by:
ρ(r) = r7, ρ(s) = r5s. We can easily check that ρ ◦ ρ(r) =
r−1 = srs and ρ ◦ ρ(s) = s = sss, and thus ρ ◦ ρ is conjuga-
tion by s. Therefore, although ρ is not an exact Z2 automor-
phism on the group (only a Z2 outer automorphism), it still
induces a Z2 action on the representations, since representa-
tions are defined up to similarity transformations. The explicit
action on the label set is found to be

ρg(B) = C, ρg(X1) = X3, ρg(X2) = X4. (799)

One can check that the fusion rules and modular data are all
invariant under this symmetry.

However, by directly checking the definition of the sym-
metry action, we find that this Z2 symmetry is not fraction-
alizable. In other words, it is impossible to fractionalize the
symmetry in a manner as described in Sec. IV. Therefore
the symmetry is obstructed. Notice that because the Rep(D10)
category is not modular, we can not directly relate the ob-
struction to an obstruction class in H3

[ρ](Z2,A). However, as
described in Sec. IX B, the group outer automorphism can
actually be turned into a topological Z2 symmetry of the quan-
tum double D(D10). Restricting this topological symmetry to
the charge sector of D(D10), i.e., the Rep(D10) category, is
precise the obstructed symmetry action described, and thus the
topological symmetry action on D(D10) is also obstructed.

Note added. During the preparation of this manuscript, we
learned of related unpublished works [171,172].
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APPENDIX A: REVIEW OF GROUP COHOMOLOGY

In this Appendix, we provide a brief review of group
cohomology. (See Ref. [141] for more details.)

Given a finite group G, let M be an Abelian group equipped
with a G action ρ : G × M → M, which is compatible with
group multiplication. In particular, for any g, h ∈ G and a, b ∈
M, we have

ρg(ρh(a)) = ρgh(a), (A1)

ρg(ab) = ρg(a)ρg(b). (A2)

(We leave the group multiplication symbols implicit.) Such an
Abelian group M with G action ρ is called a G module.

Let ω(g1, . . . , gn) ∈ M be a function of n group elements
g j ∈ G for j = 1, . . . , n. Such a function is called a n-cochain
and the set of all n-cochains is denoted as Cn(G, M ). They
naturally form a group under multiplication,

(ω · ω′)(g1, . . . , gn) = ω(g1, . . . , gn)ω′(g1, . . . , gn), (A3)

and the identity element is the trivial cochain
ω(g1, . . . , gn)= 1.

We now define the “coboundary” map d : Cn(G, M ) →
Cn+1(G, M ) acting on cochains to be

dω(g1, . . . , gn+1)

= ρg1 [ω(g2, . . . , gn+1)]

×
n∏

j=1

[ω(g1, . . . , g j−1, g jg j+1, g j+2, . . . , gn+1)](−1) j

× [ω(g1, . . . , gn)](−1)n+1
. (A4)

One can directly verify that ddω = 1 for any ω ∈ Cn(G, M ),
where 1 is the trivial cochain in Cn+2(G, M ). This is why d is
considered a “boundary operator.”

With the coboundary map, we next define ω ∈ Cn(G, M ) to
be an n-cocycle if it satisfies the condition dω = 1. We denote
the set of all n-cocycles by

Zn
ρ (G, M ) = ker[d : Cn(G, M ) → Cn+1(G, M )]

= {ω ∈ Cn(G, M ) | dω = 1}. (A5)

We also define ω ∈ Cn(G, M ) to be an n-coboundary if it
satisfies the condition ω = dμ for some (n − 1)-cochain μ ∈
Cn−1(G, M ). We denote the set of all n-coboundaries by

Bn
ρ (G, M ) = im[d : Cn−1(G, M ) → Cn(G, M )]

= {ω ∈ Cn(G, M ) | ∃μ ∈ Cn−1(G, M ) : ω = dμ}.
(A6)

Clearly, Bn
ρ (G, M ) ⊂ Zn

ρ (G, M ) ⊂ Cn(G, M ). In fact, Cn,
Zn, and Bn are all groups and the co-boundary maps are
homomorphisms. It is easy to see that Bn

ρ (G, M ) is a normal
subgroup of Zn

ρ (G, M ). Since d is a boundary map, we think of
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the n-coboundaries as being trivial n-cocycles, and it is natural
to consider the quotient group

Hn
ρ (G, M ) = Zn

ρ (G, M )

Bn
ρ (G, M )

, (A7)

which is called the nth cohomology group. In other words,
Hn

ρ (G, M ) collects the equivalence classes of n-cocycles that
only differ by n-coboundaries.

It is instructive to look at the lowest several cohomology
groups. Let us first consider H1

ρ (G, M ):

Z1
ρ (G, M ) = {ω|ω(g1)ρg[ω(g2)] = ω(g1g2)},

B1
ρ (G, M ) = {ω|ω(g) = ρg(μ)μ−1}. (A8)

If the G action on M is trivial, then B1
ρ (G, M ) = {1} and

Z1
ρ (G, M ) is the group homomorphisms from G to M. In gen-

eral, H1
ρ (G, M ) classifies “crossed group homomorphisms”

from G to M.
For the second cohomology, we have

Z2
ρ (G, M ) = {ω|ρg1 [ω(g2, g3)]ω(g1, g2g3)

= ω(g1, g2)ω(g1g2, g3)},
B2

ρ (G, M ) = {ω|ω(g1, g2)

= ρg1 [ε(g2)][ε(g1g2)]−1ε(g1)}. (A9)

If M = U(1), it is well-known that Z2(G, U(1)) is exactly the
factor sets (also known as the Schur multipliers) of projective
representations of G, with the cocycle condition coming from
the requirement of associativity. H2(G, U(1)) classifies all
inequivalent projective representations of G.

For the third cohomology, we have

Z3
ρ (G, M ) = {ω|ω(g1g2, g3, g4)ω(g1, g2, g3g4)

= ρg1 [ω(g2, g3, g4)]ω(g1, g2g3, g4)ω(g1, g2, g3)}.
(A10)

For M = U(1) and trivial G action, Z3(G, U(1)) is the set of
F symbols for the fusion category VecG, with the 3-cocycle
condition being the Pentagon identity. B3(G, U(1)) is identi-
fied with all the F symbols that are gauge-equivalent to the
trivial one. H3(G, U(1)) then classifies the gauge-equivalent
classes of F symbols on VecG.

APPENDIX B: PROJECTIVE REPRESENTATIONS
OF FINITE GROUPS

In this Appendix, we briefly summarize some basic results
of the theory of projective representations of finite groups
over the complex numbers C and discuss the unitary case
without loss of generality. For proofs, we refer the readers to
Ref. [173].

Consider a finite group G and a normalized 2-cocycle ω ∈
Z2(G, U(1)). Suppose V is a nonzero vector space over C. A
ω-representation of G over the vector space V is a map π :
G → GL(V ) such that

π (g)π (h) = ω(g, h)π (gh), ∀g, h ∈ G, π (0) = 1.

(B1)

We denote the ω-projective representative by a triple
(ω, π,V ), or for brevity (π,V ) or simply π below. Also
nπ ≡ dim V .

Two ω representations (π1,V1) and (π2,V2) are ω-
isomorphic, denoted as π1 ∼ω π2, if and only if there exits
an isomorphism S between V1 and V2 such that Sπ1(g)S−1 =
π2(g),∀g ∈ G.

Given two ω representations (π1,V1) and (π2,V2), we can
form their direct sum, which is a ω representation of G over
V1 ⊕V2. In matrix form, we have

(π1 ⊕ π2)(g) ≡
[
π1(g) 0

0 π2(g)

]
. (B2)

Clearly π1 ⊕ π2 also has the same factor set ω. However,
there is no natural way of defining a direct sum of a ω

representation and a ω′ representation when ω �= ω′.
One can also define a tensor product of two projective rep-

resentations. Given two projective representations (ω1, π1,V1)
and (ω2, π2,V2), their tensor product π1 ⊗ π2 is defined as
(π1 ⊗ π2)(g) = π1(g) ⊗ π2(g) over the vector space V1 ⊗V2.
The factor set of the tensor product π1 ⊗ π2 is ω1ω2.

Similar to linear representations, one can define reducible
and irreducible projective representations. A projective repre-
sentation (ω, π,V ) is called irreducible if the vector space V
has no invariant subspace under the map π other than 0 or V .
A projective representation is reducible if it is not irreducible.
A reducible projective representation always decomposes into
a direct sum of irreducible projective representations with the
same factor set.

Given a projective representation π of G, its character χπ :
G → C is defined to be

χπ (g) = Tr[π (g)]. (B3)

It follows that

χπ (0) = nπ , (B4)

χπ (g−1) = ω(g, g−1)χ∗
π (g), (B5)

where we use the identity ω(g, g−1) = ω(g−1, g).
Another more nontrivial relation is

χπ (hgh−1) = ω(h−1, hgh−1)

ω(g, h−1)
χπ (g), (B6)

which reveals an important difference between projective and
regular characters, because regular characters depend only on
the conjugacy classes.

Given two ω representations π1 and π2, obviously, one has
χπ1⊕π2 = χπ1 + χπ2 and χπ1⊗χ2 = χπ1χπ2 .

As in the theory of linear representations, characters are
important because they distinguish the isomorphism classes of
irreducible projective representations: two ω representations
are ω-isomorphic if and only if they have the same character.

Analogous to the familiar character theory of linear repre-
sentations, one can show that the projective characters satisfy
some orthogonality relations. We give the first orthogonal-
ity relation here and discuss the second one later. For two
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irreducible ω representations π1 and π2, we have

1

|G|
∑
g∈G

χπ1 (g)χ∗
π2

(g) =
{

1 if π1 ∼ω π2

0 otherwise
. (B7)

One can use the characters to decompose projective repre-
sentations. Namely, fix a factor set ω, let π be a projective
representation (not necessarily irreducible) of G and π ′ an
irreducible projective representation. The multiplicity of π ′ in
π can be computed by

m(π ′, π ) = 1

|G|
∑
g∈G

χπ ′ (g)χ∗
π (g). (B8)

In general, given two ω representations π and π ′ (neither
of which is necessarily irreducible), we define the multiplicity
m(π ′, π ) as

m(π ′, π ) = dim HomG(Vπ ′,Vπ ). (B9)

Here, HomG(Vπ ′ ,Vπ ) is the space of intertwining operators,
i.e., linear maps between Vπ ′ and Vπ which commute with the
G actions. Note that the G action on Vπ is given exactly by the
representation π . Schur’s lemma implies that if π is an irrep,
then HomG(Vπ ,Vπ ) = C1Vπ

, i.e., all intertwiners are scalar
multiplications. If π and π ′ are irreducible representations
that are not isomorphic, then HomG(Vπ ,Vπ ′ ) = 0. Therefore,
given two ω-representations π and π ′, we can decompose
them into the direct sum of ω irreps: π = ⊕ jNjπ j, π

′ =
⊕ jN ′

jπ j , where π j is the complete set of ω irreps, and Nj, N ′
j

are multiplicities, respectively. Then a general intertwiner � ∈
HomG(Vπ ′ ,Vπ ) is of the form

� =
⊕

j

(
Mj ⊗ 1Vπ j

)
. (B10)

Here, Mj is a linear map between CNj and CN ′
j , i.e., an Nj × N ′

j

complex matrix, which can be thought as a vector in an NjN ′
j-

dimensional complex vector space. It follows that

dim HomG(Vπ ′,Vπ ) =
∑

j

NjN
′
j . (B11)

For applications, we can show that Eq. (B8) applies to the
general case, too.

A special projective representation, the ω-regular represen-
tation, is defined as R(g)eh = ω(g, h)egh, where {eg|g ∈ G}
is a basis for a |G|-dimensional vector space. Its character
χR(g) = |G|δg0. Using Eq. (B8), we see that the ω-regular
representation is reducible and each irreducible projective rep-
resentation π appears exactly nπ times in its decomposition.
Consequently, we have the following two relations:∑

π

n2
π = |G|,

∑
π

nπχπ (g) = |G|δg0. (B12)

The sum is over all irreducible ω-projective representations π .
An element g ∈ G is called an ω-regular element if and

only if ω(g, h) = ω(h, g) for all h ∈ Ng, where Ng is the
centralizer of g in G. Moreover, g is ω-regular if and only
if all elements in its conjugacy class [g] are ω-regular. This
property follows from the 2-cocycle condition.

Now consider h ∈ Ng, so

χπ (g) = χπ (h−1gh) = ω(h, g)

ω(g, h)
χπ (g). (B13)

Therefore, if g is not ω-regular, then χπ (g) = 0. In fact, one
can show that an element g is ω-regular if and only if χπ (g) �=
0 for some irreducible representation π . We thus have the
following important result: for a given factor set ω, the number
of nonisomorphic irreducible projective ω representations of
G is equal to the number of ω-regular conjugacy classes of G.

We can now state the second orthogonality relation: Let
g1, g2, . . . be a complete set of representatives for ω-regular
classes of G. For any two ω-regular elements gj and gk,∑

π

χπ (g j )χ
∗
π (gk ) = ∣∣Ng j

∣∣δ jk . (B14)

The sum is over all irreducible ω-projective representations π .
If two factor sets ω and ω′ belong to the same equivalence

class in H2(G, U(1)), then we have

ω′(g, h) = μ(g)μ(h)

μ(gh)
ω(g, h) (B15)

for some μ(g) : G → U(1) with μ(0) = 1.
Given a μ as above and an irreducible ω-projective rep-

resentation π , we can then construct another ω′-projective
representation π ′(g) = μ(g)π (g). Clearly, the two procedures
above define a one-to-one correspondence. Their characters
also differ by μ, that is χπ ′ (g) = μ(g)χπ (g).

APPENDIX C: GLUING G-CROSSED THEORIES

In this Appendix, we describe a construction that we
call “gluing” G-crossed theories, which takes two G-crossed
theories (with the same symmetry group G) and forms a new
G-crossed theory by combing objects from the two theories
that have the same group label g ∈ G. Mathematically, this
construction is the diagonally G-graded product of the two
theories. We begin by considering the product C (1)×

G � C (2)×
G

of two G-crossed BTCs (labeled 1 and 2). This yields a
(G × G)-crossed BTC, whose 0 sector is C (1)

0 � C (2)
0 . It is clear

that the basic data of the product may be expressed simply
as the product of the basic data of the two theories. Next we
take the restriction of the product to the subcategory in which
the group labels of topological charges are in the diagonal of
G × G, that is (g(1), g(2) ) = (g, g) for g ∈ G. The result is the
glued theory

C×
G = C (1)×

G �
G
C (2)×

G = C (1)×
G � C (2)×

G

∣∣
g(1)=g(2) . (C1)

Since the diagonal of G × G is a subgroup that is isomorphic
to G, it is clear that the glued theory is a (closed) subcategory
of the product theory and that it forms a G-crossed BTC.
Similarly, C×

G is modular if and only if both C (1)×
G and C (2)×

G
are modular. Since the glued theory C×

G can be written as the
restriction of the product theory, the basic data of the glued
theory can be expressed as the product of the basic data of
C (1)×

G and C (2)×
G (while respecting the restriction); for example

R
(a(1)

g ,a(2)
g )(b(1)

h ,b(2)
h )

(c(1)
gh ,c(2)

gh )
= R

a(1)
g b(1)

h

c(1)
gh

R
a(2)

g b(2)
h

c(2)
gh

. (C2)
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The 0 sector of the glued theory is C0 = C (1)
0 � C (2)

0 , so
the gluing construction provides a method of generating G-
crossed extensions of C (1)

0 � C (2)
0 from G-crossed extensions

of C (1)
0 and C (2)

0 . Moreover, when C (1)
0 and C (2)

0 are MTCs,
the gluing construction produces all possible G-crossed ex-
tensions of C (1)

0 � C (2)
0 in which the symmetry action does

not interchange topological charge labels between the two
theories, i.e., we can write ρ = (ρ (1), ρ (2) ), where ρ ( j) : G →
Aut(C ( j)

0 ). In order to see this, we note that, for such symmetry
actions, H2

[ρ](G,A) = H2
[ρ (1)](G,A(1) ) × H2

[ρ (2)](G,A(2) ) and
the associated classification of symmetry fractionalization
respects the product structure. Furthermore, the H3(G, U(1))
defectification classification is recovered from the glued theo-
ries by observing that the torsorial action of gluing an SPT[α]

G

state to C×
G is the same as gluing it to either C (1)×

G or C (2)×
G prior

to gluing them together.

APPENDIX D: CATEGORICAL FORMULATION
OF SYMMETRY FRACTIONALIZATION, DEFECTS,

AND GAUGING

In this Appendix, G will always denote a finite group and C
a unitary modular tensor category (UMTC) unless otherwise
stated explicitly. Also Aut(C) below is Aut0,0(C) in the main
text. For a category C, x ∈ C means that x is an object of C, and
C is the complex conjugate category of C. The materials in this
Appendix are distilled from Refs. [80–82,101,139,167].

1. Categorical topological and global symmetry

A categorical-group G is a monoidal category G whose ob-
jects and morphisms are all invertible. The complete invariant
of a categorical-group G is the triple (π1(G), π2(G), φ(G)),
where π1(G) is the group of the isomorphism classes of
objects of G, π2(G) the abelian group of the automorphisms
of the tensor unit 1 of G, and φ(G) ∈ H3(π1(G); π2(G)) the
group 3-cocyle that represents the associativity of the tensor
product ⊗ of G (π1(G) acts on π2(G) and they form a cross
module as the notation suggests) [174].

A group G can be promoted to a categorical-group G as
follows: the objects of G are the group elements of G, and
the morphism set Hom(g, h) of two objects g, h is empty
if g �= h and contains only the identity if g = h. We will
use Aut(C) to denote the categorical-group of braided tensor
autoequivalences of C. The tensor product of two braided
tensor autoequivalences is their composition. The morphism
between two braided tensor autoequivalences are the natural
isomorphisms between the two functors. We will call Aut(C)
the categorical topological symmetry group of C.

Given a UMTC C, π2(C), i.e., π2(G) for G = Aut(C), is
isomorphic to the group of the invertible object classes of C
as an abstract finite abelian group, which we denote by A in
the main text, but the finite group π1(C), i.e., π1(G) for G =
Aut(C), is difficult to determine in general except for abelian
modular categories.

We will also use Aut(C) to denote π1(C): the group of
equivalence classes of braided tensor autoequivalences of C.
This ordinary group is the demotion (or decategorification)

of the categorical-group Aut(C) and is called the topological
symmetry of C.

Definition 1. Given a group G, a monoidal functor ρ :
G → Aut(C) is called a categorical global symmetry of C.

We will denote the categorical global symmetry as (ρ, G)
or simply ρ and say that G acts categorically on C.

A categorical global symmetry can be demoted to a group
homomorphism ρ : G → Aut(C), which is called a global
symmetry of C.

To understand a categorical-group action G on a UMTC C,
we will start with a global symmetry ρ : G → Aut(C). It is not
true that we can always lift such a group homomorphism to a
categorical-group functor ρ. The obstruction for the existence
of such a lifting is the pull-back group cohomology class
ρ∗(φ(C)) ∈ H3(G; π2(C)) of φ(C) ∈ H3(π1(C), π2(C)) by ρ.
If this obstruction class does not vanish, then G cannot act
categorically on C so that the decategorified homomorphism is
ρ. If this obstruction does vanish, then there are liftings of ρ to
categorical-group actions, but such liftings are not necessarily
unique. The equivalence classes of all liftings form a torsor
over H2

ρ (G, π2(C)). We will denote the categorical global
symmetry ρ also by a pair (ρ, t), where ρ : G → Aut(C) and
t ∈ H2

ρ (G, π2(C)).

2. Symmetry defects

A module category M over a UMTC C is a categorical
representation of C. A left module category M over C is
a semisimple category with a bifunctor αM : C ×M → M
that satisfies the analogues of pentagons and the unit axiom.
Similarly for a right module category. A bimodule category is
a simultaneously left and right module category such that the
left and right actions are compatible. Bimodule categories can
be tensored together just like bimodules over algebras. When
C is braided, a left module category naturally becomes a bi-
module category by using the braiding. A bimodule category
M over C is invertible if there is another bimodule category
N such that M�N and N �M are both equivalent to
C—the trivial bimodule category over C. The invertible (left)
module categories over a modular category C form the Picard
categorical-group Pic(C) of C. The Picard categorical-group
Pic(C) of a modular category C is monoidally equivalent
to the categorical-group Aut(C) [81]. This one-one corre-
spondence between braided autoequivalences and invertible
module categories is an important relation between symmetry
and extrinsic topological defects.

Given a categorical global symmetry (ρ, G) of a UMTC C
and an isomorphism of categorical groups Pic(C) with Aut(C),
then each ρg ∈ Aut(C) corresponds to an invertible bimodule
category Cg ∈ Pic(C).

Definition 2. An extrinsic topological defect of flux g ∈ G
is a simple object in the invertible module category Cg ∈
Pic(C) over C corresponding to the braided tensor autoequiv-
alence ρg ∈ Aut(C).

The analog of the Picard categorical-group of a modu-
lar category for a fusion category C is the Brauer-Picard
categorical-group of invertible bimodule categories over C.
However, invertible bimodule categories over a fusion cat-
egory C is in one-one correspondence with braided autoe-
quivalences of the Drinfeld center D(C) of C (also known
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as the quantum double of C in physics literature) [81], not
tensor autoequivalences of C itself. When C is modular, then
D(C) ∼= C ⊗ C. Note that Pic(C) is naturally included in the
Brauer-Picard group of C and Aut(C) included naturally in the
categorical-group of braided tensor autoequivalences of D(C).
The images of the two inclusions intersect trivially.

The topological defects in the g-flux sector form an invert-
ible bimodule category Cg over the UMTC C. Defects can be
fused and their fusion corresponds to the tensor product of
bimodule categories. Since all defects arise from the same
physics, fusions of defects for all flux sectors should be
consistent. Such a consistency is encoded as the collection
{Cg}, g ∈ G of flux sectors gives rise to an extension of C to
a unitary G-crossed modular category. Given a categorical
global symmetry (ρ, t), it is not always possible to define
defect fusions so that we could obtain such an extension.
Given fluxes g, h, we need to choose an identification Mgh :
Cg � Ch

∼= Cgh. For four fluxes g, h, k, l ∈ G, the two paths
of the pentagon using the {Mgh}’s to identify ((Cg � Ch) �
Ck ) � Cl with Cg � (Ch � (Ck � Cl)) could differ by a phase.
The collection of those phases forms a cohomology class
in H4(G; U(1)), which is the obstruction class to consistent
pentagons for the flux sectors. If this obstruction class van-
ishes, then we need to choose a group cohomology class α ∈
H3(G; U(1)) to specify the associativity of the flux sectors.
A subtle point here is that the consistency requirement via
pentagons for flux sectors Cg is strictly stronger than that for
all defects separately.

Given a triple (ρ, t, α) as above when the obstruction class
in H4(G, U(1)) vanishes, where (ρ, t) is a categorical global
symmetry and α ∈ H3(G, U(1)) specifies associtivity of the
flux sectors, we can construct a G-crossed modular extension
of C, which describes the extrinsic topological defects of C. In
the following, we will call such a triple (ρ, t, α) the gauging
data. The extension C×

G = C(ρ,t,α) =
⊕

g∈G Cg of C = C0 is
a unitary G-crossed modular category—a unitary G-crossed
fusion category with a compatible nondegenerate G braiding.

A G-grading of a fusion category C is a decomposition of
C into

⊕
g∈G Cg. We will consider only faithful G-gradings

so that none of the components Cg = 0. The tensor product
respects the grading in the sense Cg � Ch ⊂ Cgh. Since Cg−1

is the inverse of Cg, Cg is naturally an invertible bimodule
category over C0, where 0 ∈ G is the identity element. A
categorical action ρ of G on C is compatible with the grading
if ρ(g)Ch ⊂ Cghg−1 . A G-graded fusion category C with a
compatible G action is called a G-crossed fusion category.

Suppose C×
G =⊕

g∈G Cg is an extension of a unitary fusion
category C0, i.e., C×

G is a unitary G-crossed fusion category.
Let Ig, g ∈ G be the set of isomorphism classes of simple
objects in Cg and Irr(Cg) = {Xi}i∈Ig be a set of representatives
of simple objects of Cg. The cardinality of Ig is called the

rank of the component Cg, and Dg =
√∑

i∈Ig
d2

i is the total

quantum dimension of component Cg, where di is the quantum
dimension of Xi ∈ Irr(Cg).

Theorem D.1 ([80,82]). Let C =⊕
g∈G Cg be an extension

of a unitary fusion category C0. Then
(1) The rank of Cg is the number of fixed points of the

action of g on I0.
(2) D2

g = D2
h for all g, h ∈ G.

The extension C×
G =⊕

g∈G Cg of a UMTC C0 for the sym-
metry (ρ, t), while not braided in general, has a G-crossed
braiding. Given a G-crossed fusion category C with categori-
cal G action ρ, we will denote ρg(Y ) for an object Y of C by
gY . A G braiding is a collection of natural isomorphisms cX,Y :
X ⊗ Y → gY ⊗ X for all X ∈ Cg,Y ∈ C, which satisfies a
generalization of the Hexagon equations.

A UMTC is a unitary fusion category with a nondegenerate
braiding. A unitary G-crossed modular category is a unitary
G-crossed fusion category with a nondegenerate G braiding.
An easy way to define nondegeneracy of braiding is through
the nondegeneracy of the modular S matrix. To define the
nondegeneracy of the G-crossed braiding, we will introduce
the extended G-crossed S and T operators on an extended
Verlinde algebra. Likewise, the extended S and T operators
will give rise to a projective representation of SL(2, Z). We
believe that the S and T operators will determine the unitary
G-crossed modular category C×

G .
Theorem D.2 ([81]). The unitary G-crossed fusion cate-

gory extension C×
G of a UMTC C has a canonical G braiding

and categorical G action that make C×
G into a unitary G-

crossed modular category.
Given a categorical global symmetry ρ : G → Aut(C) of a

UMTC C, an extension of C to a nondegenerate braided fusion
category corresponds to a lifting of ρ to a categorical 2-group
functor ρ : G → Aut(C). The existence of such liftings has an

obstruction in H4(G; U(1)), which is the same as the obstruc-
tion for solving pentagons of flux sectors. When the obstruc-
tion class vanishes, the choices correspond to cohomology
classes in H3(G; U(1)). If we choose a cohomology class α ∈
H3(G; U(1)), then we have a lifting to a categorical 2-group
morphism. Since all other higher obstruction classes vanish,
the categorical global symmetry can be lifted to a morphism
of any higher categorical number. As extended G action and
G braiding are higher categorical-number morphisms, so they
can always be lifted. Furthermore, since all higher obstruction
classes vanish, the liftings are unique.

To see the G action and G-crossed braiding concretely,
consider the functor category Fun(Cg, Cgh). On one hand, this
category can be identified as Ch by Cg � Ch

∼= Cgh, and on
the other hand, as Cghg−1 by Cghg−1 � Cg

∼= Cgh. Therefore we
have an isomorphism Cg

∼= Cghg−1 . This defines an extended
action of G on C×

G . By the same consideration, we have
Cg � Ch

∼= Cghg−1 � Cg. This defines the G-crossed braiding
of C×

G .
To define the extended S, T operators, we first define an

extended Verlinde algebra. For each pair g, h of commuting
elements of G, we define the following extended Verlinde
algebra component: Vg,h(C) =⊕

i∈Ih
Hom(Xi,

gXi ).
Then the extended Verline algebra is

V (C) =
⊕

{(g,h)|gh=hg}
Vg,h(C).

Note that V0,0 is the Verlinde algebra of C, which
has a canonical basis given by the identity morphisms of
Hom(Xi, Xi ), i ∈ I0. Unlike the usual Verlinde algebra of C,
the extended Verlinde algebra does not have such canonical
basis. One choice of basis is ρg : Xi → gXi, and they will
give rise to extended G-crossed S and T transformations.
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However, this depends on the choice of cocycle representative
of α. Therefore the extended S and T operators are not
canonically matrices. We call a G-crossed braided spherical
fusion category G-crossed modular if the extended S operator
is invertible.

3. Gauging categorical global symmetry

Let G be the promotion of a group G to a categorical 2-
group, and Aut(C) be the categorical 2-group of braided tensor

autoequivalences.
Definition 3. A categorical global symmetry ρ : G →

Aut(C) can be gauged if ρ can be lifted to a categorical
2-group functor ρ : G → Aut(C).

Given a categorical global symmetry (ρ, G) of a UMTC
C, gauging G is possible only when the obstruction as above
in H4(G; U(1)) vanishes. Then the gauging result in general
depends on a gauging data (ρ, t, α). Given a gauging data
(ρ, t, α), gauging is defined as the following two-step process:
first extend C to a unitary G-crossed modular category C×

G
with a categorical G action; Then perform the equivarianti-
zation of the categorical G action on C×

G , which results in a
UMTC (C×

G )G, also simply denoted as C/G. The “bosonic”
symmetric category Rep(G) is always contained in C/G as a
Tannakian subcategory. Therefore gauging actually leads to a
pair Rep(G) ⊂ C/G.

Suppose C is a fusion category with a G action. The
equivariantization of C, denoted as CG, is also called orb-
ifolding. The result of equivariantization of a G action on
a fusion category C is a fusion category whose objects are
(X, {φg}g∈G), where X is an object of C and φg : gX → X an
isomorphism such that φ0 = id and φg · ρg(φh) = φgh · κg,h,
where κg,h identifies ρh · ρg with ρgh. Morphisms between
two objects (X, {φg}g∈G) and (Y, {ψg}g∈G) are morphisms f :
X → Y such that f · φg = φh · ρg( f ).

The simple objects of CG are parameterized by pairs
([X ], πX ), where [X ] is an orbit of the G action on simple
objects of C, and πX is an irreducible projective representation
of GX —the stabilizer group of X . The quantum dimension
of ([X ], πX ) is dim(πX ) · N[X ] · dX , where N[X ] is the size of
the orbit [X ]. Fusion rules can be similarly described using
algebraic data [83].

In general, gauging is difficult to perform explicitly. The
first extension step is very difficult. The second equivarianti-
zation step is easier if the 6 j symbols of the gauged UMTC
C/G are not required explicitly. Different triples of gauging
data might lead to the same gauged UMTC.

Gauging has an inverse process, which is the condensation
of anyons in the Tannakian subcategory Rep(G). This conden-
sation process is mathematically called taking the core of the
pair Rep(G) ⊂ C/G [139]. Taking a core is a powerful method
to verify a guess for gauging because anyon condensation is
sometimes easier to carry out than gauging.

When C is a G-crossed modular category with faith-
ful grading, then its equivariantization is also modular
and vise versa [80]. There is the forgetful functor F :
CG → C by F (X, {φg}g∈G) = X and its adjoint G(X ) =⊕

g∈G(gX, {(μX )g}), where (μX )g = κg,h. They intertwine the
extended S and T operators.

Our equivariantization in gauging is applied to a G-crossed
extension C×

G of a modular category C. When C×
G has a

faithful grading, then the nondegeneracy of the braiding of C
is equivalent to the nondegeneracy of the braiding of C×

G [139].

4. General properties of gauging

Gauging and its inverse—condensation of anyons—are
interesting constructions of new modular categories from
old ones. The resulted new modular categories have many
interesting relations with the old ones.

Theorem D.3 ([139]). Let C be a UMTC with a categorical
global symmetry (ρ, G). Then C ⊗ C/G ∼= D(C×

G ).
It follows that
(1) Chiral topological central charge is invariant under

gauging (mod 8);
(2) The total quantum dimension DC/G = |G|DC .
The following theorem says that gauging a quantum double

results in a quantum double.
Theorem D.4. Suppose G acts categorically on D(C). Then

D(C)/G = D(C×
G ).

When the symmetry group G has a normal subgroup N ,
then we can first gauge N , and then gauge their quotient
H = G/N . This sequentially gauging is useful for gauging
non-Abelian groups G such as S3.

Theorem D.5. Let ρ : G −→ Pic(C), then there exist ρ1 :

N −→ Pic(C), ρ2 : H −→ Pic(C/N ), such that (C/N )/H is

braided equivalent to C/G.
Proofs of theorems D.4 and D.5 will appear in Ref. [167].
The construction from a modular category C with a G-

action to a modular category C/G with a Tannakian subcat-
egory Rep(G) by gauging can be regarded as a new way
to construct interesting modular categories in the same Witt
class. When C is weakly integral, then the gauged category
C/G is also weakly integral. The inverse process of condensa-
tion implies that pairs (C, ρ) and (C, Rep(G)) are in one-one
correspondence.

5. New mathematical results

In higher category theory, it is common practice to strictify
categories as much as possible by turning natural isomor-
phisms into identities. This is desirable because strictification
simplifies many computations and does not lose any gen-
erality when we are interested in gauge invariant quantities
in classification problems. The drawback is that we have to
work with many objects. In this paper, our preference is the
opposite, in the sense that we would like to work with as
few objects as possible. Hence, our goal is to have a skeletal
formulation with full computational power, so that we can
calculate numerical quantities, such as amplitudes of quantum
processes, which are not necessarily gauge invariant. A cate-
gory is skeletal if there is only one object in each isomorphism
class, and in general strictness and skeletalness cannot be ob-
tained simultaneously, as may be demonstrated, for example,
by the semion theory Z(1/2)

2 . Therefore we need to skeletonize
the existing mathematical theories. The situation is analogous
to the one of a connection or gauge field: mathematically it
is good to define a connection as a horizontal distribution,
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while, in practice, it is better to work with Christoffel symbols,
especially in physics.

Our first mathematical result is a skeletonization of
G-crossed braided fusion category in Sec. VI. We pro-
vide a definition of a G-crossed braided category using
a collection of quantities organized into a basic data set:
Nc

ab, F abc
d , Rab

c ,Uk(a, b; c), and ηx(g, h) that satisfy certain
consistency polynomial equations. The fusion coefficients
Nc

ab and associativity F symbols F abc
d are as usual, but the

R symbols Rab
c are extended to incorporate the G-crossed

structure. The new data Uk(a, b; c) and ηx(g, h), respectively,
encode the categorical symmetry: monoidal functors and nat-
ural identifications ρgh with ρgρh. A good example of new
consistency equations are our G-crossed Heptagon Eqs. (286)
and (287), which generalize the usual Hexagon equations.

Our numericalization of a G-crossed braided fusion cat-
egory provides the full computational power for any theory
using diagrammatical recouplings, though care has to be
taken when strands pass over/under local extremals. This
computational tool is especially useful for dealing with gauge-

dependent quantities, which, in the G-crossed theory, include
the important extended G-crossed modular S and T trans-
formations. As an application, we generalize the Verlinde
formulas to the G-crossed Verlinde formulas Eqs. (346) and
(347). The diagrammatical recouplings also allow us to prove
the theorems mentioned above in an elementary way. In
particular, we prove that the extended G-crossed modular S
and T transformations indeed give rise to projective represen-
tations of SL(2,Z). We also conjecture the topological twists
for the gauged (equivariantized) theory and derive the modular
S matrix of the gauged theory.

In Sec. XI, we catalog many examples. Those examples
illustrate our theory and also potentially lead to new modular
categories. An interesting example is the gauging of the S3

symmetry of the three-fermion theory SO(8)1. The resulting
rank 12 weakly integral modular tensor category has not
previously appeared in the literature. It would be interesting
to see if the triality of the Dynkin diagram D4 would provide
insight into the construction of this new modular category
from SO(8) × S3.
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