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Analysis of a hyperprism for exciting high-k modes and subdiffraction imaging
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We study the effect of resonances on the ability of prisms made of hyperbolic metamaterials in the canalization
regime (such as wire array media) to couple evanescent high spatial frequencies (high-k modes) to low spatial
frequencies that propagate in the far-field zone. Using simple analytical models, we calculate the far-field
propagation from the hyperprism. The resonant nature of the metal wire segments within the prism yields
a transmission function identical to that of a grating, but with periodicity proportional to the wavelength,
making the hyperprism function like a nondispersive grating. Numerically compensating the effect of resonances
allows the hyperprism to be used as a one-dimensional imaging device able to resolve feature sizes below the
diffraction limit if the host medium has a low refractive index. Furthermore, the hyperprism enables coupling
of propagating plane waves to a range of high-k modes that can be increased by increasing the angle of the
prism. We quantify how this tunable, nondispersive excitation of high-k modes opens up possibilities for new
experimental approaches for coupling to plasmonic systems and for increased axial resolution in total internal
reflection imaging, in particular in the terahertz spectrum.
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I. INTRODUCTION

Metamaterials [1] are engineered subwavelength compos-
ite materials that allow unprecedented control of the electro-
magnetic response, leading to a new class of exciting phe-
nomena not attainable with conventional materials. Among
various metamaterials explored to date, hyperbolic metama-
terials (HMMs) have received widespread attention in the
scientific community due to their structural simplicity and
the variety of important applications spanning the frequency
range from microwave to ultraviolet [2]. A HMM is a highly
anisotropic artificial medium, in which the real parts of dif-
ferent electric (or magnetic) response tensor components have
different signs, resulting in an open hyperbolic dispersion pro-
file [3,4]. The hyperbolic dispersion profile can be achieved
using alternating subwavelength layers of metal and dielectric
(layered media) [5] or by distributing subwavelength parallel
metallic wires in a dielectric host (wire media) [6]. Idealized
HMMs have the unique property of supporting propagating
waves with arbitrary high-k vectors, which would be evanes-
cent in conventional dielectrics [3]. Owing to the unbounded
dispersion profile, HMMs offer a large range of potential ap-
plications such as negative refraction [7,8], spontaneous emis-
sion and radiation enhancement [9–12], optical analogs for
cosmology [13,14], and nanoscale light confinement [15,16].

One of the most promising applications of high-k modes
in HMMs is to create diffraction-beating devices such as
hyperlenses [17,18]. A properly designed HMM device can
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couple high-k modes to low spatial frequencies propagating in
free space, allowing magnification of subwavelength objects
[17]. Conversely, hyperlenses can be used to couple free-
space propagating waves to high-k waves such as surface
waves [19]. While this is not the only way to couple to
high-k waves (alternatives being high-index prisms [20–22],
gratings [23,24], and simple sharp objects), hyperlenses offer
additional versatility, for example, for focusing below the
diffraction limit [25], and could provide access to a wider
range of spatial frequencies.

Most experimental realizations of magnifying hyperlenses
relied on curved geometries [17,18,26] or tapering of the
structure [27–29]. Hyperlenses based on wire media have
been fabricated at various frequency ranges, including mi-
crowave [28], terahertz (THz) [29], and midinfrared [30].
At microwave frequencies, early imaging experiments were
performed using manually assembled slabs and tapered wire
media [28,31]. Imaging experiments at THz frequencies us-
ing fiber-based hyperlenses demonstrated resolution down to
λ/28 [29]. However, such hyperlenses are difficult to produce,
especially in large numbers [29], because of their shape.

An alternative structure offering some of the functionality
of hyperlenses is that of a HMM prism geometry, first sug-
gested by Salandrino and Engheta [18]. The use of hyper-
prisms of various shapes to convert high-k to low-k waves was
studied by Valagiannopoulos et al. to increase dipole emission
to free space [10], but otherwise, the prism geometry has not
received much attention. In many cases it is a much easier
geometry to produce. A hyperprism can couple propagating
waves on the slanted side to high-k waves at its base, in a
way similar to a simple dielectric prism. This can be used to
excite surface waves, but conversely, it can be used to magnify
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subdiffraction features in the near-field zone of the base, in
only one dimension, and thus also has potential for imaging. It
appears that, conceptually, the limitation to one-dimensional
imaging could be overcome by a conical geometry, where a
wire array fiber could be sharpened like a pencil and thus
relatively easy to make. Each radial section of the cone would
act as a prism, justifying the study of the prism as a potential
imaging device.

We recently fabricated and experimentally characterized a
wire array prism at THz frequencies, showing the resolution of
features below the diffraction limit with a twofold magnifica-
tion along one dimension in the near-field zone [32]. However,
a prism is not as convenient as a lens for imaging: while we
demonstrated magnification in the near-field zone, the phase
of the information is heavily affected by multiple resonances
within the prism, scrambling the far-field images. It is thus
not clear how and whether such a simple prism of HMM
(or hyperprism) can indeed couple high-k modes to far-field
propagating plane waves.

In this paper, we explore the consequence of the hyper-
prism’s resonances, both for subdiffraction imaging and for
exciting high-k modes from the far-field zone. We use the spe-
cific example of a hyperprism used in previous experimental
studies [32], with the geometry described in Sec. II. Using
homogenization of wire array metamaterials and a Fabry-
Pérot resonator model, we devise a simple transfer function of
the hyperprism (Sec. III), allowing us to calculate how well
subdiffraction spatial features are preserved in the far-field
field distribution and the limit of high-k values that can be
coupled to from free space (Sec. IV). Taking into account
wire resonances, the transfer function is, in essence, that of a
grating: in Sec. V we analyze the resulting grating effects and
show that the effective period of the grating is proportional to
the wavelength so that the hyperprism acts as a nondispersive
grating. In Sec. VI, we show that even in the presence of the
inevitable resonances, the high-k modes can, in principle, be
used for subdiffraction imaging if the effect of resonances
is compensated for and investigate the imaging performance
of the hyperprism. In Sec. VII we quantify the potential of
hyperprisms for exciting graphene THz plasmons and for total
internal reflection microscopy, where the reduced penetration
depth could lead to λ/100 longitudinal resolution. Finally,
in Sec. VIII we validate our simple analytic model with full
vector numerical simulations before concluding.

II. GEOMETRY

A two-dimensional (2D) schematic of the wire array hy-
perprism under consideration is shown in Fig. 1(b). The
hyperprism is simply a section of a wire array embedded in a
dielectric of refractive index n [light blue region in Fig. 1(b)],
with one section perpendicular to the wire (the base) and the
other section at an angle θ to the first. In the canalization
regime [33] fields propagate purely parallel to the wires. This
means fields due to a source on the base end up projected
on the larger slanted section, with the projection yielding
magnification by a factor M = 1/ cos(θ ). Our analytic study
relies on the homogenized canalization behavior and does
not depend on wire spacing, which thus remains undefined
(or assumed to be infinitely small). Because hyperlenses are
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FIG. 1. Schematic of the wire array hyperprism. (a) The prin-
ciple of subdiffraction imaging and surface plasmon excitation are
shown in green and red. (b) Two-dimensional representation of the
hyperprism with a two-slit object, where d , 2w, θ , and ϕ represent
the center-to-center distance between slits, prism width, prism angle,
and angle of refraction, respectively.

typically small, of sizes comparable to the wavelengths, their
finite size must be taken into account. In all examples studied
in this paper we use the following design, which can be
scaled to any wavelength. We chose θ = 60◦ so that the
magnification is 2 and a width of the prism base 2w that
is 3/5 of the shortest wire. Figure 1(b) also shows a double
slit that will be used to characterize the imaging performance
of the prism. The center-to-center distance between slits d
represents the scale of features to be resolved. We calculate
the distribution of fields in the far-field zone, an amplitude
function of the refraction angle ϕ for any given object at
the input face of the prism. We expect that each spatial
frequency kx at the object plane can be mapped to an angle of
refraction ϕ.

III. THEORETICAL FRAMEWORK

We begin our analytical treatment by considering the
medium to be homogeneous, but in the canalization regime,
meaning fields propagate only in the direction of the wires,
i.e., along z. We consider the problem to be two-dimensional
and consider only the extraordinary waves [2], which can thus
be described by their scalar amplitude. In such a case, the
output field Eo(u) along the slanted side of the prism depends
only on the input field Ei(x) at the same value of x = u cos(θ ),
where θ is the prism angle. The output field can be expressed
by

E0(u, f ) = Ei(x, f )T (x, f ), (1)

where f is the frequency and T (x, f ) denotes the local transfer
function of the prism. In this first model, we neglect losses
and the effect of wire resonances. The phase accumulated in
the prism is then simply proportional to the wire length and
thus proportional to x and the slope of the interface, leading to
a phase ramp as a function of x. The local transfer function of
the prism with finite width 2w can then be written as

T (x, f ) = �(x/w)e(ikzsx), (2)
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FIG. 2. Mapping of input spatial frequencies kx/k0 to angle of refraction ϕ for (a) n = 1 and (b) n = 1.52. Mapping is evaluated for
w → ∞. The blue and black curves represent mapping for the hyperprism and a plain isotropic prism, respectively. (c) Mapping of input
spatial frequencies kx/k0 to angle of refraction ϕ, for n = 1 with two-, three-, and fourfold magnifications.

where s = − tan(θ ) is the slope of the interface, kz is the
wave-vector component in the direction of the wires, and � is
the rectangular function. In the canalization regime, the wave
vector becomes kz = nk0, where k0 is the free-space wave
number and n is the refractive index of the dielectric host.

The output field given by Eq. (1) is at the interface, that
is, in the near-field zone. However, we are interested in in-
vestigating far-field propagation away from the prism because
hyperlenses are most useful if the images are reconstructed in
the far field. To investigate how the spatial features are kept
in the far-field distribution, we consider the output field in the
spatial Fourier domain, which can be obtained by applying the
Fourier transform to Eq. (1):

Ẽ0(ku, f ) = Ẽi(kx, f ) ∗ T̃ (kx, f ), (3)

where the output field in Fourier space is given by the con-
volution of the input field Ẽi(kx, f ) and the transfer kernel
T̃ (kx, f ), where the convolution product * is a convolution
on kx and is calculated at kx = ku/ cos(θ ). We evaluate the
transfer kernel by applying the Fourier transform to Eq. (2):

T̃ (kx, f ) = 2w sinc(wnk0s + wkx ). (4)

This shows that the spatial frequencies are shifted and spread.
The spreading arises from diffraction through the finite width
of the prism, and the shifting of the spatial frequencies
depends on the refractive index and slope of the interface.
Asymptotically, for a large prism width w → ∞ the transfer
kernel of Eq. (4) becomes a Dirac delta function:

T̃ (kx, f ) = δ(nk0s + kx ). (5)

Equation (5) suggests a simple mapping from input spatial fre-
quencies, kx to ku (spatial frequencies at the output interface),
so that

ku = kx cos(θ ) + kzs cos(θ ). (6)

This incorporates the magnification since the spatial frequen-
cies are reduced by cos(θ ) and a shift in spatial frequencies,
corresponding to the rotation of the coordinate system (x to u)
and to refraction.

IV. ANALYSIS OF FAR-FIELD PROPAGATION

A. Limit of infinite width

To investigate how input spatial frequencies propagate to
the far field, we plot the angle of refraction, ϕ = sin−1(ku/k0)
as a function of input spatial frequency kx based on the
simple bijective map for infinite width resulting from Eq. (6).
A nonpropagating solution will be obtained when ku > k0,
which implies the refraction angle will be complex with a real
part of ±90◦, indicating the waves will be reflected back into
the hyperprism.

Figures 2(a) and 2(b) present the mapping of input spatial
frequencies for the hyperprism (blue curve) and a prism
consisting of an isotropic material with the same refractive
index (black curve) for comparison. The mapping is evaluated
by considering the wires in air [n = 1; Fig. 2(a)] and in a
medium with n = 1.52 [Fig. 2(b)] for twofold magnification
(θ = 60◦). The vertical dotted lines in Figs. 2(a) and 2(b) show
spatial frequencies corresponding to the diffraction limit in the
dielectric. For the isotropic plain prism, ϕ can be obtained
simply from Snell’s law. To get a better understanding of
these diagrams, we consider the case of waves with kx = 0,
corresponding to waves with phase propagating purely along
z in the medium. For Fig. 2(a), the black curve corresponds
to an isotropic “air prism” in air, that is, propagation in free
space. For the isotropic air prism, at kx = 0 the angle of
propagation is ϕ = −60◦ simply because ϕ is in a rotated ref-
erence frame (no refraction is taking place). For the isotropic
prism with refractive index n = 1.52, ϕ is different from −θ

at kx = 0, indicating refraction (or, in this case, total inter-
nal reflection) is taking place [Fig. 2(b)]. For both isotropic
prisms the input spatial frequencies kx coupling to propagat-
ing output waves are restricted by the diffraction limit, as
expected.

In contrast, the hyperprism carries waves with large kx that
can still couple to propagating waves in air at the interface
and thus enables the mapping of far-field propagating waves
to spatial frequencies beyond the diffraction limit. The mini-
mum and maximum accessible kx can be found directly from
kx/k0 = ∓M + n

√
M2 − 1, where M is the magnification fac-

tor. This can be interpreted in two ways: high-k information
at the bottom facet of the prism will couple to propagating
waves in the far field, which can be used for subdiffraction
imaging from the far-field zone, or conversely, a far-field beam
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incident on the upper angled facet can be efficiently coupled
to high-k waves at the prism’s lower surface, for example,
to excite surface plasmon polaritons. Compared to air, for n
= 1.52 the hyperprism allows mapping of a wider range of
spatial frequencies [see Fig. 2(b)]. From the mapping for the
hyperprism it can be seen that below a certain kx value the
real part of the refraction angle is −90◦, meaning light cannot
exit the output interface and is instead reflected back into the
hyperprism.

One of the advantages of the hyperprism is that the range of
accessible k vectors can simply be increased by increasing the
slope of the prism (thus enhancing magnification), as shown
in Fig. 2(c) for n = 1. The magnification of the hyperprism
is changed by varying the prism angle θ , and we chose
prism angles 60◦, 70.5◦, and 75.5◦, corresponding to two-,
three-, and fourfold magnifications, respectively. Thus the
hyperprism enables excitation of very high k modes even with
air as the host medium, which could avoid the requirement
of high-refractive-index materials to excite surface plasmon
polaritons (SPPs) in the prism coupling technique.

B. Finite-width effects

For the same finite width as mentioned earlier and mag-
nification of 2, the amplitude of the output fields Ẽ0(ϕ) for
an input harmonic field with a single spatial frequency is cal-
culated using Eqs. (3) and (4). The resulting mapping shown
in Figs. 3(a) and 3(b) for n = 1 and n = 1.52, respectively,
matches the shape of Figs. 2(a) and 2(b), but with additional
diffraction due to the finite width of the prism. Similar to
results in Fig. 2(b), larger n provides a wider range of spatial
frequencies accessible from the far-field zone [see Fig. 3(b)].
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FIG. 3. Normalized amplitude of the output field as a function
of input spatial frequencies and angle of refraction for (a) and (b) the
nonresonant and (c) and (d) resonant cases. The mapping is evaluated
for n = 1 (left column) and n = 1.52 (right column).

C. Effect of wire resonances

The homogenized, nonresonant model used above shows
the basic physics of how spatial frequencies propagate to the
far-field zone. However, this model is fundamentally incom-
plete since it ignores wire resonances. Resonances greatly
affect the phase and amplitude of the transmitted field and thus
the far-field pattern. Since each wire has different resonant
frequencies, it is not obvious how this will impact the far-field
pattern. To improve our analytical model, we now use a more
realistic approach based on Fabry-Pérot resonators to account
for wire resonances.

In this model, we treat each of the wire segments as Fabry-
Pérot cavity resonators, and the transfer function for a single
wire can be written as [34]

TFP(x, f ) = eiδ/2[(1 − R)/(1 − Reiδ )], (7)

where δ = 2kznL(x) is the phase for one round trip along the
wire length L(x) and R is the reflectivity at both interfaces. For
a fixed frequency, the local transfer function TFP is periodic
in δ and thus in x: the effect of the resonances is akin to
multiplying the resonance-free transfer function by a grating-
like transfer function. From this simple realization, we can
expect that this resonant model will yield a far-field pattern
similar to that of the nonresonant model, but with additional
diffraction lobes. For the same geometry and dielectrics as
in Figs. 3(a) and 3(b), the output field profile for R = 0.9
is shown in Figs. 3(c) and 3(d). Additional diffraction lobes
are indeed found for large spatial frequencies. The additional
diffraction lobes are shifted for a larger refractive index [see
Fig. 3(d)], and their intensity depends on the reflectivity, R.

V. ANALYSIS OF EFFECTIVE GRATING EFFECTS

The location of the additional sidelobes can be determined
based on the effective grating’s periodicity using the usual
grating equation [35]:

ku = ku0 + m

(
2π

�

)
, (8)

where m and � are the grating order and period, ku is
the wave vector of diffracted orders at the interface, and
ku0 = kxcos(θ ) + kzscos(θ ) is the projected wave vector at the
interface. From the phase of the transfer function TFP and from
Eq. (7), the effective grating period is

� = λ

2ns
, (9)

where λ is the vacuum wavelength and s is the slope of the
prism. From Eq. (9) the grating period is independent of the
overall length of the prism and depends on only the refractive
index, prism slope, and, intriguingly, the wavelength of light.
The input spatial frequencies mapped to the angle of refrac-
tion for different grating orders are illustrated in Figs. 4(a)
and 4(b) for n = 1 and n = 1.52. The red curves for both
plots show the mapping for m = 0, which is clearly matched
to that of the central field distribution shown in Figs. 3(c)
and 3(d), whereas the additional diffraction lobes in Figs. 3(c)
and 3(d) are matched for negative grating orders. Equation
(9) implies that, remarkably, owing to the appearance of the
grating as a result of resonances, the period of the effective
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FIG. 4. Mapping of input spatial frequencies to the angle of
refraction for (a) n = 1 and (b) n = 1.52. The mapping is evaluated
for w → ∞ and calculated for different grating orders.

grating is proportional to the wavelength λ. As a consequence,
Eq. (8) can also be written as ku/k0 = ku0/k0 + 2mns. Given
sin−1(ku/k0) gives the angle of diffraction of order m, we
see that for a fixed input angle, the angle of the diffraction
orders is independent of the wavelength, making the device
a nondispersive grating—in the limit that the background
material’s dispersion can be ignored, which is ostensibly the
case if n = 1.

VI. FAR-FIELD IMAGE RECONSTRUCTION

For a nonresonant, infinitely large hyperprism, there is
a bijective map between the far-field direction and spatial
frequency (Fig. 2), so that recording the far-field should
enable imaging with the extended spatial frequency range
provided by the hyperprism. However, for finite, resonant
hyperprisms the mapping between angle and spatial frequency
is not unique. To analyze the imaging performance of the
hyperprism, we consider an object consisting of two sub-
wavelength slits with slit width a = (2/3)d , where d is the
center-to-center distance between slits. To reconstruct the
image of subwavelength objects in the far-field zone,
the following steps have been taken. First, we calculate the
output field E0(u) at the output interface, which can be given
by multiplying the input field Ei(x) by the local transfer
function TFP, thus providing the output field in the near-field
zone (at the interface). We take the Fourier transform of this
output field, giving the far-field distribution as a function of
the refraction angle ϕ. We then map the far-field information
back to near-field information of the object, expressed in the
spatial frequency domain using Eq. (6), as shown in Fig. 5(a).

Finally, to regain the output field in real space we apply the
inverse Fourier transform.

The calculated intensity profile after image reconstruction
is shown in Figs. 5(b) and 5(c). We evaluate the intensity
profile for resonant and nonresonant cases, considering a
dielectric host with refractive index n = 1. Figure 5(b) shows
the intensity profile for the nonresonant case, and Fig. 5(c)
shows that for the resonant case with reflectivity R = 0.9.
For both cases the intensity profile is evaluated at a fixed
normalized wavelength, λ/d = 2.5. At this wavelength the
size and separation of the slits are below the diffraction
limit. For the nonresonant case and n = 1, it can be seen
that the reconstructed image clearly resolves the individual
slits, shown in Fig. 5(b). In this case image reconstruction
is possible because the hyperprism is able to map high spa-
tial frequencies, including the zero spatial frequency kx = 0
[Fig. 5(a)]. For the resonant case with R = 0.9, the intensity
of one of the imaged slits drops by ∼40% [Fig. 5(c)]. The
intensity reduction for the resonant case strongly depends on
the wavelength. To show this, we now present the images as
a function of wavelength and position, which we refer to as a
line scan [36].

The reconstructed intensity line-scan profiles for the res-
onant and nonresonant cases are shown in Fig. 6. For the
nonresonant case with n = 1, the hyperprism is capable of
resolving the subdiffraction features over a broad spectral
range, as shown in Fig. 6(a). However, for the same re-
fractive index but with R = 0.9, there is significant image
distortion [Fig. 6(b)]. The image distortion is due to the
different resonance frequencies of different wires. As a result,
in contrast to parallel slab wire media, there is no single op-
timal imaging frequency for the hyperprism. To eliminate the
resonances of the individual wires, we use a space-dependent
convolution technique [32] previously described for use in
the near-field zone, but now using the far-field data. The
intensity after the convolution is plotted in Fig. 6(c), showing
significant improvement of the image over a broad spectral
range.

We now investigate imaging performance of the hyper-
prism if n = 1.52. As before, we calculate the wavelength-
dependent intensity profile for R = 0 and R = 0.9. In this
case the hyperprism cannot resolve the subdiffraction features
[Fig. 6(d)]. This phenomenon can be explained by the fact
that all negative spatial frequencies, including the zero spatial
frequency, are lost for n = 1.52 [Figs. 2(b) and 3(b)], implying
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loss of phase and low spatial frequency information. As a
consequence, it is impossible to reconstruct the image with
any fidelity. The images are further degraded for the resonant
case [Fig. 6(e)]. The intensity profile after convolution for the
resonant case is shown in Fig. 6(f): the wavelength-dependent
artifacts have been mitigated, but the image still suffers from
the loss of low spatial frequencies. How resonant a prism is
strongly depends on the spectrum of interest, material losses,
and density of wires. In an example studied in Sec. VIII
we found R 	 0.2, making resonance effects relatively
weak.

VII. APPLICATIONS OF HIGH-k MODE EXCITATION

In the previous sections we have shown that the hyper-
prism can be used to magnify subdiffraction features for
far-field imaging. However, it allows only one-dimensional
magnification and is further limited when the host index is
not small due to the loss of negative spatial frequencies. In
many ways this is not entirely surprising, as dielectric prisms
are known as dispersive tools for exciting surface plasmons
[20] or for frustrated total internal reflection tomography [37],
more so than they are for imaging. Here we explore whether
hyperprism applications mimicking a conventional prism, tun-
ably coupling free-space plane waves to high-k modes, are
more promising. The hyperprism’s advantage is, of course,
the wider range of accessible k. This is of particular benefit
for surface plasmon excitation and total internal reflection
microscopy. We center our discussion on applications in the
THz spectrum, where hyperprisms are relatively easy to make.

A. THz graphene plasmons

Graphene can support SPPs at relatively low frequencies,
including the far infrared and THz, with properties adjustable
through doping and applied gate voltage [38–40]. Depending
on the latter, graphene SPPs can propagate over several wave-
lengths above 3 THz or can instead be strongly absorbed and
be used to modulate THz radiation, also at lower THz fre-
quencies [41–43]. To couple efficiently to the plasmon, phase
matching is required, which can be achieved using gratings or
prisms. Gratings are highly dispersive and typically provide
narrow-band coupling, while prisms can couple to SPPs only
with an effective index lower than the prism’s refractive index.
In contrast, a hyperprism could provide wideband coupling
over an extended range of effective indices matching kx/k0 in
Fig. 2. Figure 7 shows the effective index of SPPs of a single
layer of graphene on a dielectric substrate with n = 1.52 (for
consistency with the background index used in hyperprism
simulations), calculated using dispersion relations and data
from Ref. [39]. SPPs with an effective index above 1.52
cannot be coupled to using a simple dielectric prism with
the same refractive index, but a prism with M = 4 could
couple SPPs with effective indices in excess of 7, over a broad
spectrum, widening the range of frequencies and bias voltage
over which graphene-based SPP modulators could be used
[43].

B. Total internal reflection microscopy and tomography

In total internal reflection microscopy, a low-refractive-
index sample is positioned on a high-index lens or prism and
illuminated from the high-index side at angles at which total
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FIG. 7. Effective index of surface plasmon polaritons of a single
layer of graphene between air and a refractive index of n = 1.52 as a
function of Fermi energy EF and frequency.

internal reflection occurs. The sample is thus illuminated by
only the evanescent field, which can allow for high longi-
tudinal resolution. By scanning the angle of incidence and
thus the penetration depth, a three-dimensional image with
subwavelength longitudinal resolution can be reconstructed
[37,44]. Total internal reflection microscopy is particularly
useful to image within highly absorbing samples, for example,
in water at THz frequencies [45].

The use of a hyperprism enables coupling to evanescent
fields with a penetration depth far shallower than possible
using simple dielectric prisms. The penetration depth can be
defined by the 1/e decay length of intensity in a sample of
refractive index ns:

dp = 1

2
√

k2
x − n2

s k2
0

. (10)

Figure 8 shows dp in air (ns = 1) as a function of the angle
of incidence ϕ at 1THz for hyperprisms with various mag-
nification ratios M (background index n = 1.52), using the
nonresonant mapping of ϕ to kx resulting from Eq. (6). The
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FIG. 8. Intensity 1/e penetration depth in air as a function of the
angle of incidence for a hyperprism with n = 1.52 at f = 1 THz.

dashed line indicates the limit of penetration depth possible
with a simple dielectric prism with the same refractive index
1.52. Penetration depths lower than λ/100 can be achieved
with M = 4, greatly exceeding the limit of penetration depth
of simple dielectric prisms. At large angles of incidence and
thus large kx, dp ∼ 1/(2kx ) and only weakly depends on
sample index ns, so the penetration depths in the high-angle
part of Fig. 8 are indicative of that for vast a range of samples.
For example, for M = 4 in water at 1THz (ns = 2.23), the
minimum penetration depth is also lower than λ/100. This
could enable practical imaging schemes in highly absorbing
media, with exquisite longitudinal resolution.

VIII. VERIFICATION OF ANALYTICAL MODELS

To validate our analytical models, we compare them
with full numerical simulations. For that, we calculate the
transfer function of the hyperprism using a full-wave three-
dimensional (3D) finite integral method simulation (CST) and
compare results with the transfer function obtained from the
Fabry-Pérot resonator model. The hyperprism considered in
the full-wave simulation is composed of 17 × 9 silver wires
in a square array, embedded in a host dielectric with refractive
index n. The diameter and spacing between the wires are 1/80
and 1/16 times the width of the hyperprism (2w = 800 μm),
respectively. The permittivity of the silver is calculated using
CST’s 2014 model, which relies on a Drude model fitted to
experimental data [46]. Owing to the one plane of symmetry
of the structure, a half slice of the full structure is considered
in the simulation, with perfect magnetic boundary conditions
applied in the xz plane [Fig. 1(b)]. In the simulation, a single
aperture of size d (the same size as the center-to-center
distance between slits) is used as a source field, which is
then excited by an x-polarized plane wave propagating along
the direction of wires. We evaluate the transfer kernel of the
prism from the ratio of the output field to the input field.
The output field is calculated on the magnifying side of the
prism, and the input field is calculated immediately after the
aperture (without the prism). The output field is zero padded
outside the location of the imaged aperture. Since the fields
(i.e., output and input fields) are in real space, the transfer
function obtained is also in real space. In order to obtain the
transfer kernel in the spatial Fourier domain, we apply the
Fourier transform.

The results obtained from the full-wave simulation and the
Fabry-Pérot resonator model are summarized in Fig. 9. The
amplitude of the transfer kernel is plotted as a function of
normalized wavelength λ/d and wave vector ku/k0, and we
evaluate the transfer kernel for wires in a dielectric with n = 1
and n = 1.52. The amplitude of the transfer kernel calculated
from the numerical simulation is shown in Figs. 9(a) and 9(c).
One can clearly see that the central part of the transmission is
shifted [Fig. 9(a)], which is due to the slope of the interface,
and greater shift of the central part is observed for n = 1.52
[Fig. 9(c)], as expected from Eq. (4). The analytical result is
shown in Figs. 9(b) and 9(d), showing good agreement with
the simulations in that the shift and the width of the trans-
mission are very similar to the simulation results. Note that
in the analytical models we use reflectivity R = 0.2, chosen
to match the simulated results. At such a low reflectivity,
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the additional grating orders due to the resonance-induced
effective grating are barely visible directly. The checkerboard
pattern above the main lobes in Figs. 9(b) and 9(d) results
from the interference of the sinclike diffraction sidelobes of
the specular grating order (due to the finite width) with the first
grating diffraction order. There are features suggestive of this
checkerboard pattern that also appear in the direct simulations,
but noise from the limited spatial resolution of the simulation
makes positive identification of this feature difficult.

IX. CONCLUSION

We presented a simple analytic model to calculate the
far-field distribution from the near-field excitation of a hyper-
prism, taking into account resonances. Each wire of the hy-
perprism acts as a Fabry-Pérot resonator, so that each segment
of the hyperprism has resonant frequencies that scale with the
coordinate along the base. Remarkably, in the homogenized
limit (that is, in the limit of the distance between wires going
to zero) this leads to a transmission function identical to that of
a grating, but with an effective grating period proportional to
the wavelength. The transmission function then becomes that
of a nondispersive grating, where the angle between incoming

and outgoing orders is shifted by a constant given by geometry
rather than wavelength.

As expected, the hyperprism can couple high spatial fre-
quencies to propagating modes. The highest accessible spatial
frequencies depend on the slope of the prism and the host
refractive index and can by far exceed the spatial frequencies
accessible to dielectric prisms.

Our initial motivation was to explore the hyperprism as a
(one-dimensional) subdiffraction imaging device. We found
that diffraction beating imaging is indeed possible if the
background index of the wire medium is air. The wire’s
resonances scramble the images as we expected, with strong
frequency-dependent artifacts, but we showed that an appro-
priate space-dependent convolution can recover the images
over a broad frequency band. However, for larger, more real-
istic values of the background refractive index, the prism cuts
out negative and low spatial frequencies, which makes image
reconstruction impossible. Since at higher frequencies such
as THz and beyond, it is impractical to realize an air-based
hyperprism, hyperprisms have limited potential as practical
imaging devices by themselves.

However, the hyperprism offers a new route for selective
and tunable excitation of high-k modes from the far-field zone,
using a mechanism that is neither conventional refraction
nor a grating effect. This offers several new applications. As
examples, we discussed how a hyperprism with a large prism
angle could be used to excite high-k THz surface modes in
graphene and how a hyperprism could enable total internal
reflection microscopy with longitudinal resolutions as low as
λ/100. While our analysis relies on the canalization regime,
other implementations of the hyperprism should provide sim-
ilar functionality, with similar limitations. We believe that this
could open a new pathway for new experimental approaches
for low-frequency plasmonic systems and total internal reflec-
tion tomography.
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